
1 
 

Constraints of applying strontium isotope stratigraphy in coastal and shallow marine 1 

carbonates: insights from Lower Cretaceous carbonates deposited in an active tectonic 2 

setting (N Iberian Basin, Spain). 3 

Benito, M. Isabela,b*, Suarez-Gonzalez, Pabloa, Quijada, I. Emmac, Campos-Soto, Soniaa, 4 

Rodríguez-Martínez, Martaa 5 

 6 

a Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de 7 

Madrid, 28040 Madrid, Spain.  8 

b Instituto de Geociencias IGEO (UCM-CSIC).  9 

c Departamento de Geología, Universidad de Oviedo. 33005 Oviedo, Spain 10 

*Corresponding author. Email: mibenito@ucm.es 11 

  12 



2 
 

Abstract 13 

The Lower Cretaceous Leza Fm is an essentially carbonate unit deposited at the 14 

northernmost active margin of the Cameros Basin (N Spain) under an extensional tectonic 15 

regime. This unit is composed of freshwater, marine-influenced, marginal-marine and 16 

hypersaline marine carbonate facies, interbedded with variable amounts of alluvial deposits, 17 

mainly derived from the erosion of the Jurassic substrate. 87Sr/86Sr, 18Oand 13C analyses 18 

were obtained from carbonate facies of the Eastern and Western sectors of the basin. 18O 19 

values follow the expected trend in both sectors: they are more negative (down to -7.9‰) in 20 

freshwater carbonates and more positive (up to +2.8‰) in marginal-marine to hypersaline 21 

facies. However, independently of the seawater or freshwater influence, in the Western Sector 22 

the 87Sr/86Sr values (0.707373-0.707801) are significantly lower and closer to the published 23 

Lower Cretaceous seawater 87Sr/86Sr ratios, than those of the Eastern Sector (0.707988-24 

0.709033), where the overall marine influence was relatively high and the alluvial input low. 25 

These data strongly suggest that 87Sr/86Sr ratios were mainly controlled by those of the riverine 26 

freshwater arriving to the coastal and marine areas after the weathering and erosion of the 27 

Jurassic carbonates or siliciclastic rocks, in the Western and Eastern sectors, respectively. 28 

Thus, data indicate that, in coastal and shallow marine carbonates the influence of the riverine 29 

water on the 87Sr/86Sr ratios should be systematically evaluated. This is particularly necessary in 30 

active tectonic settings, where the uplifted areas are significantly prone to weathering and 31 

erosion and where alluvial fan systems commonly developed, eventually discharging into 32 

coastal and shallow marine areas.     33 

 34 
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Resumen 38 

La Formación Leza es una unidad esencialmente carbonática del Cretácico Inferior 39 

depositada en el borde norte de la cuenca de Cameros (N de España) en un contexto tectónico 40 

extensional. Está formada por facies carbonáticas de agua dulce, con influencia marina, 41 

marinas marginales e hipersalinas, intercaladas con cantidades variables de depósitos 42 

aluviales, procedentes de la erosión del sustrato Jurásico de la cuenca. Se han obtenido datos 43 

de 87Sr/86Sr, 18O y 13C de las facies carbonáticas en las zonas Oriental y Occidental de la 44 

cuenca. Los valores de 18O siguen la tendencia esperable en ambas zonas: son más 45 

negativos (hasta-7.9‰) en los carbonatos de agua dulce y más positivos (hasta +2.8‰) en las 46 

facies marinas marginales e hipersalinas. Sin embargo, independientemente de la influencia 47 

marina o de agua dulce, los valores de 87Sr/86Sr de la zona Occidental (0.707373-0.707801) 48 

son significativamente inferiores y más próximos a los valores publicados para los carbonatos 49 

marinos del Cretácico Inferior, que los de la zona Oriental (0.707988-0.709033), donde la 50 

influencia marina fue, en general, relativamente mayor y el aporte aluvial menor. Estos 51 

resultados indican que las relaciones de 87Sr/86Sr estuvieron controladas principalmente por las 52 

del agua dulce fluvial que llegaba a la zonas costeras y marinas tras la meteorización y erosión 53 

del sustrato Jurásico de la cuenca, carbonático en el Sector Occidental y siliciclástico en el 54 

Oriental, y sugieren que, para la interpretación de las relaciones de 87Sr/86Sr en carbonatos 55 

costeros y marinos someros, sobre todo de aquéllos depositados en contextos tectónicamente 56 

activos, se debería evaluar sistemáticamente la influencia del agua dulce. 57 

 58 

Palabras clave: Cuenca de Cameros, humedales costeros, isótopos de carbono y oxígeno, 59 

interacción agua-roca 60 
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1. Introduction 62 

Strontium isotopes are commonly employed for dating and correlating marine 63 

carbonates and fossil shells based on the assumptions that the seawater 87Sr/86Sr ratios of the 64 

world´s oceans have changed through time, but they are, and have been, uniform for a given 65 

time (because its residence time is much greater than the time required for marine currents to 66 

mix waters) and that, in contrast to trace elements and C and O isotopes, there is no 67 

measurable fractionation of the Sr isotopes during precipitation of carbonates and fossil shells 68 

(Veizer and Compston 1974; Brass 1976; Burke et al. 1982; Banner 1995; Steuber and Veizer 69 

2002; McArthur et al. 2012). Accordingly, many curves reflecting the 87Sr/86Sr variation of 70 

seawater through time have been published since the 70´s, and they have been progressively 71 

more detailed and based on a larger number of samples for a given period of time (e.g. Veizer 72 

and Compston,1974; Brass 1976; Burke et al. 1982; DePaolo and Ingram 1985; Koepnick et al. 73 

1988; Jones et al. 1994; McArthur 1994; McArthur et al. 1994; 2001; 2007; 2012; Veizer et al. 74 

1997; 1999; Jenkyns et al. 2002; Prokoph et al. 2008; Roveri et al. 2014; Korte and Ullmann 75 

2016; Reghizzi et al. 2017; Wierzbowski et al. 2017). Based on those curves, the strontium 76 

isotope stratigraphy (SIS) has become a powerful tool, used for dating and correlating marine 77 

carbonate sequences (including deep to shallow and normal to restricted environments), as well 78 

as for estimating the duration of stratigraphic gaps, biozones or Stages, for constraining the age 79 

of condensed levels and as climatic indicator (e.g. DePaolo and Ingram 1985; Miller et al. 1988; 80 

Hess et al. 1989; McArthur et al. 1992; 1993, 2000; Brasier et al. 1996; Bralower et al. 1997; 81 

Barbieri et al. 1998; Weedon and Jenkyns 1999; Azmy et al. 1999; Scasso et al. 2001; Ebneth 82 

et al. 2001; Steuber 2001; Price and Grocke 2002; Nieto et al. 2008; Frijia and Parente 2008; 83 

Bodin et al. 2009; Lugli et al. 2010; Boix et al. 2011; Wehmiller et al. 2012; Williamson et al. 84 

