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Abstract Chlorophyll-a (hereafter referred to as Chl-a) is a recognized indicator for 

phytoplankton abundance and biomass –hence, an effective estimation of the trophic 

condition– of water bodies as lakes, reservoirs and oceans. Indeed, Chl-a is the primary 

molecule responsible for photosynthesis. A strong and robust Bayesian nonparametric 

technique, termed Gaussian process regression (GPR) approach, for foretelling the 

dependent variable Chl-a concentration in Tanes reservoir from a dataset concerning to 

268 samples is shown in this paper. Ten years (2006–2015) of monitoring water quality 

variables (biological and physico-chemical independent variables) in the Tanes 

reservoir were used to build this mathematical GPR-relied model. As an optimizer, the 

method known as Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGSB) 

iterative algorithm was used; this allows the selection of kernel optimal parameters 

during the GPR training phase, which greatly determines the regression precision. The 

results of the current investigation can be summarized in two. Firstly, the relevance of 

each input variable on Chl-a concentration in Tanes reservoir is determined. Secondly, 

the Chl-a can be successfully predicted using this hybrid LBFGSB/GPR–relied model 

(R2 and r values were 0.8597 and 0.9306, respectively). The concordance between 
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observed data and the model clearly proves the high efficiency of this innovative 

approach. 

 

Keywords Chlorophyll-a; Gaussian process regression (GPR); Bayesian statistics; 

Regression analysis; Reservoir water quality 

 

1 Introduction 

Reservoirs and lakes are large bodies of standing water and multipurpose use (drinking 

water storage, hydropower, irrigation or simply leisure). Chl-a is an extensively applied 

environmental indicator of the algae or phytoplankton biomass growth –since it is found 

in every single photosynthesizing organism– and of the eutrophication process in 

reservoirs, lakes and oceans (Latif et al. 2003). 

 

Chlorophylls are a family of green pigments (forms a, b, c, d, e and f) found in 

cyanobacteria and in all those organisms that contain chloroplasts or tylocoidal 

membranes in their cells, which includes plants and various algae (Wetzel 2001; 

Schinck et al. 2020). Chl-a is the primary molecule (found in every single 

photosynthesizing organism) responsible for photosynthesis, a process that enables 

plants and algae to produce energy from sunlight.  

 

Chlorophyll (and thus phytoplankton) can be easily quantified using its known optical 

properties (each form reflects slightly different ranges of green wavelengths). The 

optical measure of chlorophyll concentration is a simple and accurate method to 
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estimate the phytoplankton (microscopic algae) concentration and, indirectly, the 

biological activity. In this way, monitoring chlorophyll levels is a direct way of tracking 

phytoplankton growth and therefore, eutrophication processes in reservoirs and lakes. 

 

Large quantities of algae in a reservoir have noteworthy consequences on its biological 

and physico-chemical processes. It is well known that algal blooms lead to water quality 

decreasing –even becoming toxic– in reservoirs and lakes. The proliferation of algal 

blooms, high Chl-a levels, are associated with harmful algal blooms –algal blooms 

containing toxins– (Pip and Bowman 2014; Yuan et al. 2014; Vilán Vilán et al. 2013; 

Schinck et al. 2020). For example, cyanotoxins released by some cyanobacteria in 

reservoir water cause serious problems if they are consumed by humans or animals, 

direct or indirectly, posing a threat to drinking and recreational water (Watzin et al. 

2006, Kalaji et al. 2016). In this sense, when the cyanotoxin concentration is not 

available, the knowledge of the Chl-a concentration can be considered an alternative 

measure to the cyanobacteria presence in a reservoir and, even an estimate of harmful 

cyanobacterial blooms (HABs) (McQuaid et al. 2011; Vilán Vilán et al. 2013; Schinck 

et al. 2020). Hence, Chl-a concentration forecasting is crucial in water quality 

management to prevent this kind of contamination and avoid potential health risks 

(Wheeler et al. 2012; Schinck et al. 2020). Additionally, Chl-a was chosen as the 

parameter to indicate phytoplankton biomass required by the European Commission 

Water Framework Directive (Directive 2000/60/EC) and other European directives. 

However, Chl-a prediction in reservoirs and lakes has not been completely successful 

yet (Di Toro et al. 1971; Brown et al. 2000; Tufford and McKeller 1999; Reynolds 

2006).  
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Water quality Laplacian mathematical models based on reservoir or lake internal 

physico-chemical processes require an enormous quantity of information that in practice 

is not accessible, or cannot be obtained in its entirety, and presents a difficult 

implementation on the computer and it is computational time consuming. 

  

In this study, a new hybrid regressive model based on Gaussian Process Regression 

(GPR) technique to foretell the Chl-a concentration in Tanes reservoir (located in 

Asturias, Northern Spain) is applied with success (see Figs. 1a and b). Algal abnormal 

proliferation can be a serious environmental problem in water bodies like the Tanes 

reservoir. This reservoir is used to supply drinking water to the central area of Asturias. 

Hence, the need to avoid major risks such as the presence of toxic algae blooms using 

Chl-a concentration as an early alarm. 

 

Fig. 1 a Aerial view of the Tanes reservoir; b a closer view of the Tanes reservoir 

  

As a result, the implementation of the innovative technique that combines the Gaussian 

process regression (GPR) approximation (Rasmussen 2003; Dym and McKean 2008; 

Ebde 2015) with the optimization algorithm Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGSB) (Liu and Nocedal 1989; Byrd et al. 1994; Zhu et al. 1997; 

Fei et al. 2014) to foretell the Chl-a concentration could be an attractive methodology 

since, as far as authors know, it has never been tackled in prior researches about water 

quality in reservoirs and lakes before. Moreover, the GPR technique is a statistical 

learning methodology developed by statistics and Bayesian analysis, which is capable 

of dealing with non-linearities, including interactions among variables (Rasmussen 
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2003; Dym and McKean 2008; Ebden 2015). If we compare it with other classical and 

metaheuristic regression techniques, GPR approximation presents some benefits 

(Rasmussen and Williams 2005): (1) GPR has a remarkable ability to be widespread; 

(2) the GPR optimal parameters can be determined using heuristic optimizers; (3) the 

GPR results show an evident probabilistic significance; (4) the GPR works well on 

small datasets; (5) it makes use of the whole information available; and (6) moreover, it 

has the ability to provide uncertainty measurements on the predictions, which is the 

main characteristic that differentiates it from other regression methods. In effect, the 

LBFGSB optimizer has been used here satisfactorily to calculate the optimal GPR 

hyperparameters. In addition, former investigations indicate that GPR is a very 

appropriate tool in a large number of real applications as the estimation of the 

chlorophyll concentration in subsurface waters from remote sensing data (Pasolli et al. 

2010), computational fluid dynamics (CFD) (Duan et al. 2019), geometrical 

characteristics of cladding tracks (Wang et al. 2020), efficiency of a solar/waste energy 

boosted dehumidification/regeneration cycle with a solid adsorbent bed (Akhlaghi et al. 

2019), blood pressure measurement (Alghamdi et al. 2020), state of health for lithium 

battery (Li et al. 2020), building energy use (Zeng et al. 2020), time series analysis 

(Ambrogioni and Maris 2019), wind speed prediction (Cai et al. 2020), gravity field 

modeling (Gao and Liao 2019), sunspot cycle prediction (Gonçalves et al. 2020) and so 

on. However, it has never been used for evaluating Chl-a concentration from water 

quality certificates in reservoirs and lakes, taking into account the functions attributed to 

the Cantabrian Basin Authority such as the administration and control of the public 

hydraulic domain of its territorial scope. 

