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Abstract

Matrix metalloproteinase-8, released mainly from neutrophils, is a critical regulator of the inflammatory response by its
ability to cleave multiple mediators. Herein, we report the results of a model of endotoxemia after intraperitoneal LPS
injection in mice lacking MMP-8 and their wildtype counterparts. Control, saline-treated animals showed no differences
between genotypes. However, there was an increased lung inflammatory response, with a prominent neutrophilic
infiltration in mutant animals after LPS treatment. Using a proteomic approach, we identify alarmins S100A8 and S100A9 as
two of the main differences between genotypes. Mice lacking MMP-8 showed a significant increase in these two molecules
in lung homogenates, but not in spleen and serum. Mice lacking MMP-8 also showed an increase in MIP-1a levels and a
marked activation of the non-canonical NF-kB pathway, with no differences in CXC-chemokines such as MIP-2 or LIX. These
results show that MMP-8 can modulate the levels of S100A8 and S100A9 and its absence promotes the lung inflammatory
response during endotoxemia.
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Introduction

The inflammatory response consists not only in local

inflammation. In severe cases, this response spreads from the

site of onset and evolves into a systemic injury [1]. In this setting,

the lungs are amongst the most commonly involved organs.

Neutrophils are recruited from the circulation [2], and a full-

blown immune response takes place in both the interstitium and

the alveolar spaces. This syndrome has been termed acute lung

injury and may result in a severe lung dysfunction by altering gas

exchange and respiratory mechanics. In patients with the

systemic inflammatory response syndrome, lung injury is related

to a high mortality rate [3].

The regulatory mechanisms responsible for the switch from a

local to a systemic response are only partially known. There is

increasing evidence that matrix metalloproteinases, a family of

enzymes with a great variety of substrates, may modulate the

inflammatory response by cleaving immune mediators and

regulating cell migration [4]. Matrix metalloproteinase-8, also

known as collagenase-2 or neutrophil collagenase, plays different

roles in the regulation of the inflammatory response [5]. Mice

lacking this enzyme show a delayed onset and also a slow

clearance of the local inflammatory infiltrates [6,7]. Several

immune mediators, such as MIP-1a [8], IL-10 [9] or LIX [10],

have been involved in this characteristic pattern and shown to be

substrates of MMP-8.

We hypothesized that MMP-8 plays also a role in the lung

response to endotoxemia. To test this hypothesis we used an

experimental model of inflammation by intraperitoneal injection

of lipopolysaccharide in wildtype and MMP-8 deficient mice.

After documentation of increased neutrophil recruitment in the

lungs from knockout mice compared to wildtype animals, we

used a proteomic approach to identify the molecules involved in

the observed differences in mice from both genotypes. These

studies revealed the alarmins S100A8 and S100A9, which are

significantly increased in mice lacking MMP-8, as two of the

candidates to be responsible for the increased inflammatory

response in mutant mice.

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e39940



Methods

Animals
Mice deficient in MMP-8 were generated as previously

described [6] and backcrossed to obtain a pure C57BL6

background. Normal mice with the same C57BL6 background

were used as wildtype counterparts. Seventy-two animals were

used in the study. Genotypes were confirmed by PCR in all

animals. Animals were kept in SPF conditions, with 12:12 hours

light/dark cycles and free access to water and food. All the

experimental protocols were reviewed and approved by the

University of Oviedo Animal Research Ethics committee.

Experimental Model
A dose of 5 mg/Kg of lipopolysaccharide (serotype O55:B5,

Sigma-Aldrich) was intraperitoneally injected to wildtype and

knockout mice. This dose induces lung inflammation with a peak

24 hours after injection [11]. Control animals from both genotypes

were injected only with vehicle (sterile saline). After 24 hours, mice

were anesthetized with a mixture of ketamine and xylazine, a

laparotomy was performed and the animals were sacrificed by

exsanguination. The lungs and the spleen were then removed. The

right lung and the spleen were frozen at 280uC for further

analysis. The left lung was fixated by intratracheal administration

of 4% formaldehyde and immersed in the same fixative. In

additional animals, a blood sample was obtained by cardiac

puncture.