2012, Steuber and Schlüter 2012; Bonilla-Rodríguez et al. 2014, Frijia et al. 2015; Bover-Arnal 85 

et al. 2016; Caus et al. 2016; Zuo et al. 2018; Frau et al. 2018; Fan et al. 2020, among many 86 

others).  87 

However, 87Sr/86Sr values of the riverine and lacustrine freshwater may vary significantly 88 

because they depend on the Sr isotopic values of the rocks that are being weathered and 89 

eroded and on their 87Rb content, commonly high in silicate rocks, which, after its decay to 87Sr, 90 

will significantly increase the 87Sr/86Sr ratio (Faure 1977; Stueber et al. 1984; Banner 1995). 91 
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Because of that, some authors have attempted to distinguish between marine and non-marine 92 

environments based on the Sr isotopes (Schmitz et al. 1991; Hofer et al. 2013; Gierlowski-93 

Kordesch and Cassle, 2015), and many other authors have studied and analysed the 94 

importance of fresh- and seawater mixing and its relevance on the 87Sr/86Sr values in coastal to 95 

shallow marine areas, close to the mainland (Müller et al. 1990; Müller and Mueller 1991; 96 

lngram and Sloan 1992; Andersson et al. 1992; Bryant et al. 1995; Banner 1995; Flecker et al. 97 

2002; Flecker and Ellam 2006; Lugli et al. 2010; Topper et al. 2011; Sessa et al. 2012; Topper 98 

and Meijer 2013; Roveri et al. 2014; Quijada et al. 2016a; Manzi et al. 2018; Meknassi et al., 99 

2018; Roveri et al. 2019; Madhavaraju et al. 2020). In this sense, it has been argued by some 100 

authors that the seawater 87Sr/86Sr ratio is rarely altered by freshwater inputs if salinities are 101 

maintained above 10 to 200/00 (Ingram and Sloan 1992; Bryant et al. 1995; McArthur et al. 102 

2012), although it has also been highlighted, even by the same authors, that small inputs of 103 

riverine waters may have significant effects on the 87Sr/86Sr values of carbonate rocks and 104 

shells, and that it would be wise to evaluate whether the local riverine inputs have altered the 105 

seawater signals (Bryant et al. 1995; Banner 1995; McArthur et al. 2012; Meknassi et al., 2018) 106 

when analysing Sr isotopic compositions in coastal and shallow marine carbonates and shells. 107 

In this study, we have attempted to evaluate this issue by analysing carbonates of the 108 

Leza Fm (Late Barremian-Early Aptian, Cameros Basin, N Spain), a coastal and essentially 109 

carbonate unit, deposited in the context of the Mesozoic Iberian Extensional System (Fig. 1). 110 

This unit is composed of freshwater, marine-influenced and marginal-marine carbonates, 111 

restricted marine carbonates and evaporites, and alluvial detrital deposits that mainly derive 112 

from the erosion of the uplifted Upper Jurassic substrate, which is essentially carbonate or 113 

essentially siliciclastic, depending of the sector of the basin (Durántez et al. 1982; Alonso and 114 

Mas 1990; Hernández-Samaniego et al. 1990; Ramirez Merino et al. 1990; Suarez-Gonzalez et 115 

al. 2013; 2015). Thus, the main aim of this work is to evaluate the influence of the riverine 116 

waters on the 87Sr/86Sr ratios of carbonates deposited in the different depositional environments 117 

(from freshwater to marine and hypersaline) of the Leza Fm, and to evaluate the significance of 118 

the 87Sr/86Sr ratios of the Jurassic substrate, weathered and eroded during deposition, in 119 

affecting the seawater 87Sr/86Sr ratios. 120 

2. Geological setting and stratigraphic framework 121 
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The Cameros Basin is the northernmost basin of the Mesozoic Iberian Extensional 122 

System (Fig. 1A-B). It was developed from the Tithonian to the Early Albian and records up to 123 

6,500 m of vertical thickness of sediments (Mas et al. 2011; Omodeo-Salé et al. 2014; 2015; 124 

Mas et al. in Martin-Chivelet et al. 2019). During the Eocene to Early Miocene, the Cameros 125 

Basin was tectonically inverted, leading to the development of the thrusts that now limit the 126 

Cameros structural unit to the north and south (Fig. 1B; Platt 1990; Casas-Sainz and Simón-127 

Gómez 1992; Salas and Casas, 1993; Mas et al. 1993; 2011; Guimerà et al. 1995; Salas et a., 128 

2011; Mas et al. in Martin-Chivelet et al., 2019). 129 

The sedimentary record of the Cameros Basin comprises eight depositional sequences 130 

(DS) (Mas et al. 2002; 2011; Arribas et al. 2003; Fig. 1C), and is characterised by the overall 131 

and progressive migration of the depocenters of the successive DS to the N, which results in an 132 

onlapping geometry observed between the successive units and the underlying Jurassic and, 133 

locally Upper Triassic, substrate (Fig. 2A; Guiraud 1983; Mas et al. 1993; Suarez-Gonzalez et 134 

al. 2013; 2016a; Omodeo-Salé et al. 2014; Mas et al. in Martin-Chivelet et al. 2019). In general, 135 

the sedimentary record of the Cameros Basin is gently folded, and it is apparently unaffected by 136 

relevant internal deformation (Guiraud 1983; Guiraud and Seguret 1985; Mas et al. 1993; 137 

Omodeo-Salé et al. 2015); however, to the N and NE margins of the basin, where this study has 138 

been carried out, it has been interpreted that syn-sedimentary normal faults controlled the 139 

generation of the accommodation space and the thickness of some DS (Guiraud, 1983; Gómez-140 

Fernández 1992; Quijada et al. 2013a; Suarez-Gonzalez et al. 2013; 2015; 2016a; Omodeo-141 

Salé et al. 2014). Specifically, in the studied N and NE Cameros Basin, Suarez-Gonzalez et al. 142 

(2016a) have interpreted that small fault-limited tectonic depressions were formed during the 143 

Late Barremian-Early Aptian due to the interaction of the general extensional direction (mainly 144 

N-S) with the late-Variscan structure of the basement. Additionally, the irregular distribution of 145 

the Triassic evaporites (Keuper Facies), and its association with the onlap geometry of DS 1–7 146 

onto the Jurassic substrate and even onto the Keuper Facies (Fig. 2A), led Suárez-González et 147 

al. (2016a) to interpret a probable role of salt-tectonics on the sedimentation at the northern part 148 

of the basin. 149 

The sedimentary infill of the basin includes continental and coastal siliciclastic, 150 

carbonate and evaporite deposits (Fig. 1C). In general, facies distribution along the basin shows 151 
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a proximal-distal trend: proximal continental and detrital facies are located to the W and SW; the 152 

distal facies, comprising coastal carbonates, mixed carbonate-siliciclastic or mixed carbonate-153 

evaporite deposits, are located to the E and NE of the basin (Mas et al. 1993; 2002; 2011; 2019; 154 

Arribas et al. 2003; Quijada et al. 2013a, 2013b; 2014; 2016b; 2020; Suarez-Gonzalez et al. 155 

2013; 2014; 2015; Sacristán-Horcajada et al. 2015; 2016).  156 

The syn-extensional record in the studied area, located at the northern and north-157 

eastern margin of the Cameros Basin (Figs. 1B; 2A), comprises deposits of the Urbión and 158 

Enciso Groups (DS7; Late Barremian-Early Aptian in age) and of the Oliván Group (DS8; Late 159 

