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Abstract

Ordovician volcanic rocks outcrop in several locations of the NW Iberian Variscan belt. Their composition is mainly basaltic 
(with less acid types) and occur as volcanic-volcanoclastic layers within a shale-slate succession. This work focuses on vol-
canic and related rocks within a prominent Variscan structure, the Truchas Syncline. We studied ield relations, petrography, 
mineralogy, geochemistry and conducted thermodynamic modelling to review the petrogenesis and establish the evolution 
of these volcanic rocks classiied as within-plate alkaline basalts (high Ti/Y, Nb/Y and Nb/Yb). Crustal contamination is 
absent given the elevated Nb/La ratio (1–1.5). These features indicate low melting degrees of the upper mantle and a con-
tinental rifting environment. The inding of Ordovician orthid brachiopods in some of the volcanoclastic rocks suggests a 
shallow marine environment for the volcanic deposition. Variscan metamorphism occurred at lower greenschist conditions 
with chlorite-temperatures of 374 ± 6 °C. Quartz + carbonate veins indicate that  H2O–CO2 metamorphic luids traversed 
some volcanic rocks, reacting with Ca–Fe–Mg phases to produce carbonates (Mg-calcite–Fe-dolomite). For this event, 
T-XCO2 modelling indicates temperatures below 350–360 °C and luid  XCO2 between 0.10 and 0.45. Such luids can be 
important carriers of Au and might explain gold deposits in adjacent quartzites. Metasomatic shales (Fe-chlorite + quartz) 
outcrop nearby and were derived from a mixed protholith of shales and minor volcanic components. Its geochemistry shows 
Fe enrichment and high peraluminosity. Variscan deformation further modiied its geochemistry causing Si-depletions and 
relative increases of other elements (K, Na, Ti, Al, Rb, Sr, Ba and LREE) in shear zones domains.

Keywords Volcanic rocks · Metamorphism · Ordovician · Variscan · Truchas Syncline · Luarca formation

Resumen

Rocas volcánicas Ordovícicas aloran en el Macizo Varisco del noroeste de la Península Ibérica. Su composición es basáltica 
(con escasos términos ácidos) y forman niveles volcánicos y volcanoclásticos dentro de una sucesión de pizarras Ordovícicas. 
En este trabajo se estudian estas rocas en el Sinclinal de Truchas, una importante estructura Varisca. Se investigan las rela-
ciones de campo, petrografía, mineralogía, geoquímica y se realiza un modelo termodinámico para revisar la petrogénesis de 
estas rocas volcánicas clasiicadas como basaltos alcalinos intra-placa con elevadas relaciones de Ti/Y, Nb/Y y Nb/Yb. No 
se observan indicios de contaminación cortical, dadas las elevadas relaciones de Nb/La observadas (1–1.5). Esta geoquímica 
indica bajos grados de fusión del manto superior y un ambiente tectónico de rifting continental. La presencia de restos de 
braquiópodos órtidos del Ordovícico en algunas rocas volcanoclásticas sugiere un ambiente marino poco profundo para su 
depósito. El metamorismo varisco se produjo en condiciones de esquistos verdes con temperaturas de clorita de 374 ± 6 °C. 
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Diversas venas de cuarzo y carbonatos observadas representan luidos metamóricos de  H2O–CO2 que atravesaron algunas 
rocas volcánicas, reaccionando sus minerales de Ca–Fe–Mg para producir carbonatos (Mg-calcita–Fe-dolomita). Para este 
evento, el modelo de T-XCO2 realizado indica temperaturas por debajo de 350–360 °C y  XCO2 del luido entre 0.10 y 0.45. 
Estos luidos pueden ser portadores de oro en solución y podrían explicar mineralizaciones descritas en las cuarcitas adya-
centes. Varios niveles de pizarras metasomáticas (formadas por clorita rica en hierro y cuarzo) aloran en zonas próximas. 
Derivan de un protolito mixto de pizarras y componentes volcánicos menores. Su geoquímica muestra enriquecimiento en 
hierro y elevada peraluminosidad. La deformación varisca modiicó adicionalmente su geoquímica causando empobrec-
imientos de sílice e incrementos relativos de otros elementos en zonas de cizalla (K, Na, Ti, Al, Rb, Sr, Ba y LREE).

Palabras Clave Rocas volcánicas · Metamorismo · Ordovícico · Varisco · Sinclinal de Truchas · Formación Luarca

1 Introduction

Ancient volcanic and volcanoclastic rocks are important 
in earth science research because they can contain a rich 
record of past geological conditions: the nature of their 
mantle/crustal sources and the composition of the crust tra-
versed if contamination processes happened. Even crustal 
and lithospheric thicknesses estimations are possible from 
the study of volcanic rocks (Liu et al. 2016 and references 
therein). Furthermore, they record the type of emplacement 
conditions, possible contact metamorphism efects, suricial 
environmental conditions and type of alteration processes. 
Volcanic rocks of basic to intermediate composition are 
particularly susceptible to metamorphic and hydrothermal 
processes afecting their geological surroundings (Bucher 
and Grapes 2011).Their ages can also be calculated by dif-
ferent radiometric methods (K–Ar, Ar–Ar, Sm–Nd) provided 
alteration has not been very intense.

Lower Paleozoic volcanic (±volcanoclastic) rocks in the 
NW Iberian Variscan belt have been studied to infer the 
nature of the mantle source and emplacement conditions 
prior the Variscan orogenic event (Valverde-Vaquero 1992; 
Gallastegui et al. 1992; Suárez et al. 1993; Villa et al. 2004; 
Brendan Murphy et al. 2008 among others). These volcanic 
rocks occur in diferent geological domains of NW Spain 
and usually record their emplacement conditions and sub-
sequent evolution through alteration, metasomatism, Vari-
scan metamorphism-deformation and gold mineralization in 
nearby host rocks (Villa et al. 2004).

The Variscan Truchas syncline (Fig. 1; Suárez et al. 1994; 
Fernández-Lozano, 2012; Rodríguez Fernández et al. 2015) 
is a prominent Carboniferous structure located in the north-
ern part of the Central Iberian Zone (CIZ). It is composed 
of lower Paleozoic shale-sandstone-quartzite successions 
afected by folds, foliations and a low metamorphic grade 
(greenschists) attained during the Variscan orogenic event 
(≈ 320–350 Ma). Maic ± felsic volcanic and volcanoclastic 
rocks of Ordovician age occur as sills and layers within the 
shale formations. Furthermore, late Variscan gold miner-
alization appear in quartz veins near the contact between 

Ordovician volcanic rocks, shales and quartzites (Gómez-
Fernández et al. 2012).

The present work focuses on the ield relations, fossil 
occurrences, petrography, mineralogy and geochemistry 
of the SE Truchas syncline volcanic and related rocks. Our 
aim is to understand its origin, emplacement environment, 
hydrothermal alteration, metamorphism, metasomatism, 
deformation and possible relations with nearby gold min-
eralization. All these processes have played a role in con-
iguring the current features in these rocks, causing in some 
cases, deviations from the expected whole rock composi-
tion (González-Menéndez et al. 2019). This study reinforces 
the rifting hypothesis for the origin of the studied basaltic 
volcanic rocks. Some of them are interpreted as metaso-
matic, derived from shales ± sandstones, mixed with a minor 
volcanic component and afected by Fe-metasomatism and 
 SiO2-depletion processes.  H2O–CO2 late-stage luids (post-
peak metamorphic), known to be candidates for gold trans-
port in orogenic settings (Kesler 2005; Yardley and Bodnar 
2014), left a key record in the form of carbonation of some 
of the maic volcanic rocks studied.

2  Geological background and sampling site 
description

The Truchas syncline region has a very complete and rep-
resentative record of Ordovician sedimentary rocks (shales, 
sandstones, quartzites, ± limestones) including abundant 
volcanic and volcanoclastic rocks. The basal part of the Tru-
chas syncline is formed by the Ollo de Sapo metavolcanic 
orthogneiss (Fig. 2) (Díez Montes 2007), cropping out to 
the south and to the east of the studied zone (Fig. 1). The 
overlying sedimentary formations are: Capas de los Montes 
(Lower Ordovician quartzites, microconglomerates, black 
shales and sandstones), Cuarcita Armoricana (quartzites, 
Lower to Middle Ordovician), Capas de Transición (shales 
and sandy shales), Luarca Formation (Middle Ordovician 
black shales-slates), interlayered maic/felsic metavolcanic 
rocks, the Casaio Formation (Upper Ordovician quartzites, 
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shales and rare carbonate beds), the Rozadais Formation 
(Upper Ordovician shales), the Losadilla Formation (Upper 
Ordovician shales and sandstones) and the Llagarinos For-
mation (Silurian ampelitic black shales ± sandstones).