Histological Study
Paraffin embedded sections were stained using a standard

hematoxylin-eosin technique. Three sections per mouse were

evaluated by two independent pathologists (AA, MSFG), blinded

to the experimental conditions. Each section was scored from 0 to

3 based on the septal thickening (grade 1), areas of alveolar

flooding (grade 2) and loss of normal alveolar structure (grade 3).

Lung neutrophil recruitment was evaluated by immunohisto-

chemical staining against myeloperoxidase (MPO) using an anti-

MPO antibody (Thermo Scientific). The number of MPO positive

cells in three randomly chosen high-power fields was counted and

averaged for each animal.

Bronchoalveolar Lavage
Four animals of each genotype were treated with LPS as

described. After 24 hours, mice were anesthetized and a

tracheostomy performed. Lungs were lavaged with three aliquots

(700 microliters) of sterile saline. Neutrophils in the recovered

bronchoalveolar lavage fluid (BALF) were counted in a hemocy-

tometer.

Flow Cytometry
For quantification of cell populations, additional mice from both

genotypes and treatments were studied. After sacrifice, the left

lung was washed in sterile PBS immediately after removal, cut in

sections and manually homogenized. The resulting extracts were

centrifuged, resuspended in 100 microliters of PBS and incubated

with fluorescence-labeled anti-CD45, antiCD11b, anti-Gr1 and

anti-Ly6G antibodies (BD Biosciences). Cell populations were

identified using a FACScanto flow cytometer (BD Biosciences).

DiGE Analysis
Lungs from WT and KO mice were perfused and then rinsed in

TAM (10 mM TRIS-HCl pH 8.5, 5 mM magnesium acetate) and

homogenized manually at room temperature in TUCT (7 M urea,

2 M tiourea, 4% CHAPS, 30 mM TRIS- HCl pH 8.5). 50 mg of

each sample were covalently labeled with 400 pmol of a specific

fluorophore (GE Healthcare): CyDye 3 (WT sample), CyDye 5

(KO sample) and CyDye 2 (pool of WT and KO sample 1:1).

Labeled samples were combined and UCDA (8 M urea, 4%

CHAPS, 130 mM DTT, 2% IEF buffer) was added in a 1:1 ratio.

Samples were isoelectrofocused (voltage in gradient for 26 hours at

18uC) in 24 cm pH 3–11 NL strips following manufacturer’s

instructions (GE Healthcare). Once the IEF step finished, strips

were equilibrated for 15 min in SES (6 M UREA, 30% glycerol,

2% SDS, 75 mM TRIS-HCl pH 6.8), 0.5% DTT and bromo-

phenol blue, and for another 15 minutes in SES+4.5%

iodoacetamide and bromophenol blue. Then, they were mounted

on top of a 13% SDS–PAGE with stacking gel in a Hoefer S600

apparatus (Ettan DALT Six, GE Healthcare). Electrophoresis was

performed at 80 V overnight in the dark at 18uC. After SDS–

PAGE, cyanine dye-labeled proteins were visualized directly by

scanning using a Typhoon 9400 imager (GE Healthcare). The

scanned gels were then directly analyzed with Progenesis Same-

Spots software (Nonlinear dynamics) and stained with SYPRO

Ruby (Molecular Probes).

Tryptic Digestion and MALDI-ToF Analysis
Differential spots were manually excised over a transilluminator.

Gel pieces were washed twice with 180 mL of 25 mM ammonium

bicarbonate/acetonitrile (70:30), dried for 15 min at 90uC, and

incubated with 12 ng/mL trypsin (Promega) in 25 mM ammoni-

um bicarbonate. The digestion was allowed to proceed for 1 h at

60uC. Peptides were purified with ZipTip C18 (Millipore) and

eluted with 1 mL of CHCA (a-cyano-4-hydroxycinnamic acid) to

be placed onto MALDI-ToFs plate. Once dried, they were

analyzed by mass spectrometry on a time-of-flight mass spectrom-

eter equipped with a nitrogen laser source (Voyager-DE STR,

Applied Biosystems). Data from 200 laser shots were collected to

produce a mass spectrum. Data explorer version 4.0.0.0 (Applied

Biosystems) was the software used to analyze the spectra.