Aptian-Early Albian in age) (Figs. 1B-C; 2A; Mas et al. 1993; 2002; 2011;; Suarez-Gonzalez et 160 

al 2013; 2015; 2016b; Mas et al., in Martin-Chivelet et al. 2019). The Urbión Group is 161 

represented in the studied area by deposits of the Jubera Fm (Figs. 1C; 2A-B), which is 162 

composed of reddish conglomerate, sandstone and siliciclastic mudstone (sensu Friedman et 163 

al., 1992) and is interpreted as deposited in alluvial fan systems (Alonso and Mas 1993; Mas et 164 

al. 2002; 2011; Ochoa 2006; Suárez-González et al. 2013). The Enciso Group overlies and 165 

passes laterally to the Urbión Group (Fig. 1C). In the studied area, the lower part of the Enciso 166 

Group is represented by the Leza Fm, which overlies and passes laterally to the Jubera Fm, 167 

and is the focus of this study (Figs. 1C; 2A-B). The Leza Fm is essentially composed of 168 

carbonates, with variable marine influence and content of detrital deposits, and is interpreted as 169 

deposited in a coastal-wetland system (Suarez-Gonzalez et al. 2013; 2015). The rest of the 170 

Enciso Group, which overlie and pass laterally to deposits of the Leza Fm (Figs. 1C; 2A-B), is 171 

composed of mixed carbonate-siliciclastic deposits interpreted as deposited in siliciclastic-172 

influenced lacustrine and palustrine systems (Mas et al. 1993; 2002; 2011). The Oliván Group is 173 

composed of reddish to greenish sandstone and siliciclastic mudstone deposited in fluvial and 174 

coastal systems (Mas et al. 2011; Mas et al., in Martin-Chivelet et al. 2019).  175 

A relevant feature of the Jubera and Leza Fms is that their deposits show significant 176 

variations in their thickness, as they were deposited in the above-mentioned small tectonic 177 

depressions formed during the Late Barremian – Early Aptian by faulting of the basin substrate 178 

(Fig. 2A-B; Alonso and Mas 1993; Suarez-Gonzalez et al. 2013; 2015; 2016a). The substrate of 179 

the Cameros Basin is mainly composed of Jurassic, and locally Upper Triassic, rocks (Fig. 2A, 180 

see below for details), which underlie syn-extensional deposits through an important 181 
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unconformity (Alonso and Mas 1993; Mas et al. 1993; 2002; 2011; Benito et al., 2001; 2005; 182 

Benito and Mas, 2002; 2006). Erosion of the faulted substrate led to deposition of alluvial fan 183 

sediments throughout the Jubera Fm; in the Leza Fm, alluvial fan deposits were restricted to the 184 

margins of the depressions, and they changed laterally to carbonate coastal wetland sediments  185 

(Fig. 3; Suarez-Gonzalez et al. 2013; 2015). This coastal wetland system was composed of a 186 

mosaic of diverse and interrelated environments with influence of both fresh- and sea-water, the 187 

latter coming both from the North, from the Boreal Realm, and the South, from the Tethys Sea 188 

(Fig. 3; Suarez-Gonzalez et al., 2013).  189 

Two main sectors are distinguished in the studied area, the Western and the Eastern 190 

(Figs. 2-3), which have important differences in the sedimentary features of both the Jurassic 191 

substrate and the syn-extensional Jubera and Leza Fms. 192 

In the Western Sector, the substrate of the Jubera-Leza Fms comprises Upper Triassic 193 

to Upper Jurassic rocks (Fig. 2A-B; Suarez-Gonzalez et al. 2013; 2015; 2016a). The Triassic is 194 

composed of the Keuper Facies, which includes evaporites (gypsum), reddish siliciclastic 195 

mudstone and minor dolostone (Fig. 2A; Suarez-Gonzalez 2015; Suárez-González et al., 196 

2016a). The Keuper facies are largely deformed, and their thickness varies significantly along 197 

the northern Cameros thrust (Fig. 2A). The Lower Jurassic is composed of approximately 150-198 

200 m-thick marine limestone and/or dolostone, which were deposited in shallow to very 199 

shallow carbonate platforms (Mensink 1966; Bulard 1972; Ramírez-Merino et al. 1990; 200 

Hernández-Samaniego et al. 1990). The Middle Jurassic comprises approximately 300 m-thick 201 

marine limestone, including a thick Bathonian sequence (up to 150 m thick) mainly composed of 202 

oolitic deposits with minor siliciclastics, which were deposited in a shallow carbonate platform 203 

(Benke 1981; Benke et al. 1981; Wilde 1990; Ramírez-Merino et al. 1990; Hernández-204 

Samaniego et al. 1990; García-Frank et al. 2008). The pre-extensional Upper Jurassic record 205 

(Oxfordian and Kimmeridgian) is composed of relatively thin shallow marine units (down to less 206 

than 50 m thick), which include abundant coral reef deposits of Kimmeridgian age and minor 207 

siliciclastic marine deposits (Benke et al. 1981; Alonso and Mas 1988; 1990; Errenst 1990; 208 

Benito and Mas 2006). The overlying syn-extensional sedimentary record of the Jubera and 209 

Leza Fms in the Western Sector, although highly variable, reaches up to approximately 500 m 210 

of thickness (Fig. 2B; Suarez-Gonzalez et al. 2013). In this sector, the detrital facies of both 211 
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units are mainly composed of carbonate clasts coming from the erosion of the different units of 212 

the Jurassic, mainly from the Bathonian to the Kimmeridgian units (Fig. 4A-B; Alonso and Mas 213 

1993; Ochoa 2006; Suarez-Gonzalez et al. 2013; 2015); moreover, in the Western Sector the 214 

overall detrital influence in the Leza Fm is higher than in the Eastern Sector (Suarez-Gonzalez 215 

et al., 2015; see bellow and details in Section 4). 216 

In the Eastern Sector, the substrate of the Jubera-Leza Fms is composed of Upper 217 

Jurassic rocks (Figs. 2A-B; Suarez-Gonzalez et al. 2013; 2015). The Upper Triassic Keuper 218 

Facies (which include very scarce and local outcrops of volcanic to subvolcanic rocks, less than 219 

0.01 Km2) and the Lower and Middle Jurassic carbonate rocks are also observed in this sector, 220 

but they do not directly underlie the syn-extensional sedimentary record (Fig. 2A; Suarez-221 

Gonzalez et al., 2016a) and, thus, they probably they did not crop out during sedimentation of 222 

the Jubera and Leza Fms. In the Eastern Sector, deposits from the Upper Triassic to the 223 

Bathonian are equivalent to those observed in the Western Sector (Mensink 1966; Bulard 1972; 224 

Durántez et al. 1982; Hernández-Samaniego et al. 1990). However, and in contrast to what is 225 

observed in the Western Sector, in the Eastern Sector the Callovian to Kimmeridgian 226 

sedimentary record is mainly composed of marine sandy limestone, sandstone and quartzite 227 

conglomerates, which reach up to around 150 m (Benke 1981; Benke et al. 1981; Durántez et 228 

al. 1982; Alonso and Mas 1988; 1990; Wilde 1990; Hernández-Samaniego et al. 1990; García-229 

Frank et al. 2008). The syn-extensional sedimentary record of the Jubera and Leza Fms in the 230 

Eastern Sector, although also variable, is overall thinner (up to 300 m) than in the Western 231 

Sector (Fig. 2B; Alonso and Mas 1993; Suarez-Gonzalez at al. 2013; 2015); moreover in the 232 

Eastern Sector, detrital deposits of both the Jubera and Leza Fms came from the erosion of the 233 