The volcanic rocks are interlayered with shales (Luarca 
Fm) and were described in the geological maps of this area 
(Suárez et al. 1994; Villar Alonso et al. 2019 and references 
therein). The shales have been attributed to a Middle Ordovi-
cian age by paleontological studies by Gutiérrez et al. (1999; 
2002). Regarding the volcanic rocks, petrological-geochemi-
cal studies of these and other outcrops from the Central-Ibe-
rian Zone (CIZ), the West-Asturian Leonese Zone (WALZ) 
and the Cantabrian Zone (CZ) have been done by diferent 
authors (Valverde-Vaquero 1992; Gallastegui et al. 1992; 
Suárez et al. 1993; Villa et al. 2004; Brendan Murphy et al. 
2008). These studies suggest a crustal origin for the felsic 
types, an enriched mantle source for the maic ones and an 
intraplate rifting environment for the intrusion and emplace-
ment of all these volcanic rocks.

The geodynamic setting for the Ordovician sedimenta-
tion and the felsic magmatism in central and NW Iberia has 

been discussed by Díez Montes 2007 and references therein. 
Valverde-Vaquero and Dunning (2000) proposed a back-arc 
setting to explain the felsic magmatism and volcanism repre-
sented by the Ollo de Sapo formation. Recent interpretations 
propose diferent hypotheses: an environment evolving from 
a compressive geodynamic setting to a passive one (Vil-
laseca et al. 2016) vs. a purely extensional regime (Montero 
et al. 2017).

In the present work, we study and review the previous 
mapping of volcanic rocks at the southeast domain of the 
Truchas syncline (Fig. 3). The volcanic layers were afected 
by recumbent/inclined, meter-scale folds, apparently south 
vergent but coherent with the main fold geometry of the Tru-
chas syncline (Suárez et al. 1994; Rodríguez Fernández et al. 
2015). Some of the volcanoclastic rocks preserve a stratiica-
tion (Fig. 4a) that records volcanoclastic deposition. In some 
outcrops, scoriaceous layers bordering the main volcanic 
masses appears (Fig. 4b, c) attesting to the presence of lava 
bodies, deposited above the shales, and cooling rapidly in 
their upper borders (samples C-1B, CF-2, and M3 in Fig. 3). 
Samples IGS-39 and IGS-40 are volcanic rocks located 2 km 
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to the south of the study zone. Other sets of rocks have a 
more diicult assignment having no clear volcanic features, 
lacking top scoriaceous layers and showing a high foliation 
density in their contacts with the shales (samples CF-3, C-5, 
C-5R, C-6, C-6RA, C-6RB and C-7 in Fig. 3). We named 
these rocks metasomatic shales due to signiicant geochemi-
cal diferences when compared to volcanic or volcanoclastic 
rocks and having more ainity with shale/slate compositions 

(Ward and Gómez-Fernández 2003; Gómez-Fernández et al. 
2009).

3  Fossil occurrences in the volcanoclastic 
rocks

The existence of a diverse fossil record in the Luarca For-
mation (equinoderms, bryozoans, bivalves, rostroconchs, 
cephalopods, gastropods, brachiopods, ostracods, hyolithids, 
graptolites and trilobites) has been observed in northwestern 
Spain (CIZ, WALZ and CZ) where these materials exten-
sively outcrop (Gutiérrez-Marco et al. 1999 and references 
therein). Nevertheless, the presence of fossil fauna within 
the volcanoclastic levels interlayered in the Luarca Forma-
tion is scarce. Pérez-Estaún (1974; 1978) was the irst who 
reported the occurrence of Redonia sp. (shells of bivalves 
determined by prof. C. Babin) in volcanoclastic layers close 
to the base of the Luarca Formation (Valdavido, southern 
Truchas Syncline). Matas and Velando (1982) also reported 
the presence of Redonia in the volcanoclastic levels of the 
studied area at northern Cunas. Redonia indings allowed 
assigning an Ordovician age to these levels, with no fur-
ther precisions. Subsequently, Babin and Gutiérrez-Marco 
(1991) reassigned as Redoniades hayesi the previous Redo-

nia sp. bivalves. New fossil material, Tolmachovia n. sp. and 
Porambonites? sp., were described from the irst volcano-
clastic levels referenced (Gutiérrez-Marco et al. 1999) and 
an accurately age was established: Oretanian.

In the Real syncline (Mondoñedo Nappe, WALZ) there 
are also thin volcanic intercalations at the base of Luarca 
Shales Formation where Marcos et al. (1980) cited frag-
ments of indeterminate shells. Emig and Gutiérrez-Marco 
(1997) assigned these fossils to linguliids bivalves concen-
trated in a single horizon.

At the Cabo Peñas and Cabo Vidrias (CZ) volcanoclastic 
rocks interlayered with sandstones, shales and slates, form 
the lower Sect. (400 m thick) of the of the Castro Formation 
that conformably overlies the Luarca Formation. The fos-
sil record here is composed of Mecwanella vulcanica, Hes-

perinia asturica, Ectillaenusgiganteus, Pinaceocladichnus 

bulbosus, Ogmoopsis? sp., Asaphina gen. indet., Bryozoa 
gen. indet. and Pelmatozoa gen. indet. These levels have 
been reassigned as late Dobrotivian age (Villas et al. 1989; 
Gutiérrez-Marco et al. 1999). Paleoenvironmental condi-
tions related to these volcanoclastic horizons indicate calm 
and locally warm water around the volcanic emission sites, 
episodically colonized by opportunistic communities of 
bryozoans, echinoderms and brachiopods (Gutiérrez-Marco 
et al. 1999).

A new fossil record is reported here from the studied 
area. Volcanoclastic rocks of Cunas C-4 site (Fig. 3) pre-
serve outer molds of orthid brachiopod valves (Fig. 4d). 
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Unfortunately, the preservation of samples is very poor for 
an accurate taxonomical determination. They have been 
collected to be housed in Geominero Museum under the 
numbers from MGM-8152O to MGM-8160O. Valves, both 
dorsal and ventral, are disarticulated; most of them show 
no evidence of sorting or preferred orientation. They have 
not sufered signiicant breakage and therefore did not suf-
fer considerable transportation. Conversely, the emission of 
volcanic materials implies a very high ambient temperature 
and survival in the site emission probably was not possible. 
Thus, the depositional ambient could have been a low-energy 
media with ine-medium sand and small size basalt debris 
supplied by nearby volcanic eruptions. Villas et al. (1989) 
suggest that a low rate of sedimentation and long periods 
before burial, subsequent to death, enhanced the disarticu-
lation of shells and infestation by borers. These conditions 
could have been similar in the studied area. This is supported 
by the occurrence of Redonia deshayesi and Tolmachovia sp. 
in these volcanoclastic levels. They are usually infaunal ilter 
feeders but some specimens of spanish Redonia deshayesi 
show a bryozoan incrustation, suggesting that a part of the 
shell projected above the seabed (Polechová 2016) which 
normally requires a low rate of sedimentation. Tolmachovia 
environment conditions are interpreted to be quiet and sub-
littoral marine platform (Gutiérrez-Marco 1997).