 



6 

 

The principal goal of the current research was to foretell the output Chl-a concentration 

in Tanes reservoir from the remaining input biological and physico-chemical parameters 

–measured from periodic samplings required by the Water Framework Directive 

(Directive 2000/60/EC) in all water bodies– employing Gaussian process regression 

(GPR) along with the LBFGSB optimizer. This model defines a new algorithm to 

analyze phytoplankton density in lakes and reservoirs, measuring the Chl-a 

concentration in them (Chen 1970; Smith 2006; Riegl et al. 2014). Indeed, the Chl-a 

concentration can be considered a fundamental indicator of excess nutrients such as 

total phosphorus and nitrogen in a reservoir or lake, and ultimately, of the existence of 

eutrophication in those bodies of water. 

  

This paper structure is as follows: Section 2 presents the experimental arrangement, all 

the variables included in this research and GPR methodology; Section 3 draws up the 

findings gathered with this novel technique by collating the GPR results with the 

observed values as well as the significance ranking of the input variables; and 

conclusively, Section 4 concludes this study with an inventory of principal results of the 

investigation. 

  

2 Materials and Methods 

2.1 Study Area 

Tanes reservoir is inside the Natural Park of Redes (Natural Reserve and Reservation of 

the Biosphere), in the south of Asturias (a region in Northern Spain), between the 

municipalities of Caso and Sobrescobio in the Nalon valley. The project finished in 

1978, with a capacity of 33.27 hm3, a surface of 159 ha, and a maximum depth of 95 m. 
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This reservoir is linked to the Rioseco reservoir in order to pump water from this one to 

the previous one during the night and down from Tanes to Rioseco during the day to 

produce energy. The Rioseco reservoir is located 3 km downstream. Its capacity is 4.3 

hm3, its surface, 63 ha and its maximum depth, 28.5 m. Both Tanes and Rioseco 

reservoirs supply water to almost the entire urban center of Asturias. Other uses of 

Tanes reservoir are hydroelectric and, recently, recreational. The reservoir has an 

ornithological interest due to the presence of ducks and herons, and, with a 

representative fauna, it is a hunting refuge. 

 

The research area is located in the Central Carboniferous Basin with a wide diversity of 

lithologies that include mainly quartzite and limestone materials. The Tanes reservoir 

basin is made up of quartzites, sandstones and slates. The predominant materials are 

basic. This section of the river, where Tanes reservoir is located, receives underground 

discharges from the carbonate aquifers that are generally disconnected from each other 

by slates with sandstone intercalations and by quartzites, both waterproof. 

 

2.2 Experimental Dataset 

The numerical outcome used for the LBFGSB/GPR analysis were acquired over 10 

years (from 2006 to 2015) from 268 samples monthly (minimum frequency, sometimes 

bimonthly even weekly) picked up from January 16, 2006, to December 31, 2015, 

following the sampling protocols for lakes and reservoirs developed by Spanish 

Ministry for the Ecological Transition and Demographic Challenge in agreement with 

those validated by the European Union (Smith et al. 2008; World Health Organization 

1998). Samples were taken with a Niskin hydrographic bottle at the reservoir maximum 
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depth site –established with a depth gauge (Willame et al. 2005)–. The Niskin bottle is 

like a tube with stoppers at each end that allows vertical sampling at desired depths (see 

Fig. 2a). These depths were selected at equal intervals in the euphotic zone (enough 

illuminated region for photosynthesis) calculated from Secchi depth –where the pattern 

on a Secchi disk (see Fig. 2b), is no longer visible because of the water turbidity–. Thus, 

five subsamples were collected (Brönmark and Hansson 2005; Quesada et al. 2006) and 

then homogenized to obtain a composite sample in which the Chl-a and phytoplankton 

content were determined. The other experimental data considered in this work were the 

common biological and physico–chemical parameters evaluated in limnological studies 

(Brönmark and Hansson 2005; Negro et al. 2000; Reynolds 2006) and were analyzed in 

the field (Water temperature, pH, conductivity, Dissolved Oxygen and Secchi Depth) or 

in an accredited laboratory. 

  

Fig. 2 a A Niskin bottle; b examples of Secchi disks 

 

2.3 Variables of the Model  

The aim of this work was to find a way to foretell the Chl-a concentration (µg/L) in 

Tanes reservoir. Chl-a is extensively employed as algae biomass index and 

consequently, as a sign of reservoirs and lakes eutrophication (Latif et al. 2003). High 

chlorophyll content in reservoirs and lakes waters normally indicates the existence of 

algal blooms (the United States Environmental Protection Agency 2014) and therefore a 

decrease in these waters’ quality. Certainly, chlorophyll is a noteworthy pigment in 

green organisms because it is responsible for absorbing the light energy needed in the 

photosynthetic process. Phytoplankton, made up of green organisms, is related to the 
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Chlorophyll presence (American Public Health Association 2005). Chlorophyll 

concentration is also accepted as a substitute measure of the presence of cyanobacteria 

which can generate cyanotoxins in the water body and the subsequent potential risk to 

public health (Wheeler et al. 2012; Schinck et al. 2020). The built model (GPR-relied 

model) uses the concentration of different kinds of phytoplankton, as well as some 

chemical and physico-chemical parameters, as independent predictors.  

Input parameters: 

 Biological variables: 

 Cyanobacteria concentration (mm3/L): photosynthetic bacteria in the 

phytoplankton community (see Fig. 3a), promoted in fertilized environments, 

especially in eutrophic ones. Their presence in freshwater ecosystems is a matter 

of concern, especially in lentic water bodies (Quesada et al. 2006; Texeira and 

Rosa 2006; Willame et al. 2005; Vilán Vilán et al. 2013). 

 Diatoms concentration (mm3/L): another frequent organism in the phytoplankton 

community (photosynthetic microorganisms that drift about in water; see Fig. 

3b). 

 Euglenophytes concentration (mm3/L): all of them are primary producers 

(organisms that build complex organic molecules from simple inorganic 

compounds), that is, they can photosynthesize and they are part of 

phytoplankton (see Fig. 3c). 

 Dinophlagellata concentration (mm3/L): another kind of phytoplankton, 

unicellular and eukaryote –kingdom Protista– (see Fig. 3d). 



10 

 

 Chrysophytes concentration (mm3/L): in essence photosynthetic even though 

some of them can be organotrophic (see Fig. 3e).  

 Chlorophytes concentration (mm3/L): both single and many-celled algae species 

in phytoplankton (see Fig. 3f).  

 Chryptophytes concentration (mm3/L): unicellular tiny flagellated kind of 

phytoplankton (see Fig. 3g). 

 

Fig. 3 Microorganisms in Tanes reservoir whose concentrations were used as input 

variables: a Cyanobacteria; b Diatoms; c Euglenophytes; d Dinophlagella; e 

Chrysophytes; f Clorophytes; and g Chryptophytes 

 

 Physico-chemical variables: 

 Water temperature (ºC): reservoir average thermal energy measure. It affects the 

physical and chemical process and biological activity and growth in water 

ecosystems. 