Callovian and the Upper Jurassic units, which are mainly composed of quartzite conglomerate 234 

and sandstone, with minor detrital carbonate fraction (Fig. 4C-D; Suarez-Gonzalez et al. 2015). 235 

Additionally, the overall detrital content of the Leza Fm deposits is lower in the Eastern Sector 236 

than in the Western Sector (see details in Section 4). 237 

3. Materials and methods 238 

Two selected stratigraphic sections of the Leza Fm, one from the Eastern Sector of the 239 

northern Cameros Basin (Préjano section), and another one from the Western Sector (the Leza 240 

River section) have been used for this study (Figs. 2, 5). A total of 341 rock samples from the 241 
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Leza Fm (214 limestone or marly limestone, 49 dolostone, 57 sandstone or sandy limestone, 21 242 

conglomerate) were collected for laboratory studies (see Suarez-Gonzalez, 2015 for details 243 

regarding the facies and samples). For each sample, a polished and uncovered thin section was 244 

prepared to 30 µm thickness for petrographic analysis utilizing standard petrographic 245 

techniques and cathodoluminescence petrography. For 75 samples, a polished 150-200 µm 246 

thick section, matching the 30 µm thin section, was prepared for isotopic analyses. 247 

Cathodoluminescence (CL) examination was carried out using a Technosyn cold 248 

cathodoluminescence unit operating at 20-25 kV with 300-400 µA beam current. Following 249 

examination with CL, thin sections were stained with Alizarin Red S and potassium ferricyanide 250 

(Dickson, 1966) for identification of carbonate minerals.  251 

 After petrographic examination and staining, well-preserved micritic or dolomicritic 252 

samples (samples displaying mudstone to wackestone texture sensu Dunham, 1962), lacking 253 

detrital input and petrographic evidence of diagenetic alteration, were selected for isotope 254 

analyses and microsampled directly from thick sections using a microscope-mounted drilling 255 

system, using 0.3 mm in diameter dental burs. When possible, approximately 20 mg of 256 

powdered samples were obtained, from which 100-150 µg were used for C and O isotopic 257 

analyses, and the rest for 87Sr/86Sr determinations. 258 

62 analyses for 13C and 18O determinations were performed in the Stable Isotope 259 

Laboratory at the University of Michigan. Sample powders reacted at 73 C during 6 and 12 260 

minutes (for calcite and dolomite, respectively) in an automated carbonate reaction system 261 

(CarboKiel-IV) coupled directly to the inlet of a Thermo MAT 253 gas ratio mass spectrometer. 262 

Isotopic ratios were corrected for 17O contribution and are reported in per mil notation relative to 263 

the VPDB standard. Values were calibrated utilizing NBS 19 as the primary standard, and 264 

analytical precision was monitored by daily analysis of NBS powdered carbonate standards. 265 

Precision was better than 0.1 ‰ for both 13C and 18O measurements. 266 

 58 87Sr/86Sr ratios were determined on an automated multicollector TIMS-Phoenix® 267 

mass spectrometer at the Geochronology and Isotope Geochemistry Centre of the 268 

Complutense University of Madrid. Carbonate powder was dissolved in 5 ml of 0.5M acetic acid. 269 

Once dried, 1 ml of 3M HNO3 (Merk-SuparapurTM) was added to the sample and dried again. 270 
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3ml of 3M HNO3 (Merk-SuparapurTM) were then added to the samples, which were 271 

subsequently centrifuged at 4000 r.p.m. during 10 minutes, in order to eliminate the solid 272 

residue (clay minerals, quartz, etc). For the Sr chromatographic separation, an extraction resin 273 

SrResinTM (Trisken International) was employed. The Sr was recovered with 0.05M HNO3 as 274 

eluent. The fraction in which Sr was concentrated was recovered and dried for analysing in the 275 

mass spectrometer. Sr analyses have been corrected for possible interference of 87Rb and they 276 

have been normalized to the value 88Sr/86Sr=0.1194. Analytical precision was monitored by 277 

analysis of the NBS 987 standard (the mean value obtained for 7 samples were 0.710247; 2= 278 

0.000008). Analytical uncertainties (referred to 2) were 0.01% for 87Sr/86Sr ratios. Blanks of Sr 279 

preparations were lower than 0.05 ng/ml. The standard error for each sample was equal to or 280 

lower than 3. 281 

4. Results: The sedimentary record and isotopes of the Leza Fm.  282 

The Leza Fm is a predominantly carbonate coastal unit, which has variable content of 283 

detrital sediment and also shows a general trend of upwards increase in marine influence in 284 

both the Eastern and Western sectors (Fig. 5; see detailed facies descriptions and 285 

interpretations in Suarez-Gonzalez et al. 2013; 2014; 2015; 2016b; 2019). According to these 286 

authors, tectonic activity caused significant variations in subsidence and thickness the unit 287 

(which ranges from 20 m to 280 m) and in the lateral distribution of its facies, which include a 288 

wide variety of interrelated deposits (Fig. 3), grouped into five facies associations (FA, Figs. 5-289 

6):  290 

The alluvial fan FA is characterised by conglomerates and sandstones. As pointed out 291 

above (Section 2), in both the Eastern and the Western sectors, the main components of these 292 

facies are lithoclasts of the Middle and Upper Jurassic (Bathonian to Kimmeridgian) rocks of the 293 

basin substrate, which are mainly marine sandstone and quartzite conglomerates with minor 294 

limestone in the Eastern Sector, and marine limestone in the Western Sector (Fig. 4). Deposits 295 

of the alluvial fan FA are interbedded with freshwater to shallow marine carbonate deposits and, 296 

in the Eastern Sector, also with hypersaline marine dolostone, which are described below (Figs. 297 

5-6).  298 
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The freshwater and the marine-influenced limestone FAs are both characterised by 299 

black and fetid limestones and, less commonly, by marls, which are widespread in both sectors 300 

(Figs. 5; 6A-D). Abundant biota is observed in both FAs, including charophytes (in the 301 

freshwater FA; Fig. 6A-B), dasycladales (in the marine-influenced FA; Fig. 6C-D), ostracods, 302 

gastropods and vertebrate remains. Microbialites (oncoids, skeletal stromatolites and 303 

thrombolites) are also observed (Suarez-Gonzalez et al., 2019). Both freshwater and marine-304 

influenced limestone FAs are generally arranged in thickening-upwards sequences up to 4 m 305 

thick, with abundant desiccation and edaphic features at their top (Figs. 5, 6A, C), and are 306 

interpreted as deposited in shallow water-bodies with diverse salinities, from fresh to near-307 

marine, which underwent periods of desiccation and inundation, and were surrounded by 308 

vegetated areas (Suarez-Gonzalez et al. 2015). Thus, both FAs are sedimentologically 309 

equivalent, differing only in the influence of seawater and their palaeontological content. 310 

Lithoclasts of Jurassic rocks may occur within these limestone beds, indicating lateral 311 

association with the alluvial fan palaeoenvironments and suggesting that the source of 312 

freshwater to the water bodies was related to the weathering and erosion of the Jurassic 313 

substrate of the basin (Suarez-Gonzalez et al. 2013; 2015).  314 

Regarding isotopic compositions, freshwater limestone yields 18O values of -7.9 to -315 