4  Methods

Field geology and sampling was conducted in the south-
eastern part of the syncline where an important outcrop 
area of volcanic rocks is mapped in the region. Samples 
were taken from diferent volcanic/volcanoclastic units in 
large enough amounts (5–10 kg) to ensure chemical and 
mineralogical homogeneity of the rock samples. Thin sec-
tions were made for each sample for petrography studies 
under the optical microscope, SEM (scanning electronic 
microscope) and EMPA (electron micro-probe analysis) 
investigations. SEM was done at Leon University (Spain) 
using a JEOL JSM-6480 scanning electron microscope 
equipped with an Oxford D6679 EDS detector. EMPA was 
done at Oviedo University (Spain) using a Cameca SX-100 
electron microprobe operated at 15 keV accelerating volt-
age, 15 nA beam current and and 2 µm beam size. Ortho-
clase (Si), wollastonite (Ca), MnTi (Ti, Mn), magnetite 
(Fe), albite (Na),  Al2O3 modiied (Al), cromite (Cr), NiO 
(Ni), MgO (Mg) and apatite (P) were used as standards 
for determination of the respective elements in brackets. 
Most of the bulk rock analysis was performed by ICP-AES 
(Inductively Coupled Atomic Emission Spectroscopy) 
for major elements and ICP-MS (Inductively Coupled 

Fig. 3  Geological map of the 
studied zone (modiied after 
Suárez et al. 1994; Villar 
Alonso et al. 2019). Sampling 
is shown with the symbol stars. 
Locations C-5 and C-6 include 
sets of samples in order to 
record the variation in foliation 
intensity (C-5: C-5, C-5R; C-6: 
C-6, C-6RA, C-6RB). Bold 
numbers correspond to samples 
were EMPA and/or bulk rock 
analyses was performed
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Mass Spectrometry) for trace and rare earth elements. 
The analyses were carried out at the ALS Global labora-
tory in Ireland (ME-ICP06 and ME-MS81 procedures). 
A simpliied summary of these methods is given below. 
For the major oxides, a milled sample (0.1 g; < 0.05 mm 
grain size) is added to lithium metaborate (35.3%)/lithium 
tetraborate (64.7%) lux, mixed well and fused in a furnace 
at 1000 °C. The resulting melt is then cooled and dissolved 

in 100 ml of 4% nitric acid + 2% hydrochloric acid. This 
solution is then analyzed by ICP-AES and the results are 
corrected for spectral inter-element interferences. For 
the trace and rare earth elements, a milled sample (0.1 g; 
< 0.05 mm grain size) is added to lithium metaborate 
(35.3%) / lithium tetraborate (64.7%) lux, mixed well and 
fused in a furnace at 1025 °C. The resulting melt is then 
cooled and dissolved in an acid mixture containing nitric, 

polarity

polarity

polarity

Scoria

layer

Lava unit ±  
volcanoclastic

layers

Volcanoclastic-
clastic rock

Lava

 unit

a

c

b

d

1cm

volcanoclastic
rock matrix

orthid 
brachiopods

high 
vacuole 
density

Scoriaceous
Layer

sharp 
contact

sharp 
contact

190/45

Fig. 4  Field relations of the studied volcanic/volcanoclastic rocks. 
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hydrochloric and hydroluoric acids. This solution is then 
analyzed by inductively coupled plasma–mass spectrom-
etry. Samples IGS-39 and IGS-40 were taken and ana-
lyzed during a previous and unpublished geological study 
in the region by one of the authors (G. Gallastegui). Major 
and some trace elements of these samples were analyzed 
by XRF at the Technical-Scientiic Services of Oviedo 
University (Spain) using a WD-XRF spectrometer (model 
2404; PANalytical) coupled with a Rh tube. Major element 
analyses were performed using glass beads of powdered 
rocks after fusion with lithium tetraborate. Precision of 
the XRF technique was better than ± 1% relative. Trace 
elements were determined on pressed pellets with Elvacite. 
Raw data were processed using Pro-Trace-XRF PANalyti-
cal software. Other trace elements (Cs, Ga, Hf, Ta, Li, Sc) 
and rare earth elements (REE) were analyzed by ICP-MS 
following sample decomposition with lithium metaborate 
at the Geochronology and Geochemistry-SGIker facility 
of El País Vasco University/EHU (Spain) (see García de 
Madinabeitia et al. 2008 for additional details). All the 
results are shown in Tables 1, 2 and 3.

5  Petrography and mineralogy

5.1  Volcanic and volcanoclastic rocks

The volcanic and volcanoclastic rocks are characterized 
by the presence of plagioclase crystals, volcanic fragments 
and scoriaceous margins at the top of the volcanic layers. 
The main petrographic features are the micro-porphyritic 
textures, phenocrysts of plagioclase, absence of any other 
primary phases and presence of secondary minerals such as 
K-feldspar, quartz, sericite and widespread chlorite. By these 
criteria, samples C-1B, CF-2, C-4, C-7, M1, M2A, M3 and 
M4 (Fig. 3) are classiied as volcanic and volcanoclastic.

The volcanic rocks (C-1B, CF-2,C-4, M3) are com-
posed of plagioclase phenocrysts (Fig.  5a) and some 
rock fragments within a matrix of plagioclase + chlo-
rite ± quartz ± K-feldspar ± sericite. Rare prehnite crystals 
were observed in two samples. Carbonate minerals and chlo-
rite are abundant in some rocks and scarce in others. Carbon-
ates replace plagioclase phenocrysts, Ca–Fe–Mg phases and 
rock fragments (Fig. 5b). Growth of carbonate over chlorite 
is observed. Quartz + carbonate and pure carbonate veins 

Table 1  Chlorite analyses by EMP. Oxide contents are in wt.%. Volc.: volcanic rock

Met. metasomatic shale, Pomb Pombriego, Avg Average. T °C calculated by the method of Jowett 1991

Refs. m3a
n = 1

m3b
n = 1

m3c
n = 1

m3d
n = 1

m3e
n = 1

m3f
n = 1

m3g
n = 1

m3h
n = 1

m3i
n = 1

m3j
n = 1

Pomb Avg n = 12 Llamas Avg n = 8

Rock Volc Volc Volc Volc Volc Volc Volc Volc Volc Volc Slates Slates

SiO2 25.448 25.779 26.574 25.816 25.947 25.553 25.848 25.979 25.425 26.246 23.71 23.69

TiO2 0.045 0.008 0.010 0.108 0.028 0.024 0.028 0.055 0.045 0.035 0.026 0.023

Al2O3 23.467 23.967 24.401 23.806 23.985 23.797 24.092 24.042 23.498 23.728 21.19 21.15

FeO 19.737 19.668 19.850 19.885 19.902 19.793 20.035 19.859 19.891 20.126 36.66 36.71

MnO 0.107 0.058 0.066 0.088 0.058 0.036 0.028 0.052 0.031 0.017 0.45 0.43

MgO 17.008 17.339 16.611 16.997 16.898 17.212 17.007 16.491 16.285 16.925 6.03 6.04

CaO 0.071 0.051 0.062 0.076 0.046 0.062 0.045 0.068 0.098 0.085 0.027 0.030

Na2O 0.009 0.028 0.000 0.056 0.035 0.000 0.000 0.030 0.000 0.002 0.012 0.014

Total 86.332 87.330 88.091 87.145 87.386 86.900 87.376 86.968 85.769 87.498 88.22 88.25

T °C 377.846 379.328 363.358 376.228 373.942 382.503 378.137 370.108 375.220 366.444 385.33 385.34

Refs. C3a
n = 1

C3b
n = 1

C3c
n = 1

C3d
n = 1

C3e
n = 1

C3f
n = 1

C3g
n = 1

C3h
n = 1

C3i
n = 1

C3j
n = 1

C3k
n = 1

C3l
n = 1

Rock Met Met Met Met Met Met Met Met Met Met Met Met

SiO2 24.069 21.952 22.934 23.164 22.759 23.303 22.719 23.589 23.189 22.224 22.544 22.478

TiO2 0.039 2.598 0.033 0.068 0.004 0.074 0.030 0.017 0.035 0.056 0.000 0.133

Al2O3 24.171 23.207 23.819 22.719 23.389 23.833 23.798 23.764 23.321 23.662 23.925 23.681

FeO 34.543 35.157 35.743 36.477 35.812 36.635 36.467 34.974 36.427 36.754 36.389 35.473

MnO 0.067 0.109 0.083 0.130 0.071 0.083 0.079 0.078 0.120 0.141 0.116 0.082

CaO 0.017 0.032 0.039 0.031 0.008 0.018 0.033 0.033 0.021 0.025 0.002 0.015

Na2O 0.027 0.027 0.000 0.046 0.000 0.000 0.000 0.019 0.035 0.008 0.000 0.011

Total 87.793 88.248 87.798 88.261 87.383 89.180 88.544 88.215 88.395 88.273 88.382 87.751

T °C 386.556 454.434 415.900 407.272 416.204 414.974 428.276 402.522 411.292 440.096 431.459 430.683
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cut across the primary and secondary mineral assemblage in 
some samples (Figs. 5c & d). A SEM study of the M3 sam-
ple reveals that the carbonate phases are mainly Fe-bearing 
dolomite or Fe–Mg calcite, and the plagioclase phenocrysts 
are nearly pure albite (Na-rich). Apatite, rutile, chalcopy-
rite and sphalerite were identiied. The textures are micro-
porphyritic with a signiicant diference in size between 
phenocrysts and matrix. Some amygdales occur, illed with 
growing crystals of quartz + feldspar, and iron oxides in 
the center. Slight mineral orientation/rock deformation is 
observed in some of the samples.