 Orthophosphates concentration (mg 3

4PO  /L): an expression of the reactive 

phosphates –i.e. the phosphorus form taken up by plants– density. High values 

have a significant impact on water ecosystems since they promote the growth of 

phosphate-dependent organisms –algae and phytoplankton in general, for 

instance–, that can lead to eutrophication decreasing water quality and causing 

the extinction of some oxygen-dependent organisms. 
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 Total phosphorus concentration (mg P/m3). It includes the above mentioned 

phosphates and the other phosphorus forms in both the soluble and the sestonic 

water fractions. Phosphorus is mostly present in the environment as 

orthophosphates and can be considered a reservoir of them since all the other 

forms can be converted into orthophosphates depending on environmental 

conditions. Hence, Phosphorus is a limiting factor in biological productivity.   

 Nitrite concentration (mg 2NO  /L). Nitrite and nitrate are ubiquitous and 

naturally occurring ions in the environment. Both are products of the oxidation 

of nitrogen. Nitrite is a potential problem in aquatic environments. It is capable 

of inducing methemoglobinemia in a wide range of species, including humans, 

and other multiple physiological effects. It can reach water bodies from waste-

water disposal, from nitrate reduction and also from ammonia oxidation. 

 Nitrate concentration (mg NO3
−/L): It is one of the most abundant nitrogen 

forms in water –since the main source of nitrogen compounds in water are 

fertilizers– and the one used by plants. High consumption cause 

methemoglobinemia in humans and many animals since their bodies convert a 

portion of that nitrate into nitrite. In large quantities, it is also harmful to fish and 

can cause, together with a high concentration of phosphate, eutrophication 

processes, strongly linked to cyanobacteria blooms and their toxic metabolites, 

the cyanotoxins (Schinck et al. 2020). 

 Ammonium concentration (mg 4NH /L). Together with nitrite and nitrate, 

ammonium is the major inorganic nitrogen compound occurring in surface 

waters. In oxidizing media, it can be converted into nitrate, or nitrite if the 
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oxidation process is incomplete. When dissolved in surface water, ammonia 

exists in two forms: NH3
0 (unionized) and NH4

+ (ionized, called ammonium). 

The unionized form can enter into fish, and once inside, some converts to the 

ionized form, which causes cellular damage. 

 Dissolved oxygen concentration (mg O2/L): a measure of oxygen diffused in 

water from the atmosphere and crucial for most aquatic species. Adequate 

dissolved oxygen concentration is necessary to minimize fish stress. Algal 

blooms produce much oxygen during the day but they also can cause its 

lowering at night or when they die and decompose.  

 Iron concentration (mg Fe/L). Iron is found in the aquatic environment as a 

result of natural runoff, erosion of certain soils and other geological sources, 

besides its presence in water wastes that end up in water bodies. It is a trace 

element essential for life but in higher concentrations can be toxic. Its oxidized 

form (iron hydroxide) may precipitate out and form a slim on bottom sediment 

which decreases light penetration in water bodies inhibiting algal growth. 

 Manganese concentration (mg Mn/L). Manganese is a crucial micronutrient in 

phytoplankton growth. It has been shown that manganese concentration affects 

phytoplankton composition (Patrick et al. 1969). Water bodies with significant 

iron and manganese levels can cause blooms of ferromanganese-depositing 

bacteria declining algal abundance (Sheldon and Skelly 1990). 

 Conductivity (S/cm): refers to the water ability to conduct electricity which in 

turn depends on water salinity that affects phytoplankton concentration and 

composition (Redden and Rukminasari 2008). 
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 Volume of water (hm3). It represents the quantity of water in the reservoir at the 

sampling time and it varies according to the impoundment purpose (drinking 

water supply, hydroelectric use, etc.). This volume affects all substance 

concentrations in it. High volume dilutes the wastewater that reaches the 

reservoir reducing substances concentrations and consequently, their toxicity 

and the risk of eutrophication. In this way, the trophic state improves. 

 pH: a measure of the water acidity/alkalinity which affects biological and 

chemical processes and an indicator of the eutrophication process.   

 Secchi depth (m). It is a measure of water transparency/turbidity applied in the 

estimation of algae concentrations in water bodies. Therefore, it is related to 

dissolved oxygen concentration. It is also used, together with other parameters 

as phosphorus, nitrogen, chlorophyll, etc., to assess the trophic condition of a 

water body. 

2.4 Gaussian Process  Regression (GPR) 

A Gaussian process (GP) is a stochastic process that generates samples over time 

 t t
X


in such a way that it does not affect the finiteness of a linear combination 

tX  

having (or more generally any linear function of the sample function
tX ), linear 

combination that will normally be distributed (Rychlik et al. 1997; Bishop 2011;  Daemi 

et al. 2019; Li et al. 2020). Let’s assume that   , / 1, 2,...,i iT y i N x  describes the 

training collection data of the Gaussian method. When we approximate a regression 

problem using Gaussian processes (also termed kriging), the following hypothesis is 

made: for a Gaussian process f observed at the x  coordinates, the vector of 
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values  f x is only a sample of a multivariate Gaussian distribution of dimension equal 

to the number of observed coordinates n. It is a well-known fact that Gaussian processes 

can be utterly established by their second-order statistics. Hence, supposing a Gaussian 

process with a zero mean, the definition of the covariance matrix K (positive definite 

kernel) will completely determine the performance of the Gaussian process. The 

covariance matrix permits to define Gaussian process’ concepts like isotropy, 

stationarity, smoothness and periodicity. The following is a list of some common 

covariance functions used in many regression problems (Rychlik et al. 1997; 

Rasmussen and Williams 2005; Dym and McKean 2008; Bishop 2011; Daemi et al. 

2019; Li et al. 2020): 

 Linear:  , T

LK  x x x x  

 Squared exponential:  

2

22 2,

d

SE fK e


  x x  

 Rational quadratic:    2
, 1 , 0RQK d






   x x  

 Periodic:  

2

2

2sin
2

,

d

PK e

 
 
 



 x x   

 Ornstein–Uhlenbeck:  

2

2

2sin
2

,

d

OUK e

 
 
 



 x x  

where d is equal to d  x x , is the characteristic length-scale of the process 

and 2

f is the signal variance. In this study, the squared exponential kernel, also called 

radial basis function (RBF), was used due its better performance compared to other 

kernels with a large volume of training data. It is clear that the results of this approach 

relied on Gaussian processes (GPs) rely on the values of the hyperparameter   (for 
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example, ℓ and 2

f values) since these values determine the behavior of the model. In 

practice, the real experimental data are noisy observations so that: 

 f  y x  (1) 

where   depicts the white noise as an additive term in Eq. (1). In practice, it is common 

to consider  20, nN  , which means that Gaussian noise will be independent and 

identically distributed, being 
n  the standard deviation of this noise. To fix ideas, it is 

possible to take into account a finite ensemble of the noisy real experimental data as an 

separate Gaussian procedure expressed as (Rasmussen and Williams 2005; Bishop 

2011; Daemi et al. 2019; Li et al. 2020): 

       2 2, , 0, ,n ij n ijGP m K GP K      y x x x x x  (2) 

where ij is the Kronecker delta distribution and 

   

             , ,
T

m E f

K Cov E f m f m

   

       
 

x x

x x x x x x x x  

(3) 

Therefore, according to the hypothesis of a zero mean 

distribution,     0, , ,f N K  x x x , we have that  , ,K  x x  is termed covariance 

matrix for all possible pairs  , x x  of a given set of hyperparameters  . In this case, the 

logarithmic marginal probability is expressed by: 

           
1 1

log , , log det ,
2 2

log 2
2

T
p f f K f K

n

  



    



x x x x,x x x,x

 

(4) 
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The calculation of the maximum of this marginal likelihood with respect to   

determines the whole requirement of the Gaussian process f. Note in (4) that the first 

term on the right-hand side appertains to a penalization term as a consequence of the 

unsuitability of the model to fit to the experimental values while the second term is a 

penalization term that grows in proportion to the intricacy of the model. 