5.8‰ in the Eastern Sector and of -6.5  to -4.3 ‰ in the Western Sector; 13C values range 316 

between -5.2 and -0.4‰ in the Eastern Sector and between -8.0 and -2.6‰ in the Western 317 

Sector; 87Sr/86Sr ratios ranges between 0.708785 and 0.707988 in the Eastern Sector and 318 

between 0.707373 and 0.707719 in the Western Sector (Figs. 5, 7; Table 1 of Supplementary 319 

material). 320 

Marine-influenced limestone yields 18O values of-5.4 to -5.6‰ in the Eastern Sector 321 

and of -2.1 to -4.8‰ in the Western Sector; 13C values range between -1.7 and -5.9‰ in the 322 

Eastern Sector and between -3.5 and –4.9‰ in the Western Sector; 87Sr/86Sr ratios in the 323 

Western Sector range between 0.707597 and 0.707801 (Figs. 5, 7; Table 1 of Supplementary 324 

material). It was not possible to obtain enough micritic carbonate powder for performing Sr 325 

isotopes in thick sections of this FA in the Eastern Sector, because of the abundance of calcite 326 

cement filling intra- and interparticle primary porosity, which could have altered the Sr isotopic 327 

values of depositional (micritic) carbonate. 328 
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The marginal-marine carbonate FA (Fig. 6E-F) is characterised by grey limestone or 329 

dolostone, which are slightly different in the Eastern and in the Western sectors. In the Eastern 330 

Sector, these deposits are characterised by alternation of oolitic and micritic dolostone 331 

containing abundant ostracods, miliolid foraminifers and agglutinated stromatolites (Suarez-332 

Gonzalez et al., 2014; 2016b; 2019), which displays flaser, wavy and lenticular bedding and 333 

subaerial exposure features. In the Western Sector, this FA consists of grey limestone, either 334 

bioclastic (containing ostracods, miliolid foraminifers and gastropods) or micritic, displaying 335 

commonly fenestral porosity and desiccation features. Facies in both sectors are interpreted as 336 

deposited in shallow marginal-marine areas affected by tides. This FA was dominated by 337 

seawater, with salinities mostly higher than in the marine-influenced FA, but still probably 338 

variable, temporarily decreasing due to freshwater influence (mainly in the Western Sector) or 339 

increasing, due to evaporation (in the Eastern Sector, see next FA), which in turn, favored early 340 

dolomite precipitation (Suarez-Gonzalez et al. 2014; 2015; 2016b; 2019), as observed in recent 341 

coastal carbonate settings where syn-depositional dolomite commonly precipitates (e.g. Tucker 342 

and Wright, 1990; Warren, 2016 and references therein).  343 

In the Eastern Sector, marginal-marine dolostone of this FA yields 18O values of -1.3 to 344 

+0.6‰, 13C values of -6.7 to -1.8‰ and 87Sr/86Sr ratios of 0.708302 to 0.708978. In the 345 

Western Sector, marginal-marine limestone of this FA yields 18O values of -4.0 to -1.1‰, 13C 346 

values of -4.8 to -1.7‰ and 87Sr/86Sr ratios of 0.707679 to 0.707761 (Figs. 5, 7; Table 1 of 347 

Supplementary material).  348 

The hypersaline dolomite-evaporite FA (Fig. 6 G-H) is only observed in the Eastern 349 

Sector, where it is laterally associated with deposits of the marginal-marine FA (Figs. 3; 5). This 350 

FA is characterised by laminated dolomicritic deposits, containing rare ostracods and 351 

foraminifers, abundant pseudomorphs after gypsum and anhydrite, desiccation features and, 352 

locally, micritic-evaporitic stromatolites. The dolomite-evaporite FA is interpreted as deposited in 353 

very shallow and restricted hypersaline marine areas, which reached high salinity through 354 

evaporation (Suarez-Gonzalez et al. 2013; 2015; 2019). 355 

Dolostone of this FA yields 18O values of -1.0 to +2.8‰, 13C values of -8.2 to -1.3‰ 356 

and 87Sr/86Sr ratios of 0.708304 to 0.709033 (Figs. 5, 7; Table 1 of Supplementary material). 357 
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5. Discussion: Constraints of applying strontium isotope stratigraphy in coastal and 358 

shallow marine carbonates  359 

Isotopic data obtained from carbonates of the different FA of the Leza Fm in both 360 

studied sectors are apparently contradictory. As discussed below, the 18O values reflect the 361 

sedimentary palaeoenvironment and the nature of the waters from which they precipitated, 362 

however, the 87Sr/86Sr values reflect the strong influence of the riverine waters, which may have 363 

had a wide range of Sr isotope compositions, depending on the nature of rocks that were being 364 

weathered and eroded during deposition. 365 

18O values obtained from carbonates of the different FA, in both the Eastern and the 366 

Western sectors, are consistent with carbonate precipitation from fresh- to marine and even 367 

hypersaline waters. Freshwater limestone in both sectors shows the lowest 18O values. 18O 368 

values progressively increase in marine-influenced limestone, in marginal-marine limestone (in 369 

the Western Sector) and dolostone (in the Eastern Sector) and in hypersaline dolostone (Figs. 370 

5, 7A-B). According to Prokoph et al. (2008), the oxygen isotopic composition of the Upper 371 

Barremian-Lower Aptian marine limestone and calcitic fossils deposited in low latitude (as that 372 

of the Iberian Plate for that time, e.g. Masse et al. 2000) ranged approximately between --2.8 373 

and -0.4‰ (Figs. 5, 7A-B). In the case of the Leza Fm, 18O values of marginal-marine 374 

limestone of the Western Sector range between -4.0 and -1.1‰, which are close to or in the 375 

range of the published marine values by Prokoph et al. (2008) (Figs. 5, 7A-B). In the Eastern 376 

Sector, 18O values of marginal-marine dolostone range between -1.3 to +0.6‰, being heavier 377 

than those of the marginal-marine limestone of the Western Sector, but also mostly in the range 378 

of the published marine values (Fig. 7A-B). The heavier 18O values in dolostone (the mean 379 

18O value of marginal marine dolostone is -0.31‰ whereas the mean 18O value of marginal 380 

marine limestone is -2.95‰; Table 1 of supplementary material) are consistent with the 381 

difference between the water-calcite and the water-dolomite fractionation factors for a given 382 

temperature, which results in dolomite 18O values of ~ 3‰ heavier than those of the calcite 383 

precipitating from the same water and at the same temperature (Fritz and Smith 1970; 384 

Friedmann and O’Neil 1977; McKenzie 1981; Tucker and Wright 1990; Arenas et al., 1997). 385 

Freshwater limestone, as expected, shows more negative 18O values, which are in the range of 386 
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carbonates precipitated from meteoric freshwater at low latitudes (e.g. Hudson 1977; Allan and 387 

Matthews 1982; Lohmann 1987; James and Choquette 1990; Tucker and Wright 1990). Marine-388 

influenced limestone has 18O values ranging between the marine and freshwater limestones, 389 

which would be derived from the mixing of sea- and freshwater at different proportions (e.g. 390 

Frank and Lohmann 1995). Dolostone of hypersaline facies has the heaviest 18O values, 391 

ranging from -1.0 to +2.8‰. These values are in the range of the 18O values obtained from 392 

dolomites precipitated in Cenozoic and recent coastal sabkhas undergoing intense evaporation 393 

(e.g. Tucker and Wright 1990; Arenas et al., 1997; Warren 2016, and references therein).  394 

