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ABSTRACT. 

Railway transportation is one of the most popular and greenest transportation modes for 
passengers. Its importance has increased in some regions owing to the deployment of 
high-speed infrastructures. In Europe, it is a competitive transportation mode for short 
and medium distance journeys, rivalling airway mode.  
For topological analysis of transportation networks, Complex Networks Analysis (CNA) 
appears as a powerful methodology that although used in various circumstances to 
describe national railway networks, it has not been used thus far at a continental level. In 
this paper, two topological characterisations of the European International Railway 
Network are performed using CNA. The first analyses the direct connection among cities 
in the international railway service using the most commonly used metrics. The results 
are compared with those of the Chinese Railway Network, of similar size, observing their 
differences regarding assortativity. The second analysis incorporates passenger transfers 
between services, discussing how connectivity is improved when timetables are 
synchronised, remarking the importance of such coordination. Centrality metrics are 
defined for the assessment of the connectivity of the network. For the sake of realism, 
thresholds for the maximum reasonable distance to be travelled by train are introduced in 
the definition of the centrality metrics. 
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1. INTRODUCTION 

Transport infrastructure plays a key role in the economic growth of a country. Both 

concepts, transportation and economic development, have an endogenous relationship as 

good transportation infrastructures induce spatial redistribution of economic activities, 

with wealthy economic areas requiring constant improvement of transportation 

conditions (Hong et al. 2011). A positive correlation between both variables is found in 

several studies (Berechman et al. 2006). Therefore, the accessibility of the cities is a key 

factor for their competitive position. This fact especially affects various businesses, 

significantly the tourism market (Borodako and Rudnicki, 2014). 

With regard to railway transportation, Zhang et al. (2015) view it as a critical 

infrastructure, whose services and facilities are essential for the basic operations of 

society. Heinold and Meisel (2018) highlight its importance from the environmental 

perspective, given that intermodal road transportation reduces greenhouse emissions 

when compared to the road-only alternative.  

In railway transportation of passengers, it is possible to classify trains based on the regions 

served and the achievable speed. Specifically high-speed trains can be observed as 

competitors and complement to air transportation (Adler et al. 2002). The viability of 

investing in these trains is justified in respect of the maximisation of social welfare (Adler 

et al. 2002). This evaluation assessed the costs of upgrading to high-speed infrastructure 

and the effect on high-speed rail, regional low-cost carriers and airline transport 

operator’s actions using a game theory approach. Slight changes in trains classified as 

“high hierarchy” as with international trains, are influential on the lower ones, in 

particular regional trains (Landex, 2012). This interrelation is analysed in the Danish 

network by altering the queuing time of a railway line, observing its effects in small 

regions affecting the underuse capacity of the transportation system (Hansen et al. 2006). 

As a consequence of the relevance of the transportation system for the economy, society 

and the environment, studies have been conducted using different methodologies. One is 

the Complex Network Analysis (CNA). This technique represents by links the interaction 

of the entities of the system (the nodes in the network model, usually cities or stations 

when dealing with transportation studies); a topological analysis of the network structure 

is performed, identifying vulnerable nodes, connectivity problems or clusters of explicitly 



related entities. It has been applied to multiple means of transport in various countries, 

namely air transportation (Barrat et al. 2012), underground (Lu 2018; Sun et al. 2017), 

bus (Yue et al. 2019), railways (Wang et al. 2020), or maritime (Hu 2019). 

To our knowledge, no topological characterisation of international railway networks at a 

whole continental level (and specifically of the European International Railway Network) 

has been conducted, although railway structures have been analysed in various countries 

regarding its topological characterisation. The main contribution of this paper is to 

perform a topological characterisation of the complete European International Railway 

network, not just evaluating all the connections, but considering reasonable journeys that 

international railway passengers require, taking distances into account. These analyses 

describe the network properties of the international services, enabling comparison with 

an important international case, the Chinese one, ascertaining the main differences in their 

structure. Additionally, accounting for current timetable services, structure alterations 

when passenger transfers are assessed.  

With that purpose, Section 2 gathers all the applications of CNA on the description of 

Railway Networks. Section 3 details the CNA methodology, introducing the main 

concepts used in our analysis. In Section 4 two networks are evaluated, the first represents 

the connections among stations using direct trains only (which is then compared with the 

Chinese Railway Network), while the second assesses how the connectivity of the 

network is improved when considering passenger transfers with a short waiting time. In 

both networks, centrality metrics identifies key stations constraining the feasible distance 

that passengers can travel. The last section concludes. 

