
Joint optimization of the cost of computation and
virtual machine image storage in cloud

infrastructure
José Luis Dı́az, Javier Garcı́a, Joaquı́n Entrialgo, Manuel Garcı́a, Daniel F. Garcı́a

Department of Computer Science
University of Oviedo

Campus de Viesques, 33204, Gijón, Spain
{jldiaz, javier, joaquin, mgarcia, dfgarcia}@uniovi.es

Abstract—In the field of cost optimization in cloud computing
infrastructure, different strategies are used to calculate Virtual
Machine (VM) allocations to support workloads while mini-
mizing costs. Usually, VM allocations strategies are focused on
determining the number and types of VMs required to support
workloads at every moment, but generally they lack procedures
to account for the storage costs of VMs. A significant part of
these costs is generated by the storage of the Virtual Machine
Images (VMIs) required to deploy VMs. In this paper, we present
an improvement to a state-of-the-art VM allocation strategy, by
integrating VMI costs. To achieve this, the allocation model of the
strategy is extended. Then a wide set of experiments is carried
out to study the improvements in the cost optimization. Several
factors are analyzed and the most significant ones identified.
The experimentation shows savings up to 20%, but are very
dependent on the VMI sizes, the characteristics of the workload
and the cloud infrastructure.

Index Terms—cloud computing, virtual machine image, virtual
machine allocation, cost optimization, infrastructure as a service.

I. INTRODUCTION

Cost is an essential aspect of service deployments in cloud
computing environments. In the case of Infrastructure as a
Service (IaaS) platforms, Virtual Machine (VM) allocation
strategies are usually employed to deal with cost issues. These
strategies find allocations of VMs to support workloads, mini-
mizing costs. A VM allocation is a mix of VMs, including their
types, the number of each type, and their pricing categories.
An example of a VM type in the Amazon IaaS Platform (EC2)
is m5.2xlarge, which has 8 virtual cores and 16 GB of memory
[1]. Pricing categories are usually on-demand or reserved.

Allocation strategies generate VM allocations periodically
to constantly adjust the computational power of a VM de-
ployment to the level of the workload. Generally, a time slot
is defined to determine the periods at which the strategies
are applied. Strategies can be focused in the long or the short
term. Long-term strategies generate an allocation for each time
slot in a long period (usually, one year). Thus, they can take
advantage of reserved VMs, such as those offered by major

This work was supported by the Spanish National Plan for Research,
Development and Innovation [RTI2018-094849-B-I00].

IaaS platforms, like Amazon EC2 [2], Azure Virtual Machines
[3] and Google Compute Engine [4]. Short-term strategies
produce allocations for the next time slot. When long-term and
short-term strategies are used in combination, the long-term
strategies establish the number and types of reserved VMs
required for the reservation period, and the short-term strate-
gies determine the number and types of the on-demand VMs
that provide the necessary extra computational power in each
time slot to reach the required level of performance. Long-
term and short-term strategies employ long-term and short-
term workload predictions respectively to compute allocations.

Transactional services, such as web services, are frequently
designed using a layered architecture. To determine the cost
of a transactional service deployment in a cloud environment,
the cost of the database layer and the cost of the VMs imple-
menting the business logic layer must be taken into account.
In turn, the latter cost is made up of three components: 1)
the costs of the VMs in execution, 2) the cost of the storage
of the VM root volumes, and 3) the cost of the storage of
the Virtual Machine Images (VMIs) used to deploy the VM
root volumes (VMIs are referred to as AMIs in the Amazon
EC2 environment [5]). Finally, with regard to the costs of the
VMs in execution, reserved and on-demand VMs may be taken
into account. In the field of transactional services, very few
research works implement long-term and short-term strategies
to take advantage of reserved and on-demand VMs. One of
these works is described in [6], which introduces the Malloovia
VM allocation strategy. However, Malloovia lacks mechanisms
to calculate the storage costs of VM root volumes and VMIs.
In this paper, we present an extension of Malloovia, called
Malloovia+I (Malloovia + Images), to take VMI costs into
account. The storage costs of root volumes will be addressed
in future research. The cost of the database layer is out of the
scope of Malloovia and Malloovia+I.

