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Abstract. This research focuses on Fall Detection (FD) using on-wrist
wearable devices including tri-axial accelerometers performing FD au-
tonomously. This type of approaches makes use of an event detection
stage followed by some pre-processing and a final classification stage.
The event detection stage is basically performed using thresholds or a
combination of thresholds and finite state machines. In this research, we
extend our previous work and propose an event detection method free
of thresholds to tune or adapt to the user that reduces the number of
false alarms; we also consider a mixture between the two approaches.
Additionally, a set of features is proposed as an alternative to those used
in previous research. The classification of the samples is performed using
a Deep Learning Neural Network and the experimentation performs a
comparison of this research to a published and well-known technique us-
ing the UMA Fall, one of the publicly available simulated fall detection
data sets. Results show the improvements in the event detection using
the new proposals.

1 Introduction

The study of Fall Detection (FD) represents a challenge in many different do-
mains, from the monitoring of patients to the improvement of the autonomous
living of elderly people. There are many different solutions, including video sys-
tems [I], intelligent tiles [2], sound detection [3], etc. Wearables play an im-
portant role in FD as they can be easily deployed, allowing care institutions
to optimize their services with a relatively low cost [45]. More specifically,
autonomous on-wrist wearable devices may be crucial in helping the elder pop-
ulation to continue living by their own. With autonomous on-wrist wearable
devices we are referring to smart devices, such as smart-watches, that can be
extended to detect any possible fall event using their own computational capa-
bilities, without the assessment of any external service. In this research, we focus
on smart-watches with built-in tri-axial acceleromenters (3DACC), which is by
far the most chosen option [GI7ISIGIT0]. Reviews on FD can be found in [ITI12].
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The main part of the solutions make use of Machine Learning (ML) to clas-
sify the current instance as a fall. Some examples of these methods are those
presented in [8l6], where a feature extraction stage and Support Vector Ma-
chines classifies the Time Series (T'S) windows. However, thresholds have been
also used in FD [9T3I[14], labelling the instance according to whether or not the
magnitude of the acceleration surpass the pre-defined values. Thresholds have
also been used in FD to define simple rules that drive the final decision [9UTOJT5].
Refer to [7] for a comparison of these type of methods.

Currently, it could be said that there are two main research approaches: using
deep learning solutions and using classical ML solutions. Concerning the former,
there are several published studies [I6/I7], but the capacity of current wearable
devices is still far from that desired to include this type of models [I8]. This
study focuses on the second type of solutions; more specifically, in those studies
concerned with the dynamics in a fall event [I9J20]. These studies includes a FD
method, a pre-processing stage and a classification stage using an ML method.
For instance, Abbate et al. proposed the use of these dynamics as the basis of the
FD algorithm [I9], with moderate computational constraints but a high number
of thresholds to tune. The proposal of Abbate et al has been modified in a series
of papers [2122]23] to adapt the sensor placement on a wrist. We refer to this
event detection as on-wrist Abbate. Recently, local peak detection was proposed
to identify the fall events together with a different set of transformations of the
acceleration magnitude [24], which represents the starting point of this research.

The main contribution in this study consist of introducing a Finite State
Machine (FSM) to the event detection mechanism proposed in [24]. Interest-
ingly, this new event detection makes use of no user predefined threshold, which
represents a step ahead in the event detection mechanisms in the literature. We
refer to this event detection mechanism as MAX-PEAK-FSM. Alternatively, we
evaluate a mixture of both approaches, denoted as ABBATE-MAX-PEAK. Fur-
thermore, several new features are computed for the acceleration data window
surrounding each detected peak; a study on this topic is performed. Finally, a
comparison with different solutions in the literature are presented.

The structure of the paper is as follows. The next section deals with the
description of both the MAX-PEAK and the new proposal MAX-PEAK-FSM
together with the ABBATE-MAX-PEAK. The feature description and how these
features are processed is included in this section as well. Section [3| details the
experimentation set up and includes the results and discussion. Finally, the con-
clusions are drawn.