The volcanoclastic rocks (C-4, M1, M2A, M2C, M4, 
C-7) are composed of diferent volcanic fragments with 
similar mineralogy as the volcanic rocks: plagioclase laths 
in a chlorite ± quartz matrix. Accessory phases include 
sericite, muscovite, tourmaline, iron sulphides, and zircon. 
Occasionally outsized plagioclase ± quartz crystals appear. 
The diferent fragments have rounded/elliptical and lobule 
shapes deining a broad oriented pattern. These fragments 
have thin and sharp dark borders composed of iron oxides. 
No preferred mineral grain orientations were observed. C-7 
sample is more felsic and its texture is dominated by a high 
foliation density.

5.2  Metasomatic shales

The metasomatic rocks were originally mapped as volcanic, 
but this ainity was dubious because they lack the ield cri-
teria previously deined. These are the samples: CF-3, C-5, 
C-5R, C-6, C-6RA and C-6RB (Fig. 3). Sample CF-3 has 
been studied with more detail (Fig. 5e,f). It is composed of 
quartz (≈ 40–45%) ± rock fragments (quartz rich, pelitic or 
limolitic) and a chlorite matrix (≈ 45–50%) that surrounds 
most of the other mineral phases. Minor patches of sericite 
also occur. Neither feldspars (plagioclase/K-feldspar) nor 
carbonate phases are present. The rock has a subtle subsoli-
dus orientation deined by the chlorite matrix. Quartz is not 
internally deformed but some crystals have their long axis 

approximately parallel to the chlorite fabric. This might indi-
cate that the deformation was mainly transferred to the more 
ductile chlorite matrix. A SEM study of this rock reveals that 
the chlorite is Fe-rich (chamosite) and the most common 
accessory minerals are zircon, rutile and xenotime. Samples 
C-5 and C-6 series are similar to CF-3, though their texture 
is deined by a strong foliation deined by the oriented chlo-
rite. Foliation density changes from very high strain, at the 
contact with the shales, to low strain away from this contact.

6  Chlorite temperatures and carbonate 
chemistry

Chlorite is a common secondary phase appearing in all 
the studied rocks. In the volcanic/volcanoclastic rocks it 
is probably replacing Fe–Mg bearing primary minerals 
such as pyroxenes or amphiboles that have been com-
pletely altered. We have analyzed some of these chlo-
rites to characterize their chemistry and to estimate their 
temperatures of formation. Table 1 shows the chlorite 
compositions (measured by EMPA) and their crystalliza-
tion temperatures calculated with the method described 
by Jowett (1991). The correlation of between T °C and 
the  Al4 corrected term is R = 0.981. Standard deviations 
estimated on speciic studies was between 32 and 37 °C 
(Jowett 1991). Chlorites from the maic volcanic-volcan-
oclastic rocks are classiied as Mg-chlorites. They lie in 
the ield of clinochlore in the diagram of Zane and Weiss 
(1998) (Fig. 6a) and have moderate to elevated Al con-
tents (2.85–2.90 a.f.u.). Their calculated temperatures 
range from 363 to 382 °C and show a mean of 374 ± 6 °C 
(Fig. 6b). These temperatures are very similar to those 
calculated for chlorites in the Ordovician host shales 
(Pombriego and Llamas, Fig. 6b). Chlorites occurring in 
the metasomatic shales and shales are classiied as Fe-
chlorites (Fig. 6a). Their Al content is relatively high in 
the metasomatic shales (3–3.14 a.f.u.) and lower in the 

Table 2  Carbonate analyses 
by EMP. Oxide contents are in 
wt.%. Volc.: volcanic rock

Ref M3-1
n = 1

M3-2
n = 1

M3-3
n = 1

M3-4
n = 1

M3-5
n = 1

M3-6
n = 1

M3-7
n = 1

M3-8
n = 1

M3-9
n = 1

M3-10
n = 1

Rock Volc Volc Volc Volc Volc Volc Volc Volc Volc Volc

CaO 33.355 32.945 32.252 32.693 31.854 30.735 30.796 31.926 32.074 33.568

FeO 7.126 7.580 7.206 6.525 6.319 6.165 7.138 7.257 7.420 6.901

MgO 15.362 15.089 14.740 15.633 16.066 15.427 15.176 15.463 15.786 15.474

MnO 0.6731 0.6593 0.575 0.804 0.5129 0.6962 0.6272 0.6498 0.5252 0.8107

SiO2 0.2373 0.0692 0.0986 0.3405 0.1482 0.0847 0.078 0.0268 0.0325 0.1366

Al2O3 0.1156 0.0501 0.0166 0.2359 0.0645 0.0751 0.0848 0.0299 0.0406 0.075

P2O5 0.2164 0.2427 0.2376 0.2631 0.2077 0.169 0.2503 0.2103 0.1857 0.2411

CO2 42.531 43.087 44.756 43.297 44.599 46.422 45.692 44.075 43.833 42.582

Total 99.7034 99.962 99.978 99.971 99.8918 99.983 99.984 99.668 99.966 99.963
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Table 3  Bulk-rock analyses (ICP-AES, XRF, ICP-MS) of the studied samples

Major elements in wt% and trace elements + REE in ppm

Volc: volcanic rock, Met. metasomatic shale, Volc F felsic volcanic rock

Ref C-5 C-5R C-6 C-6RA C6-RB CF-3 C-7 CF-2 C1B IGS39 IGS40 Avg slates

Mode Layer Layer Layer Layer Layer Layer Layer/Sill Layer Layer Layer/Sill Layer/Sill Host Fm