Fig. 1 illustrates a VM allocation example carried out by
both Malloovia and Malloovia+I. The elements with a solid
red line represent the Malloovia allocation. The Malloovia+I
allocation includes the elements with both the solid red line
and the dashed blue line. The example represents the business
logic layer of a service made up of three applications (Appx in

VMI0

[VM0]0

[VM0]1

[VM0]2

Region A

App0 App1 App2

VMI1 VMI2

[VM0]3

[VM1]0

[VM1]1

[VM2]0

VMI0

[VM0]0

[VM0]1

[VM0]2

VMI1

[VM1]0

VMI2

[VM2]0

[VM2]1

Region B Region C

Virtual Machine

VM root volume

Virtual Machine Image

VM
allocation

[VM1]1

Fig. 1: Example of allocation with Malloovia (VMs) and Malloovia+I (VMs + VMIs)

the figure). The figure shows an example of an allocation in
a particular time slot. The allocation of Malloovia is made
up of the number, types and categories (reserved or on-
demand) of VMs for each application in different regions of
a provider. Types and categories of the VMs are not shown in
the figure. Malloovia+I adds VMIs to the allocation produced
by Malloovia. As the figure shows, a VMI must be stored in
a region when the corresponding application is deployed in
that region. The integration of VMIs in the allocation strategy
improves its capacity for obtaining lower allocation costs.

II. RELATED WORK

This related work section is devoted to the research of the
cloud cost optimization problem in the area of IaaS providers.
In recent years, users have increased the use of IaaS services
and as a result the budget to finance them. Furthermore, studies
of cloud consultant companies have found that a substantial
amount of the budget invested in IaaS is wasted [7]. So, cloud
cost optimization studies are paramount from the users’ point
of view.

A. Optimization only with computation cost

Initially, cost optimization focused on the most demanded
and expensive resource, computation. Over the last decade, a
great number of research papers on cost cloud optimization
were published. Here we review some of the most relevant.
In [8] the authors present a comprehensive research paper
on cloud cost optimization, where they develop a model
solved using stochastic integer programming. In the model,
the authors take into account both on-demand and reserved

VMs. The main drawback of this model is that the work-
load is expressed as a number of required VMs instead of
users’ requests. A different approach is used in [9], where
the authors optimize the resource provisioning for different
types of workloads. In [10] the authors provide a multi-cloud
optimization model solved by a greedy heuristic that includes
both reserved and on-demand VMs. This model takes into
account QoS, but it is limited to only one type of VM. Another
cloud cost optimization strategy can be found in [11], where
the users’ workload is aggregated by a broker who hires the
resources to the cloud providers. In [12] the cost optimization
model analyzes the case of a hybrid cloud. The authors develop
an online dynamic provisioning algorithm able to work under
uncertainty about VMs prices and future required workload. A
more recent work is Lloovia [13], which introduces a generic
cost optimization model that deals with both reserved and
on-demand VMs. The model also supports other real cloud
aspects such as different types of VMs and the limits imposed
by the cloud providers on the number of VMs that can be
hired simultaneously. This work is extended in Malloovia [6],
where the authors improve the optimization model to be able
to include different applications, each of them with different
resource requirements.

B. Optimization with computation and storage costs

All these works optimize the cloud cost due to computation
only. There are a few research papers that develop more
complete optimization models. In [14] the authors develop a
cost optimization model for a workflow type application. This
model incorporates the costs of computation, storage of the
data and transmission, but only for on-demand VMs. In [15]

the authors present a case study of a migration to the cloud
of an e-learning application, which fits in the type of BoT.
The authors develop a model in order to optimize the cloud
migration cost taking computational resources and data storage
into account. This model uses reserved and on-demand VMs.
Finally, in [16] the authors develop a cost optimization model
for two-layered web applications. The model encompasses
the computational cost and the storage cost for the database
application.