 

Making predictions about an unobserved value  f x  in the x  coordinate, after 

specifying  , is just an issue of extracting samples from the forecasted distribution 

    , , ,p y f N y A B  x x x  where the subsequent estimation of the mean A is 

expressed by: 

     
1

, , , ,A K K f 
  x x x x x

 

(5) 

and the subsequent estimation of the variance is determined by: 

  

       
1

, , , , , , , ,
T

B K K K K   
    x x x x x x x x

 

(6) 

where: 

  , ,K   
x x : would be the variance matrix at the new unobserved point


x  for a 

given vector of   hyperparameters; 

  , ,K  
x x : would be the covariance matrix between a new unobserved 

value


x and all the remaining observed values of the x coordinate for a given 

vector of   hyperparameters; 

  , ,K  x x : is the covariance matrix for all possible pairs  , x x , as previously 

defined. 
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It is possible to point out that the subsequent mean estimation  f 
x at the new 

unobserved point 
x is expressed as a linear combination of the observed values of  f x . 

Additionally, the variance of  f 
x is independent of the observed values of  f x . 

 

Hence, the GPR technique is relied on a nonparametric methodology since its predictive 

capacity falls on the observed values y and on the input data. Following this procedure, 

the values  , ,f nl    are called the GPR model hyperparameters (Lantz 2019). In 

order to determine the optimal hyperparameters  arg max log ,p X


   y , it is 

possible to employ any standard optimiser after parameter initialization. In this 

investigation work, the optimisation method, termed LBFGSB algorithm (Liu and 

Nocedal 1989; Byrd et al. 1994; Zhu et al. 1997; Fei et al. 2014) described below, is 

successfully applied. 

 

2.5 Approach Accuracy 

This novel LBFGSB/GPR–based method was developed with twenty predictive input 

variables already described in subsection 2.3 above. The Chl-a concentration is, as we 

know, the dependent variable to be predicted. In order to accurately and reliably 

forecast Chl-a from the twenty remaining input variables, it is mandatory to select the 

best model that fits the observed dataset. Although several possible statistics can be 

applied to ascertain the goodness–of–fit, the rule employed in this study was the 

coefficient of determination 2R (Knafl and Ding 2016; McClave and Sincich 2016). The 

coefficient of determination is a statistic employed in the scope of a statistical model 

whose principal objective is to foretell upcoming results or to check an assumption. 
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Next, we will call the observed values it versus the values predicted by the model iy . 

Now we can define the following sums of squares given by (McClave and Sincich 

2016): 

  



n

i

itot ttSS
1

2
: is the overall sum of squares, proportional to the sample 

variance. 

  



n

i

ireg tySS
1

2
: is the regression sum of squares, also termed the explained 

sum of squares. 

  



n

i

iierr ytSS
1

2
: is the residual sum of squares. 

where t is the mean of the n observed data: 





n

i

it
n

t
1

1
 

(16) 

Considering the former sums, the coefficient of determination is specified by the 

following equation: 

2 1 err

tot

SS
R

SS
   

(17) 

Moreover, the GPR methodology relies heavily on three hyperparameters (Rasmussen 

2003; Dym and McKean 2008; Ebden 2015): 

 Variance (
2

f ): this parameter refers to the variance of the signal; its purpose is 

to control the vertical range of the kernel function. 

 Lengthscale ( ): this parameter provides the characteristic size of the length. It 

allows controlling the horizontal scale where the kernel function alters. 
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 Gaussian noise variance (
2

n
): this parameter is the variance of a Gaussian 

additive white noise 
 20, nN 

.  

 

It is noteworthy to consider that the GPR technique largely relied on the determination 

of all its three optimal hyperparameters that we have just pointed out above. In this 

research, a numerical optimizer, denominated Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGSB) iterative algorithm (Liu and Nocedal 1989; Byrd et al. 

1994; Zhu et al. 1997), is employed here to determine these parameters because of its 

ability for solving unconstrained nonlinear optimization problems. Note that LBFGSB 

algorithm belongs to quasi-Newton methods and is therefore an extension of the secant 

method to tackle multidimensional problems. Furthermore, LBFGSB algorithm consists 

of five steps (Fei et al. 2014): 

 Gradient projection; 

 Generalized Cauchy point calculation; 

 Subspace minimization; 

 Line searching; and 

 Hessian approximation. 

  

3 Results and Discussion 

All the twenty input independent variables (seven biological variables and thirteen 

physico-chemical variables) are shown in Tables 1 and 2, respectively. In this study, the 

total number of samples used here was 268, that is to say, 268 experimental samplings 
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were collected and processed in Tanes reservoir according to the European Water 

Quality Directive (Directive 2000/60/EC). 

 

Table 1 Set of biological input independent variables used in this investigation: names, 

means and standard deviations 

 

Table 2 Set of physico-chemical input independent variables used in this investigation: 

names, means and standard deviations 

 

To confront this complex problem here, it is necessary to split the complete set of data 

into two parts: (1) a training set comprising 80% of the data; and (2) a testing set 

comprising the remaining 20% of the data. The key idea is to build a GPR-relied model 

with training data by determining the optimal parameters with the LBFGSB optimizer 

and then apply it to the test data to obtain predictions.  

 

As stated above, the output variable (dependent variable) in this study is the Chl-a 

concentration dealt with by means of the LBFGSB/GPR–relied method. The selection 

of the optimal hyperparameters is a key factor in the performance of this method as we 

see above: (1) the lengthscale  and variance 
2

f  of the radial basis function (RBF) 

kernel; (2) the objective function value; and (3) Gaussian noise variance 2

n . The 

objective function used in the hyperparameter optimisation process is the –log 
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likelihood value (see Eq. 4). In this way, Table 3 indicates initial intervals of the three 

hyperparameters of the LBFGSB/GPR–relied approach fitted in this investigation. 

 

Table 3 Search space for the three hyperparameters of the LBFGSB/GPR–relied 

approach fitted in this investigation 

 

According to this methodology, Table 4 identifies the optimal parameters of the best 

fitted GPR–relied approach encountered with the LBFGSB optimizer. 

 

Table 4 Optimal hyperparameters of the best fitted GPR–relied model encountered with 

the LBFGSB optimizer: variance 
2

f  and lengthscale  for the RBF kernel, the 

Gaussian noise variance 2

n , and the corresponding objective function value for the 

optimized models for the training set 

 

The value of R2 was determined by employing this optimized approach to the testing 

dataset. The unit Gpy, used to implement the Gaussian technique in python (GPy 2014; 

Ciaburro 2016; Stone 2016), in combination with the LBFGSB optimizer (Liu and 

Nocedal 1989; Byrd et al. 1994; Zhu et al. 1997; Fei et al. 2014), were employed to 

build the definitive regression approach. 

