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Abstract. Fall Detection (FD) and ADL (Activity of Daily Living)
identification is one the main challenges in a lot of real-world problems
like work monitoring, healthcare systems, etc. Up to our knowledge, there
are a lot of proposals in the literature for both problems separately, but
few of them pose both problems at a time. A possible solution relies on
on-wrist wearable devices including tri-axial accelerometers performing
ADL and Fall identification autonomously. Since the dynamics of both
kind of activities (FALL and ADL) are quite similar and not easy to iden-
tify, mainly in FALL and high ADLs like Running, Jogging, GoUpstairs,
etc, a technique considering peaks is suitable. Thus, in this study, an
ensemble between KMEANS and KNN (stands for EKMEANS) taking
as input a 19 features dataset calculated from a time window whenever a
peak is detected. As peak detection algorithm is used, the MAX-PEAKS
algorithm presented in [15].

The proposal is evaluated using the UMA Fall, one of the publicly avail-
able simulated fall detection data sets, and compared to two classical
well-known algorithms: the KNN and a Feed Forward Neural Network
(NN) [15].

The results show that our proposal outperforms the NN results.

Future work includes a further analysis of the dynamics of the ensemble
EKMEANS and a study of this problem using Deep-Learning.

Keywords: Human Activity Recognition, ADL identification, Fall De-
tection TS Clustering, TS Classification, Wearable Devices.
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1 Introduction

Fall Detection (FD) and ADL (Activity of Daily Living) identification is one of
the most important research niches in several real-world problems like healthcare,
work safety, sport monitoring, etc. At present, there are a lot of proposals in the
literature for both problems separately, but few of them pose both problems at
a time.

Concerning FD, the solutions can be classified into three main types respect
to the type of sensors used: Non-Wearable Based Systems (NWS), Wearable
Based Systems (WS), and Fusion or hybrid-based Systems (FS) [17]. Current
work focuses on smart-watches with built-in tri-axial accelerometers (3DACC),
which is by far the most chosen option [2,5].

Regarding FD proposals, it can be stated that most of the references includes
any machine learning technique applied to the focused problem. For example,
[18,16] involve a feature extraction stage plus a SVM that classifies the TS
windows. Likewise, [2,5,6] classify the sliding windows based on some transfor-
mations of the 3DACC magnitude and using some thresholds with very simple
rules.

One of the baselines in FD is the Abbate algorithm [1], that has been ex-
tended and modified in a series of publications [7,8,14], to adapt the original
location of the Abbate algorithm sensor (waist) to a sensor on the wrist. In one
of our previous work [15], a new event detection mechanism to detect the high
intensity fall events was presented (events that arise when the user stands up
and falls either while walking, standing still, running, etc.). The idea is derived
from a partial maximum peak detection method [11], where the threshold to
detect the peaks is automatically determined for each user. Interestingly, this
new event detection makes use of no user predefined threshold, which represents
a step ahead in the event detection mechanisms in the literature. We refer to
this event detection mechanism as MAX-PEAKS.

Since finding an appropriate value for the threshold that allows detecting
all type of falls without getting confused with some ADL has proved to be
a complicated problem [17], current work proposes a preliminary proposal to
classify TS in a public dataset including typical ADLs as well as different kind of
falls. It can be stated that most of references tackling ADL identification usually
exclude FALL time series: sometimes the original dataset doesn’t include FALL
times series [10,9] and others the authors exclude the FALL samples [12].

Thus, this study proposes a Hybrid Artificial Intelligent System to classify
datasets including ADLs and Fall TSs. The proposal includes an extension of the
MAX-PEAKS algorithm presented in [15] with a more complete set of features,
and the classification algorithm will be an ensemble of the well-known algorithms
K-Means and KNN (stands for EKMEANS). In addition, the MAX-PEAKS
features will be reduced using the PCA [13] analysis with different levels of
variance.

The structure of the paper is as follows. The next section deals with the de-
scription of the proposal including the extension of the MAX-PEAKS algorithm,
together with the transformations that are proposed to compute, as well as the
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description of the classification algorithm EKMEANS. Section 3 describes the
UMA Fall dataset used, the experimental setup and shows and discusses the
obtained results. Finally, conclusions are drawn.

