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Abstract: The synthesis of two novel enol esters, namely hex-1-en-2-yl indole-2-carboxylate and
hex-1-en-2-yl 1-(hex-1-en-2-yl)-indole-2-carboxylate, is presented. Both compounds were generated
by addition of indole-2-carboxylic acid to 1-hexyne employing [RuCl2(η6-p-cymene)(PPh3)] and
[AuCl(PPh3)]/AgPF6, respectively, as catalysts.

Keywords: enol esters; hydro-oxycarbonylation reactions; hydroamination reactions; ruthenium
catalysts; gold catalysts

1. Introduction

The catalytic addition of carboxylic acids to alkynes is the most straightforward and
atom-economical method currently available to obtain enol esters, which are very useful intermediates
for organic synthesis [1–7]. A large number of Groups 8–11 metal complexes able to promote the
process have been reported in the literature, predominating those based on ruthenium and gold due
to their exquisite regio- and stereo-selectivity [1–8]. In this context, some years ago we disclosed
that the bis(allyl)-ruthenium(IV) derivative [RuCl2(η3:η3-C10H16)(PPh3)] (C10H16 = 2,7-dimethylocta-
2,6-diene-1,8-diyl; 1) is an excellent catalyst for the selective Markovnikov addition of carboxylic acids
to terminal alkynes [9]. As shown in Scheme 1, this complex is able to operate in aqueous medium
and does not require acidic or basic additives. In a series of independent works we also demonstrated
the wide substrate scope of complex 1, which allows the addition of both aromatic, aliphatic and
α,β-unsaturated carboxylic acids, not only to terminal alkynes, but also to 1,3-enynes and 1,n-diynes
(n = 3, 4, 5) [9–11].
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An interesting result, not published previously, was found while studying the reactivity of
indole-2-carboxylic acid (2) towards 1-hexyne (3) catalyzed by [RuCl2(η3:η3-C10H16)(PPh3)] (1) since,
in addition to the expected enol ester hex-1-en-2-yl indole-2-carboxylate (4), a second product is also
formed, namely hex-1-en-2-yl 1-(hex-1-en-2-yl)-indole-2-carboxylate (5) (see Figure 1), which results
from the addition of both the -CO2H and NH units of 2 to 1-hexyne molecules. Details are herein
presented, as well as characterization data are procedures to obtain enol esters 4 and 5 in high yield.
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1 Reactions were performed under N2 atmosphere employing 1 mmol of indole-2-carboxylic acid (2) 
and 1 mL of the corresponding solvent. 2 Based on the quantity of acid 2 consumed. 3 Determined by 
1H NMR spectroscopy. 
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2. Results and Discussion

As shown in Table 1, when an equimolar amount of compounds 2 and 3 was heated at 60 ◦C in
water with 2 mol% of the Ru(IV) complex 1 [9], a mixture of the novel enols esters 4 and 5 was formed
in 4.9:1 ratio (entry 1). Under these conditions the conversion of the starting carboxylic acid 2 was only
68% after 9 h, while 1-hexyne (3) was completely consumed in the reaction. The selectivity towards
the mono-addition product 4 could be significantly improved (4:5 ratio = 11.0:1) by performing the
reaction at 40 ◦C, but the conversion of 2 was lower (43%) even after 24 h of heating (entry 2). On the
other hand, in order to orient the process towards the formation of 5, a couple of experiments were
carried out using a 2:3 ratio of 1:2 and metal loadings of 2 and 5 mol% (entries 3 and 4). The results
obtained in such reactions were almost identical, showing the full conversion of 2 after 14 h and the
generation of a mixture of 4 and 5, with the mono-addition product 4 being again the major component
(ca. 3:1 ratio).

Table 1. Addition of indole-2-carboxylic acid (2) to 1-hexyne (3) catalyzed by complex 1. 1
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As shown in entry 5, the use of a large excess of 1-hexyne (10 equivalents) under refluxing
conditions did not lead to a significant improvement in selectivity and 4 was again the major product
formed (4:5 ratio = 2.3:1). Additional experiments replacing water by toluene, under conditions that
presumably could favor the formation of one or the other product, did not lead to the expected results
(entries 6 and 7). It should be noted at this point that, in the absence of complex 1, no reaction occurs
between 2 and 3.