 

Considering the calculations accomplished, the LBFGSB/GPR–relied technique has 

permitted to construct a model with high allowances to assess the Chl-a concentration 
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by means of the test dataset. Certainly, the value of R2 of the best GPR approach was 

0.8597 with a correlation coefficient r of 0.9306 for the dependent Chl-a variable. 

 

Additionally, we have constructed models with other state of the art methods for 

comparison purposes such as the Multilayer Perceptron (MLP), Support Vector 

Regression (SVR) and Random Forest (RF) and, in all cases, the LBFGSB/GPR gets 

better results. The results can be seen in Table 5. 

 

Table 5 Different error metrics (coefficient of determination (R2), correlation 

coefficient (r), Mean Bias Error (MBE), Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE)) for different regression methods (Gaussian Process Regression 

(GPR), Multilayer Perceptron (MLP), Support Vector Regression (SVR) and Random 

Forest (RF)) to construct the Chlorophyll model 

 

A pictorial graph of the first-order and second-order terms that create the excellent 

GPR–relied approach for the Chl-a concentration is shown below in Figs. 4 and 5, 

respectively. 

 

Fig. 4 First-order terms of the four more important input independent variables for the 

dependent Chl-a variable: a Chl-a vs. Chlorophytes; b Chl-a vs. Volume of water; c 

Chl-a vs. Secchi depth; and d Chl-a vs. Dinophlagellata  
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Fig. 5 Second-order terms of the four more important input independent variables for 

the dependent Chl-a variable: Chl-a vs. Chlorophytes and Volume of water; Chl-a vs. 

Chlorophytes and Secchi depth; Chl-a vs. Chlorophytes and Dinophlagellata; Chl-a vs. 

Volume of water and Secchi depth; Chl-a vs. Volume of water and Dinophlagellata; 

and Chl-a vs. Secchi depth and Dinophlagellata 

    

3.1 Significance of Variables 

A further relevant finding of this current study is the relevance of the input independent 

variables in order to foretell the Chl-a concentration for this complicated nonlinear 

research (see Table 6 and Fig. 6). The relevance of the input variables has been 

determined following the method proposed in Paananen et al. (2019). The authors argue 

that the traditional assessment of the relevance of the variables employing automatic 

relevance determination (ARD) (Seeger 2000) does not furnish a suitable technique 

because it automatically undervalues the importance of linear input variables in relation 

with nonlinear ones since they have the same significance in the calculation of the 

squared error (Piironen and Vehtari 2016). Instead, they suggest the determination of 

the posterior latent mean’s variance. A big modification of the value of the latent mean 

if a single independent variable is altered means that this variable is relevant. We are 

estimating the relevance of the variable using the Variance of the Posterior Latent Mean 

(Paananen et al. 2019). 

 

In this way, Chlorophytes concentration is the most relevant input variable according to 

LBFGSB/GPR approach in the Chl-a forecasting in Tanes reservoir. Next, the second 

significant input variable is volume of water followed by Secchi depth, 
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Dinophlagellata, Diatoms, Cyanobacteria, Chryptophytes, Euglenophytes, Total 

phosphorus and Nitrate concentration. The remaining input variables have a relative 

normalized relevance of less than 0.0001, which means that their effect is negligible. 

 

Table 6 Relative normalized significance of the input variables in the Chl-a model 

following the Variance of the Posterior Latent Mean method (Note: only the variables 

with relevance greater than 0.0001 have been included)  

 

Fig. 6 Relative significance of the input variables as stated in the LBFGSB/GPR–relied 

approach for the Chl-a concentration 

 

Although Chlorophytes are not the main chlorophyll-containing organism in the 

reservoir –is a meso-eutrophic ecosystem (Álvarez Cobelas and Arauzo 2006) and 

therefore diatoms are the representative group– they have a higher biomass, higher than 

diatoms.  

 

The Volume of water is the next significant input variable; obviously, taken into 

account that concentration is the solute mass (in this case, Chl-a mass) divided by total 

volume (solute+solvent volume) and, in this case, the solvent volume is the Volume of 

water.  

 

Secchi depth is the third one in the ranking for Chl-a concentration forecasting. Secchi 

depth is a measure of the water turbidity (or transparency), so that as the chlorophyll 
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concentration increases, the algae concentration also increases and consequently the 

turbidity is higher (transparency decrease).  

 

Dinophlagellata and Diatoms concentrations are other significant variables (the fourth 

and fifth ones in the ranking to predict Chl-a concentration, respectively) most due to 

the photosynthetic nature of those organisms, despite being heterotrophic some species 

of Dinophlagellata. Diatoms make the most representative group in this reservoir, with 

high cell densities.  

 

Less important in Chl-a concentration forecasting is the Cyanobacteria concentration 

(sixth position in the ranking). Two reasons explain the correlation between 

Cyanobacteria and Chl-a concentrations (Vilán Vilán et al. 2013; Schinck et al. 2020). 

Firstly, because as phytoplankton biomass increase –Chl-a concentration rises–, the 

cyanobacteria predominance rises. Secondly, because Chl-a is present in all 

cyanobacteria as the main pigment for capturing sunlight and carrying out 

photosynthesis. High eutrophic environments are dominated by cyanobacteria but this 

reservoir is meso-eutrophic, and the presence of this kind of phytoplankton is low. 

However, it is a significant variable to predict Chl-a concentration since they are 

organisms containing Chl-a. 

  

The next variable in the ranking (seventh place) is the Chryptophytes concentration. 

Chryptophytes, a class of freshwater or marine single-celled protists, are essentially 

photosynthetic. Although they can grow in short light conditions thanks to some 
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phycobiliprotein, they are more frequent in not high trophic states (Abirhire et al. 2015) 

as in Tanes reservoir case. 

  

After Chryptophytes, Euglenophytes concentration is the following relevant input 

variable in Chl-a concentration forecasting. The presence of this kind of phytoplankton 

in Tanes reservoir is not relevant (according to its eighth position in the ranking to 

predict Chl-a concentration).  

 

Total phosphorus and Nitrate concentrations are the ninth and tenth variables, 

respectively, in the rank for predicting Chl-a content. Both of them correlate to Chl-a 

concentration because they play, as nutrients, a role in phytoplankton growth 

(organisms with chlorophyll). In freshwater, Total phosphorus is, generally, the growth-

limiting nutrient since nitrogen can be available from the atmosphere (Fields 2004; 

Moura Ado et al. 2012). 

 

To conclude, conductivity and pH seem to be no remarkable role in the Chl-a 

concentration in Tanes reservoir. 

 

Overall, in this study the GPR–relied technique is shown as an accurate and satisfactory 

tool to indirectly assess the Chl-a concentration (dependent variable), conforming to the 

real observed data in this reservoir, as a function of some easy and frequent measured 

parameters. Certainly, Fig. 7 indicates the comparison between the experimental and 

foretold Chl-a concentration values employing the GPR approach for the test dataset. 
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Consequently, it is essential to combine the GPR methodology with the LBFGSB 

optimizer to overcome this nonlinear regression problem through a novel hybrid 

approach that is sufficiently robust and effective. Conclusively, modeled and measured 

Chl-a values were found to be highly correlated. 