Type Met Met Met Met Met Met Volc_F Volc Volc Volc Volc n = 10 / 6

SiO2 33.9 50.6 43.5 58.1 40.5 54.8 74.5 42.9 43.8 39.43 44.89 52.93

TiO2 2.01 0.99 1.19 0.7 1.45 0.76 0.44 2.48 2.06 1.96 1.84 1.04

Al2O3 21.3 17.6 17 12.6 23.8 11.75 13.85 18.2 14.8 12.43 12.35 23.33

FeO 32.7 20.4 27.8 21 21.5 23.5 5.17 11.4 11.1 11.09 10.45 9.36

MnO 0.09 0.08 0.1 0.07 0.06 0.11 0.02 0.16 0.15 0.17 0.12 0.08

MgO 3.02 2.43 3.62 2.65 2.71 2.58 0.82 6.76 7.37 8.65 10.63 2.53

CaO 0.23 0.08 0.7 0.27 0.33 0.12 0.1 4.48 5.94 7.3 2.07 0.36

Na2O 0.2 0.36 0.04 0.05 0.53 0.03 0.47 5.33 4.43 3.72 4.08 1.22

K2O 0.63 1.43 0.16 0.26 2.62 0.05 2.47 0.19 0.04 0.05 0.07 3.74

P2O5 0.44 0.25 0.61 0.3 0.37 0.26 0.14 0.7 0.29 0.26 0.19 0.21

A/CNK 14.9 7.7 11.24 14.74 5.52 36.52 3.81 1.06 0.81 0.63 1.17 3.50

Ba 121.5 359 36.2 65.9 644 22.5 397 373 67.1 23 57 707.83

Cr 130 60 150 50 90 60 50 110 150 343.22 575.44 105

Cs 1.53 3.03 0.5 0.62 4.81 0.26 4.16 0.56 0.13 0.23 0.30 8.19

Ga 24.6 21.9 22.2 17.2 29.4 17.1 20.2 23.4 18.7 18.54 18.57 27.25

Hf 7.3 5.2 4.5 4.1 6.5 4.1 5 5.2 4.1 3.50 3.22 4.72

Nb 46.7 38.1 35.2 27.9 35.2 33.2 38.6 54.9 41.6 27.94 26.27 19

Rb 28.4 65.5 6.9 12.1 122 2.7 113.5 6.8 0.4 0.59 8.00 161.83

Sr 62.4 101 33.1 24.3 171 16.2 142 303 494 365 186 157

Ta 2.6 3.2 1.6 2.3 2.5 2.2 3.2 2.5 2.2 1.78 1.55 1.35

Th 15.5 13.25 11.05 10.5 19.4 11.9 15.35 5.27 3.81 2.77 3.30 20.73

U 3.08 3.84 2.4 2.99 3.92 3.06 4.59 1.31 0.88 0.75 0.75 3.22

V 146 100 139 90 173 94 43 248 204 150 162 132

Y 45.7 45.9 50.1 36.8 47.9 41.1 40.6 26.8 17.8 16.25 15.59 39.82

Zr 225 165 151 126 202 125 167 227 170 130 119 162.33

Cu 41 2 17 6 4 8 2 25 6 46.56 105.06 36.33

Li 290 200 280 200 200 220 70 190 150 233.33 190.74 138.33

Ni 37 30 39 22 34 32 12 49 73 152.31 250.58 56

Pb 13 9 25 16 29 24 15 2 3 2.35 3.42 27

Sc 18 13 17 11 15 13 9 20 20 24 27 18.67

La 35.2 27.2 30.1 20.4 51.9 22.9 41.1 38.9 29.1 23.07 22.73 63.27

Ce 71.2 58.7 61 43.4 101.5 51.6 78.6 74.2 52.4 47.79 46.85 122.58

Pr 9.47 7.41 8.39 5.52 12.15 6.76 9.43 8.96 6.02 5.48 5.48 14.37

Nd 39.1 29.4 35.2 21.9 47.2 28.2 34.5 36 23.5 23.59 21.39 54.12

Sm 9.3 7.45 9.19 5.47 10.3 6.87 7.55 7.5 4.73 4.95 4.56 10.76

Eu 2.03 1.16 2.05 1.23 1.87 1.46 1.16 2.28 1.38 1.58 1.37 2.01

Gd 10.25 7.07 10.05 5.99 10.35 6.54 7.9 6.18 4.75 4.42 4.17 8.84

Tb 1.78 1.35 1.8 1.05 1.72 1.24 1.37 1.06 0.68 0.63 0.56 1.32

Dy 10.65 8.55 10.1 7.06 10.3 8.41 7.72 5.1 3.97 3.36 3.11 7.48

Ho 2.22 1.81 2.17 1.37 1.99 1.79 1.65 1.04 0.8 0.61 0.61 1.45

Er 6.12 5.16 6.13 4.01 5.48 5.36 4.45 3.19 1.98 1.57 1.54 4.08

Tm 0.97 0.78 0.98 0.64 0.76 0.78 0.63 0.38 0.26 0.23 0.22 0.58

Yb 5.91 4.82 6.09 4.12 4.73 5.39 3.78 2.71 1.79 1.53 1.44 3.69

Lu 0.86 0.68 0.91 0.61 0.68 0.75 0.59 0.32 0.26 0.23 0.22 0.55
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shales (2.77–2.83 a.f.u.).The calculated temperatures of 
the metasomatic shales are above those calculated for the 
rest of the rocks, having a mean of 419 ± 18 °C and a total 
range of 386–454 °C (Fig. 6b).

Carbonate minerals from the maic volcanic rocks (M3 
sample) consist of Fe-bearing dolomite or Fe–Mg calcite 

(Table 2). Data from EMPA is projected in the triangular 
diagram Fe–Ca–Mg where the ields of solid solutions and 
carbonate phases are shown for T ≈ 250–400 °C (Rosenberg 
1967; Anovitz and Essene 1987) (Fig. 6c). The analyzed car-
bonates project in the two-phase ield of coexistence between 
calcite (Cc) or Mg-calcite solid solution phase (Mg-Ccss) and 
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Fig. 5  Optical microscope images of the studied rocks. a–d The 
volcanic rocks (C-1B and CF-2) consist of plagioclase (Pl), chlorite 
(Chl) and variable amounts of carbonate phases. The carbonates grow 
over chlorite and plagioclase. Quartz + carbonate and carbonate vein-

lets cut across the chlorite phases (c, d). Metasomatic shales (e, f) 
consist of chlorite + quartz (≈ 50:45%) and other minor components 
such as rock fragments (RF) and accessory phases like zircon (Zrn)
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Fe-dolomite solid solution phase (Fe-Dolss). The analyzed 
carbonates would not represent therefore a single phase but a 
mixture of these two phases.

7  Geochemistry

The studied samples consist of volcanic-volcanoclastic 
and metasomatic shales (Table 3). The volcanic and vol-
canoclastic rocks show  SiO2 contents of 39.43–44.89 wt.% 

(average: 42.75 wt%) and  Na2O + K2O of 3.7–5.5 wt%. 
Their MgO (6.76–9.14 wt %), FeOt (10.45–11.40 wt%) 
and CaO (2.07–7.30 wt%) range from moderate to elevated 
values. Their  TiO2 contents are also high (1.84–2.48wt.%).
These features allow classifying these rocks as basalts, 
trachybasalts and basanites. Two of them have slightly 
anomalous A/CNK values (C-2 = 1.06, IGS-40 = 1.17), 
probably due to alteration and partial Ca loss. Regarding 
trace elements, these rocks have elevated Ti/Y (500–100), 
Nb/Y (1.5–2.5), Th/Yb (1.5–2.5) and Nb/La (1–1.5) ratios, 
indicative of their alkaline ainity. They plot in the ield of 
within-plate basalts (Fig. 7a) suggesting absence of sub-
duction/crustal contamination.

Within this volcanic-volcanoclastic group, sam-
ple C-7 makes a difference due to its felsic nature: 
 SiO2 = 74.50 w.%,  Na2O + K2O = 2.94 wt%, very low CaO 
content (0.10 wt%), moderate to high MgO (0.82 wt%) and 
very high peraluminosity (A/CNK = 3.81). This rock can 
be classiied as a rhyolite with a greywacke volcanoclas-
tic composition, following the criteria of Herron (1988) 
(Fig. 7b).

The metasomatic shales have a wide  SiO2 range of 
33.90–58.10 wt%, with the lowest  SiO2 values within 
the sheared samples (Table 3). The most striking attrib-
ute of this group of rocks is the high FeOt content 
(20.40–32.70 wt%; average: 24.48 wt%). The  Al2O3 con-
centration is heterogeneous but relatively high in some 
cases (11.75–23.80 wt%, average: 17.34%). Due to the 
very low CaO,  Na2O and  K2O abundances (< 1wt%), 
the A/CNK values of these rocks are quite variable and 
very high (5.52–36.52), being extremely peraluminous. 
Positive correlations exist between FeOt and  TiO2, Nb, 
Sc and HREE. Due to its very high FeOt/K2O (log val-
ues: 0.91–2.67) and low  SiO2/Al2O3 ratios (log values: 
0.20–0.66), these rocks could be classiied as Fe-Shales 
(Fig. 7b) if a sedimentary origin is assumed.

The Luarca Formation, composed of shales-slates, 
host the volcanic rocks and the metasomatic shales (Ward 
and Gómez-Fernández 2003).These shales-slates have 
relatively low contents of  SiO2 (49.55–55.27 wt%) and 
CaO (0.18–0.72 wt%), and high  Al2O3 (23.17–26.08 wt%) 
and FeOt (8.28–10.59 wt%) compared to standard shales 
(Fig. 7b). Their A/CNK is high (3.14–3.97), thus being 
very peraluminous rocks. The  SiO2/Al2O3 ratio is low (log 
values: 0.27–0.45) while the FeOt/K2O is slightly high 
(log values: 0.30–0.52) (Fig.  7b). These geochemical 
features allow us to classify these rocks as shales plotted 
close to the limit with Fe-Shales and being more Fe-rich 
compared to standards such as NASC (North American 
Shale Composite, Gromet et al. 1984) and PAAS (Post 
Archean Australian Shale, Taylor and McLennan 1985).
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7.1  Rare earth elements

The contents and patterns of measured rare earth elements 
(REE) show signiicant diferences between the diferent 
rocks studied (Fig. 8). The maic volcanic rocks show a 
fractionated pattern with La/Yb normalized values of 10.35 
on average and very low to absent Eu negative anomalies 
(Eu* = [Eun/(Smn*Gdn)^

0.5] = 0.97 on average). These data 

together with the heavy rare earths (HREE), below 10× 
chondrite values, are typical features of alkaline basalts.