There is another group of research papers focused mainly
on the optimization of the cloud storage cost. In [17] the
authors present a model for optimizing the cost of storage
services in geographically distributed datacenters. The model
minimizes cost by exploiting pricing discrepancies across
providers while guaranteeing the latency of requests. A similar
work is presented in [18], but in this case the QoS requirements
include the level of availability of the service. This work
also covers both reserved and on-demand resources. A case
study of data storage optimization on the cloud is presented
in [19] and later extended in [20]. These works develop a
model to minimize the cost incorporating both the storage
and data transfer costs. A different approach is used in [21],
where the authors study VM and data placement over physical
machines in order to reduce storage cost, network traffic and
bandwidth usage. It is solved heuristically using the ant colony
methodology. Finally, in [22] the authors present a model to
minimize the storage cost based on two service layers, hot
storage and cool storage, depending on the frequency of data
access. The model is extended to a multi-cloud model in [23]
and with two new on-line algorithms in [24].

One special case of the storage optimization cost is repre-
sented by Content Delivery Networks (CDN). Two examples
of this type of research are [25] and [26]. The authors in [25]
develop a model to reduce both storage cost and latency. The
model determines whether some content should be replicated
in a nearby server in order to reduce latency. The model
is solved using genetic algorithms. The work presented in
[26] studies the problem of cost optimization for dynamic
OSN (Online Social Networks) on multiple geo-distributed
clouds. The model incorporates the storage cost, transfer cost
and maintenance cost. It obtains a solution using a heuristic
algorithm.

C. Optimization taking into account VMI costs

All these works study the problem of cloud cost opti-
mization taking into account computational resources and/or
storage data resources. However, none of them considers
the cost introduced by the storage of the Virtual Machine
Image (VMI) in the regions where it must be deployed. The
only research paper where a similar problem is studied is
[27]. In this work the authors develop a model for dynamic
provisioning cost optimization under VM price uncertainty,
that is, they are oriented towards the spot instances price
model of Amazon. A different related problem is presented
in [28], where the authors study a cost-effective replication of
the number of VMIs in order to obtain the required availability.

However, this work does not consider any real cost, it is titled
cost-effective because it minimizes the number of required
VMIs.

This work extends our previous research by incorporating
the cost due to the storage of the VMIs on the total infrastruc-
ture cost. The study is carried out under long-term working
conditions and therefore both reserved and on-demand VMs
are included. Moreover, other real cloud provider character-
istics are incorporated such as different types of VMs and
the limits imposed on the number of VMs that can be run
simultaneously.

III. MODEL

A. Previous model

In [6], Malloovia is introduced as an algorithm to find the
optimal allocation of virtual machines in a cloud provider,
capable of serving multiple applications given a prediction of
the workload for each one, with a minimum cost. However,
Malloovia’s model did not include the cost of VMIs. A
summary of the parameters of Malloovia is presented here,
to help the reader to understand the extensions proposed to
take into account the storage cost.

The set of all possible VMs offered by the cloud provider
is modeled with “instance classes” (ICi), which represent a
family of VMs of the same price (pi) per time unit, price model
(reserved or on-demand), and performance (perfai) for each
application. Also, each IC belongs to one or more “limiting
sets” (LSi), which are used to implement some limits imposed
by cloud providers on the maximum number of VMs (or VM
types) which can be run simultaneously. This concept is related
to the availability zone or geographic region in which the VM
is deployed. An example of instance class in Amazon EC2
is an on-demand m4.xlarge instance in region us-east-1. Note
that the instance class is not simply the VM type, but also the
region in which it is deployed.

The set of all Instance Classes provides a model of
the infrastructure, in which a set of applications A =
{A1, . . . , ANA

} is deployed, each one subject to a different
workload over time.

Malloovia divides time into slots of length t (for example,
1 hour). At any time slot tk, the workload is characterized as
a vector lk, whose components are the workload during that
time slot for each application, i.e. lk = {lk,a}.

To find the optimal solution, the prediction of the workload
for each application in each time slot for the whole planning
period is required. This way the optimizer can take advantage
of the reserved instances, which are cheaper but are paid
even when not used. This prediction is called LTWP (Long-
Term Workload Prediction). Since having an accurate LTWP
is unrealistic, Malloovia operates in two phases. Phase I uses
that LTWP (or a good approximation of it) to find an optimal
allocation for each time slot in the whole planning period,
which uses both reserved and on-demand instances. This result
is used to purchase the required number of reserved VMs and
start the deployment. Then, Phase II runs online, using the
reserved instances given by the optimal solution of Phase I, but

re-computing a new allocation for the on-demand VMs at each
time slot from a Short-Term Workload Prediction (STWP),
which uses only the next time slot. If the STWP is very similar
to the LTWP, then Phase II will produce the same allocation as
Phase I, but if STWP differs substantially from LTWP, Phase
II can accommodate it by using the fixed number of reserved
instances given by Phase I and adjusting the allocation of the
on-demand ones.