 

Fig. 7 Observed vs. predicted Chl-a concentration values considering the confidence 

interval employing the LBFGSB/GPR–relied approach for the testing dataset 

( 2 0.8597R   and 0.9306r  ) 

 

4 Conclusions 

Relying on the former results, several core discoveries of this study can be drawn and 

indicated as follows: 

 First of all, it is important to note that analytical models currently used to foretell 

the Chl-a concentration from the observed values are not accurate enough 

because they greatly simplify a highly nonlinear complex problem. 

Consequently, the use of machine learning methods as the novel hybrid 

LBFGSB/GPR–relied approach employed in this study has revealed itself as the 

best choice to make an accurate estimation of the Chl-a concentration from 

experimental samplings in Tanes reservoir.  

 In the second place, the hypothesis that the identification of the Chl-a 

concentration can be determined accurately by means of a hybrid 

LBFGSB/GPR–relied approach in reservoirs and lakes has also been validated 

here in Tanes reservoir.  
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 Thirdly, the application of this GPR–relied methodology to the complete 

experimental dataset belonging to the Chl-a concentration resulted in a 

satisfactory coefficient of determination and correlation coefficient whose values 

were 0.8597 and 0.9306, respectively.  

 In fourth place, the ranking (or order of importance) of the input variables 

entailed in the estimation of the Chl-a concentration from experimental 

samplings in Tanes reservoir was established. This is one of the principal core 

conclusions in this research. The Chlorophytes concentration in particular must 

be taken into account as the most important issue in the forecasting of Chl-a 

concentration. On this matter, it is also noteworthy to emphasize the principal 

importance in this order of the water volume, Secchi depth, Dinophlagellata, 

Diatoms, Cyanobacteria, Chryptophytes, Euglenophytes, Total phosphorus and 

Nitrate concentration in the obtained Chl-a concentration outcome. 

 Conclusively, the principal role of the accurate hyperparameters determination 

in the GPR–relied methodology in relation to the regression performance carried 

out for Chl-a concentration is established. The calculation of these optimal 

hyperparameters was successfully carried out here using the LBFGSB optimizer. 

To sum up, this procedure could be successfully applied to foretell the Chl-a 

concentration in the different kinds of reservoirs. However, it is usually mandatory to 

consider individual characteristics for each reservoir and experiment. Hence, it is 

possible to conclude that the LBFGSB/GPR–relied method is a robust useful answer to 

the nonlinear problem of the estimation of the Chl-a concentration from experimental 

samplings in reservoirs and lakes. 

 



29 

 

Acknowledgements The authors gratefully recognize the computational help supplied by the 

Department of Mathematics at University of Oviedo as well as the monetary help of the 

Research Projects PGC2018-098459-B-I00 and FC-GRUPIN-IDI/2018/000221, both partial 

financing from European Founds (FEDER). Likewise, it is mandatory to express gratitude to 

Anthony Ashworth for his revision of English grammar and spelling of this investigation paper. 

 

References 

Abirhire O, North RL, Hunter K, Vandergucht DM, Sereda J, Hudson JJ (2015) 

Environmental factors influencing phytoplankton communities in Lake Diefenbaker, 

Saskatchewan. Canada J Great Lakes Res 41:118–128 

Aboal M, Puig MA (2005) Intracellular and dissolved microcystins in reservoirs of the 

river Segura basin, Murcia, SE Spain. Toxicon 45(4):509–518 

Akhlaghi YG, Sudong Z, Shittu S, Badiei A, Cattaneo MEGV, Xiaoli M (2019) 

Statistical investigation of a dehumidification system performance using Gaussian 

process regression. Energ Buildings 202:109406 

Alghamdi AS, Polat K, Alghoson A, Alshdadi AA, Abd El-Latif AA (2020) Gaussian 

process regression (GPR) based non-invasive continuous blood pressure prediction 

method from cuff oscillometric signals. Appl Acoust 164:107256 

Álvarez Cobelas M, Arauzo M (2006) Phytoplankton responses to varying time scales 

in a eutrophic reservoir. Arch Hydrobiol Ergebn Limnol 40:69–80 

Ambrogioni L, Maris E (2019) Complex-valued gaussian process regression for time 

series analysis. Signal Process 160:215–228 

https://www.sciencedirect.com/science/article/abs/pii/S0380133015001380#!
https://www.sciencedirect.com/science/article/abs/pii/S0380133015001380#!
https://www.sciencedirect.com/science/article/abs/pii/S0380133015001380#!
https://www.sciencedirect.com/science/article/abs/pii/S0380133015001380#!
https://www.sciencedirect.com/science/article/abs/pii/S0380133015001380#!
https://www.sciencedirect.com/science/article/abs/pii/S0380133015001380#!
https://www.sciencedirect.com/science/journal/03801330


30 

 

American Public Health Association, American Water Works Association, Water 

Environment Federation (2005) Standard Methods for the Examination of Water 

and Wastewater, no 21, APHA/AWWA/WEF, Washington 

Bishop CM (2011) Pattern recognition and machine learning. Springer, New York 

Brönmark C, Hansson L–A (2005) The biology of lakes and ponds. Oxford University 

Press, New York 

Brown CD, Hoyer MV, Bachmann RW, Canfield DE Jr (2000) Nutrient-chlorophyll 

relationships: an evaluation of empirical nutrient-chlorophyll models using Florida 

and northern temperate lake data. Can J Fish Aquat Sci 57:1574–1583 

Byrd RH, Lu P, Nocedal J, Zhu C (1994) A limited-memory algorithm for bound 

constrained optimization. SIAM J Sci Comp 16:1190–1208 

Cai H, Jia X, Feng J, Li W, Hsu Y–M, Lee J (2020) Gaussian Process Regression for 

numerical wind speed prediction enhancement. Renew Energ 146:2112–2123 

Chen CW (1970) Concepts and utilities of ecologic model. J Sanit Eng Div 96:1086–

1097 

Ciaburro G (2017) MATLAB for machine learning. Packt Publishing, Birmingham, UK   

Daemi A, Kodamana H, Huang B (2019) Gaussian process modelling with Gaussian 

mixture likelihood. J Process Contr 81:209–220 

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 

2000. Establishing a framework for community action in the field of water policy, 

L-327, Luxembourg 

Di Toro DM, O'Connor DJ, Thomann RV (1971) A dynamic model of the 

phytoplankton population in the Sacramento-San Joaquin Delta. In: Non equilibrium 



31 

 

systems in natural water chemistry, Advances in Chemistry Series, American 

Chemical Society, New York, vol 106, pp 131–150 

Duan Y, Cooling C, Soo Ahn J, Jackson C, Flint A, Eaton MD, Bluck MJ (2019) Using 

a Gaussian process regression inspired method to measure agreement between the 

experiment and CFD simulations. Int J Heat Fluid Fl 80:108497 

Dym H, McKean HP (2008) Gaussian processes, function theory, and the inverse 

spectral problem. Dover, New York 

Ebden M (2015) Gaussian processes: a quick introduction. 

https://arxiv.org/pdf/1505.02965.pdf. Accessed 29 August 2015 

Fei Y, Rong G, Wang B, Wang W (2014) Technical section: parallel L-BFGS-B 

algorithm on GPU. Comput Graph 40:1–9 

Fields S (2004) Global nitrogen: cycling out of control. Environ Health Persp 

112(10):A556–A563 

Gao A, Liao W (2019) Efficient gravity field modeling method for small bodies based 

on Gaussian process regression. Acta Astronaut 157:73–91 

Gonçalves IG, Echer E, Frigo E (2020) Sunspot cycle prediction using warped Gaussian 

process regression. Adv Space Res 65(1):677–683 

GPy (2014) A Gaussian process framework in python. 

http://github.com/SheffieldML/GPy. Accessed 25 January 2014 

Kalaji HM, Sytar O, Brestic M, Samborska IA, Cetner MD, Carpentier C (2016) Risk 

assessment of urban lake water quality based on in-situ cyanobacterial and total Chl-

a monitoring. Pol J Environ Stud 25:45–56 

https://arxiv.org/pdf/1505.02965.pdf
http://github.com/SheffieldML/GPy


32 

 

Knafl GJ, Ding, K (2016) Adaptive regression for modeling nonlinear relationships. 