The REE patterns of the metasomatic shales are similar to 
those displayed by the shales, with light rare earths (LREE) 
fractionation and a lat HREE outline. The Eu anomaly of 
these rocks is moderate (Eu* = 0.60) and very similar to that 
shown by the host shales (Eu*Luarca Shales = 0.63). On the 
contrary, the average fractionation of the REE is low  (Lan/
Ybn = 4.12) and somewhat diferent to that of shales  (Lan/
Ybn Luarca Shales = 11.56).

7.2  Comparison to bulk continental crust 
composition

Spider plots normalized to the bulk continental crust of Tay-
lor and McLennan (1985) are presented in Fig. 9. These 
show the diferences and similarities of the trace element 
contents between the volcanic, metasomatic and shale rocks. 
The volcanic rocks show typical depletions in large ion litho-
phile (LIL) elements such as Rb, K, Ba and Cs, whereas Th 
and U are similar to the bulk crust. High ield strength (HFS) 
elements (Nb, Ta, Sr, Zr, Hf, Ti) and LREE show values 
above the bulk crust. On the other hand, the HREE are below 
typical crustal values. The LIL elements of the metasomatic 
shales display a pattern intermediate between volcanic and 
shale compositions, with very variable K depletions and the 
same Th and U values as the shales. Regarding the HFS ele-
ments, the metasomatic shales have similar Nb–Ta relations 
to the volcanic rocks and closely similar Zr-Hf pattern as the 
shales. Negative Ti anomalies and a strong Sr depletion are 
common features with the shales. The REE pattern is more 
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similar to that of the shales but with slightly lower and vari-
able LREE and higher HREE values.

8  Discussion

8.1  Nature of the mantle source and geodynamic 
context

The studied Ordovician volcanic rocks from the Truchas 
Syncline have a geochemistry similar to OIB and within-
plate basalts (Figs. 7a and 10). The main diference with 
OIB composition is the LILE depletion: Rb, K and variably 
Ba negative anomalies. No features of subduction or impor-
tant crustal contaminations (Nb–Ta–Ti negative anomalies) 
are observed, except for some slight positive Pb anomalies 
(Fig. 10). Other Ordovician basalts and basalts of supposed 
post-Variscan age (Valverde-Vaquero et al. 2016; González 
Menéndez and Suárez, 2004) show a similar OIB-type pat-
tern but with substantial diferences in LILE compared to the 
studied Truchas basalts. The whole set of these basalts, even 
with their age diferences, could have had a similar initial 
geochemistry afected by diferent processes: (i) More or less 
LILE enriched basalts whose content was later increased by 
hydrothermal luids (González Menéndez and Suárez 2004) 
and (ii) subsurface/sealoor alteration and LILE leaching in 
the Truchas volcanic rocks. Other Iberian post-Variscan 
maic dikes (Permian to upper Cretaceous) have a similar 
geochemistry except for the LILE depletions of the Truchas 
volcanic rocks (Gallastegui and Cuesta 2005; Orejana et al. 
2008). The source of the studied Truchas basalts was prob-
ably a relatively enriched mantle unafected by previous sub-
duction processes. This protolith experienced low melting 
degrees. This is in agreement with the observed HFSE and 
REE fractionations and supports a tectonic regime of incipi-
ent rifting and lithosphere thinning.

8.2  Carbonate phases in the volcanic rocks: 
sealoor alteration vs. hydrothermalism—
metamorphism

Carbonates in some of these volcanic rocks are of interest 
because their origin could be related to  H2O–CO2 late-stage 
metamorphic luids and these could act as transport agents 
of dissolved Au (Phillips and Evans 2004). Nevertheless, 
diferent hypotheses need to be considered in the irst place.
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 (i) The composition of the studied volcanic rocks is 
mainly mafic (basaltic) and their correspondent 
magmas could have considerable  CO2 contents due 
to the high solubility of this phase in maic magmas 
(King and White 2003). Nevertheless, volcanic rocks 
degas relatively fast, during and after emplacement, 
because of its low viscosity (Sparks 2003) imply-
ing that  CO2 deriving from the volcanic rocks is an 
unlikely source of  CO2 in carbonates.

 (ii) The studied volcanic rocks were emplaced into a shal-
low marine sedimentary basin, where Ordovician 
shales were being deposited. In this paleo-environ-
ment, carbonates could have formed by chemical 
precipitation from seawater and by alteration of Ca-
bearing phases within the volcanic rock. Sealoor 
alteration/precipitation should have produced cal-
cite as the main carbonate (± chlorite ± albite) and 
this typically occurs on previous Ca-bearing miner-
als, fracture illings and rock-vesicles (Groves et al. 
1988). Furthermore, if this hypothesis is correct, 
most these volcanic samples should have carbon-
ate phases because they have a fairly homogeneous 
basaltic composition and were expelled in the same 
marine environment and were exposed to the same 
sealoor alteration conditions. Of the diferent stud-
ied samples, three have carbonate phases replacing 
primary plagioclase (Fig. 5).

 (iii) Crustal luids, produced by metamorphic dehydra-
tion in deeper crustal locations, are composed of 
 H2O + CO2 (± other minor salt components). These 

luids usually traverse upper crust formations where 
they cool and crystallize as quartz veins. Interaction 
with rocks that have Ca–Mg–Fe can lead to precipita-
tion of diferent carbonates phases. The presence of 
Fe-dolomite, Mg–Fe calcite, ankerite and/or magne-
site-siderite, besides calcite, should be indicative of 
metamorphic/hydrothermal processes (Groves et al. 
1988).

The petrography study shows that undeformed carbon-
ates substitute chlorite and also appear in veins crosscut-
ting the chlorite matrix (Fig. 5b–d). The observed carbon-
ate compositions of Fe-bearing dolomite/Mg calcite favors 
a metamorphic origin for the luids (Groves et al. 1988). 
These data thus support an origin of these carbonates as 
precipitates from crustal luids generated after the chlorite 
(≈ 374 ± 6 °C) metamorphic growth. These luids can low 
through the crust in a pervasive way, or, more commonly, 
in more discrete zones where the luids are collected. This 
could explain why some maic volcanic rocks developed 
carbonate phases while others did not. Another possible 
explanation is that minor heterogeneities in the studied 
basalt compositions could have limited/augmented the 
availability of reactants and thus conditioned the devel-
opment of carbonate phases.

8.3  T-X(CO2) modelling in the volcanic rocks

Phase diagram (pseudosection) modelling in the system 
NCaKFMASHC was done to investigate the formation of 

Fig. 10  Primitive mantle 
normalised trace element 
composition of the Truchas 
Syncline basalts. The shaded 
ield corresponds to north 
Spain´s post-Variscan basaltic 
dikes (González Menéndez 
and Suárez 2004). Ordovician 
Castro Fm. basalts are from 
Valverde-Vaquero et al. (2016). 
OIB average values are from 
Rollingson (1993) and refer-
ences therein. Normalising val-
ues of primitive mantle are from 
Sun and McDonough (1989)
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carbonate phases by crustal luid  (H2O + CO2)—rock inter-
action. The thermodynamic data base ds.55 of Holland and 
Powell (1998) was used together with the following A–x 
solution models: muscovite (Coggon and Holland 2002), 
biotite (White et al. 2007), chlorite (Holland et al. 1998), 
amphibole (Diener et al. 2007) and feldspar (Holland and 
Powell, 2003). Carbonate phases calcite-dolomite-magnesite 
(CcDo) were treated as a solid solution phase with the model 
of Holland and Powell (2003). Ankerite and siderite were 
considered as pure end members. The Pitzer and Sterner 
(1994) equation of state was considered for modelling the 
 H2O–CO2 (site mixing) behaviour.

Theriak-Domino software (De Capitani and Petrakakis 
2010), a Gibbs free energy (G) minimization code, was used 
for calculations and diagrams. The input bulk rock-composi-
tion is the sample CF2, representative of the volcanic rocks 
with basaltic composition from the studied area (Table 3).