Although enol esters 4 and 5 can be isolated in pure form after chromatographic work-up of the
reaction mixtures commented above, the yields were poor, particularly for 5 (up to 12%). This fact
prompted us to search for alternative catalysts that would allow the isolation of both compounds in
high yield. In this sense, taking advantage of the known ability of arene-ruthenium(II) complexes of
type [RuCl2(η6-p-cymene)(PR3)] to promote the Markovnikov addition of carboxylic acids to alkynes in
organic media [12–14], we found that enol ester 4 can be selectively generated by performing the reaction
between equimolar amounts of 2 and 3 in toluene at 80 ◦C employing [RuCl2(η6-p-cymene)(PPh3)]
(5 mol%) as the catalyst (Scheme 2). Under these conditions, we were able to isolate 4 in 84% yield, with
the 1H NMR spectrum of the crude reaction mixture showing the presence of only trace amounts of 5
and other species probably derived from the competitive anti-Markovnikov addition of 2 to 3 [12–14].
The IR and NMR spectra recorded for the isolated compound 4 showed the characteristic signals of
the NH (ν = 3340 cm−1 and δH = 9.53 ppm) and OC=CH2 units [δC = 101.6 (CH2) and 160.6 (C) ppm
and δH = 4.94 and 5.00 ppm (2JHH = 1.6 Hz)]. These data, along with those obtained through MS
accurate mass (HRMS) spectrometry, allowed to confirm its structure (see full details in the Materials
and Methods section; copies of the IR and NMR spectra are provided as Supplementary Materials).
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On the other hand, to synthesize the enol ester 5 in high yield we made use of the gold(I) cation
[Au(PPh3)]+, whose utility as catalyst for both hydroamination [15,16] and hydro-oxycarbonylation [17–19]
reactions of alkynes has been largely demonstrated. Thus, as shown in Scheme 3, when a mixture of
indole-2-carboxylic acid (2) and 1-hexyne (3) in 1:3 molar ratio was treated with 5 mol% of [Au(PPh3)]+,
generated in situ from [AuCl(PPh3)] and AgPF6, in toluene at 100 ◦C for 14 h, compound 5 could be
isolated in 71% yield. Inspection of the reaction crude by 1H NMR spectroscopy showed the presence
of a small amount of compound 4 (ca. 10%), which was easily separated by column chromatography.
Concerning the spectroscopic data of 5, the typical signals of the NH group were not further observed
in the IR and 1H NMR spectra. In addition, the latter confirmed the presence of two hex-1-en-2-yl
units in the product by the appearance of four olefinic signals at 4.85/4.91 (2JHH = 1.3 Hz, O-C=CH2)
and 5.22/5.48 ppm (2JHH = 1.1 Hz, N-C=CH2). The 13C{1H} NMR spectrum was also fully consistent
with the proposed formulation, the most characteristic signals being those of the C=CH2 unis, which
resonate at δC = 101.3 (O-C=CH2), 112.8 (s, N-C=CH2), 145.8 (s, N-C=CH2) and 159.3 (s, O-C=CH2)
ppm (see full details in the Materials and Methods section).
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3. Materials and Methods

Experimental procedures were performed under an inert atmosphere of dry nitrogen
employing vacuum-line and sealed-tube techniques. Organic solvents were dried and purified
following standard procedures [20]. The metallic complexes [RuCl2(η3:η3-C10H16)(PPh3)] (1) [9],
[RuCl2(η6-p-cymene)(PPh3)] [21] and [AuCl(PPh3)] [22] were synthesized as described in the literature.
A PerkinElmer 1720-XFT spectrometer (Waltham, MA, USA) was employed for IR measurements. NMR
measurements were carried out at room temperature using a Bruker DPX-300 instrument (Billerica,
MA, USA). The residual signal of the CDCl3 solvent was employed as reference for the 13C and 1H
NMR chemical shifts. HRMS data (QTOF Bruker Impact II mass spectrometer; Billerica, MA, USA)
were provided by the General Services of the University of Oviedo. For the chromatographic work-up
Merck silica gel 60 (230–400 mesh) was employed.