2 The proposal

Figure 1 shows the complete procedure of the algorithm employed in this work.
The general algorithm consists of four stages: first, a sliding window of 1

4FREQ

MAX-PEAK-FSM Feature extraction
& processing Classifier PREDICTED 

LABEL3DACC
Feature

extraction
PCA

Fig. 1. The general schema of the proposal

of sampling rate is considered to compute the MAX-PEAKS algorithm [15].
When a Peak is detected (FALL or NOT FALL), the transformations for two
windows are calculated. After that, the feature extraction using PCA is com-
puted and finally the classification model is carried out.

2.1 The MAX-PEAKS Peaks detection algorithm

The event detection stage For the purpose of detecting peaks in the 3DACC
magnitude, the first stage is to smooth the signal using a sliding window sized
1
4FREQ, with FREQ being the sampling frequency. Afterwards, we apply the
S1 transformation proposed in [11]. For the current problem, the S4 and S5 were
too complex for a smart-watch and need too wide windows of data in order to
estimate the entropy. From the remaining transformations, we chose S1 because
its simplicity and similar performance among all of them. The Eq. 1 defines
the calculation of S1, where k is the predefined number of samples and t is the
current sample timestamp. It is worth noticing that, although we analyze the
window [at−2k−1, at] at time t, the peak candidate is at−k, the center of the
interval. The S1 transformation represents a scaling of the TS, which makes the
peak detection easier using a predefined threshold α.

S1(t) =
1

2
× {maxt−k−1

i=t−2kai +maxti=t−k+1ai} (1)

The algorithm for detecting peaks is straightforward: a peak occurs in time
t if the value St is higher than α and is the highest in its 2k neighborhood. In
the original report, all the parameters (k, α) were carefully determined for each
problem in order to optimize the peak detection.
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The new set of transformations Whenever a high intensity fall occurs there
are three main parts: the activity being carried ordinarily before the fall event,
the fall itself that we identify as a peak and what happens next. Because there
are no public data set of real falls for healthy participants, we are not able
to say accurately what happens after a fall: we can make the hypothesis that
what happens after a fall is a period of relative calm, without special activity,
perhaps some erratic movements of the hands. Therefore, we will divide the
[at−2k−1, at] window in three: before the peak IB = [at−2k−1, at−k−1], the peak
IP = [at−k−1, at−k+1] and after the peak IA = [at−k+1, at]. For each of these
sub-intervals we propose to compute the following transformations:

AAMV Average Absolute Acceleration Magnitude Variation computed
as AAMV =

∑e−1
t=s |at+1 − at|/N , with N the number of samples in the in-

terval [s, e].
E Energy of the Acceleration Magnitude E =

∑e
t=s a

2
t/N

Mean Mean Activity the mean of the acceleration magnitude in the interval
[s, e].

SD Standard Deviation of the acceleration magnitude in the interval [s, e].
AoM Amount of movement calculated as abs(max(ai)−min(ai)).
MAD Mean Absolute Difference calculated as 1/n ∗ sum(|ai−mean(ai)|).

Therefore, we have a total of 19 transformations (6 transformations for each
of the three intervals plus the new S1 calculated for the peak interval IP ); none
of which relies on thresholds of any kind. All of these transformations are well
known in the context of Human Activity Recognition and Fall Detection.

Besides, and in order to analyse the importance of these features a principal
components analysis has been carried out with two levels of significance of 90%
and 95%.

2.2 EKMEANS: An ensemble of KMEANS and KNN

Algorithm 1 presents the complete procedure of the EKMEANS algorithm pro-
posed in this work. This proposal consists in a user-centered ensemble of KMEANS
and KNN. So, the train dataset (Stage TRAIN, Alg.1L2) for each participant
p will be the fusion of data from the other participants different to p (Remain-
ing DATASET). Thus, since frequently in this kind of problems there are a big
overlapping of the samples from different classes, our proposal consists on the
execution of the well-known KMEANS5 algorithm [4] on the TrainDataset to
obtain the set of centroids K (KMEANS RESULTSi/i = 1...K). The optimal
number of clusters (K) is estimated using the method “Within-cluster sum of
square”.

In the case of the clusters with samples belonging to more than one class
(Alg.1L6), the KNN algorithm will be calculated for 1 to 15 neighbors to obtain
the best number of neighbors, otherwise the predicted class for this cluster will
be the one corresponding to the train samples of this cluster.

5 The default implementation of the R platform “kmeans” function has been used
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In the TEST stage (Alg.1L10), the predicted class for each test sample will
be computed considering the number of classes for the cluster predicted for this
sample (PK, Alg.1L12). In case, the PK cluster had more than one class for the
train samples, the KNN obtained for the train samples will be used to predict
the class of test SAMPLE (Alg.1L13-14), otherwise the predicted class will be
the one belonging to all the train samples for this cluster.