The results are presented in a T-XCO2 equilibrium phase 
diagram or pseudosection where temperature (T) is com-
pared to  XCO2 = nCO2/nH2O + nCO2. The model was gen-
erated with a ixed pressure of 1 kbar to model near sur-
face conditions (Fig. 11). Stable phase assemblages with 
the lowest G values for the speciic P–T–X conditions are 

shown. High contents of  H2O–CO2 were considered in order 
to have luid in excess. At the T range studied (300–400 °C) 
the observed assemblage of albitic Pl + Chl + Fe-dolomite/
Mg-calcite ± sericite ± Qtz ± K-feldspar is best matched by 
the calculated assemblage of Pl(Ab) + Chl + CcDo + Ms-P
g ± Qtz shown in the colored ield of Fig. 11. The T-XCO2 
conditions for this ield are varied because it has a posi-
tive slope and therefore spans a considerable range of T 
(≈ 200–360 °C) and  XCO2 (0.05–0.47). Higher T values 
or lower  XCO2 luid composition will generate biotite as a 
stable phase in the assemblage. Higher  XCO2 contents will 
lead to the increase of ankerite ± siderite as the main carbon-
ate phases. The calculated modal amounts of the mineral 
assemblage are close to those observed where Pl(Ab) + Chl 
dominate (calculated Pl ≈ 42%, Chl ≈ 35%) followed by the 
carbonates (calculated CcDo + Ank ≈ 11%) and sericite 
phases (Ms + Pg ≈ 10%). Carbonates are slightly underesti-
mated while sericite phases are overestimated compared to 
the observed modal amounts.

With this model we can only establish a maximum T 
(≈ 350–360 °C) below which the observed mineral assem-
blage was developed in a range of possible luid  XCO2 val-
ues. This temperature is slightly lower than the one recorded 

Fig. 11  T-XCO2 Pseudosec-
tion at P = 1 kbar. Mineral 
abbreviatures—Pl plagioclase, 
Chl chlorite, CcD calcite-
dolomite, Ank ankerite, Sid 
siderite, Ms muscovite, Pg 
paragonite, Anl analcime, Qz 
quartz, Amp amphibole. Bulk 
rock in cation mol propor-
tions is Si(71.39), Al(35.68), 
Mg(16.77), Fe(15.87), Ca(7.98), 
Na(17.19), K(0.40), C(1000-0), 
 H2O(0-1000). Stage 1 refers to 
the temperature estimated (Chl 
composition) for the low-grade 
metamorphic event. Stage 2 
refers to the possible input of 
luid  H2O–CO2 input into the 
rock. See main text for further 
explanations
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in the chlorite compositions (≈ 374 °C) related to low-grade 
metamorphism (low greenschist facies). This, and the tex-
tural relations of carbonates, overprinting or cutting across 
the chlorite crystals, indicates that the growth of the car-
bonates took place at relatively lower temperatures and 
was an event of luid  (H2O–CO2) iniltration that occurred 
after or during the waning stages of the low grade regional 
metamorphism.

Therefore, we propose a regional metamorphic event at 
stage 1 at T ≈ 374 ± 6 °C (Fig. 11). The  XCO2 luid values 
were low  (XCO2 ≤ 0.025) and carbonate phases were either 
not stable or had very low modal abundances. This is sup-
ported by the fact that no chlorite-carbonate intergrowths 
or simultaneous chlorite-carbonate growths were observed 
in the samples. After this event and during cooling below 
≈ 350–360 °C, an  H2O–CO2 luid input occurred at stage 
2 (Fig. 11). This caused the development of carbonates as 
crystals and veins cutting across the rest of the phases. The 
luid composition could have been bufered by the break-
down of biotite to form muscovite/sericite. Although there 
are no records of this reaction in the rocks, if it had occurred, 
luid chemistry would have changed upon cooling and exhu-
mation of the rock and would have been bufered along the 
Bt-out reaction line in Fig. 11. Such behavior of changing 
luid composition upon pervasive luid iniltration is not 
uncommon in metamorphic rocks (Kleine et al. 2014).

Other scenarios where iniltration of  H2O–CO2 crustal 
luids interacted with maic rocks to produce carbonation 
and, in some cases, Au mineralization, have similarities and 
diferences with the model here described.

A similar evolution was proposed by Kleine et al. (2015) 
and Kleine et al. (2016) in metabasaltic sills from Islay 
(Scotland) with  H2O–CO2 infiltration fluids being syn-
metamorphic (but post peak) and carbonation only afect-
ing the sill margins. On the other hand, a diferent sequence 
of events is proposed in the model of Elmer et al. (2007) 
where an Au-hydrothermal event and  H2O–CO2 luid inil-
tration took place before the metamorphic peak conditions 
(440 °C).

In our study case it seems that the infiltration of 
 H2O–CO2 luids and carbonation of the maic rocks hap-
pened after the metamorphic peak (chlorite average tem-
perature  ≈  374 ± 6  °C) or during the waning stages of 
metamorphism. This is mainly based on the observation of 
carbonates minerals and quartz-carbonate veins cut across 
chlorite minerals (Fig. 5b–d).

H2O–CO2 luids, with the suitable ligands (HS,  Cl−), 
are known to be carriers of dissolved gold as bisulphide 
(Au(HS)−

2) of chloride complexes  (AuCl−
2). The observed 

Au mineralization in this region (Truchas Syncline) could be 
related to this  H2O–CO2 input. The relatively moderate tem-
peratures estimated for this luid (< 350–360 °C) are similar 
to those described in Au mineralization luids from other 

regions (≥ 200–300 °C; Phillips and Evans 2004; Phillips 
and Powell 2010).

8.4  Origin of the metasomatic shales

Previously, the lithological layers that we classiied as meta-
somatic shales in this study were reported to be of volcanic 
origin (Suárez et al. 1994). However, here we show evidence 
that these rocks lack chilled margins, scoriaceous upper lay-
ers or observable igneous textures such as phenocrystals 
(Fig. 4). In thin section, the mineral assemblage observed 
is chlorite + quartz ± rock fragments and accessory zircon 
(Fig. 5e,f) which casts doubts about a sole volcanic origin. 
The chlorite chemistry (Fig. 6) and whole rock geochemical 
data indicate an origin closer to a shale ± sandstone compo-
sition with a minor volcanic component (Fig. 9).The rare 
composition of these rocks indicates that they are neither 
volcanic (igneous) nor completely sedimentary and instead, 
should be considered as metasomatic. The more deformed 
samples have low FeOt/K2O and  SiO2/Al2O3 ratios and the 
deformation efect on the geochemistry is shown in Fig. 7b 
(deformation trend).

To further explore its geochemistry, we performed prin-
cipal component analysis (PCA) including the whole set of 
studied rocks: metasomatic, volcanic and shale composi-
tions (shales from Ward and Gómez-Fernández 2003 and 
unpublished data from Gómez-Fernández). PCA shows the 
geochemical variance grouped in a small set of components. 
The irst two components account for 75% of the variance 
(Fig. 12a). The irst one is dominated by the variables that 
separate the geochemistry of volcanic rocks from that of the 
shales:  SiO2,  Al2O3, and  K2O typical of the shale composi-
tions and CaO, MgO,  TiO2 and  Na2O that correspond to the 
maic rocks. Metasomatic shales are closer in this 8-dimen-
sional space to the shales. The second component is domi-
nated by  Fe2O3t negative loading with minor contributions 
of  K2O,  Na2O ± SiO2 ± Al2O3. This shows the importance 
of the iron enrichment in these rocks accompanied with a 
decrease in alkalis  (Na2O,  K2O). This alkalis decrease, with-
out an accompanying  Al2O3 increase, is responsible for the 
extreme peraluminosity of these rocks. Within the metaso-
matic shales, there is also a high  SiO2 variability (Fig. 12b).

A high ainity of the metasomatic shales and shale com-
positions can also be seem with the Th and La diagram 
(Fig. 13). The Th/La ratios of these rocks are closer to those 
of zircon (0.35) and monazite (0.32) and diferent from those 
deined by the volcanic whole-rock data. We have also per-
formed isocon analysis (Grant 1986; 2005) considering 
both a shale source (average composition in Table 3) and 
a volcanic protolith (CF-2) to generate an altered metaso-
matic rock (CF-3). The 1:1 isocon black line and the iso-
con dashed lines obtained considering  TiO2, Zr and MnO 
as immobile elements were used to deine the region of 
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least element mobility (Fig. 14).The results show that in 
all cases the metasomatic rocks gained  Fe2O3t ± Nb (shale 
precursor) or  Fe2O3t + Pb ± SiO2 (volcanic precursor). On 
the other hand, there are net losses in:  K2O,  Na2O, CaO, Rb, 
Sr, Ba, and LREE (shale precursor, Figs. 14a, b) or CaO, 
 Na2O, MgO, Sr, Ba, V (volcanic precursor, Fig. 14c, d). 