To reduce the computational cost of solving Phase I, the
LTWP can be compressed by using a histogram H(L), which
stores all the different load levels present in lk as well as
the number of times each one is repeated. So, for example,
with three applications, one element of that histogram could
be H({100, 120, 500}) = 150, which means that there are
150 time slots in the whole planning period with the same
workload, equal to 100 units for application 1, 120 for
application 2, and 500 for application 3. Since the workload
is the same in those 150 time slots, the optimal allocation will
also be the same for all of them. This can reduce the size
of the problem substantially when workloads are repetitive.
If they are not, Malloovia proposes quantizing the workloads
by rounding them up to given values, so that the number of
possible workload values is reduced.

B. Extensions to previous model

The previous model did not take into account the cost of the
storage. To include it, two types of storage must be considered.
First, the storage attached to each VM, which is usually some
kind of block storage whose price is dependent on its size
and on the length of time the volume exists. This cost will
not be modeled at this stage. Instead, since the volume exists
only while the VM is running and it is deleted afterward, we
assume that this cost can be included as part of the price pi
per time unit of each instance class ICi.

Second, each application requires a Virtual Machine Image
(VMI) from which a new VM can be created. The image
contains all the required code and data for the app to boot
and run.

Most cloud providers allow the use of custom images, but
these must be stored in the same region as the VMs created
from that image. This means that, if the allocator decides to
run the application Aa in any VM of the region r, at any time
slot, then the image Ia must be stored in a storage solution
for that region (e.g.: AWS S3).

This causes two new terms in the cost of the allocation:
• Deployment cost. This is the cost of the initial transfer

from the customer to the region storage (via Internet),
plus the cost of maintaining that storage for the time
of the deployment. This cost can be computed as part
of Phase I, but the images needed by the on-demand
machines must also be taken into account, because we
assume that the required images are uploaded once, at
the beginning of the planning period.
Most cloud providers do not charge for the bandwidth
required for this first upload. However, they may charge
for the number of POST operations required to complete

the upload, as it is the case for AWS S3. Since there is a
limit on the size that can be transferred in a single POST,
the number of POST will be proportional to the size of
the VMI. This cost may be significant.
After Phase I is run, the output contains the number and
types of reserved instances to hire in each region, and the
VMIs that should be uploaded to each region. Our model
assumes that no new VMIs will be upload during the
planning period. This does not preclude the possibility of
uploading patches and bug fixes to some images, but it is
assumed that the VMI sizes remain practically constant,
so the storage cost is not affected. The upload of patched
VMIs will have a minimal cost, because of the POST.
Moreover, it is a cost that cannot be optimized anyway,
so it doesn’t need to be taken into account in Phase I.

• Working cost. In Phase II, each time a new on-demand
VM is created the image containing the boot disk must be
transferred from the region storage to the block storage of
that VM. Most providers do not charge for data transfers
inside a region, so instantiating a new VM from the image
is free. In this case, the cost-optimal strategy is to destroy
the block storage of the VM once the on-demand VM
is no longer required, and create a new block storage
each time a VM is instantiated again. Using this strategy,
the cost of the block storage can be included as part of
the cost per time unit of having a running VM instance.
Therefore, no changes are required in Malloovia’s model
to take this cost into account. However, new restrictions
are needed in Phase II to ensure that no on-demand
instances are created in a region for which the needed
image was not deployed in Phase I.

C. New variables

In addition to the idea of “Limiting Set” already present in
Malloovia, the model requires the concept of a “Deployment
Region”. Each instance class (IC) belongs to one (and only
one) Deployment Region, despite being part of one or more
Limiting Sets. Each VMI can be deployed in one (or more)
Deployment Region, which will make that VMI available for
all VMs in that region.

Deployment Regions and Limiting Sets are independent
concepts in theory, although they can be related in practice.
Limiting sets are required to model the limits imposed by
some cloud providers on the number of machines of each
type which can be run at once (and translates to concepts
such as “availability zones” and “regions” in AWS parlance).
Deployment Regions, on the other hand, are required to model
the link between the VMI storage and the instance class that
can use it (and translates to what AWS calls simply “regions”).

