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Abstract Despite their environmental impact, fossil-fuel power plants are still commonly 

used due to their high capacity and relatively low cost compared to renewable energy 

sources. The aim of this paper is to assess the performance of such energy systems as a 

key element within a fossil-fuel energy supply network. The methodology relies on fossil-

fuel power plant modelling to define an optimal energy management level. However, it 

can be difficult to model the energy management of Thermal Power Stations (TPS). 

Therefore, this paper shows an energy efficiency model found on a new hybrid algorithm 

that is a combination of multivariate adaptive regression splines (MARS) and differential 

evolution (DE) to estimate net annual electricity generation (NAEG) and carbon dioxide 

(CO2) emissions (CDE) from economic and performance variables in thermal power 

plants. This technique requires the DE optimisation of the MARS hyperparameters during 

the development of the training process. In addition to successfully forecast net annual 

electricity generation (NAEG) and carbon dioxide (CO2) emissions (CDE) (coefficients 

of determination with a value of 0.9803 and 0.9895, respectively), the mathematical 
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model used in this work can determine the importance of each economic and energy pa-

rameter to characterize the behaviour of thermal power stations.  

 

Keywords Differential evolution (DE); Energy management; Multivariate adaptive re-

gression splines (MARS); Regression analysis; Thermal power stations; Power network 

 

Introduction 

The world has recently been undergoing a major technological transition from the use of 

fossil energy sources to renewable ones, as high levels of fossil fuel consumption have 

severely affected government economic policies, environmental conditions and energy 

supply security (Behera et al. 2018). At the same time, however, the emergence of renew-

able energy sources within the electricity grid has progressively increased. The process 

of integrating renewable energy sources and fossil fuels into the electricity transmission 

grid creates challenges in managing energy production in real-time (Jayawardene and 

Venayagamoorthy 2015). The management of energy is currently one of the greatest chal-

lenges that applied energy studies have to face (Paredes-Sánchez et al. 2014). However, 

fossil fuels, such as coal, natural gas and oil, still account for 80% of global energy con-

sumption while half of all the electricity is still produced in coal-fired power plants (Li et 

al. 2016). The resulting technological and market transformations across the power sector 

have translated into energy performance conditions that have yet to be quantified. Under-

standing the current level of energy performance is crucial to the development and appli-

cation of different strategies worldwide (Paredes-Sánchez et al. 2015). The development 

of this energy strategy has established a correlation of sustainable energy production and 

environmental security around the world. Some of the main drive forces from sustainable 

energy production and energy efficiency point of view are identified in Vidadili et al. 
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(2017) to be: energy transition security, reduced carbon dioxide emissions, reduced en-

ergy production cost and massive integration of green energy technologies. In this sense, 

industrial revolution and environmental sustainability of any nation or community of peo-

ple is the access to reliable and clean energy. In this context, US power plants are a driving 

force in a state of transition, which has resulted from significant changes in technological 

innovations, energy conversion, and management (Peer and Sanders 2018). Moreover, 

energy supply is a dynamic challenge based on energy management. 

 

This paper analyses an innovative hybrid regressive model that uses adaptive multivariate 

regression splines (Friedman 1991; Sekulic and Kowalski 1992; Friedman and Roosen 

1995;  Hastie et al. 2003), also referred to globally as MARS, which is used alongside the 

method of evolutionary optimisation of Differential Evolution (DE) (Storn and Price 

1997; Price et al. 2005; Rocca et al. 2011; Feoktistov 2006) in order to predict net annual 

electricity generation (NAEG) in fossil-fuel thermal power stations.  In addition, carbon 

dioxide (CO2) emissions (CDE) are thoroughly analysed in fossil-fuel thermal power sta-

tions. Fig. 1a shows an example of these thermal power stations, specifically an aerial 

photograph of the location of the fossil-fuel power plant of Soto de Ribera just a short 

distance from Oviedo city (Northern Spain) and Fig. 1b shows the same fossil-fuel power 

plant at a larger scale.   

   

Fig. 1 a An aerial photograph of an example of fossil-fuel power plant (i.e., Soto de Ri-

bera power plant) and b the same fossil-fuel power plant at a larger scale 
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Recent studies have analysed the performance of power plants and the trade-offs that 

follow more general shifts in fuel use. The global energy efficiency assessment considers 

both the reliability of the energy supply and the effective control of energy consumption 

in the different energy systems. However, these methodologies must take into account a 

number of factors in order to maximise production (Paredes-Sánchez et al. 2016). The 

following are four main methodologies for assessing energy efficiency: stochastic frontier 

analysis, data envelopment analysis, exergy analysis and benchmark comparison (Li and 

Tao 2017). Moreover, a multivariate adaptive regression splines (MARS) technique can 

be used to predict values for different applications (Friedman 1991; Sekulic and Kowalski 

1992) and is a nonparametric regression technique which provides an analysis based on 

both nonlinearities and variable interactions by means of a complex linear model (Fried-

man 1991; Sekulic and Kowalski 1992; Friedman and Roosen 1995;  Hastie et al. 2003). 