The common ground is the marked Fe enrichment and the 
 Na2O + CaO + Sr + Ba depletions.

Some of the borders of the metasomatic shales appear 
strongly foliated in comparison with its interior. We sampled 
both parts to investigate if there was any geochemical difer-
ence (from the border to the interior: C-6RB, C-6, C-6RA; 
Fig. 15). Since these rocks have a volcanic component, pri-
mary mineral-geochemical relations need to be considered. 
Mineral redistribution during a volcanoclastic emplacement 
could involve enrichments in Al, Si, Na, Ba, Rb and Sr in 
the body interior and higher concentrations of Ti, Fe, Mg, 
Mn, HFS elements and REE towards the margins (Kleine 
et al. 2016). In the study proile we have normalized the 
margin rocks (foliated) to the interior sample (Fig. 15). The 
most marginal and foliated sample (C-6RB) shows deple-
tions in  SiO2 ± MnO and enrichments in most of other ele-
ments, especially in  TiO2,  Al2O3, CaO,  Na2O,  K2O, Rb, Sr, 
Ba and LREE. Overall, this pattern is not consistent with a 
magmatic mineral-element redistribution. The geochemistry 
variation from the rock core towards the edges does not have 
a speciic trend because the intermediate sample (C-6) does 
not have an intermediate geochemistry. The strong folia-
tion observed suggests that the shearing associated with 
Variscan tectonics might have modiied the chemistry of 
the rock margins by dissolving  SiO2 rich minerals (mainly 
quartz ± feldspars) with pressure solution and leached  SiO2 
locally from the most deformed rocks. The rest of the ele-
ments would have had less mobility in these conditions and 
therefore increased its concentration by a corresponding 
residual enrichment.
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8.5  Sequence of geological processes

The data here presented, from ield observations, petrogra-
phy, geochemistry and T-XCO2 modelling, suggest that these 
Ordovician volcanic rocks were emplaced in a relatively 
shallow marine basin as lavas and volcanoclastic deposits. 
Very rapid cooling generated the scoriaceous layers char-
acteristic of some of these rocks. The magma composition 
could have been maic with minor dacitic-rhyolitic pulses. 
The rapid cooling of these bodies, due to their relatively 
small thickness, precluded a metamorphic aureole develop-
ment in the country rock shales. Preservation of orthid bra-
chiopods in some volcanoclastic layer reinforces a Middle 

Ordovician age and a shallow marine setting for the volcanic 
deposits.

Possible sealoor alteration is mostly obliterated by the 
later Variscan metamorphism. It probably consisted in 
some chlorite ± albite development. This process could have 
afected all these volcanic rocks in a similar way and with 
similar intensity.

The metasomatic shales, previously mapped as volcanic 
layers, probably represent a mixture of shales ± sandstones 
and minor volcanic components. The signiicant  SiO2 deple-
tion in the foliated rock margins could have happened by 
mineral dissolution (quartz ± feldspars) produced by the later 
Variscan deformation (shearing).
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The Variscan Orogeny folded and metamorphosed these 
rocks up to greenschist grade as recorded in the Chl tem-
perature estimations (≈ 374 ± 6 °C). We propose that, dur-
ing this orogenic event, after the metamorphic peak, crus-
tal  H2O–CO2 luids lowed through some of these volcanic 
rocks and produced luid-rock interactions with Ca–Fe–Mg 
minerals at hydrothermal temperatures (< 350–360 °C). 

Depending on the  XCO2 of the luid, diferent carbonate 
phases could have been produced (as shown in the modelling 
of Fig. 11). Gold could have been leached and transported by 
some of these luids, giving rise to economic gold precipita-
tion in some speciic locations. The occurrence of carbonate 
phases in some of the country rocks (sedimentary/volcanic; 
Gómez-Fernández et al. 2009) could indicate the passage of 

Fig. 15  Major and selected 
trace elements composition of 
the foliated metasomatic shales 
(C-6, C-6RB) normalized to 
the less deformed, non-foliated 
sample (C-6RA). Insets show 
the relative position of the 
samples in the outcrop
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crustal luid with mixtures of  H2O–CO2 that can also carry 
dissolved Au to produce mineralization.

Based on the data presented, a conceptual model has been 
described showing the possible evolution of these rocks in 
relation to the Variscan metamorphism, carbonate precipita-
tion and gold mineralization (Fig. 16). In a irst stage, the 
original upper crustal rocks of this zone were composed of 
volcanic + volcanoclastic layers ± metasomatic layers and 
surrounding shales (Fig. 16). The shales have low initial 
amounts of organic C and dispersed low amounts of Au 
among diagenetic pyrite (Gómez-Fernández et al. 2019; 
Cunningham et al. in prep). The Variscan orogeny produced 
heat leading to T increases up to ≈ 374–420 °C. This caused 
a widespread chlorite precipitation from dehydration reac-
tions of previous phyllosilicate minerals within the shales 
and metasomatic rocks. Interactions of these  H2O-rich luids 
with the volcanic and metasomatic rocks produced a retro-
grade metamorphism of maic minerals of the volcanic rocks 
and in the volcanic components of the metasomatic rocks 
(Fig. 16, stage 2). The low C content of the shales probably 
precluded the generation of  H2O + CO2 luids at this stage, as 
indicated by the lack of carbonate phases growing simultane-
ously with chlorite. After the metamorphic peak, at the ini-
tial cooling stages (T ≤ 350–360 °C) iniltration of external 
and probably deeper  H2O + CO2 luids occurred. These lu-
ids interacted with the diferent rock compositions (Fig. 16, 
stage 3). In the case of the volcanic rocks, having signiicant 
CaO contents (in plagioclase and maic primary and second-
ary minerals), the reaction produced carbonate phases (Mg-
calcite/Fe-Dolomite). The interaction of these luids with 
the shales and metasomatic rocks did not cause carbonate 
precipitation because of the very low CaO contents of these 
rocks (0.08–0.36 wt%). For precipitation of pure Mg-Fe-
carbonate phases (magnesite, siderite), higher  XCO2 (mole 
fractions) would be needed in the luid. The gold mineraliza-
tions known around this area (Gómez-Fernández et al. 2012) 
could be related to these late  H2O + CO2 luids that trans-
ported dissolved Au (as bisulphide complexes Au(OH)2

−). 
The ultimate origin of the gold is unknown, it could have 
been leached in part from the surrounding shales, and/or 
being leached from deeper geological settings where these 
late crustal luids came from.
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9  Conclusions

The Ordovician volcanic and volcanoclastic rocks of NW 
Spain are well represented in the Truchas Syncline and in 
the studied area of this work (SE Truchas Syncline, Cunas 
village). Here, these rocks are hosted and interbedded within 
Ordovician shales (Luarca shale Fm.) and mainly consist 
of within-plate alkaline basalts extruded in a marine pas-
sive margin. Such features are consistent with an extended 
passive continental margin linked to continental rifting 
processes.

Fossil occurrences (orthid brachiopods) within some of 
the volcanoclastic layers corroborate the Middle Ordovi-
cian age for these rocks and its shallow marine conditions 
of emplacement.

Metasomatic shales occur as distinctive layers within 
the shales succession. These chlorite + quartz rocks show 
important iron enrichments and extreme peraluminosity. Its 
protolith could be a shale ± sandstone with minor volcanic 
components.

Variscan greenschist metamorphism afected these rocks 
promoting the widespread chlorite growth at T ≈ 374 ± 6 °C, 
from primary maic phases not currently preserved. Simul-
taneous deformation processes are observed in some cases 
where the chlorite has a slight preferred orientation.

Subsequent to this metamorphism and deformation, or in 
its waning stages, iniltration of  H2O–CO2 luids occurred 
through veins of variable scale and nature (Qz + Carbon-
ate- and Carbonates-veins). These crustal luids interacted 
with the volcanic rocks and particularly with its Ca–Fe–Mg 
phases, to produce carbonate minerals: Fe-bearing dolo-
mite—Mg-bearing calcite at T ≤ 350–360 °C. It is proposed 
that these  H2O–CO2 luids could have been responsible for 
the transportation and deposition of gold mineralizations 
located nearby.
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