Each application a has an associated image, Ia, which has
a certain size SIa in GB.

Each deployment region r has new pricing parameters:

• ptr which is the price of transferring 1 GB from the
Internet to that region. This cost includes both the price
per transferred GB, which is usually zero, and the price

for the number of POST required, which is proportional
to the VMI size.

• psr which is the price of the storage, per GB and time
slot.

The unknowns solved by Malloovia are:
• XaiL which is the optimal number of on-demand VMs

of Instance Class ICi to be deployed in a time slot to run
application Aa, when the workload vector in that time
slot is L

• Yai which is the optimal number of reserved VMs of
Instance Class ICi to be purchased at the beginning of
the planning period, to run application Aa.

The extension requires new “artificial” unknowns:
• Zar which is a boolean indicating whether application

a is ever run in deployment region r (and thus the
corresponding image Ia has to be stored in that region).

D. Cost

The cost computed by the previous version of Malloovia has
to be increased by the following amount, to take into account
the cost of deploying the VMIs:

VMI deployment cost =
∑
a

∑
r

ZarSIa(ptr + T · psr) (1)

where T is the number of time slots in the deployment period.
Hence the new objective function to minimize is:

C =
∑
a

∑
i

Yaip
res
i T/t

+
∑
a

∑
i

∑
L∈L

XaiLp
dem
i H(L)

+
∑
a

∑
r

ZarSIa(ptr + T · psr)

(2)

E. Restrictions

To enforce that image Ia is stored in the same deployment
region where app a is run, new auxiliary variables are needed,
namely Var which are the number of levels in the LTWP in
which app a is used in region r. These can be computed as
follows:

Var =
∑
L∈L

∑
i∈Rdem

r

XaiL +
∑
i∈Rres

r

Yai (3)

where Rdem
r (respectively Rres

r) is the set of all indexes i cor-
responding to all on-demand (respectively reserved) Instance
Classes in the same deployment region r, and L the set of all
different workloads.

Using these new variables, and the auxiliary variables Zar,
the following restrictions should be enforced (in which M is a
number large enough, larger than the maximum possible Var,
which can be obtained from the limiting sets):

MZar − Var ≥ 0

Var −M(Zar − 1) ≥ 1
(4)

The first one forces Zar to be 1 whenever Var is not zero.
The second one forces Zar to be 0 whenever Var is zero (no
instances run application a in deployment region r at any time
slot). These values of Zar are used in the cost function as
shown above in eq. (1) and (2).

IV. EXPERIMENTS

This section shows the results from a set of experiments
aimed at comparing the new approach, Malloovia+I, with the
previous state-of-the-art approach, Malloovia, and analyzing
the savings that can be achieved with the new technique. In
addition, the experiments also explore which factors influence
these savings.

Regarding the latter, allocation problems are very complex
and have many parameters, including parameters about the
system (cloud providers used, pricing models, types of VMs,
number of regions...) and parameters about the workload
(number of applications, workload for each application and
size of the VMIs).

In order to carry out a representative set of experiments,
the case study presented in [6] was used as a base and many
of its parameters were changed in different experiments. This
case study included three applications with different workload
patterns: application 0 had periodic spikes each hour and no
load the rest of the time, application 1 had a workload more
evenly distributed throughout the hour and application 2 had
a combination of both. In addition, the average workload for
each application was different.

Experiments with only one of these applications were
carried out to determine if the shape of the workload influ-
ences the results. In addition, experiments using the three
applications at the same time and six and nine applications
(replicating two and three times the three base applications)
have been carried out to see the influence of the number of
applications.