 

Some advantages of applying the MARS method over other existing techniques include 

(Friedman and Roosen 1995;  Hastie et al. 2003): (i) it provides more flexible models 

than linear regression models; (ii) it is easy to interpret and understand; (iii) it can manage 

continuous and categorical data; (iv) the hinge functions automatically partition the input 

data, so the effect of outliers is contained; (v) it does automatic variable selection (mean-

ing that it includes important variables in the model and excludes unimportant ones); (vi) 

it tends to have a good bias-variance trade-off; and (vii) it offers an explicit mathematical 

expression of the dependent variable as a function of independent variables through an 

expansion of the base functions (hinge functions and products of several hinge functions 

or interactions). 
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In addition, the differential evolution (DE) technique was used in order to optimise the 

MARS hyperparameters in the training stage. DE is a global metaheuristic evolutionary 

method derived from genetic algorithms (GA) that is intrinsically capable of solving mul-

tidimensional optimisation problems involving continuous variables, as well as other cal-

culation algorithms such as particle swarm optimisation (PSO) (Eberhart 2001; Clerc 

2006; Olsson 2011) or ant colony optimisation (Dorigo and Stützle 2004).  In addition, it 

is an inspired algorithm that results in remarkable quality solutions to optimisation prob-

lems by mutation, recombination and selection, that is to say, bio-inspired operators 

(Storn and Price 1997; Price et al. 2005; Simon 2013; Yang et al. 2013). Previous research 

has presented that MARS is a suitable tool in a variety of fields such as engineering, 

computing and medicine (Xu et al. 2004; Vidoli 2011; Zhang and Goh 2013; Zhang et al. 

2015). Particularly, there are several studies in the literature on the use of the MARS 

approach in different energy research contexts (Sobri et al. 2018; Kisi et al. 2017; García 

Nieto and Álvarez Antón 2014). Mardani and coworkers (Mardani et al. 2017) and Sueyo-

shi and coworkers (Sueyoshi et al. 2017) reviewed the literature on the use of modelling 

techniques to measure energy efficiency. In recent years, MARS has been undertaken 

within energy systems due to its success in explaining complete systems (Cheng and Cao 

2014;  Sekhar Roy et al. 2018). Chen and coworkers (Chen et al. 2017) have studied an 

acquired meta-model of the thermal system assessment to develop a more accurate model 

that can provide performance predictions. Al-Musaylh and coworkers (Al-Musaylh et al. 

2018) have also studied electricity demand in energy systems. However, nowadays there 

is a lack of performance assessment of fossil-fuel power plants that use the MARS tech-

nique. 
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This research study aims to cover that gap and demonstrate the potential of model fossil-

fuel power plants through machine learning, and the importance of energy performance 

to ensure power supply. Moreover, the present study also discusses the overall main pro-

cess parameters of energy production and includes a comprehensive discussion of the 

main parameters involved. Specifically, a hybrid DE optimised MARS (DE/MARS) 

model (Simon 2013; Yang et al. 2013; Fister et al. 2015) has been applied to estimate the 

net annual electricity generation NAEG and CDE from the economic and performance 

input variables in thermal power stations. 

 

This research work is organised as follows: To start with, the necessary materials and 

methods to carry out this work are detailed. Secondly, the results obtained are shown and 

discussed. Lastly, the conclusions derived from the results are explained in detail.  This 

work will hopefully help pave the way toward providing accurate energy performance 

analysis for safe energy production in power thermal systems. 

 

Materials and methods 

Experimental dataset 

This study provides an innovative and systematic approach to evaluate the performance 

of fossil-fuel power plants. The case study is based on the available US database 

(Tajbakhsh and Hassini 2018). The selected databases include Clean Air Task Force 

(CATF 2018), Energy Information Administration (EIA 2018), United States Environ-

mental Protection Agency (USEPA 2018) and Federal Energy Regulatory Commission 

(FERC 2018).  In total, over 1,080 sources of real data containing quantitive information 

about power plant performance have been categorised. 
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This research work is aimed to establish a means of estimating the electrical power gen-

eration and the resulting carbon dioxide pollution indicators using easily measurable var-

iables. The two MARS models use the same economic and performance variables and the 

output variables include the net annual electricity generation (TWh) and carbon dioxide 

(CO2) emission (Mton). 