2. PREVIOUS RAILWAY NETWORKS CNA 

The results using CNA tools are multiple in the case of railway transportation, with many 

recent studies at country level in various continents. Tsiotas (2017) evaluates the 

contribution of the Greek interregional railway network to the regional development 

based on socioeconomic information. He finds that non-metropolitan areas are focussed 

on primary productivity sector and on providing transportation services to tourism. In the 

Spanish case, Roanes-Lozano et al. (2009) evaluate the flexibility reduction of the 

country’s railway network by cutting the deficit lines from 1956-2006, providing as a 

result the current radial Spanish Railway network. Yue et al. (2019) analyse whether 



intercity transportation supports the development and integration of urban agglomerations 

by a method called transportation cluster detection. This methodology is an iterative 

process that adopts hierarchical clustering, applying as criterion the proximity index 

based on k-shortest path. In each iteration, the quality of the cluster is controlled by geo-

modularity. 

 For its part, Bhatia et al. (2015) evaluate the performance of recovering strategies in the 

Indian Railway Network with a CNA topological characterisation. At a multi-country 

level, Kurant and Thiran (2006) extract the network of traffic flow and the infrastructure 

network of three different railway systems in Centre and Eastern Europe from published 

timetables. They use these data to compare different approaches to construct networks 

using CNA topological characterisation. 

CNA allows for understanding the structure of the complex systems based on their 

topological characterisation. This can be achieved in multiple ways, and depending on 

the definition of the network and its topology, different properties can be observed. One 

of the most favoured is the small-world property. It can be found in many railway 

networks, such as Boston and Viena Railway Networks as published by Seaton and 

Hackett (2004) using a bipartite model; in China (Li and Cai 2007; Wang et al. 2020); in 

Central Japan (Majima et al. 2007); or India (Sen et al. 2003).  

Small-world is also observed in Pakistan (Mohmand and Wang, 2014), in the Chinese 

Railway Network modelled by the P-space representation (Cao et al. 2019). In the case 

of applying L-space graphs to the Greek railway, its topology appeared to share lattice-

like characteristics (Tsiotas 2017).  

A primary tool in CNA is the degree distribution that results as useful to observe the hub 

stations of the networks. Fitting this distribution can provide various results. For instance, 

But and Prokhorchenko (2013) find a power-law distribution over the Ukraine Freight 

Railway Transportation network, as Li and Cai (2007) find it in the Chinese passengers 

railway network. However, Sen et al. (2003) find an exponentially decaying distribution 

in the fitting for the Indian Railway network. 

The relative position of the stations is achieved in CNA by using centrality metrics being 

the most common Degree, Betweenness and Closeness centrality. For instance, But and 

Prokhorchenko (2013) apply centrality metrics to a direct assortative freight railway 



transportation network of Ukraine, and use the closeness to detect the stations clusters; 

while Zhang et al. (2015) apply centrality metrics to the Chinese network to evaluate the 

importance of train stations using a modified gravity model based on population and gross 

domestic products of each city to weight the railway lines. 

To better understand the connectivity among stations, the nodes can be grouped attending 

to different criteria. For example, Bhatia et al. (2015) use the Lovain community detection 

algorithm for the Indian Railway Network to detect those nodes that were connected 

among them more than in a random network. Regarding the Ukraine Railway Network, 

But and Prokhorchenko (2013) discovered three clusters based on the distribution of 

closeness centrality metric. 

Another interesting property in CNA studies dealing with transportation is the 

assortativity of the network that assesses whether high connected nodes tend to be 

connected among them. In the case of the railway system of Singapore, the topological 

centralities were evaluated from a dynamical perspective during weekdays and weekends 

and a soft disassortative network appears in both periods (Sho et al. 2010). 

 

3. METHODOLOGY 

 

3.1 Data collection 

For this analysis, the European International Railway Network (EIRN), a weighted 

directed network, G(N,E), representing the flow of trains along the European railway 

transportation infrastructure was built.  The dataset of all the International Railway 

Services in Europe used in this paper is collected (Potter 2018), providing all the services 

available on May 2018. The information has been transcribed, recording the timetables 

and frequency of each service.  

The nodes N represent all the European cities connected by international train services, 

and each directed link in E represents the existence of at least one feasible journey 

between two stations without any transfers (that is, P-space representation, see Lin and 

Ban 2003). The links are weighted based on the frequency of services during a week. A 

squared matrix, whose size is the number of cities, collects the frequency of the services 



for the weighted evaluation, while a second matrix records the timetable of each train for 

each visited city. All data were processed using igraph (Csardi and Nepusz 2006) and 

poweRlaw (Gillespie 2014) packages of the open source statistical software R. 