Regarding the C isotopic compositions, Prokoph et al. (2008) estimated 13C values 395 

ranging approximately between +0.8 and +3.4‰ for marine limestone and calcitic fossils 396 

deposited in low latitude during the Late Barremian-Early Aptian. 13C values of all analysed 397 

carbonates of the Leza Fm, however, are largely variable and more negative than those 398 

published for marine carbonates (Fig. 7A). This shift to lighter values would have been caused 399 

by the incorporation of 12C into calcite and dolomite, which could have derived from the 400 

oxidation of organic matter, commonly soil-derived (Allan and Matthews 1977; 1982; Lohmann 401 

1987; Tucker and Wright 1990; Leng and Marshall, 2004), and/or from bacterial sulphate 402 

reduction, as observed in some modern coastal sabkhas (Tucker and Wright 1990; Warren 403 

2016 and references therein). In fact, the combination of relatively invariant 18O values with 404 

highly variable and negative 13C values is a common trend in meteoric or in transitional marine-405 

to-meteoric systems (Lohmann, 1987; James and Choquette, 1990). 406 

87Sr/86Sr ratios, as pointed out in the introduction, are commonly employed for dating 407 

and correlating marine carbonates (strontium isotope stratigraphy, SIS; McArthur, 1994; Veizer 408 

et al. 1997, 1999; Prokoph et al., 2008; McArthur et al., 2012, among many others) and, 409 

according to published data (Jones et al., 1994; McArthur et al., 2001; 2012; Prokoph et al., 410 

2008), the 87Sr/86Sr values of Upper Barremian-Lower Aptian marine carbonates approximately 411 

range between 0.7073 and 0.7075 (Figs. 5, 7C). However, and in contrast to what occurs with 412 

the O isotopic compositions, 87Sr/86Sr data of the Leza Fm carbonates do not show the 413 

expected trend according to their different depositional palaeoenvironments in none of the 414 

studied sectors; moreover, the 87Sr/86Sr ratios obtained in the Eastern and Western sectors are 415 
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significantly different (Figs. 5, 7C). In the Eastern Sector, the 87Sr/86Sr ratios are higher (more 416 

radiogenic) than those expected for Upper Barremian-Lower Aptian marine carbonates. 417 

Additionally, it is also significative that all the analysed carbonates, regardless of their fresh-, 418 

marine- or hypersaline-water origin, show similar range of  87Sr/86Sr values in each sector (more 419 

radiogenic in the Eastern Sector and less radiogenic in the Western Sector), despite 18O 420 

values being different according to their depositional palaeoenvironments (Fig. 7B-C). It could 421 

be argued that the Sr isotopic compositions, which are similar in all the carbonates of each 422 

sector, but different in the Eastern and in the Western sectors (Figs. 5, 7C), could be derived 423 

from diagenetic alteration. However, powder samples were carefully obtained from the areas of 424 

thick sections of samples with no evidences of diagenetic alteration; furthermore, it is important 425 

to note that, if the Sr isotopic ratios would have been altered by diagenetic fluids, changes in the 426 

oxygen isotopic compositions would be also expected, because the 18O of carbonates depends 427 

on the 18O of the waters from which they precipitate (a diagenetic fluid, if alteration had 428 

occurred) and on temperature (e.g. Fritz and Smith 1970; Friedmann and O’Neil 1977; Banner 429 

1995). However, the 18O values are in accordance with the different palaeoenvironmental 430 

conditions where carbonates of the different FAs were formed, thus indicating the absence of 431 

significant diagenetic modification of the original isotopic signature.  432 

Therefore, it is interpreted that the Sr isotopic values of carbonates of the Leza Fm are 433 

largely derived from 87Sr/86Sr compositions of the riverine freshwaters that discharged into the 434 

coastal and shallow marine areas after weathering and eroding the faulted and exposed marine 435 

Jurassic rocks of the substrate. In the Eastern Sector, the eroded Middle to Upper Jurassic 436 

substrate, is mainly siliciclastic (e.g. Durántez et al. 1982; Hernández-Samaniego et al., 1990; 437 

see Section 4 for detail). In this regard, riverine waters may have a wide range of 87Sr/86Sr 438 

values, but if they have weathered and eroded Rb-rich silicate rocks (such as granite, gneiss 439 

and siliciclastic sedimentary rocks), their 87Sr/86Sr values are commonly higher than those 440 

estimated for the Phanerozoic seawater (Faure 1977; Stueber et al. 1984; 1987; Banner 1995). 441 

In that case, even small inputs of riverine waters into the sea may have significant effects on the 442 

87Sr/86Sr values of the resulting mixed water, which may increase significantly (Banner 1995, 443 

Bryant et al. 1995; McArthur et al., 2012; Meknassi et al., 2018). Thus, in the Eastern Sector, 444 

where essentially siliciclastic Jurassic rocks were being weathered and eroded, the more 445 
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radiogenic 87Sr/86Sr values of the riverine freshwater would have significantly contributed to 446 

increase the marine 87Sr/86Sr values of carbonates of the Leza Fm, while the oxygen isotopic 447 

compositions reflect their formation in the different freshwater to marine and hypersaline 448 

depositional palaeoenvironments (Fig. 7B-C). 449 

In the Western Sector, however, the 87Sr/86Sr values of freshwater to marginal-marine 450 

limestone are lower and closer to the published data of the Upper Barremian-Lower Aptian 451 

marine carbonates than those of the Eastern Sector, even though the overall marine influence 452 

in the Western Sector was lower than in the Eastern Sector (Figs. 5, 7C). In fact, in the Western 453 

Sector, the freshwater limestone shows 87Sr/86Sr values closer to the Upper Barremian-Lower 454 

Aptian marine Sr isotopic values than those of the marginal-marine limestone, although the 18O 455 

values record the expected trend, consistent with their depositional environment (more negative 456 

in freshwater than in marginal marine carbonates) (Figs. 5, 7B-C, see above). These 457 

contradictory data may be explained if the following facts are considered: 1) in the Western 458 

Sector, the substrate that was being eroded was  mainly composed of Lower to Upper Jurassic 459 

carbonates (e.g. Ramírez-Merino et al. 1990; Hernández-Samaniego et al. 1990; see section 4); 460 

2) the 87Sr/86Sr ratios of the Jurassic marine carbonates range between ~ 0.7068 and ~0.7077 461 

(Jones et al. 1994; MacArthur 2001; Prokoph et al. 2008; MacArthur et al. 2012); 3) the range of 462 

the Jurassic Sr isotopic values, in turn, includes the range of 87Sr/86Sr values from the Late 463 

Barremian to Early Aptian (Figs. 5, 7C). In this sense, and similarly to what occurs when 464 

weathering Rb-rich silicate rocks, previous authors have interpreted that meteoric waters and 465 

brines that interact with marine carbonates may inherit Sr isotope compositions that are 466 

diagnostic of the age of the carbonates (e.g. Müller et al.1990; Müller and Mueller 1991; Banner 467 

et al. 1994; Banner 1995). Thus, in the Western Sector, the riverine freshwater would have had 468 

less radiogenic 87Sr/86Sr values compared to those in the Eastern Sector, because Jurassic 469 

carbonates were being weathered and eroded, in contrast to the Eastern Sector, where the 470 