Algorithm 1 EKMEANS(TRAINDATASET, TESTDATASET, NP: Number
of Participants, K: Number of Centroids for KMEANS)

1: for p in 1:NP do
2: TRAIN STAGE ← 1
3: Remaining DATASET ← TRAINDATASET - {Samples of participant p}
4: KMEANS-RESULTS ← KMEANS(Remaining DATASET, K)
5: for i in 1:K do
6: if #Classes(KMEANS-RESULTS[i]) > 1 then
7: KNN-FOR-CLUSTER[i] ← KNN(Remaining DATASET, 1, 3, 5, 7, ..,15)
8: end if
9: end for

10: TEST STAGE ← 1
11: for SAMPLE in DATATEST do
12: PK ← PREDICT-KMEANS(KMEANS-RESULTS, SAMPLE)
13: if #Classes(KMEANS-RESULTS[PK]) > 1 then
14: PREDICTEDCLASS(SAMPLE) ← PREDICT(KNN-FOR-

CLUSTER[PK], SAMPLE)
15: else
16: PREDICTEDCLASS(SAMPLE) ← Class(KMEANS-RESULTS[PK])
17: end if
18: end for
19: end for

3 Numerical results

3.1 Data set description

The publicly available simulated falls UMA Fall data set [3] is used in this
study. This data set includes several activities, transitions and simulated falls
regarding up to 17 participants. There is no fixed number of repetitions of each
activity or simulated fall. Each participant used several 3DACC, specially one
on a wrist; the sampling frequency was 20 Hz. Altogether, 208 TS are simulated
falls, belonging to lateral, forward or backward falls, out of the 531 TS that are
available in this data set.
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3.2 Experimentation set up

The experimentation has considered just one event detection method: the MAX-
PEAKS algorithm with 19 features (see section 2.1), and as classification algo-
rithm two alternatives have been run, EKMEANS and KNN. Three datasets
have been built from the MAX-PEAKS 19 features: the original MAX-PEAKS
dataset (MAX-PEAKS) with the 19 features, and two PCA feature extraction
with variance of 90% and 95% (MAX-PEAKS PCA90 and PCA95). Besides, two
kind of labelling of the datasets have been considered: MULTICLASS (F1-F3
and A1-A5) and TWO-CLASS PROBLEM (FALL and NOT FALL) (see table
1). Besides, the results of a Feed Forward Neural Network for the MAX-PEAKS
dataset using the TWO-CLASS labelling obtained in [15] will be considered. The
sensitivity and specificity of the results for all the participants will be used to
measure the performance of the method.

Table 1. Summary of ADL and FALL kind of activities

FALL

Code F1 F2 F3

Activity FALL.BACKWARDS FALL.FORWARD FALL.LATERAL - -

NOT FALL

Code A1 A2 A3 A4 A5

Activity WALKING HOPPING CLIMBING UPSTAIRS CLIMBING DOWNSTAIRS BENDING

3.3 Numerical results

Regarding the three datasets, the two classification algorithms and the two la-
belling alternatives, we will obtain 12 tables with the numerical results for the
17 participants, but by lack of space, just the most representatives tables are
included, as well as two summary tables.

Results for the TWO-CLASS labelling Typically, clustering solutions on
FALL Detection presents the results as Two-class problems. Thus, we are starting
this section with the results of applying the EKMEANS and KNN algorithms
on the TWO-CLASS MAX-PEAKS 19 features dataset (see table 2). It can be
observed at least the following issues: the Sensitivity for the EKMEANS and
KNN results are quite similar (MAX-PEAKS, PCA90 and PCA95), but the
Specificity for EKMEANS outperforms lightly the results for KNN for the two
PCA datasets; other issue is that EKMEANS overpass clearly the Specificity of
the NN results [15] with a quite similar Sensitivity.