For the parameters of the system, Amazon EC2 was selected
as an IaaS provider because it is the leader in the sector and
offers a variety of pricing models, types of VMs and regions.
Specifically, the prices on April 1 2020 of 19 regions were
used. Table I shows the base performance for each application
on the instance types used. The performance was defined in

TABLE I: Performance of different VM types

VM type rph app 0 rph app 1 rph app 2

c5.large 100 50 200
c5.xlarge 200 100 400
c5.2xlarge 390 195 780
c5.4xlarge 730 365 1460

TABLE II: VMI size and computational demand multipliers
used to modify the base values in the experiments

Factor Multipliers

Demand 1, 1/5, 1/10, 1/20
VMI Size 1, 10, 20, 30, 40, 50

Fig. 2: Percentage of the cost saved by Malloovia+I related to Malloovia

Fig. 3: VMIs deployed

requests per hour (rph) and extrapolated to each type of VM
using its ECU (EC2 Compute Unit). In order to take into
account the influence of the computational demand of the
applications, a demand factor that reduces the base demand
was introduced (see Table II).

Another very important parameter is the size of the VMIs
for each application. To explore its influence, a base value of
6, 10 and 5 GBs for application 0, 1, and 2 respectively were
selected, and then modified multiplying the values by a factor
in different experiments (see Table II).

This experimental design gave 144 variations of the pa-
rameters. Each variation was solved both with Malloovia
and Malloovia+I, resulting in 288 experiments. Malloovia

optimizes the system without taking into account the cost of
the VMIs. Thus, the VMI deployment cost had to be added
to the cost obtained by Malloovia, in order to obtain the real
total cost. Malloovia+I, on the other hand, takes this cost into
account for the optimization problem.

Fig. 2 shows the percentage of the cost saved by using Mal-
loovia+I instead of Malloovia. For instance, when only App2
is run, with a demand factor of 1/20 and a VMI size factor of
50, Malloovia+I obtains an allocation that costs $642.42, while
the one obtained by Malloovia costs $567.25 and, thus, the
percentage of the cost saved by using Malloovia+I is 11.67%,
as shown in the left-most point of the top green line of the
plot corresponding to App 2 in Fig. 2.

Fig. 4: Percentage of the cost that is computation cost

A first, somewhat obvious conclusion is that the larger the
average size of the VMIs, the greater the savings. A second
conclusion is that the computational demand is also a great
influence: in many occasions its influence is greater than the
influence of the size of the VMIs. For instance, executing only
the first application with the smallest VMI size (top-left graph
in Fig. 2), the savings are greater for computational demand
factor 1/20 (top green line) than for any tested VMI size for
demand factor 1 (bottom blue line).

Comparing the curves for different applications (top three
graphs of Fig. 2), it can be seen that the percentage saved
varies greatly. For instance, when only application 1 is exe-
cuted (center graph in the first row of Fig. 2), the savings are
always below 7%, but with application 0, it can reach 30%
for demand factor 1/20.

It could be expected that with more applications the savings
obtained with Malloovia+I would be greater, as there are more
VMIs (one per application) to deploy in each region used.
However, the experiments show that this is not the case, as can
be seen by studying the bottom row of Fig. 2, which compares
using 3, 6 or 9 applications with the same workload replicated
in each group of 3 applications, so that the average workload
is maintained. The graph shows that the savings are similar
independently of the number of applications. The cause for
this is that the percentage of the cost generated by the storing
of the images does not change with the number of applications,
as demonstrated below.

Two elements explain the savings obtained with Mal-
loovia+I: the difference in the number of VMIs deployed
(Fig. 3) and the relation of the computation cost to the storage
cost (Fig. 4).

Fig. 3 can be used to explain how the number of VMIs
deployed influences the savings. The size of the VMIs is not
represented because we have found that it does not make

a difference in the number of VMIs used, except for 9
applications and demand factor 1; however, with the same
number of VMIs and bigger size, the absolute savings are
greater.

The first result that can be explained with Fig. 3 is how the
computational demand influences the savings obtained with
Malloovia+I: in most cases, the new approach proposed in
this paper uses the same or fewer VMIs than Malloovia, but
when the computational demand factor is smaller (for instance,
with computational demand factor 1/20), the difference in the
number of VMIs is smaller, because fewer VMs are required
and, therefore, Malloovia does not use so many more regions
than Malloovia+I. This is not the case when only application
0 is executed and the demand factor is 1/20: this explains
the large percentage saved in this situation compared to other
demand factors, as already shown in the green line in the top-
left graph in Fig. 2.