 

3.2. Metrics for topological characterisation 

The topological characterisation of EIRN can be made at different levels, from a general 

description of the network to the evaluation of the relative position of each node in the 

network. Here we introduce all the metrics discussed later in the manuscript for a clearer 

understanding of the results. 

Different metrics can be used over the weighted or the corresponding unweighted 

network, considering the geodesic paths among the nodes (i.e., the shortest path between 

each pair of nodes). Lin and Ban (2013) present some of these metrics in the context of 

transportation and city planning. 

From a general perspective, some metrics such as diameter, radius and average path 

length provide useful information. The diameter measures the maximum distance of the 

geodesic paths (i.e., maximum number of trains necessary to use between any two cities), 

while the radius measures the minimum distance of the maximum geodesic paths from 

any node, thus identifying the most central node; the average path length assesses the 

mean of all the geodesic paths in the network.  

Other metrics do not depend on the geodesic paths, as occurs with the concept of degree 

distribution. The degree of the node i, ki, represents the number of cities that passengers 

can travel to directly, leaving from city 𝑖. As EIRN is a directed network, we can 

distinguish the in-degree, 𝑘 , and out-degree, 𝑘 , the in-degree being the number of 

cities from which it is possible to travel directly to city i, and the out-degree, the number 

of cities that passengers could travel to directly from city i. 

The distribution of the degree is one of the main tools to identify the network topology 

and the organisation of the network attending to the connectivity of the stations. The main 

degree distributions are Poisson, scale free or exponential. Poisson distributions are found 

in random networks, while power-law distributions are common in networks with 

preferential attachment like scale-free networks. In the context of transportation, scale-



free networks denote the existence of highly connected hubs serving as bridges for a 

majority of poorly connected nodes. 

While degree distribution shows how the hubs are distributed in the network and how the 

number of connections increase, the average degree of the nearest neighbours allows to 

observe whether these hubs are connected to high connected nodes, defining an 

assortative network or disassortative in the other way round. 

Additionally, when the network is weighted, one of the most used metrics is the strength, 

that is, the sum of all the weights of the edges linked to a node. As in the case of the 

degree, the strength distribution can be analysed, fitting it to different distributions by 

visualising the probability of a node to have a certain strength. 

Apart from evaluating the direct connections of the nodes and the average degree of their 

neighbours, it is interesting to know how their neighbours are connected among them. 

For this purpose, the clustering coefficient measures the density of the connections among 

the neighbours of a node. Here, the weighed and unweighted clustering coefficient of 

Barrat et al. (2012) is applied to an undirected subgraph to avoid flow imbalance. To 

evaluate EIRN as an undirected network, all the directed links are transformed into 

undirected to avoid duplicity. In this case, the resulted weight of an arrow is the mean of 

the directed links that connect each pair of nodes. The purpose of this metric is to analyse 

the triplets: if the cluster coefficient of the weighted network is larger than for the 

unweighted version, which means that the more weighted links are likely to form triplets.  

It is relevant in this context that the concept of Small World Network (SWN) is where any 

two nodes are expected to be not too far. These structures are specifically defined by 

having an average shortest path length between any two nodes that grows more slowly 

than the size of the network (L  log N) and in addition, its clustering coefficient is higher 

than expected by random choice. In these structures it is natural that the presence of hubs 

serves as bridges among many nodes, and although SWN does not imply a power-law 

degree distribution, it holds that scale-free networks show the ultra SWN property (L  

log log N). 

To analyse groups of stations, the community structure of the network was defined using 

the algorithm from (Blondel et al. 2008). As usual, the group of stations that belong to 



the same community have more links among them than those that would be expected in 

a random network of the same size.  

To evaluate the relative position of a node in the network, centrality measures such as 

Closeness and Betweenness centrality, are useful. Closeness centrality for node 𝑣 is 

calculated by [1], being 𝑑(𝑣, 𝑖) the distance of the geodesic path between the nodes 𝑣 and 

𝑖. This metric is normalised by n-1, being n the number of nodes in the evaluated network. 

The purpose of this centrality metric is to evaluate how far the G (N,E) evaluated city is 

from the other cities. In the case of Betweenness centrality, the purpose of this metric is 

to define how likely the evaluated city is in the shortest path between pairs of stations. It 

is calculated by [2], being 𝜎(𝑗, 𝑘, 𝑖) the number of shortest paths from j to i passing 

through k. High values show the criticality of that node from a security point of view. 

Again, this metric is normalised by (𝑛 − 2)(𝑛 − 1)/2. In each evaluated network, both 

centrality metrics are calculated as the average of the centrality values of all the nodes. 