Let’s see the EKMEANS results for participant #1 (see Fig. 2). We know
that three clusters (#1, #8 and #10) out of the eleven clusters obtained in
the train stage contains train samples (the shaped/colored points) from the
two classes (the points are not labelled by class). The remaining clusters only
contains train samples belonging to one class. If the test samples are analysed
(white circles with label F or NF), it can be observed that they are labelled by
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Table 2. Summary of results for EKMEANS and KNN for the TWO-CLASS problem
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clusters #1(red), #8(blue), #11(pink), #3(khaki green), #10(purple), and
the clusters that contains overlapped test samples (in boldface) are the same
as the ones for the train samples. These test samples belonging to these three
clusters are the ones affecting the Sensitivity and Specificity values.
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Cluster plot using KMEANS with participant 1's TRAIN dataset, with TEST clustering result overlapped (TWO−CLASS dt)

Fig. 2. The EKMEANS results for the MAX-PEAKS TWO-CLASS dataset. The train
samples are plotted with different shapes and colors (11 clusters), and the test samples
are white circle-shaped, labelled with F (FALL) and NF (Not FALL)

Results for the MULTICLASS labelling Table 3 includes the results of
EKMEANS and KNN for all the MULTICLASS datasets considered in this
section. Since the number of samples for each class are quite low, it can be stated
that the Sensitivity figures are quite low for all the experiments, models and
datasets. On the other side the Specificity is clearly higher than the Sensitivity
in both models. In order to justify these results, let’s depict the results of the
EKMEANS in Fig. 3 for participant #1. In the figure, it can be seen that the
test samples (white circles) belonging to class F1 are quite sparse and scattered
among different clusters, that is the reason the Sensitivity was 0.0 (see table 4).
Conversely, test samples from class F2 are more compact, and the results for this
kind of fall confirm it (column F2 in Table 4). The remaining kinds of activities
present low levels of Sensitivity for the same reason as F1. Besides in general
terms, we can observe (Table 4: mean/std) that practically all the activities but
F2, sport bad Sensitivity results and high Specificity.

4 Conclusions

This study proposes the EKMEANS algorithm for ADL and Falls classification,
using a low computational consumption technique based on an ensemble between
KMEANS and KNN.
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Fig. 3. The EKMEANS results for the MAX-PEAKS MULTICLASS dataset. The
train samples are plotted with different shapes and colors (12 clusters), and the test
samples are white circle-shaped, labelled with F# (FALL) and A# (Not FALL)

Our proposal has been compared to the classical KNN algorithm as well as the
results obtained with a Feed Forward NN in [15] taking as input three variants of
the public dataset UMAFALL [3]. These three datasets have been built from the
UMAFALL wrist acceleration: one applying the peaks detection algorithm MAX-
PEAKS [15] and the results of PCA with variance of 90% and 95%. Besides,
these three datasets have been considered using two kind of labelling: on one
side, considering all the different labels of activities defined in the UMAFALL
dataset (MULTICLASS), on the other side the Not-FALL and FALL activities
have been re-labelled just as a two-class problem.

The results show that our proposal EKMEANS outperforms clearly the Speci-
ficity of the NN results with a quite similar Sensitivity for the TWO-CLASS
dataset. Besides, our proposal is a lighter computational consumption process
than a NN in deployment stage. Concerning the MULTICLASS datasets, we
have observed that mostly all the activities but F2 (Lateral Fall), sport bad
Sensitivity results and high Specificity for all the models. Other important issue
is that PCA doesn’t affect positively or affect negatively in the performance of
the different models used in current study.

Future work must consider a deeper analysis of the dynamics of the intra-
cluster KNN for EKMEANS, as well other kind of low consumption classification
meta-heuristic. Besides, in our point of view a multiclass oversampling technique
must be carried out on the used datasets. Finally, the use of Deep Learning is
also part of future work.
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H.R.: Evaluation of a wrist-based wearable fall detection method. In: 13th Inter-
national Conference on Soft Computing Models in Industrial and Environmental
Applications. pp. 377–386 (2018)

8. Khojasteh, S.B., Villar, J.R., Chira, C., González, V.M., de la Cal, E.: Improving
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Table 3. Summary of results for EKMEANS and KNN for the MULTICLASS problem
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EKMEANS - MAX-PEAKS

PId
F1 F2 F3 A1 A2 A3 A4 A5 mean/std

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

1 0.000 0.714 0.750 0.789 0.333 0.905 0.333 0.875 0.333 1.000 NA 0.926 NA NA NA NA 0.350/0.266 0.868/0.102

mean 0.337 0.819 0.523 0.862 0.238 0.844 0.868 0.818 0.217 0.946 0.111 0.934 0.306 0.952 0.267 0.978 0.430 0.875

std 0.330 0.120 0.287 0.107 0.205 0.064 0.211 0.142 0.217 0.050 0.172 0.079 0.195 0.060 0.370 0.035 0.114 0.049
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