Springer, Berlin  

Lantz B (2019) Machine learning with R: expert techniques for predictive modeling. 

Packt Publishing, Birmingham, UK   

Latif Z, Tasneem MA, Javed T, Butt S, Fazil M, Ali M, Sajjad MI (2003) Evaluation of 

water-quality by chlorophyll and dissolved oxygen. In: Water Resources in the 

South: Present Scenario and Future Prospects, Commission on Science and 

Technology for Sustainable Development in the South, Islamabad, Pakistan, pp 

122–135 

Li X, Yuan C, Li X, Wang Z (2020) State of health estimation for Li-Ion battery using 

incremental capacity analysis and Gaussian process regression. Energy 190:116467 

Li M, Sadoughi M, Hu Z, Hu C (2020) A hybrid Gaussian process model for system 

reliability analysis. Reliab Eng Syst Safe 197:106816. 

Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale 

optimization. Math Program 45:503–528 

McClave JT, Sincich TT (2016) Statistics. Pearson, New York 

McQuaid N, Zamyadi A, Prevost M, Bird DF, Dorner S (2011) Use of in vivo 

phycocyanin fluorescence to monitor potential microcystin-producing 

cyanobacterial biovolume in a drinking water source. J Environ Monit 13:455–463 

Moura Ado N, do Nascimento EC, Dantas EW (2012) Temporal and spatial dynamics 

of phytoplankton near farm fish in eutrophic reservoir in Pernambuco, Brazil. Rev 

Biol Trop 60(2):581–597 



33 

 

Negro AI, de Hoyos C, Vega JC (2000) Phytoplankton structure and dynamics in Lake 

Sanabria and Valparaíso reservoir (NW Spain). Hydrobiologia 424:25–37 

Paananen T, Piironen J, Andersen MR, Vehtari A (2019) Variable selection for 

Gaussian processes via sensitivity analysis of the posterior predictive distribution. 

In: Proceedings of the 22nd International Conference on Artificial Intelligence and 

Statistics (AISTATS), Proceedings of Machine Learning Research (PMLR), Naha, 

Okinawa, Japan, pp 1743–1752 

Pasolli L, Melgani F, Blanzieri E (2010) Gaussian process regression for estimating 

chlorophyll concentration in subsurface waters from remote sensing data. IEEE 

Geosci Remote S 7(3):464–468 

Patrick R, Crum B, Coles J (1969) Temperature and manganese as determining factors 

in the presence of diatom or blue-green algal floras in streams. Proc National Acad 

Sci 64(2):472–478 

Piironen J, Vehtari A (2016) Projection predictive model selection for Gaussian 

processes. In: IEEE 26th International Workshop on Machine Learning for Signal 

Processing (MLSP), IEEE Publisher, Vietri sul Mare, Italy, pp 1–6 

Pip E, Bowman L (2014) Microcystin and algal chlorophyll in relation to nearshore 

nutrient concentrations in Lake Winnipeg, Canada. Environ Pollut 3(2):36–47 

Quesada A, Moreno E, Carrasco D, Paniagua T, Wormer L, de Hoyos C, Sukenik A 

(2006) Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water 

reservoir. Eur J Phycol 41:39–45 

Rasmussen CE (2003) Gaussian processes in machine learning: summer school on 

machine learning. Springer, Berlin 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Patrick%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16591790
https://www.ncbi.nlm.nih.gov/pubmed/?term=Crum%20B%5BAuthor%5D&cauthor=true&cauthor_uid=16591790
https://www.ncbi.nlm.nih.gov/pubmed/?term=Coles%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16591790
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC223368/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC223368/


34 

 

Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning. The 

MIT Press, Cambridge, MA, USA 

Redden AM, Rukminasari N (2008) Effects of increases in salinity on phytoplankton in 

the Broadwater of the Myall Lakes, NSW, Australia. Hydrobiologia 608:87–97 

Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, New York 

Riegl B, Glynn PW, Wieters E, Purkis S, d'Angelo C, Wiedenmann J (2014) Water 

column productivity and temperature predict coral reef regeneration across the Indo-

Pacific. Sci Rep 5:8273–8279 

Rychlik I, Johannesson P, Leadbetter MR (1997) Modelling and Statistical Analysis of 

ocean-wave data using transformed Gaussian processes. Mar Struct 10(1):13–47 

Schinck M-P, L’Ecuyer-Sauvageau C, Leroux J, Kermagoret C, Dupras J (2020) Risk, 

drinking water and harmful algal blooms: a contingent valuation of water bans. 

Water Resour Manag  34:3933–3947  

Seeger M (2000) Bayesian model selection for support vector machines, Gaussian 

processes and other kernel classifiers. In: NIPS'99 Proceedings of the 12th 

International Conference on Neural Information Processing Systems, MIT Press 

Cambridge, MA, USA, vol 12, pp 603–609 

Sheldon SP, Skelly DK (1990) Differential colonization and growth of algae and 

ferromanganese-depositing bacteria in a mountain stream. J Freshwater Ecol 5(4): 

475–485 

Smith VH (2006) Responses of estuarine and coastal marine phytoplankton to nitrogen 

and phosphorus enrichment. Limnol Oceanogr 51:377–384 

https://www.tandfonline.com/author/Sheldon%2C+Sallie+P
https://www.tandfonline.com/toc/tjfe20/current


35 

 

Smith MJ, Shaw GR, Eaglesham GK, Ho L, Brookes JD (2008) Elucidating the factors 

influencing the biodegradation of cylindrospermopsin in drinking water sources. 

Environ Toxicol 23:413–421 

Stone JV (2016) Bayes' rule with python: a tutorial introduction to Bayesian analysis. 

Sebtel Press, London 

Texeira MR, Rosa MJ (2006) Comparing disolved air flotation and conventional 

sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: part I: the 

key operating conditions. Sep Purif Technol 52:84–94 

Tufford DL, McKeller HN (1999) Spatial and temporal hydrodynamic and water quality 

modeling analysis of a large reservoir on the South Carolina (USA) coastal plain. 

Ecol Model 114:137–173 

United States Environmental Protection Agency (2014) Chapter 4: Eutrophication. 

http://www.epa.gov/emap2/maia/html/docs/Est4.pdf. Accessed 24 August 2014 

Vilán Vilán JA, Alonso Fernández JR, García Nieto PJ, Sánchez Lasheras F, de Cos 

Juez FJ, Díaz Muñiz C (2013) Support vector machines and multilayer perceptron 

networks used to evaluate the cyanotoxins presence from experimental 

cyanobacteria concentrations in the Trasona reservoir (Northern Spain). Water 

Resour Manag 27:3457–3476 

Wang S, Zhu L, Ying Hsi Fuh J, Zhang H, Yan W (2020) Multi-physics modeling and 

Gaussian process regression analysis of cladding track geometry for direct energy 

deposition. Opt Laser Eng 127:105950 



36 

 

Watzin MC, Miller EB, Shambaugh AD, Kreider MA (2006) Application of the WHO 

alert level framework to cyanobacterial monitoring of Lake Champlain, Vermont. 