𝐶(𝑣) = 1/ 𝑑(𝑣, 𝑖) [1] 

 

𝐵(𝑣) = 𝜎(𝑗, 𝑣, 𝑖) / 𝜎(𝑗,∗, 𝑖) [2] 

 

However, in the specific case of international railway transportation, nodes requiring a 

longer journey are not likely to be connected by train, as cheap and efficient transportation 

alternatives exist (namely by air). Therefore, in the calculation of centrality metrics, 

instead of considering the geodesic paths among every pair of cities in the network, the 

most accurate way would be to consider only those paths among cities that are likely to 

reached by train.  

In this paper, a new approach is proposed in the evaluation of railway centrality metrics, 

introducing multiple distance thresholds representing various scenarios, with the real 

network that railway passengers require.. For each city 𝑖, these distance-based metrics are 

evaluated on the subgraph Si (Vi,Li)  G (N,E) composed of all the stations located closer 

than a threshold distance 𝐻. That is, 𝑉 = {𝑗 ∈ 𝑁: ‖𝑔(𝑗) − 𝑔(𝑖)‖ < 𝐻}, being 𝑔(∙) the 

geographic coordinates of a city. Considering the size of the subgraph associated to the 

value 𝐻, the metrics are normalised as mentioned. Therefore, the closeness Centrality is 

calculated for each station by [3], while the Betweenness is calculated by [4] 



𝐶(𝑣) =
∑ ( , )

   ∀𝑣𝑁, ∀𝑖 ∈ 𝑆 (𝑉 , 𝐿 ), [3] 

 

𝐵(𝑣) =
∑ 𝜎(𝑗, 𝑣, 𝑖)

∑ 𝜎(𝑗,∗, 𝑖)
   ∀𝑣𝑁, ∀𝑖, 𝑗 ∈ 𝑆 (𝑉 , 𝐿 ). 

[4] 

 

 

4. RESULTS  

 

4.1 Topological description of EIRN 

EIRN is composed of 412 nodes and 7732 edges in a single component and, as expected 

in a physical network, its density is low (4.56%). 

Starting by considering this network as unweighted (i.e., the frequency of trains between 

two stations is set to one, and therefore the geodesic distance represents the number of 

trains required to travel between two cities), the network diameter is 7, while the radius 

is 4 and its average path length is 2.89. Considering all the geodesic paths, the most 

probable shortest path between two cities is 3. This means that the most probable number 

of transfers while on an international journey between any two stations in Europe would 

be 2, with a maximum of 6 transfers in the worst scenario. The average path length is not 

within the range between the radius and the diameter due to the topology of the network, 

which is not a tree. 

It is important to highlight that the average path length of a random unweighted network 

with the same density of nodes is 2.36, which is lower than in EIRN. This fact is a 

consequence of the geographical and logistics limitations of EIRN. For example, it is not 

feasible to have an edge between Denmark and Spain without defining an international 

route through Germany and France at least. 

As observed previously in many railway networks, it is expected that the degree 

distribution of EIRN (Figure 1) follows a power-law 𝑃(> 𝑘) = 𝑘 . Using the method 

described in Clauset et al. (2009) the optimal lower cut-off in this case is 73 with =4.11. 

Applying a goodness-of-fit test via bootstrapping the power-law distribution cannot be 



ruled out. Being the value of  larger than 3, the diameter of the EIRN, whose value is 7 

as mentioned above, was expected to be close to ln N (Cohen and Havlin 2010).  

---------------------------------------------------------Figure 1-------------------------------------------------------- 

---------------------------------------------------------Figure 2-------------------------------------------------------- 

EIRN can be split into 9 communities following the algorithm of Blondel et al. (2008) as 

shown in Figure 2, where a clear geographical pattern can be observed. By definition, in 

each community the connections are denser than in cities not in the community (as well 

as in a random network).  

The average in-degree or out-degree of EIRN is 18.77, being the average number of 

stations that can be reached directly, having their origin or destination in a certain city. 

Paris is the city with maximum in-degree and out-degree of the network (with 113 and 

112 European cities reachable respectively). 

As observed in Figure 3, there is a strong positive correlation (0.98) between the in-

degrees and the out-degrees. The cities reach and are reached by a similar number of 

cities, and there is balance traffic flow among them. Notable exceptions are Nice with an 

out-degree of 18 and in-degree of 45, and Haute Picardie with an out-degree of 23 and in-

degree 34. 

---------------------------------------------------------Figure 3-------------------------------------------------------- 

Another point of view to analyse degree is its correlation with the average degree of the 

nearest neighbours. Figure 4 shows a positive correlation between both variables (Pearson 

value of 0.29±0.09), making EIRN an assortative network, therefore, the higher the 

degree of a node, the higher the mean degree of its neighbours. This means that the most 

connected cities tend to be connected to well connected cities. 