The computational demand also influences the other element
that can be used to explain the savings of Malloovia+I: the
ratio of the computation cost to the storage cost. When the
computational demand is lower, the importance of the storage
cost, where Malloovia+I can obtain savings compared to
Malloovia, is more significant. This can be seen in Fig. 4,
which plots the percentage of the total cost that comes from
the computation in Malloovia. Where the computation cost is
almost 100% of the total cost, the savings that can be obtained
by Malloovia+I are very limited. Fig. 4 shows that the percent-
age of the cost attributed to computation is reduced when the
size of the VMIs increases (in each graph, the computation
cost percentage decreases when moving to the right) and that
it is also reduced when the computational demand decreases
(the lines corresponding to smaller computational demands
are below the lines corresponding to greater computational
demands).

V. CONCLUSIONS

This paper introduces a cost optimization technique for
cloud computing allocation of VMs in IaaS providers that
extends the previous state of the art by including the cost
associated with storing the VMIs. The new technique is called
Malloovia+I and extends a previous one, called Malloovia, by
including new variables in the model used.

A significant number of experiments have been carried out
to analyze how the new technique compares to the old one
and which factors are more significant. The experiments found
savings up to 20% (except in one particular case where they
reach 30%), but they are very dependent on the characteristics
of the workload and the system. The size of the VMIs, the
shape of the workload and the computational demand have
been found to be the most significant factors in the savings
that can be obtained by Malloovia+I.

Future work will study the cost of storing the root volume
of instances and other data used by the application, as well as
the cost of data transmissions between VMs.

REFERENCES

[1] Amazon, “Amazon EC2 instance types,” https://aws.amazon.com/ec2/
instance-types/, 2020, accessed Apr. 03, 2020.

[2] ——, “Amazon EC2,” https://aws.amazon.com/ec2/, 2020, accessed Apr.
03, 2020.

[3] Microsoft, “Microsoft azure virtual machines,” https://azure.microsoft.
com/en-us/services/virtual-machines/, 2020, accessed Apr. 03, 2020.

[4] Google, “Google compute engine,” https://cloud.google.com/compute/,
2020, accessed Apr. 03, 2020.

[5] Amazon, “Amazon machine images (ami),” https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/AMIs.html, 2020, accessed Apr. 03,
2020.

[6] J. Entrialgo, J. L. Dı́az, J. Garcı́a, M. Garcı́a, and D. F. Garcı́a,
“Cost Minimization of Virtual Machine Allocation in Public Clouds
Considering Multiple Applications,” in Economics of Grids, Clouds,
Systems, and Services, C. Pham, J. Altmann, and J. A. Bañares, Eds.
Cham: Springer International Publishing, 2017, vol. 10537, pp. 147–161.

[7] Flexera, “Flexera 2020 state of the cloud report,” Flexera, Tech. Rep.,
04 2020.

[8] S. Chaisiri, B. S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Transactions on Services
Computing, vol. 5, no. 2, pp. 164–177, Apr. 2012.

[9] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang,
“Cost-Aware Cooperative Resource Provisioning for Heterogeneous
Workloads in Data Centers,” IEEE Transactions on Computers,
vol. 62, no. 11, pp. 2155–2168, Nov. 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6205737/

[10] U. Bellur, A. Malani, and N. C. Narendra, “Cost optimization in multi-
site multi-cloud environments with multiple pricing schemes,” in 2014
IEEE 7th International Conference on Cloud Computing, Institute of
Electrical and Electronics Engineers, Inc. IEEE, Jun. 2014, pp. 689–
696.

[11] W. Wang, D. Niu, B. Liang, and B. Li, “Dynamic cloud instance
acquisition via IaaS cloud brokerage,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 6, pp. 1580–1593, Jun. 2015.

[12] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang, and M. R.-T. Lyu, “Towards
Operational Cost Minimization in Hybrid Clouds for Dynamic Resource
Provisioning with Delay-Aware Optimization,” IEEE Transactions on
Services Computing, vol. 8, no. 3, pp. 398–409, May 2015.

[13] J. L. Dı́az, J. Entrialgo, M. Garcı́a, J. Garcı́a, and D. F. Garcı́a, “Optimal
allocation of virtual machines in multi-cloud environments with reserved
and on-demand pricing,” Future Generation Computer Systems, vol. 71,
pp. 129 – 144, 2017.