Western Blotting
Tissues were homogenated in a standard RIPA buffer (100 mM

TRIS pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% deoxycholic

acid, 1% Triton X-100, 0,25% SDS, 1 mM ortovanadate and a

protease inhibitor cocktail) and the protein content measured

(BCA kit, Pierce, USA). Twelve micrograms of protein or 4

microlitres of serum were loaded in 12% SDS-PAGE or 16.5%

Tris-tricine gels and electrophoresed. Then, proteins were

transferred to PVDF membranes, blocked in non-fat milk or

bovine albumin as needed, and incubated with antibodies against

S100A6 (R&D Systems), S100A8 (R&D Systems), S100A9 (R&D

Systems), MIP-2 (AbD serotec), LIX (Peprotech), MIP-1a
(Abcam), IL-10 (Abcam), p65 (phosphorylated and total, Abcam),

p52 (Cell signaling) and actin (Santa Cruz Biotechnology

#SC1616). Proteins were then detected by chemoluminiscence

(Millipore) using secondary peroxidase-linked antibodies. The

resulting images were acquired with a LAS-3000 camera and

analyzed using ImageJ software (NIH, USA).

Quantitative RT-PCR Analysis
RNA was extracted from frozen lung tissue using the Trizol

reagent. One microgram of RNA was used to synthesize cDNA

using superscript II reverse transcriptase following manufacturer’s

instructions. Then, a quantitative PCR was performed using 20 ng

of cDNA and TaqMan Universal PCR master mix and the specific

TaqMan probes for S100A8 (Mm00496696_g1) and S100A9

(Mm00656925_m1) genes (Applied Biosystems). These probes
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span along two exons of the gene, thus avoiding the amplification

of genomic DNA. Samples were studied in triplicate in an Applied

Biosystems 7300 real-time PCR system. Beta-actin was used as

control and the relative expression of the analyzed genes was

calculated according to manufacturer’s instructions.

Gelatin Zymography
Activity of matrix metalloproteinases 22 and 29 was measured

by standard gelatin zymography as previously described [12].

Briefly, lung homogenates were loaded in a 8% SDS-PAGE gel

containing 0.2% gelatin and electrophoresed. The gels were

washed in 2.5% Triton X-100 and incubated in a buffer (20 mM

TRIS, 5 mM CaCl2, pH 7.4). After staining with Commassie blue

and destaining with a methanol/acetic acid mixture, gelatinolytic

activity was identified as white bands over a blue background. Gels

were scanned and quantified using ImageJ software.

Statistical Analysis
Data are expressed as mean6SEM. Differences among groups

were evaluated using a two-way ANOVA, including genotype and

treatment (LPS or saline) as factors. Post-hoc tests were done using

the Bonferroni’s correction. A p value lower than 0.05 was

considered significant.

Results

Increased Lung Inflammatory Response in Mmp82/2

Mice
Seven LPS-treated and 7 saline-treated animals per genotype

were studied. Treatment with LPS induced histological lung injury

in both genotypes (Figure 1A–B), when compared to baseline

(p = 0.042 and p = 0.001 for wildtype and knockout mice,

respectively). However, the severity of injury in knockout mice

doubled that from wildtype counterparts (p = 0.004 for the

difference between genotypes in LPS-treated animals). There

were no differences between genotypes in saline-treated animals.

Neutrophil infiltration within the lungs was measured by

counting MPO-positive cells in immunohistochemical prepara-

tions (n = 7/group, Figure 1C–D). As expected, there were no

differences in saline-treated animals. LPS administration induced a

small but significant increase in lung neutrophils in Mmp8+/+

animals (p,0.05 vs saline-treated wildtype mice), and a three-fold

higher increase in Mmp82/2 mice (p,0.001 vs saline treated

knockout mice, p,0.001 vs LPS-treated wildtype mice). There

were no differences in leukocyte populations measured by flow

cytometry or in the accumulation of myeloid-derived suppressor

cells (defined as CD45+, Gr1+, Mac-1+, 2862% vs 27,267%

after LPS in wildtype and knockout mice, respectively; n = 5/

group, p = 0.92). Neutrophil count in the BALF was also higher in

Mmp82/2 animals than in their wildtype counterparts (Figure 1E).