---------------------------------------------------------Figure 4-------------------------------------------------------- 

Apart from evaluating the raw topology of the connections, the intensity of the 

connections can be assessed considering EIRN as a weighted network. The weekly 

frequency 𝑤  of the international trains between city i and j can be used to rate the 

connectivity among the stations as in (Wang et al. 2020), and its reciprocal represents 



how close they are, being used to calculate the network geodesic paths among cities. In 

other transportation networks such as air traffic, it is common to use the number of 

available seats in flights among the connected airports instead of the frequency of the 

services (Barrat et al. 2012). 

As mentioned, one of the basic centrality metrics in weighted networks is the strength of 

a node, defined by 𝑆 (𝑤) = ∑ 𝑤 . The strength distribution is important to characterise 

the topology of the network. Figure 5 shows how the cumulative distributions of the 

strength fit to a power-law with an optimal lower bound of 1,267 and  = 2.73. This 

distribution cannot be ruled out after applying the Kolmogorov-Smirnoff test. 

---------------------------------------------------------Figure 5-------------------------------------------------------- 

In the weighted EIRN, the  value for strength distribution is lower than for the degree 

distribution. The difference between both distributions is due to different scales in both 

metrics. It is important to highlight that the nodes with the maximum degree and strength 

are not necessarily the same. In EIRN, the node with the maximum degree is Paris, while 

the node with the maximum strength is Frankfurt. This means that in a period of one 

week, more trains pass through Frankfurt than Paris, although the latter connects directly 

with more stations.  

It is expected that strength increases with degree with a non-lineal dependency. Barrat et 

al. (2012) affirm that the average strength of the nodes with degree k follow an 

exponential relationship 𝑆(𝑘)~𝑘 , and only in the case that the weight of a node is 

independent of its degree then β=1. EIRN follows a power law behaviour with an 

exponent equal to 𝛽 = 1.20 ± 0.07. Consequently, the value of the degree of vertices 

grows more slowly than their strength.  

The nonlinear dependency between the weight and the degree of the end-points of the 

link is given by 𝑊 ~(𝑘 𝑘 )  with α = 0.07±0.02. The value is this low due to the high 

number of connections with daily frequency (i.e, with 𝑤 = 7). Although α value is lower 

than in other networks like the World-wide Airport Network (Barrat et al. 2012) whose 

α is 0.5, the correlation in our case is still positive (p-value  0). 

The average clustering coefficient is the mean clustering of all the nodes of the network. 

In this case it is 0.81 (0.77 for the unweighted EIRN). This means that the density of the 



connections among the neighbours of a city tend to be higher than expected (the random 

generated network has a clustering of 0.09). As mentioned above, this relationship among 

the clustering coefficients implies that the links with high frequency tend to form triplets.  

---------------------------------------------------------Figure 6-------------------------------------------------------- 

The correlation between the clustering and degree is negative (see Figure 6). Studying the 

unweighted clustering, in the nonlinear dependency 𝐶(𝑘)~𝑘 , it is 𝜂= 0.27 ± 0.03. 

Comparing the weighted and unweighted clustering, the influence of the weight for the 

hubs’ cities can be observed. One city has a higher clustering coefficient when it has a 

higher number of connections with cities that are connected to them by a direct train.   

Distanced-based centrality measures 

To know how well the network connects the European cities, centrality metrics are an 

interesting tool to assess it. As previously mentioned, Closeness centrality measures how 

close the nodes are in the graph based on their geodesic paths, while Betweenness 

centrality measures the ratio of times that a station appears in the intermediate geodesic 

paths. In the first case, high centrality implies a good connection between any two cities, 

while the second case shows the importance of a city as an intermediate station.  

Note that when travelling by train, journeys lasting longer than a specified time are 

deemed unappealing as other more efficient travel modes exist (namely air). Due to that 

and for the sake of realism, the various distance-based metrics applied here must consider 

only feasible international railway trips under a certain threshold, assuming unreachable 

cities to be further than that distance limit. 

Table 1 shows the results of these distance-based metrics for different thresholds. 

Naturally the results indicate that the size of the network increases with the threshold, and 

therefore the mean degree increases, the centrality measures reduce as more cities become 

involved, and the radius and diameter increase. For thresholds over 2000 km the 

distribution of the geodesic path is close to the whole network (threshold=). It is 

interesting to observe how the increment of the diameter and the radius is not 

proportional; indeed, its ratio is decreasing from 2.7 for the 500 km threshold, up to 1.75 

in the case of the whole network. This relationship is not observed when comparing the 

diameter to the average path length.  