2 Fall detection using local maximum peaks

Fig. [I] shows the block diagram proposed to detect the fall events. Firstly, the
magnitude of the acceleration is calculated. The first stage is the event detection
method, which signals whether a T'S sample includes a candidate of a fall event.
The second stage is the feature extraction from a peak window surrounding
the found peak. Finally, the set of features is classified either as a Fall or as a
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Not _Fall peak. This classification stage is performed with a feed-forward Neural
Network (NN) following the studies in [19)22J24]. This section deals with the
event detection which is described in the next subsection, while the FSM is
described in subsection 2.2l

MAX-PEAK-FSM Feature extraction Classifier

& processing

Fig. 1: Block diagram of the proposal. The local maximum peaks are filtered and
only those found relevant are anylized. The feature extraction aims to represent
the most interesting characteristics of the TS surrounding the peak. Finally, a
feed-forward NN classifies the instance.

2.1 Event detection using local maximum peaks

The block diagram of the event detection stage is presented in Fig.[2] The values
within the Time Series (TS) of the magnitude of the acceleration are smoothed
using the mean value within sliding window of size % of second and shift 1 sample.
From now on, the TS contains the mean values computed from the smooth step.

Afterwards, we apply the S transformation proposed in [25]. S] is calculated
using Eq. [I}, where k is the predefined number of samples and ¢ is the current
sample time-stamp. It is worth noticing that, although we analyze the window
[at—2k—1,a¢] at time ¢, the peak candidate is a;—g, the center of the interval.
The S; transformation represents a scaling of the TS, which makes the peak
detection easier using a predefined threshold «. The algorithm for detecting
peaks is straightforward: a peak occurs in time ¢ if the value S; is higher than «
and is the highest in its 2k neighborhood. The value of k is determined as the
inverse of the sampling frequency.

% secTS MAX function
3DACC SMOOTHING local peak detection FSM OuTPUT

Fig.2: Event detection mechanism. The 3DACC signal is smoothed using a %
second window. The filtered signal is analyzed using the local maximum peak
proposed in [25]. When a local maximum peak is detected the FSM filters those
repetitive peaks that appears in certain activities, such as walking or running.
The output is whether a peak might be a fall event candidate (thus, needing
further processing) or not.

1 t—k—1 t
S1(t) = 5 x { max (aiy1 —ai) + max (a; —ai-1)} (1)
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As stated in [24], using statistics theory avoids the problem of the defining
a. To do so, we defined walking as the reference activity (henceforth subindex
w). Each user u needs to perform this activity during a short period of time,
where the mean p and the standard deviation o, are computed; the TS is then
normalized using < p¥, of >. Sy is calculated for the normalized TS during
this walking period, calculating its mean (u;, 5 ) and standard deviation (o7, )-
Then we set a = 3 x 0,5, which means (for a normal distribution) that a high
value that is statistically the upper limit for S1 when walking is a peak candidate.

2.2 A Finite State Machine labelling the relevant peaks

The FSM proposed in [19] was designed considering the dynamics of a fall event;
it has been found that in good percentage of the cases the FSM certainly detects
the fall dynamics. However,this proposal makes use of thresholds to determine
the magnitude of the acceleration peak and the time window around the peak
value. Thus, we simplify this FSM (see left part of Fig. 3| Each detected local
maximum peak changes the state to Timing, starting a timer of 2.5 seconds as
was suggested in [19]. If the timer fires, the state moves into Is a Peak, where the
feature extraction and further processing together with the classification takes
place. The state changes to No Peak once the peak is labelled.