[14] P. Yi, H. Ding, and B. Ramamurthy, “Budget-Optimized Network-Aware
Joint Resource Allocation in Grids/Clouds Over Optical Networks,”
Journal of Lightwave Technology, vol. 34, no. 16, pp. 3890–3900, Aug.
2016.

[15] P. lvarez, S. Hernndez, J. Fabra, and J. Ezpeleta, “Cost-driven provi-
sioning and execution of a computing-intensive service on the Amazon
EC2,” The Computer Journal, vol. 61, no. 9, pp. 1407–1421, Sep. 2018.

[16] S. Mireslami, L. Rakai, M. Wang, and B. H. Far, “Dynamic Cloud Re-
source Allocation Considering Demand Uncertainty,” IEEE Transactions
on Cloud Computing, pp. 1–1, 2019.

[17] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “SPANStore: cost-effective geo-replicated storage spanning
multiple cloud services,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles - SOSP ’13. Farminton,
Pennsylvania: ACM Press, 2013, pp. 292–308.

[18] G. Liu and H. Shen, “Minimum-Cost Cloud Storage Service Across
Multiple Cloud Providers,” in 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS). Nara, Japan: IEEE, Jun.
2016, pp. 129–138.

[19] C. Negru, F. Pop, O. C. Marcu, M. Mocanu, and V. Cristea, “Budget
constrained selection of cloud storage services for advanced processing
in datacenters,” in 2015 14th RoEduNet International Conference -
Networking in Education and Research (RoEduNet NER). Craiova,
Romania: IEEE, Sep. 2015, pp. 158–162.

[20] C. Negru, F. Pop, M. Mocanu, V. Cristea, A. Hangan, and L. Vacariu,
“Cost-aware cloud storage service allocation for distributed data gath-
ering,” in 2016 IEEE International Conference on Automation, Quality
and Testing, Robotics (AQTR). Cluj-Napoca, Romania: IEEE, May
2016, pp. 1–5.

[21] T. Shabeera, S. Madhu Kumar, S. M. Salam, and K. Murali Krishnan,
“Optimizing VM allocation and data placement for data-intensive ap-
plications in cloud using ACO metaheuristic algorithm,” Engineering
Science and Technology, an International Journal, vol. 20, no. 2, pp.
616–628, Apr. 2017.

[22] Y. Mansouri and A. Erradi, “Cost Optimization Algorithms for Hot and
Cool Tiers Cloud Storage Services,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). San Francisco, CA, USA:
IEEE, Jul. 2018, pp. 622–629.

[23] Y. Mansouri, A. N. Toosi, and R. Buyya, “Cost Optimization for
Dynamic Replication and Migration of Data in Cloud Data Centers,”
IEEE Transactions on Cloud Computing, vol. 7, no. 3, pp. 705–718,
Jul. 2019.

[24] Y. Mansouri and R. Buyya, “Dynamic replication and migration of data
objects with hot-spot and cold-spot statuses across storage data centers,”
Journal of Parallel and Distributed Computing, vol. 126, pp. 121–133,
Apr. 2019.

[25] S. Sajithabanu and S. R. Balasundaram, “Cloud based Content Deliv-
ery Network using Genetic Optimization Algorithm for storage cost,”
in 2016 IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS). Bangalore, India: IEEE, Nov.
2016, pp. 1–6.

[26] L. Jiao, J. Li, T. Xu, W. Du, and X. Fu, “Optimizing Cost for Online
Social Networks on Geo-Distributed Clouds,” IEEE/ACM Transactions
on Networking, vol. 24, no. 1, pp. 99–112, Feb. 2016.

[27] J. L. L. Simarro, R. M. Vozmediano, F. Desprez, and J. R. Cornabas,
“Image Transfer and Storage Cost Aware Brokering Strategies for
Multiple Clouds,” in 2014 IEEE 7th International Conference on Cloud
Computing. Anchorage, AK, USA: IEEE, Jun. 2014, pp. 737–744.

[28] D. Shen, F. Dong, J. Zhang, and J. Luo, “Cost-Effective Virtual Machine
Image Replication Management for Cloud Data Centers,” in 2014 IEEE
Intl Conf on High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th
Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS). Paris,
France: IEEE, Aug. 2014, pp. 229–236.