-----------------------------------------------Table 1----------------------------------------------- 

Moreover, most of the distances of the geodesic paths are in a small range of values. This 

fact influences the closeness centrality directly as it depends on the distance of the 

geodesic paths. Closeness is quite high for short distances of around 500 km, but for 

further than 1000 km it drops sharply and maintains similar values that are achieved for 

the whole network. 

 

4.2 Comparison between EIRN and China railway network 

To compare EIRN with another similar network, the China Railway Network (CRN) case 

could be of interest. The area of Europe is 10.18 million km2, while China is 9.597 million 

km2, although with a much greater population and therefore with many very populated 

cities, which must affect the transportation networks’ characteristics. 

CRN was topologically described by Wang et al. (2020) and a summary of its comparison 

with EIRN appears in Table 2, including some z-scores as defined by Zanin et al. (2018) 

for the sake of a more accurate analysis. In the case of CRN, it is represented as a weighted 

directed network, which has 255 nodes and 1,091 edges. 

--------------------------------------------------Table 2--------------------------------------------- 

The density of EIRN (4.56%) is higher than CRN (3.37%) in spite of the European 

network having more stations. Baring this, the average path length of EIRN is slightly 

higher than in CRN. In EIRN case, when the average path length is compared with 

random networks of the same size, the average path length is higher than for random 

networks (z-score 371.87 vs. -20.17 for CRN). 

In both railway networks there is the same difference of scale between the degree and 

strength distribution by observing the  values of the power law distributions. The  of 

the strength distribution (1.73 for CRN and 2.73 for EIRN) are lower than that of the 

degree distribution (1.83 and 4.11 resp.). In the case of China, its maximum degree is 109, 

while its maximum strength is 968 (Beijing). Evaluating the relationship between in-

degree and out-degree, both EIRN and CRN have a positive correlation (1) with almost 

the same form. This is a signal that the traffic flow is balanced in both ways. 



Regarding the correlation between degree and strength, in CRN the strength grows faster 

than for EIRN (1.30 vs. 1.20) following the non-linear dependency 𝑆(𝑘)~k  . 

Alternatively, the non-linear dependence of the clustering and degree in CRN is very 

similar to EIRN (0.36 vs. 0.27), but in the Chinese case the clustering decreases faster 

than in the European one. 

EIRN and CRN differ regarding the correlation between average nearest neighbours and 

degree. While EIRN is assortative (+0.29), CRN is disassortative (-0.17). Moreover, the 

average clustering coefficient of CRN is 0.49, therefore the connections among the 

neighbours are denser in the case of EIRN (z-score 714.90) than in CRN (121.83). 

We observe that although both networks have similar density, the diameter, average path 

length and clustering are lower in the Chinese case (see z-scores in Table 2). There are 

notable differences between both networks, such as their hub distributions, the EIRN 

tendency to connect hubs with high connected stations (which is not observed in the 

Chinese case), and how CRN clustering decreases faster with the degree (=0.36) than 

for the EIRN. The Chinese and European demography could explain these differences. 

 

4.3 EIRN with passenger transfers (EIRN-t) 

So far, as carried out by most previous researches, we have considered the network where 

links represent cities connected by direct trains, with no transfer of passengers among 

trains allowed. However, in the real world it is possible to travel by train between two 

cities, although no direct train exists between both stations as long as the timetables allow 

the passengers to transfer to an intermediate station. 

In this section, a new EIRN is evaluated that considers that two cities are connected if the 

passengers can transfer to an intermediate station, when the waiting time is less than the 

time limit (one hour in our case). Therefore, a link exists if there is a direct train between 

two stations or if two stations are connected by two trains, the time differential between 

the departing and arrival time at an intermediate station being less than one hour. Note 

that although other authors have already considered transfers when analysing railway 

structures (Sen et al. 2003) consideration was not given to the real possibility of a transfer 



by checking the timetables as done here, but only the existence of intermediate stations 

connecting various lines. 

The new network, called EIRN-t, is composed of the same nodes and links as EIRN, but 

with some new 270,891 links (an additional 350%) owing to the transfers. This significant 

increment of connections is due to good timetable synchronisation on many routes.  

In the case of EIRN-t the density is 20.6% (more than 5 times the EIRN density). The 

diameter for the unweighted network has decreased to 5 and its radius to 3, while in the 

original EIRN 6 transfers, as a maximum, were required to be achieved in any city of the 

network. As a consequence of the high density, the average path length for the unweighted 

network has decreased to 2.0, and the most probable shortest path is 2 (see Table 2). 