Moreover, we merged the two FSMs, the one proposed in [19] and the one
proposed before. This solution, called ABBATE-MAX-PEAK, uses the S1 value
and the concept of statistically out of range wrt the acceleration value when
walking instead of the acceleration and a predefined threshold. However, the
timers and the calculation of the peak window is performed as stated in the
work of Abbate et al.

a local peak has Initialization
L1
-“s been found Get a Sample 51 =3 * Syane

‘ Not Peak
/

Reset Timer

Not Peak
/

No action

*
= OWALKING

Activity Test Post Peak

Is a Peak
/
Compute
the features

the timer fires
at 2.5 sec

T = Teosreal Post Fall T = Taouname

Fig. 3: The proposed FSMs. To the left, the FSM used in the MAX-PEAK solu-
tion. To the right, the FSM used in the ABBATE-MAX-PEAK approach. This
latter makes use of the same FSM as proposed in Abbate et al [19], but using the
S1 and the concept of statistically out of range proposed in the previous section.
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2.3 Extended feature subset

The research in [19] introduced up to 8 features that were computed in the
context of the dynamic window around each detected peak; these features in-
cludes too many parameters and predefined thresholds and tuning them becomes
a hard task. In [24] 4 different well-known transformations were proposed; the
main novelty were that these 4 features were computed for both the pre-peak
and post-peak parts of the peak window. The rationale was that, provided there
are differences in the human behavior before and after a fall, the differences must
be reflected on these features as well. Therefore, the [a;_ok—1, a¢] window is split
in two: before (Ip = [at—2k—1,a1—k—1]) and after (I4 = [a;—g+1,a¢]) the peak,
respectively. For each of these sub-intervals the following transformations were
calculated, with s and e meaning the bounds of the corresponding intervals:

— Average Absolute Acceleration Magnitude Variation, AAMYV, computed as
AAMV :Zf;: |az+1 — ai|/N, with N the number of samples in the interval
[s, €]

— Energy of the Acceleration Magnitude, E, calculated as E =Y ;__a?/N

— Mean of the acceleration magnitude, MIN, in the interval [s, €].

— Standard Deviation of the acceleration magnitude, SD, in the interval [s, e].

In this research we propose 3 more features from [26] together with the S;
function proposed in [25] and adapted to this specific problem. This is the listing
of these features.

— Amount of Movement, AoM, computed as AoM =|maz§_,(a:)—min§_,(at)|.
— Mean Absolute Deviation, MAD, computed as MAD =+ >"7__|a; — MN;_,|.
— Maximum of the differences, Sy, proposed in [25] and computed using Eq.

When using the MAX-PEAK, the 4 features from [24] plus the 2 first features
from [26] are computed for i) the subinterval before the peak, ii) the subinterval
after the peak and iii) for the whole peak window. The S; feature will be com-
puted for the current peak and used as an input feature as well. For the MAX-
PEAK we have a total of 19 features. In the case of ABBATE-MAX-PEAK, the
same features as proposed in [I9J22] are used.

3 Experiments and results

3.1 Data sets and experimentation set up

This research makes use of UMA Fall [27], a public staged falls data set. A total
of 17 participants contributed to this data set, with up to 208 TS of simulated
falls and a total of 531 TS. The TS were sampled at 20 Hz; in this research,
we focus on the TS from the 3DACC sensor placed on a wrist. FEach participant
performed a non-fixed number of Activities of Daily Living (ADL) and falls.
The experimentation is divided in two parts. The first one is devoted to
compare fall event detection, while the second one compares the performance of
this study. In both of them, this study is compare with the proposals in [19)24].
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The first part compares the methods using the well-known counters True
Positive -TP-, True Negative -TN-, False Positive -FP- and False Negative -FN-
in order to evaluate the performance of the event detection methods; we count
a positive as a fall while a negative as non-fall. These counters are updated
according to whether there are or not peaks detected in each of the participant’s
TS and the label this T'S has. For each participant, the walking activity TS are
used to set up its « value.

The second part makes use of densely connected neural network using Keras.
The model includes, in all the cases, 3 layers (with 150 neurons each and a ReLU
activation) plus one final layer of 1 neuron using a sigmoid activation and L2
regularizer with 0.001 as updating coefficient. A 0.4 percentage dropout layer
is included between each two layers to avoid the overfitting. In all the cases,
the models were allowed 30 epochs with a batch size computed as the number
of instances divided by the number of epochs. The features extracted from the
detected peaks are scaled to the interval [0.0, 1.0]. All the instances are labelled
as FALL or NOT_FALL.