3.1. Synthesis of Hex-1-en-2-yl Indole-2-carboxylate (4)

Under nitrogen atmosphere, indole-2-carboxylic acid (2; 0.161 g, 1 mmol), 1-hexyne (3; 0.115 mL,
1 mmol), toluene (1 mL) and the ruthenium(II) complex [RuCl2(η6-p-cymene)(PPh3)] (0.028 g; 0.05
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v/v) as the eluent. Yield: 0.204 g (84%). Yellow oil. IR (neat): ν = 3340 (s), 3060 (w), 2956 (s), 2930 (s),
2871 (m), 1703 (s), 1668 (m), 1620 (w), 1576 (w), 1526 (m), 1466 (w), 1429 (w), 1379 (m), 1341 (m), 1311
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(s, 1H, NH), 7.78 (dd, 1H, 3JHH = 8.0 Hz, 4JHH = 1.0 Hz, CHarom), 7.51–7.37 (m, 3H, =CH and CHarom),
7.24–7.19 (m, 1H, CHarom), 5.00 and 4.94 (d, 1H each, 2JHH = 1.6 Hz, =CH2), 2.44 (t, 2H, 3JHH = 7.2 Hz,
CH2), 1.66–1.56 and 1.52–1.40 (m, 2H each, CH2), 0.99 (t, 3H, 3JHH = 7.2 Hz, CH3) ppm. 13C{1H} NMR
(75 MHz, CDCl3): δ = 160.6 (s, C=CH2), 156.5 (s, C=O), 137.4 and 127.4 (s, Carom), 126.8 (s, =C), 125.7,
122.7, 121.0 and 112.1 (s, CHarom), 109.7 (s, =CH), 101.6 (s, =CH2), 33.3, 28.7 and 22.2 (s, CH2), 13.9
(s, CH3) ppm. HRMS (ESI): m/z 266.11581, [M + Na+] (calcd. for C15H17O2NNa: 266.11570).

3.2. Synthesis of Hex-1-en-2-yl 1-(Hex-1-en-2-yl)-indole-2-carboxylate (5)

Under nitrogen atmosphere, indole-2-carboxylic acid (2; 0.161 g, 1 mmol), 1-hexyne (3; 0.345
mL, 3 mmol), toluene (1 mL), the gold(I) complex [AuCl(PPh3)] (0.025 g; 0.05 mmol; 5 mol%) and
AgPF6 (0.013 g; 0.05 mmol; 5 mol%) were introduced into a Teflon-capped sealed tube, and the
reaction mixture stirred at 100 ◦C for 14 h. After elimination of the solvent under reduced pressure,
the crude reaction mixture was purified by column chromatography over silica gel using an ethyl
acetate-n-hexane mixture (1:20 v/v) as the eluent. Yield: 0.231 g (71%). Yellow oil. IR (neat): ν = 3061
(w), 2957 (s), 2929 (s), 2872 (m), 1732 (s), 1656 (m), 1612 (w), 1570 (w), 1520 (m), 1477 (w), 1466 (w),
1446 (m), 1402 (w), 1390 (w), 1319 (w), 1267 (w), 1171 (s), 1147 (s), 1118 (m), 1094 (w), 1048 (m) cm−1.
1H NMR (300 MHz, CDCl3): δ = 7.70 (dd, 1H, 3JHH = 7.0 Hz, 4JHH = 1.0 Hz, CHarom), 7.46–7.27 (m, 3H,
=CH and CHarom), 7.22–7.16 (m, 1H, CHarom), 5.48 and 5.22 (d, 1H each, 2JHH = 1.1 Hz, N-C=CH2),
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4.91 and 4.85 (d, 1H each, 2JHH = 1.3 Hz, O-C=CH2), 2.49 (t, 2H, 3JHH = 7.0 Hz, CH2), 2.37 (t, 2H,
3JHH = 7.2 Hz, CH2), 1.59–1.53 (m, 2H, CH2), 1.45–1.36 (m, 6H, CH2), 0.95 (t, 3H, 3JHH = 7.2 Hz, CH3),
0.87 (t, 3H, 3JHH = 7.0 Hz, CH3) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ = 159.3 (s, O-C=CH2), 156.5
(s, C=O), 145.8 (s, N-C=CH2), 139.9 and 127.3 (s, Carom), 126.0 (s, =C), 125.6, 122.4, 121.1 and 112.0
(s, CHarom), 112.8 (s, N-C=CH2), 111.6 (s, =CH), 101.3 (s, O-C=CH2), 36.2, 33.2, 29.3, 28.7, 22.4 and 22.1
(s, CH2), 13.8 (s, 2C, CH3) ppm. HRMS (ESI): m/z 348.19401, [M + Na+] (calcd. for C21H27O2NNa:
348.19395).

4. Conclusions

In summary, two novel enol esters, namely hex-1-en-2-yl indole-2-carboxylate (4) and
hex-1-en-2-yl 1-(hex-1-en-2-yl)-indole-2-carboxylate (5), have been synthesized by catalytic addition of
indole-2-carboxylic acid to 1-hexyne and spectroscopically characterized.

Supplementary Materials: The following are available online, Figures S1–S4: 1H, 13C{1H}, DEPT-135 NMR and
IR spectra of compound 4, Figures S5–S8: 1H, 13C{1H}, DEPT-135 NMR and IR spectra of compound 5.
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