Jurassic substrate was mainly siliciclastic. Thus, in the Western Sector, when riverine and 471 

seawater mixed, both with similar Sr isotopic compositions, the resulting water would have 472 

similar Sr isotope ratio than that of both end members, leading to freshwater and marine 473 

carbonates having similar Sr isotopic ratios, but different 18O values, depending on their 474 
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depositional environment, and even leading to freshwater carbonates showing 87Sr/86Sr values 475 

within the range of the Late Barremian-Early Aptian values (Figs. 5, 7B-C).  476 

In this regard, Bryant et al. (1995) made a two-component mixing model to calculate the 477 

87Sr/86Sr of waters of different salinities and tested it with analyses performed in molluscs from 478 

estuaries of the Mississippi Sound and coastal Florida. On the one hand, these authors found 479 

out that both, their model results and analyses, suggested that even in the most marginal-480 

marine systems the freshwater flux did not have a measurable influence until the salinity was 481 

very low (10 ppt or less), and these findings have been used for interpreting that “when rivers 482 

locally lower the salinity of seawater, marine 87Sr/86Sr is rarely altered at salinities above 20 psu” 483 

(McArthur et al. 2012; note that psu is equivalent to g/kg or 0/00). Nevertheless, Bryant et al. 484 

(1995) also pointed out that carbonates precipitating in estuarine settings not always record the 485 

global marine 87Sr/86Sr value because, once the marine signature is affected by freshwater 486 

input, 87Sr/86Sr seawater values change rapidly, leading McArthur et al. (2012) to highlight that 487 

“when dating coastal and shallow water faunas, it is wise to establish that the local riverine 488 

inputs did not alter the 87Sr/86Sr of seawater in the depositional environment.”. More recently, 489 

Meknassi et al. (2018) have analysed 87Sr/86Sr values from modern marine carbonate skeletons 490 

(bivalves, gastropods, cephalopods, chitons, and calcifying algae) collected in coastal settings 491 

worldwide and have found out that epibenthic and eurytopic organisms, such as bivalves and 492 

gastropods, from coastal domains with water mass restriction, low salinity or strong continental 493 

supplies, may display slight to considerable offsets compared to the 87Sr/86Sr values of modern 494 

seawater. Based on their data, these authors calculated that “only 10%, 33%, and 52% of the 495 

published Phanerozoic 87Sr/86Sr curve can provide time calibration with respective accuracies of 496 

±1, ±2 and ±3 m.y., hence obscuring most dating at the scale of the shorter Phanerozoic 497 

stages”. 498 

In the Leza Fm, our data strongly support that the 87Sr/86Sr ratios of all carbonates 499 

(freshwater, marine-influenced, marginal-marine, and hypersaline) were, not only affected, but 500 

mainly controlled by the Sr ratios of the riverine freshwater, which discharged into the coastal 501 

and marine areas after weathering and eroding the carbonate or siliciclastic Jurassic substrate 502 

of the basin. Interestingly, this strong influence of freshwater Sr isotopic values is observed 503 

even without petrographic evidence of detrital input in the analysed carbonate samples, and 504 
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even though the 18O values of carbonates are coherent with their formation from fresh- to 505 

marine and hypersaline waters. Nevertheless, it is important to highlight that it has been 506 

possible to make this interpretation because the Jurassic substrate of both studied sectors is 507 

different; if the Jurassic substrate were carbonate and similar in both sectors, as occurs in many 508 

areas of the Iberian Basin (Gómez, et al. 2004; 2019), it would not have been possible to 509 

accurately evaluate the influence of the riverine water in the 87Sr/86Sr of carbonates, considering 510 

that the 87Sr/86Sr of Barremian-Aptian marine carbonates, as well as most of those of the 511 

Cretaceous, are in the range of the Jurassic 87Sr/86Sr marine values, being even identical for 512 

some periods of time (Jones et al. 1994; McArthur 2001; Prokoph et al. 2008; MacArthur et al. 513 

2012). Thus, our data indicate that caution should be taken when interpreting Sr isotopic data 514 

for performing SIS studies obtained from fossil shells and/or carbonates (even those well-515 

preserved and/or without direct evidence of detrital input) deposited in coastal and shallow 516 

marine sedimentary environments. This is particularly important for coastal and shallow-marine 517 

carbonates deposited in active tectonic settings. In these settings, the uplifted areas are 518 

significantly prone to weathering and erosion, leading to the common development of alluvial 519 

fan systems that eventually discharge into coastal and shallow marine settings, as occurred in 520 

the Iberian Basin during the Late Jurassic-Early Cretaceous extensional phase.  521 

6. Conclusions 522 

The Lower Cretaceous Leza Fm (Cameros Basin, N Spain) is an essentially carbonate 523 

unit, which was deposited in the context of the Mesozoic Iberian Extensional System, and 524 

whose deposition and thickness were strongly controlled by faulting of the basin substrate 525 

(mainly composed of Jurassic rocks). A coastal wetland system that included carbonates 526 

deposited in freshwater, marine-influenced, marginal-marine and hypersaline water bodies, 527 

formed at that time in the studied area. This system was laterally related with alluvial fans, 528 

whose deposits (conglomerate, sandstone, sandy limestone and marl), sourced in the faulted 529 

and exposed basin substrate, are interbedded with carbonates.  530 

Two sectors have been differentiated, Eastern and Western, based on the sedimentary 531 

features of the Leza Fm deposits and those of the Jurassic substrate, which are slightly 532 

different. In the Eastern Sector, the marine influence is higher with the detrital inputs being 533 

lesser than in the Western Sector; additionally, the Middle and Upper Jurassic rocks of the 534 
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substrate are essentially siliciclastic in the Eastern Sector but essentially carbonate in the 535 

Western Sector.  536 

The 18O values in both sectors follow the expected trend, in accordance with the 537 

different depositional palaeoenvironments: more negative values (down to -7.8‰) are recorded 538 

in freshwater carbonates and more positive values (up to +2.8‰) in marine to hypersaline 539 

marine facies. However, and independently of the marine or freshwater influence, the 87Sr/86Sr 540 

ratios of the carbonates in the Western Sector (0.707373-0.707801) are significantly lower and 541 

closer to the published Lower Cretaceous marine 87Sr/86Sr ratios, than those obtained in the 542 

Eastern Sector (0.707988-0.709033) although, in this sector, the overall marine influence was 543 

higher and the detrital alluvial input lower.  544 

These data strongly support that the 87Sr/86Sr ratios of all carbonates studied herein 545 

(freshwater, marine-influenced, marginal-marine, and hypersaline) were strongly controlled by 546 

the Sr ratios of the riverine freshwater, which arrived to the coastal and marine areas after 547 

weathering and eroding the carbonate or siliciclastic rocks of the Jurassic substrate of the basin 548 

that was faulted and exposed, even if there is no petrographic evidence of detrital influence, and 549 

even if the 18O values of carbonates are coherent with their formation in fresh- to marine and 550 

hypersaline waters.  551 

Thus, our data indicate that caution should be taken when interpreting Sr isotopic data 552 

for performing SIS studies obtained from fossil shells and/or carbonates (even those well-553 

preserved) deposited in coastal and shallow marine sedimentary environments, particularly in 554 

active tectonic settings, such as those occurring in the Iberian Basin during the Late Jurassic 555 

and Early Cretaceous extensional system. 556 
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Figure captions 1008 