In this second part, we perform Leave-one-PARTICIPANT-out cross valida-
tion: we keep the data from the current participant for validation; the remaining
instances are used to train and test the Deep Learning NN. A 10-fold cross val-
idation is performed then using the train and test part. The mean Sensitivity
and mean Specificity obtained for the validation data set are the metrics used
in the comparison of the methods.

3.2 Comparison of event detection methods

Table [1] shows the counters for each of the event detection methods. The per-
formance of the on-wrist Abbate is much worse than that of MAX-PEAK and
MAX-PEAK-FSM if we consider the undetected alarms: 56 undetected falls for
the on-wrist Abbate, 2 for the MAX-PEAK and MAX-PEAK-FSM and 3 for
the ABBATE-MAX-PEAK. Besides, the on-wrist Abbate performs really well
with the TN, perhaps due to the relatively high threshold used in detecting
the fall events. The MAX-PEAK-FSM and the ABBATE-MAX-PEAK clearly
outperform the MAX-PEAK in terms of reducing the false alarms.

On the other hand, when analyzing the UMA Fall data set, the number of
peaks detected by each method were 201 for the on-wrist Abbate, 3073 for the
MAX-PEAK, 449 for the MAX-PEAK-FSM and 531 for the ABBATE-MAX-
PEAK. This means that for several TS the event detection considered more than
one peak. Obviously, the sensitiveness of MAX-PEAK is much higher than those
of on-wrist Abbate and MAX-PEAK-FSM, producing by far more false alarms
than the other methods. Hence, the MAX-PEAK produces highly imbalanced
data sets and we are not going to use it the next experimentation concerning
with instances classification. A priory, the MAX-PEAK-FSM and the ABBATE-
MAX-PEAK seem the best event detection methods.
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Table 1: Event detection results for each participant.

MAX-PEAK- | ABB-MAX-
on-wrist Abbate| MAX-PEAK FSM PEAK
Pid ITNFP FN TP TN FP FN TP|TN FP FN TP|TN FP FN TP
1 6 2 5 15 |7 11 0 20(9 9 0 20({10 8 0 20
2 5 3 2 10 7T 11 0 12|13 5 0 12|13 5 0 12
3 17 2 2 16 5 14 0 18| 8 11 0 18| 9 10 0 18
4 18 3 7 10 4 17 1 16|10 11 1 16|11 10 1 16
5 15 0 0 6 5 10 0 6|8 7 0 6|9 6 0 6
6 4 0 2 4 0 4 0 6 0 4 0 6 0 4 0 6
7 20 2 O 0 2 20 0 0|3 19 0 0|3 19 0 O
8 16 3 0 0 3 16 0 0|6 13 0 0|7 12 0 O
9 16 2 2 16 5 13 0 18|12 6 0 18|12 6 0 18
10 19 2 0 0 7 14 0 0|9 12 0 0|10 11 0 O
11 19 0 1 0 4 15 0 1 8 11 0 1 8 11 0 1
12 22 1 9 0 0 23 0 9 5 18 0 9 7 16 O 9
13 7 0 5 7 4 3 0 12/6 1 0 12(/6 1 0 12
14 5 0 0 6 1 4 0 6|2 3 0 6|2 3 0 6
15 9 1 8 3 3 7 0 11| 6 4 0 11| 7 3 0 11
16 5 8 5 51 |8 56 0 56(27 37 0 56|27 37 1 55
17 12 6 8 10 3 1 1 17| 7 11 1 17| 7 11 1 17
Total|286 35 56 154 |68 253 2 208|139 182 2 208|148 173 3 207

3.3 Classification of Time Series

Results from the different configurations are shown in Table 2| and in the box
plots in Fig. 4] and Fig. [f] Although paying attention to the figures in the Table
the two approaches MAX-PEAK-FSM and ABBATE-MAX-PEAK dominates
the on-wrist Abbate, if we pay attention to the box plots there is no clear winner.