Regarding the degree, its cumulative distribution can be observed in Figure 7, applying 

the Kolmogorov-Smirnoff test to power-law, log-normal and exponential distribution. In 

the case of power-law distribution, the lower bound is 340 and  = 6.10, and the goodness-

of-fit via bootstrapping does not rule out the power-law distribution. This significant 

increment of the  value indicates that there are fewer hubs with a high number of 

connections, and a low probability of having super hubs. 

-----------------------------------------------Figure 7----------------------------------------------- 

Studying the weight distribution, the power-law distribution cannot be ruled out by the 

method described in Clauset et al. (2009). Figure 7 shows the power-law, log-normal and 

exponential distributions fitting to the cumulative distribution of the strength using the 

Kolmogorov-Smirnoff test. The power-law distribution has a lower bound of 351.6 and  

= 3.06. 

Because of the transfers, the correlation between the in- and out- degree has decreased to 

0.96. In this case, the maximum in-degree is 127 in Frankfurt and the maximum out-

degree is 412 in Zurich. Moreover, the strength grows faster with the degree than for the 

original EIRN with 𝛽 = 1.42 ± 0.06, while the correlation between the frequency weight 

and the degree of the end-points of the links is higher with 𝛼 = 0.43 ± 0.02. The 

correlation between the unweighted average nearest neighbours and the degree is higher 

with a value of 0.38, which means that EIRN-t is more assertive than EIRN and therefore 

high connected nodes tend to be connected among them.  



Baring this, the unweighted average clustering is 0.74 (z-score 564.67, see Table 2), lower 

than for EIRN (714.90), and much higher than for a random network. The same happens 

for the weighted average clustering. This means that there are fewer triplets. Indeed, the 

unweighted clustering of EIRN-t grows more slowly than for the original EIRN, 𝜂 =

0.17 ± 0.02.  

--------------------------------------------------Table 3--------------------------------------------- 

Comparing the results of the distanced-based metrics in EIRN-t and EIRN in Table 1 and 

3, the behaviour of closeness and betweenness centrality is fairly similar, although EIRN-

t is much denser than EIRN. An important difference among both networks is the higher 

values of closeness centrality for short distances (under 1000 km). The low values of 

betweenness centrality occur as mentioned due to the definition of the network based on 

route corridors and the existence of links between all the cities in a corridor. As the degree 

of a node increases, owing to the transfers, the importance of the intermediate stations 

reduces and the betweenness is even smaller than in the EIRN case.  

 

5. CONCLUSIONS 

We have investigated the topological properties of the European International Railway 

Network, without (EIRN) and with (EIRN-t) possible transfers assuming a maximum 

waiting time in the intermediate station of one hour. The EIRN behaves as a small world 

network, although the average path length is higher than the corresponding to a random 

network since the international routes are geographically constrained. This confirms the 

hypothesis of Sen et al. (2003) who stated that in their opinion SWNs should be expected 

when analysing the railway structure of any country. 

Moreover, the EIRN has been compared with the China Railway Network (CRN), 

observing their similarities and their differences. In both cases, clustering is higher than 

for random networks, and both networks have a balanced traffic flow in both ways. In 

CRN, the strength of the cities grows faster with the degree than in the EIRN case, while 

the clustering coefficient decreases faster. Among all these similarities, the main 

difference is how EIRN cities with high degree tend to be connected each other, while in 

CRN they do not. 



Comparing EIRN and EIRN-t, the connectivity when there are transfers is much higher 

due to its high density, its high mean degree, and the strength growing faster with the 

degree. It is remarkable how in EIRN-t the number of potential cities to travel to and from 

well connected cities explodes when passengers transfer because of the higher 

assortativity, and how the average path length its higher compared with random networks 

of the same size. This last feature is also observed in EIRN, given that the train routes are 

defined by corridors. 

Although the connectivity is higher in EIRN-t, its unweighted clustering coefficient is 

lower, whilst the weighted clustering decrease slower with the degree. This means that 

the number of triplets is lower (i.e., the number of groups of three cities connected among 

them is smaller). 

For the sake of a more accurate evaluation of the centrality metrics, a new approach 

limiting the reachability to a maximum geographic distance was defined. Varying the 

threshold of the distance that passengers are willing to travel by railway, the relative 

position of the cities can be evaluated considering their closest cities. It is significant how 

the Closeness and Betweenness centrality metrics do not differ between EIRN and EIRN-

greatly. This means that the relative positions of the cities in the network on average do 

not change after considering transfers. 