Fig. 1. Geological setting of the studied area. A. Map of the Iberian Peninsula, showing the pre-1009 

Mesozoic Variscan Massif and the Mesozoic Iberian Extensional System (MIES). Red square 1010 

marks the location of the Cameros Basin. B. Geological map of the Cameros Basin showing the 1011 

location of the studied area. Red square marks the location of Figs. 2A and 3. C. Chrono- and 1012 

lithostratigraphic chart of the eight depositional sequences (DS) of the Cameros Basin 1013 

sedimentary infill, modified after Mas et al. (2011). The Leza Fm (highlighted in red) is part of 1014 

DS7, Late Barremian – Early Aptian in age.  1015 

Fig. 2. A. Detailed geological map of the northernmost margin of the Cameros Basin (modified 1016 

from Suarez-Gonzalez et al. 2015). Note the tectonic control and individualization of outcrops of 1017 

the Jubera and Leza Fms, deposited mostly on top of the Bathonian to Kimmeridgian marine 1018 

Jurassic substrate of the basin and, locally, over the pre-Bathonian marine Jurassic or over the 1019 

Triassic Keuper facies. Note that the Jubera plus Leza Fms lithotopes are limited by faults, and 1020 

that the colour code of this map is equivalent to that of the stratigraphic chart of Fig. 1C. B. 1021 

Correlation panel of the stratigraphic sections showing the thickness of the Jubera and Leza 1022 

Fms (the stratigraphic sections analysed in this study, the Leza River section (LZ), in the 1023 

Western Sector, and the Préjano section (PR), in the Eastern Sector, are highlighted with red 1024 

asterisks). On top, to the right, there is a simplified map showing the location of each section 1025 

and the correlation line (in blue). The top of the Leza Fm has been used as datum for 1026 

correlation. The thickness of the Jubera Fm has been obtained from Ochoa (2006), Hernández-1027 

Samaniego et al. (1990) and our own measurements. Note the tectonic control of the Jubera 1028 

and Leza Fms and the lateral facies change between the Jubera and Leza Fms. Modified from 1029 

Suarez-Gonzalez et al. 2013. 1030 

Fig. 3. A. Palaeogeographic map of NE Iberian Peninsula during deposition of the Leza Fm. 1031 

(modified from Suarez-Gonzalez et al. 2013) B. Detailed palaeogeographical scheme showing a 1032 

general interpretation of the spatial distribution of depositional environments in NE Cameros 1033 

Basin during sedimentation of the Leza Fm coastal wetlands and the complex array of 1034 

sedimentary environments that characterizes these multifaceted depositional systems (see 1035 

location in A; modified from Suarez-Gonzalez et al., 2015). The map covers approximately the 1036 

same area as the map in Fig. 2A (see names of the main towns in both maps). White areas 1037 



39 
 

represent zones with no outcrops of Lower Cretaceous rocks. These areas may have been 1038 

those where the Jurassic substrate of the Cameros Basin cropped out during sedimentation, 1039 

being the source of the Leza Fm alluvial sediments.  1040 

Fig. 4. A. Field photograph showing conglomerates of the Leza Fm at the Western Sector, 1041 

where they are mainly composed of fragments of Jurassic carbonates. B. Transmitted light 1042 

photomicrograph showing in detail the detrital facies of the Leza Fm at the Western Sector. 1043 

Note that many clasts are composed of oolitic limestone (JL) and reworked single ooids (JO) 1044 

and echinoderms fragments (blue arrow), which are identical to those of the Upper Jurassic 1045 

limestone deposited in the studied area, and other carbonate extraclasts (red arrows) of 1046 

unknown origin. Quartz grains (Q), are also present in variable amounts. C-D. Field 1047 

photographs of the detrital alluvial sediments of the Leza Fm at the Eastern Sector. C. Very 1048 

poorly sorted conglomerate made up of large marine sandstone clasts (yellow arrows), quartzite 1049 

pebbles (white), and sandy matrix. Coin is 2.3 cm in diameter. D. Poorly-sorted conglomerate 1050 

made up mainly of quartzite pebbles (white) in a carbonate matrix.  1051 

Fig. 5. Detailed stratigraphic sections used for isotopic analyses: the Leza River section, in the 1052 

Western Sector, and the Préjano section, in the Eastern Sector (see Fig. 2 for location). In each 1053 

section the 18O (pink) and the 87/Sr/86Sr (black) are shown. The range of published 18O and 1054 

87Sr/86Sr values for the Barremian-Aptian marine carbonates and, in the case of the Sr isotopes, 1055 

for the Jurassic are also shown. Blue circles represent the depositional environment where the 1056 

different carbonate facies were deposited. 1057 

Fig. 6. Photographs showing the different studied carbonate facies, which were deposited in 1058 

different sedimentary palaeoenvironments. A-B. Freshwater facies association. A. Field 1059 

photograph showing tabular black limestone interbedded with thin beds of greenish marl. Note 1060 

root traces at the top of the beds. Coin is 2.3 cm in diameter. B. Transmitted light 1061 

photomicrograph showing a wackestone of charophyte thalli forming the nucleus of oncoids. C-1062 

D. Marine-influenced facies association. C. Field photograph showing tabular marine-influenced 1063 

black limestone. Note the root traces at the top of the bed. Tip of hammer at the top-right corner 1064 

for scale. D. Transmitted light photomicrograph showing a wackestone of dasycladales green 1065 

algae. E-F. Marginal-marine facies association. E. Field photograph of dolostone displaying 1066 

wavy bedding with alternation of grainy facies showing small-scale cross-bedding (red arrows) 1067 
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and muddy facies (blue arrows). Coin is 2.4 cm in diameter. F. Transmitted light 1068 

photomicrograph showing a wackestone-packstone of benthic miliolid foraminifera and 1069 

ostracods. G-H. Hypersaline facies association. G. Field photograph of hypersaline dolostone 1070 

displaying abundant calcite pseudomorphs after gypsum (yellow arrows). H. Transmitted light 1071 

photomicrograph showing a dolomudstone displaying calcite pseudomorphs after lenticular 1072 

gypsum. 1073 

Fig. 7. A. Carbon and oxygen isotope compositions of carbonates of the different facies 1074 

associations in the Leza River section (Western Sector) and in the Préjano section (Eastern 1075 

Sector). In both sectors, carbonates of each facies association have negative and variable 13C 1076 

values and relatively invariant 18O values (more negative in freshwater limestone and 1077 

progressively more positive in marginal-marine and hypersaline carbonates). B-C. 18O and 1078 

87Sr/86Sr values, respectively, versus the depositional environments where carbonate 1079 

precipitated in both sectors. Note that in both sectors and, as expected, 18O values (B) are 1080 

more negative in freshwater limestone, becoming progressively heavier in marine-influenced, 1081 

marginal-marine and hypersaline carbonates. Note that most of the marine carbonates are in 1082 

the range of or close to the published 18O values of the Barremian-Aptian marine carbonates 1083 

(see text for explanation). However, 87Sr/86Sr ratios in each sector are very different, but 18O 1084 

values of carbonates precipitated in the different palaeoenvironments in each sector are similar. 1085 

Also note that 87Sr/86Sr ratios in the Western Sector are similar or in the range of the published 1086 

Barremian-Aptian marine carbonates, even those obtained from freshwater carbonates. 1087 
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Table 1 (Supplementary material). Isotopic data of the analysed samples 1089 
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