There were no differences in the number of macrophages (data not

shown). In spite of the differences in lung injury and inflammation,

there were no significant differences in survival between genotypes

(Figure 1F).

Proteomic Analysis of Lung Tissue
To identify MMP-8 substrates responsible for the differences in

leukocyte infiltration, lung tissue homogenates were analyzed

using 2D-DIGE (n = 4/group). Interestingly, members from the

S100 protein family, involved in the inflammatory response, were

identified, so we focused on these molecules as putative mediators

responsible for the differences. Figure 2 shows a representative 2D

gel (A) together with the protein spots (B) and confirmatory

western blots (C).

S100 Proteins are Increased in Lungs of MMP-8-deficient
Mice

To confirm the results of the proteomic analysis, we performed

western blot experiments using lung tissue homogenates (n = 7/

group) and antibodies against S100A6, S100A8 and S100A9.

There were no differences in S100A6 protein (Figure 3A, p = 0.45

in ANOVA). Regarding S100A8, we did not observe any

difference between genotypes in saline-treated animals, but a

significant increase after LPS injection (Figure 3B, p,0.001 and

p = 0.015 for wildtype and knockout mice respectively). Moreover,

S100A8 levels were significantly higher in knockout mice

(p = 0.004 for the difference between genotypes). S100A9 showed

a similar pattern (Figure 3C). Representative western blots are

presented in Figure 3D. S100A8 and S100A9 protein levels were

strongly correlated with the leukocyte count in histological sections

(correlation coefficients of 0.80 and 0.78 for S100A8 and S100A9

respectively, p,0.01 in both cases).

S100a8 and S100a9 gene expression was also studied by

quantitative PCR (n = 6/group). Crossing thresholds were

21.77961,048, 28.12560.702 and 27.06260.629 for actin,

S100a8 and S100a9 respectively. The results for each genotype

are shown in figure 3E. There were no differences between LPS-

treated wildtype and knockout mice (p = 0.531 and p = 0.776 for

S100A8 and S100A9 in the ANOVA, respectively).

Finally, we measured S100A8 and S100A9 levels in serum and

spleen homogenates to check if the differences observed in lung

tissue are a local phenomenon or the manifestation of a systemic

difference in alarmin levels. There were no differences in these two

molecules in serum or spleen (Figure 3F). These results suggest that

the differences observed in protein abundance are not caused by a

differential gene expression, but a different protein clearance in

lung parenchyma.

MMP-2 or MMP-9 do not Compensate the Absence of
MMP-8

As gelatinases MMP-2 and -9 have been involved in processing

of S100A8 and S100A9, we studied their levels by gelatin

zymography (n = 7/group, Figure 4). There was a non-significant

trend to higher levels of MMP-9 in lung tissue after LPS treatment,

with no differences between genotypes (p = 0.791 in ANOVA).

There were no differences in MMP-2 in response to LPS injection

in any of the genotypes. Figure 4C shows a representative

zymography.

Absence of MMP-8 affects Multiple Immune Mediators
It has been reported that MMP-8 can process a number of

immune mediators, including chemokines responsible for the

leukocyte infiltration. To study these factors that were not

identified by our proteomic approach, we measured the

abundance of MIP-1a, MIP-2 and LIX in lung tissue homoge-

nates (n = 7/group). MIP-1a increased in both genotypes after

LPS injection. This increase was more pronounced in mice lacking

MMP-8 (Figure 5A). In opposite, there were no differences

between genotypes in MIP-2 levels (Figure 5B). Likewise, we did

not observe changes in LIX abundance in any experimental group

(Figure 5C).