On the one hand, the ABBATE-MAX-PEAK shows a surprising no variation
performance, either for good (with the specificity) or for bad (the sensitivity).
Nevertheless, we can not say the sensitivity of this configuration is worse than
for the other methods: the results vary differently for each participant.

With all these figures and graphs we can state that perhaps more features
need to be extracted and a better feature set must be needed in order to obtain
a good robust performance for all the participants.

4 Conclusions

This research is focused on FD using wearable devices using a 3DACC sensor
located on a wrist. The study has analyzed different event detection methods
together with different transformations of the acceleration windows when an
event is detected. The comparison has been performed using densely connected
layers in a Deep Learning configuration using the Keras framework.

Results show that the two proposed event detection methods were much
better than the previously used method because i) there is no need of a predefined
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on-wrist MAX-PEAK ABBATE-

Abbate -FSM MAX-PEAK
Pid SEN SPE |SEN SPE |SEN SPE
1 0.6667 0.9888 |0.7633 0.9813 |0.6850 0.8889
2 0.8391 1.0000 |0.7696 1.0000 |0.9231 1.0000
3 0.9027 0.9893 |0.8676 0.9946 |1.0000 1.0000
4 0.7730 1.0000 [0.7676 1.0000 |0.8882 1.0000
5 0.6000 1.0000 |0.5923 1.0000 |0.8571 1.0000
6 0.6167 0.9462 |0.5958 0.9769 |0.3750 0.9200
7 - 0.9551 |- 0.9561 |- 0.8842
8 - 0.9720 |- 0.9764 |- 0.9467
9 0.7085 0.9972 |0.6872 0.9962 |0.8429 0.7750
10 - 0.9608 |- 0.9598 |- 0.9250
11 0.5667 0.9799 |0.4667 0.9871 |0.5000 1.0000
12 0.6111 0.9825 |0.6667 0.9796 |0.5444 0.9167
13 0.7688 0.9985 [0.7937 0.9970 {1.0000 1.0000
14 0.8182 1.0000 |0.8182 1.0000 |0.6000 0.9000
15 0.7368 0.9946 |0.7263 0.9957 |0.8000 1.0000
16 0.8250 0.9900 [0.7984 0.9909 |0.9436 0.9442
17 0.6560 0.8949 |0.6600 0.8782 |0.7824 0.8923
AVRG [0.7207 0.9794 |0.7124 0.9806 |0.7673 0.9408
AVRG|0.7207 0.9794(0.7124 0.9806|0.7673 0.9408

Table 2: Classification results in this leave one participant out cross validation.
SEN and SPE stand for Sensitivity and Specificity, while AVRG refers to the
average of the metrics over all the participants. An hyphen (-) stands when the
participant did not perform any staged fall, thus the value of the sensitivity
becomes not calculable.
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Fig.4: Box plot of the sensitivity for the validation data set per participant.
Upper, central and lower parts are for the on-wrist Abbate, the MAX-PEAK-
FSM and the ABBATE-MAX-PEAK, correspondingly.
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Fig.5: Box plot of the specificity for the validation data set per participant.
Upper, central and lower parts are for the on-wrist Abbate, the MAX-PEAK-
FSM and the ABBATE-MAX-PEAK, correspondingly.
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threshold and ii) because the number of undetected falls is almost negligible.
While the baseline method fails detecting 56 out of 210 falls, the proposals
detect 207 or 208 out of 210 falls. However, the transformations that have been
studied did not improve the results obtained from the on-wrist Abbate solution.
This might be due to an inefficient set of features that becomes redundant. Extra
transformations (in the domain of the frequency and others) might be needed
in order to enhance the results. Additionally, the use of other Deep Learning
models, such as Long Short Term Memory or GA networks, can lead to better
results at the cost of draining battery in case of being run in the wearable device
or in a Smartphone.
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