Environ Toxicol 21:278–288 

Wetzel RG (2011) Limnology: lake and river ecosystems. Academic Press, San Diego, 

USA 

Wheeler SM, Morrissey LA, Levine SN, Livingston GP, Vincent WF (2012) Mapping 

cyanobacterial blooms in Lake Champlain’s Missisquoi Bay using Quick Bird and 

MERIS satellite data. J Great Lakes Res 38(1):68–75 

Willame R, Jurckzak T, Iffly JF, Kull T, Meriluoto J, Hoffman L (2005) Distribution of 

hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia 

551:99–117 

World Health Organization (1998) Guidelines for drinking-water quality: health criteria 

and other supporting information, vol 2, Geneva, World Health 408 Organization 

Yuan LL, Pollard AI, Pather S, Oliver JL, D'Anglada L (2014) Managing microcystin: 

Identifying national-scale thresholds for total nitrogen and chlorophyll a. Freshwater 

Biol 59(9):1970–1981 

Zeng A, Ho H, Yu Y (2020) Prediction of building electricity usage using Gaussian 

Process Regression. J Build Eng 28:101054 

Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B: Fortran 

subroutines for large-scale bound-constrained optimization. ACM T Math Softw 

23(4):550–560 

 

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Oliver%2C+Jacques+L
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=D%27Anglada%2C+Lesley


 

 

 

 

Table 1 Set of biological input independent variables used in this investigation: names, 

means and standard deviations 

Biological input variables  Name of the variable Mean Std 

Cyanobacteria (mm3/L) Cyanobacteria 0.0083 0.0074 

Diatoms (mm3/L) Diatoms 0.5965 0.1397 

Euglenophytes (mm3/L) Euglenophytes 0.0274 0.0133 

Dinophlagellata (mm3/L) Dinophlagellata 0.1755 0.1583 

Chrysophytes (mm3/L) Chrysophytes 0.0118 0.0102 

Chlorophytes (mm3/L) Chlorophytes 0.1153 0.0790 

Chryptophytes (mm3/L) Chryptophytes 0.2973 0.1279 

 



 

 

Table 2 Set of physico-chemical input independent variables used in this investigation: 

names, means and standard deviations 

Physico-chemical input variables  Name of the 

variable 

Mean Std 

Water temperature (ºC) Water_temp 11.5146 4.9928 

Phosphates concentration (mg 3

4PO  /L) Phosphates 0.0209 0.0136 

Total phosphorus (mg P/m3) Phosphorus 6.4585 2.8533 

Nitrite concentration (mg 2NO  /L) Nitrite 0.0019 0.0061 

Nitrate concentration (mg 3NO /L) Nitrate 2.6657 0.9934 

Ammonium concentration (mg 4NH /L) Ammonium 0.0500 162.02 10  

Dissolved oxygen concentration (mg 

O2/L) 

DO 9.3335 1.1257 

Iron concentration (mg Fe/L) Iron 0.0230 0.0184 

Manganese concentration (mg Mn/L) Manganese 0.0197 0.0113 

Conductivity (S/cm) Conductivity 183.0037 9.5099 

Volume of water (hm3) Vol_water 26.8963 4.8194 

pH values pH_values 7.8800 0.4060 

Secchi depth (m) SD 3.6403 0.5318 

 

 



 

Table 3 Search space for the three hyperparameters of the LBFGSB/GPR–relied 

approach fitted in this investigation 

GPS hyperparameters Lower limit Upper limit 

RBF kernel variance 
2

f  310  510  

RBF kernel lengthscale  310  510  

Gaussian noise variance 2

n  310  510  

 

 

 

 

Table 4 Optimal hyperparameters of the best fitted GPR–relied model encountered with 

the LBFGSB optimizer: variance 
2

f  and lengthscale  for the RBF kernel, the 

Gaussian noise variance 2

n , and the corresponding objective function value for the 

optimized models for the training set 

 
2

f   
2

n  Objective fun. value 

Chlorophyll 1.6212 3.2870 0.0912 197.42 



Table 5 Different error metrics (coefficient of determination (R2), correlation 

coefficient (r), Mean Bias Error (MBE), Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE)) for different regression methods (Gaussian Process Regression 

(GPR), Multilayer Perceptron (MLP), Support Vector Regression (SVR) and Random 

Forest (RF)) to construct the Chlorophyll model 

Model R2 r MBE MAE RMSE 

LBFGSB/GPR 0.8597 0.9306 0.1419 0.7862 1.1514 

MLP 0.8239 0.9081 0.0599 0.9228 1.2896 

SVR 0.7286 0.8647 0.0227 1.2388 1.6011 

RF 0.4367 0.6720 0.1666 1.6504 12.128 

 

 

Table 6 Relative normalized significance of the input variables in the Chl-a model 

following the VAR method (Note: only the variables with relevance greater than 0.0001 

have been included) 

Variable Relevance 

Chlorophytes 1.0000 

Volume of water 0.3781 

Secchi Depth 0.3580 

Dinophlagellata 0.1397 

Diatoms 0.1294 

Cyanobacteria 0.0944 

Chryptophytes 0.0625 

Euglenophytes 0.0540 

Total phosphorus 0.0251 

Nitrate concentration 0.0203 

  



 

a

b 

Fig. 1 a Aerial view of the Tanes reservoir; b a closer view of the Tanes reservoir 
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Fig. 2 a A Niskin bottle; b examples of Secchi disks  

http://upload.wikimedia.org/wikipedia/commons/6/61/Secchi_disks.svg
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Fig. 3 Microorganisms in Tanes reservoir whose concentrations were used as input 

variables: a Cyanobacteria; b Diatoms; c Euglenophytes; d Dinophlagella; e 

Chrysophytes; f Clorophytes; and g Chryptophytes 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Fig. 4 First-order terms of the four more important input independent variables for the 

dependent Chl-a variable: a Chl-a vs. Chlorophytes; b Chl-a vs. Volume of water; c Chl-

a vs. Secchi depth; and d Chl-a vs. Dinophlagellata  

 

 

 

 



 

 

 

 

 

 

Fig. 5 Second-order terms of the four more important input independent variables for the 

dependent Chl-a variable: Chl-a vs. Chlorophytes and Volume of water; Chl-a vs. 

Chlorophytes and Secchi depth; Chl-a vs. Chlorophytes and Dinophlagellata; Chl-a vs. 

Volume of water and Secchi depth; Chl-a vs. Volume of water and Dinophlagellata; and 

Chl-a vs. Secchi depth and Dinophlagellata 

 

 

 

 



 

 

 

 

 

 

 

Fig. 6 Relative significance of the input variables as stated in the LBFGSB/GPR–relied 

approach for the Chl-a concentration 

 

 

 

 



 

 

 

 

 

 

 

Fig. 7 Observed vs. predicted Chl-a concentration values considering the confidence 

interval employing the LBFGSB/GPR–relied approach for the testing dataset

 2 0.8597 and 0.9306R r   

 

 

 

 

 

 