Activation of Non-canonical NF-kB Pathway in Mmp82/2

Mice
The NF-kB pathway is one of the main intracellular triggers of

the inflammatory response. Activation of this route was evaluated

by western blotting against p65 and p52 (markers of canonical and

non-canonical NF-kB pathway respectively). Seven mice per
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Figure 1. Lung inflammation during endotoxemia. N = 7/group. LPS injection increases histological damage (A-B) and neutrophilic infiltration
(C-E). Mice lacking MMP-8 show a more severe injury with increased neutrophils within the lung tissue (C-D) and bronchalveolar lavage fluid (N = 4/
group, E). However, there were no differences in survival (F, n = 9 per genotype, log rank test p = 0.52). *p,0.05 in post-hoc tests.
doi:10.1371/journal.pone.0039940.g001
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group were studied. There were no differences between genotypes

in p65 phosphorylation (Figure 6A). However, there was a marked

activation of the non-canonical NF-kB pathway, demonstrated by

a 10-fold increase in p52 levels only in mice lacking MMP-8

(Figure 6B).

Discussion

Our results demonstrate that the absence of MMP-8 increases

the neutrophilic lung infiltration after LPS injection. This effect

could be explained by the accumulation of S100A8 and S100A9

proteins, in addition to other chemokines. These findings highlight

the central role of MMP-8 during the regulation of inflammatory

cell recruitment to the lungs by processing a variety of immune

mediators.

Matrix metalloproteinases have a wide range of substrates that

are responsible for their variety of effects. MMP-8, also known as

collagenase-2, has emerged as one of the most important

regulators of the inflammatory response [5]. Mutant mice lacking

MMP-8 show a characteristic inflammatory response, with an

initial delay in cell recruitment, but also with a later persistence of

the neutrophilic infiltration [6,13–15]. Therefore, absence of this

enzyme ameliorates hyperacute inflammation, but also worsens

the response later on [7]. Noteworthy, blood cell counts and the

migratory properties of neutrophils in knockout mice are normal

[8], so the differences between genotypes rely on the regulation of

the inflammatory response.

There are several molecular mechanisms that could be

responsible for these opposite effects of MMP-8. First, inflamma-

tory cells must degrade the extracellular matrix fibers in order to

migrate, so the collagenolytic activity must be essential for

neutrophils to reach the injured site [16]. Additionally, it has

been reported that this protease can cleave different chemokines

such as LIX [10,17] or MIP-1a [8]. By this proteolytic

inactivation, MMP-8 exerts an anti-inflammatory role. Finally,

MMP-8 also regulates neutrophil apoptosis, contributing to the

persistence of the infiltrate [18].

The results of the present study show that, in absence of MMP-

8, there is an accumulation of S100A8 and S100A9. These

myeloid-related proteins, included in the alarmins family, are

constitutively expressed in neutrophils, representing the 40–50%

of the cytoplasmic content [19], and released at the sites of injury.

By binding to RAGE and TLR4, they can trigger a proin-

flammatory response [20]. Both RAGE and TLR4 are widely

expressed in the lung tissue, so this pathway is of major relevance

during the alveolar inflammatory response after endotoxemia [21].

Figure 2. Proteomic identification of S100 proteins in lung from LPS treated animals. A 2D protein electrophoresis (DiGE) was performed
with samples from both genotypes (A). Differential spots corresponding to S100A6, S100A8 and S100A9 were identified (B) and validated by western
blotting (C). Red circles show the differential spots in 2D western blots.
doi:10.1371/journal.pone.0039940.g002
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Figure 3. Differential expression of S100 proteins between genotypes. N = 7/group. The differences in S100A6 levels were not confirmed (A,
p = 0.45 in the ANOVA). However, S100A8 (B) and S100A9 (C) protein levels increased after LPS injection in both genotypes (p,0.05 in all post-hoc
tests). Mice lacking MMP-8 showed significantly higher levels of these two proteins than their wildtype counterparts (p,0.01 and p,0.001 for the
differences between genotypes in S100A8 and S100A9 respectively). Panel D shows representative western blots. However, S100A8 and S100A9 gene
expression was not different between genotypes during endotoxemia (n = 6/group, E). To discard systemic differences in alarmins, levels of S100A8
and S100A9 were measured in spleen homogenates (n = 7/group) and serum (n = 4/group) from LPS-treated animals, with no significant differences
between genotypes (F). *p,0.05 in post-hoc test.
doi:10.1371/journal.pone.0039940.g003