In this paper we have seen the potential to use passenger transfer to change the centrality 

of the cities. However, this is only possible when the timetables are synchronised to 

prevent a lengthy passenger wait at the station. As a future research, it would be 

interesting to see how the connectivity of the European cities could be improved by a 

better redesign of the current railway timetables that optimise the synchronisation. 
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FIGURES 

 

 

 
 

Figure 1 - Degree distribution of EIRN fitted to a power-law 



 

Figure 2 – Division of the stations by communities 

 



 

Figure 3 – Relationship between indegree and outdegree in EIRN 



 

Figure 4 - Correlation between average degree of nearest neighbours (knn) and degree 

 



 

Figure 5 – Cumulative strength distributions of EIRN fitted to a power-law 

  



 

  
 

 

Figure 6: Correlation between degree and clustering (left) and weighted clustering 
(right) 

 

  



 

 

  
 

 

Figure 7 - Cumulative distribution of Degree and Strengths for EIRN-t 

  



 

TABLES 

 

 

Table 1: Influenced means of the distanced based metrics in EIRN depending on the 
geographical threshold. 

 

Distance 
threshold 

(km) 

Mean 
Degree 

Mean 
Closeness 

Mean 
Betweenness Diameter Radius Average Path 

Length 

500 14.27  1.34  0.03  5.16  1.88   2.02  
1000 18.61  0.67  0.02  6.74  2.87   2.53  
1500 19.30  0.51  0.01  6.97  3.64   2.73  
2000 19.75  0.47  0.01  7.02  3.94   2.83  
2500 19.87  0.47  0.01  7.02  3.99   2.86  
 19.90  0.46  0.01  7.00  4.00   2.89  

 

  



 

Table 2: Topological comparison between the European and the Chine networks (in 
brackets, z-scores) 

 

METRIC EUROPE (EIRN) CHINA (CRN) (EIRN-t) 

Nodes / Edges 412 / 7,732 255 / 1,091 412 / 34,823 

Density 4.56% 3.37% 20.6% 

Diameter / Radius 7 [65.58] / 4 5 [-5.43] / - 5 [72.78] / 3 

Average Path Length 
(unweighted) 

2.89 [371.87] 2.66 [-20.17] 2.00 [845258.3] 

Most probable shortest 
path 

3 3 2.00 

Maximum in-degree / 
Maximum out-degree/  
Average degree 

113 (Paris)/ 
112 (Paris) / 

18.77 

- /  
- / 

8.56 

290 (Frankfurt) / 
283 (Zurich)/  

84.52 

In-degree  Out-degree 
correlation 

0.98  1 0.96 

Average Degree 
Nearest Neighbours vs. 
Degree 

(Correl. +0.29) 
Assortativity 

(Correl. -0.17) 
Disassortativity 

(Correl. +0.38) 
Assortativity 

Average clustering 
coefficient 

C=0.77 [714.90] 
(Cw=0.81 [614.53] 

for weighted) 
0.49 [121.83] 

C=0.74 [564.67] 
(Cw=0.86 [562.88] 

for weighted) 

Degree Powerlaw 
=4.11 

(degree lower 
bound 73) 

=0.82 for small 
degrees 

=2.09 for large 
degrees 

=6.10 
(degree lower 
bound 340) 

Strength vs. degree: 
𝑆(𝑘)~k   

𝛽 = 1.20 ± 0.07  =1.3± 0.01 𝛽 = 1.42 ± 0.06. 

Clustering vs. degree: 
𝐶~𝑘  

𝜂= 0.27 ± 0.03 𝜂= 0.36 𝜂 = 0.17 ± 0.02 

Top 3 cities with 
highest degree 

Paris (117) 
Wien (111) 

Frankfurt (102) 

Beijing (109) 
Shanghai (85) 

Guangzhou (67) 

Zurich (314) 
Frankfurt (313) 
Munchen (293) 

Top 3 cities with 
highest strength 

Frankfurt 
Koln 
Wien  

Beijing 
Guangzhou 
Shanghai 

Frankfurt 
Brussels 

Paris 

 



Table 3: Influenced means of the distanced based metrics in EIRN-t depending on the 
geographical threshold. 

 

Distance 
threshold 

(km) 

Mean 
Degree 

Mean 
Closeness 

Mean 
Betweenness Diameter Radius Average Path Length 

500 53.35  2.34  0.03  3.64  1.77   1.55  
1000 89.40  0.86  0.01  4.67  2.09   1.77  
1500 96.71  0.52  0.01  4.93  2.73   1.89  
2000 99.77  0.43  0.01  4.98  2.95   1.95  
2500  100.88  0.42  0.01  5.00  2.99   1.98  
  101.08  0.41  0.01  5.00  3.00   1.99  

 