Figure 4. Absence of compensatory changes in MMP-9 (A) or MMP-2 (B) in mice lacking MMP-8 (n = 7/group). A representative
zymography is shown in panel C.
doi:10.1371/journal.pone.0039940.g004
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Figure 5. Chemokine levels in lung tissue. N = 7/group. LPS injection increased levels of MIP-1a (A, p,0.001 and p,0.001 for wildtype and
knockout mice), and MIP-2 (B, p,0.01 and p = 0.01 for wildtype and knockout mice) but not LIX (C, p = 0.56 in the ANOVA). Moreover, MIP-1a was
significantly higher in mice lacking MMP-8 (p,0.01 for the comparison between genotypes). *p,0.05 in post-hoc test.
doi:10.1371/journal.pone.0039940.g005

Figure 6. Non-canonical NF-kB activation in LPS-treated, Mmp82/2 mice. The lung levels of p52 increased significantly in knockout mice
after LPS challenge (n = 7/group, p = 0.01 vs saline-treated knockout mice, p,0.02 vs LPS-treated wildtype animals). *p,0.05 in post-hoc test.
doi:10.1371/journal.pone.0039940.g006
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Moreover, it has been demonstrated that both S100A8 and

S100A9 have chemotactic properties that favor neutrophilic

recruitment to the tissues [22]. Although S100A8 and S100A9

can also mediate the recruitment of myeloid-derived suppressor

cells [23], with anti-inflammatory properties, we did not find the

accumulation of these cells in the lung tissue in our model

irrespective of the genotype.

There is increasing evidence that MMPs can regulate the

alarmins/RAGE pathway by different mechanisms [24]. MMP-3

and -13 can release RAGE from alveolar epithelial cells [25]. The

resulting soluble RAGE could act as a decoy receptor with anti-

inflammatory properties. Although MMP-8 shares some structural

and functional characteristics with MMP-13 (both are interstitial

collagenases), the effects of the former on the release of RAGE

have not been addressed. Other MMPs, namely MMP-2 and

MMP-9 (gelatinases A and B respectively), can cleave and

inactivate S100A8 and S100A9. This mechanism limits the

inflammatory response in a model of lung allergic inflammation

[26]. The absence of compensatory changes in MMP-2 or MMP-9

supports the role of MMP-8 in the observed differences between

genotypes.

In this setting, MMP-8 appears as a central regulator of

neutrophilic chemotaxis by its effects on MIP-1a and alarmins.

Additionally, MMP-8 can modulate LIX activity and IL-10 levels,

as shown in other experimental models [6,9,10]. All these signals

may result in the activation of the NF-kB route. The chemotactic

activity of another RAGE and TLR ligand, HMGB1, has been

related to the activation of the non-canonical NF-kB pathway

[27]. Our results showing increased levels of p52 in mice lacking

MMP-8 resemble this finding. However, we cannot discard that

other factors not identified in our study are the cause of the

increase in NF-kB activity, as this is a final common pathway in

the inflammatory response.

The multiple and opposite effects of MMPs, and MMP-8 in

particular, can explain some contradictory results in the literature.

Absence of MMP-8 has been related to pro- and anti-inflamma-

tory responses. Regarding to MMP-8 and sepsis, all the

experimental models using LPS, either intratracheal [8,17] or

intraperitoneal (present study), report an increase in lung

inflammation in knockout mice. Recently, Solan et al. [28] have

shown the opposite effect (decreased neutrophilic infiltration and

better outcome in Mmp82/2 mice) in a model of cecal ligation

and puncture. The differences in the type and severity of injury

(with a survival rate in wildtype mice of 40% in our study, but 0%

in the peritonitis model), or the involvement of other mediators

such as IL-10 (which is increased in knockout mice [9]) may

explain these discrepancies. In human sepsis, MMP-8 correlates

with severity, mortality and organ failures [28,29]. Therefore,

targeting this enzyme could be an interesting therapeutic

approach. However, a deeper knowledge of the pro- and anti-

inflammatory effects of the enzyme is needed to make any firm

recommendation.

In conclusion, the results described here reinforce the central

role of MMP-8 in the regulation of neutrophil recruitment to the

lungs during sepsis, adding the myeloid-related proteins S100A8

and S100A9 as one of the involved mediators. This anti-

inflammatory role of MMP-8 must be considered before proposing

anti-MMP strategies in sepsis.
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