 

The net annual electricity generation (NAEG) is relevant because it is directly related to 

both the total gross power generation as well as the amount of electricity generated by a 

power plant, which is transmitted and distributed for consumer use. This dependent vari-

able is directly linked to energy management in order to produce electric power from 

primary energy sources. Likewise, the second dependent variable is carbon dioxide (CO2) 

(CDE), which is a greenhouse gas that absorbs and emits infrared radiation on its two 

active vibration frequencies. This process causes the carbon dioxide to heat both the sur-

face of the earth and the lower atmosphere as well as to, simultaneously, cool the upper 

atmosphere. The vast majority of climatologists agree that the increase in the atmospheric 

concentration of CO2, and the greenhouse effect it creates, is the main reason for the 

increasing average global temperatures since the middle of the 20th century. Although 

the main greenhouse gas responsible for this warming is carbon dioxide, there are other 

long-lasting greenhouse gases (such as methane, nitrous oxide and ozone) which also 

contribute to the process. However, CO2 remains the greatest cause of concern, since it 

plays a much greater role in total warming than all the other gases combined and has a 

long atmospheric life. Localised concentrations of carbon dioxide invariably reach ex-

tremely high levels near fossil-fuel power plants. Therefore, it is necessary to monitor 

and control such emissions to the atmosphere. Energy models have been established for 

https://en.wikipedia.org/wiki/Electric_power
https://en.wikipedia.org/wiki/Primary_energy
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energy systems and power plants from different points of view. To be more precise, ac-

cording to underlying assumptions, relevant literature includes studies that show their 

energy potential, pollutant emissions or energy performance (Paredes-Sánchez et al. 

2019). This innovative machine-learning model involves techno-economic parameters 

ranging from energy resources to management (Díez et al. 2005; Wang et al. 2020; Zhao 

et al. 2013). For all of these reasons, these main parameters (or input variables) have been 

identified as economic and performance variables indicated below. 

➢ Economic variables: 

 Book value of plant and land (BVPL) (in millions): the physical assets, including 

land and buildings, of the fossil-fuel power plant.  

 Annual production expenses (APE) (in millions): the necessary costs to keep the 

plant operating. The operating costs of fossil-fuel power plants include those as-

sociated with fuel, labour, and maintenance. 

 Plant nameplate capacity (PNC) (in MW): the intended sustained full-load output 

of a facility. 

 Annual number of employees (ANE): the number of workers that operate and 

maintain the plant in operating conditions, i.e.: plant operators, distributors, and 

dispatchers. 

 Annual revenue (AR) (in millions): the income generated by normal business ac-

tivity, usually from the sale of power supply to customers.  

➢ Performance variables: 

https://en.wikipedia.org/wiki/Product_(business)
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 Annual fuel consumed (AFC) (in MJ): the amount of fossil-fuel energy consumed 

by the power plant to produce electricity per year. 

 Nitrous oxide (N2O) emissions (N2OE) (in kton): Fossil-fuel powered plants re-

lease small amounts of CH4 and N2O during combustion at low temperatures (less 

than 950°C). These plants are affected by the type of fuel and operating conditions 

such as the fraction of excess air.  Since it, too, is a greenhouse gas, nitrous oxide 

significantly contributes to global greenhouse gas emissions. 

 Methane (CH4) emission (ME) (in kton): CH4 is typically formed as a result of 

incomplete combustion, i.e. a lean fuel-comburent mix and early quenched oxi-

dation reactions in the combustion process. While CH4 emissions are relatively 

unusual in large, well-functioning furnaces, they are much more common in 

smaller-scale combustion, e.g. in heating stoves and open fireplaces. Global me-

thane emissions are another important factor that contributes to global greenhouse 

gas emissions within the global challenge of climate change. 

 Sulfur dioxide (SO2) emissions (SDE) (in kton): SO2 is produced during the burn-

ing of sulfur or materials containing sulfur. The heat generated in this process is 

recovered by steam generation and is subsequently converted into electricity.  SO2 

emissions are a major air pollutant and a precursor to acid rain and atmospheric 

particulates that have a significant impact on human health. 

 Nitrogen oxides (NOx) emissions (NOxE) (in kton): NOx is the generic term for 

nitrogen oxides that are usually generated in the air by the reaction between nitro-

gen and oxygen during the combustion process based on fossil fuels (e.g. coal) at 

high temperatures.  NOx emissions are a direct contributor to the greenhouse effect 

https://en.wikipedia.org/wiki/Greenhouse_gas
https://en.wikipedia.org/wiki/Acid_rain
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and, together with sulphur dioxide (SO2), is one of the main chemicals responsible 

for the phenomenon known as acid rain. 

In short, this study constructs innovative machine learning models for thermal power sta-

tions from the aforementioned experimental dataset. Thus, two separate hybrid MARS 

models have been built using the DE-based parameter optimizer (DE/MARS) for the pre-

diction of the net annual electricity generation (NAEG) and carbon dioxide (CO2) emis-

sions (CDE), respectively. 

 

Multivariate adaptive regression splines technique 

In statistical machine learning, multivariate adaptive regression splines (MARS) is a re-

gression method conceived by Friedman in 1991 that is appropriate for problems with a 

large number of input variables (Friedman 1991; Sekulic and Kowalski 1992; Friedman 

and Roosen 1995;  Hastie et al. 2003; García Nieto et al. 2015). The technique uses a 

nonparametric approach that could be understood as a prolongation of linear models that 

allows tackling interactions among input variables and nonlinearities. Interactions, in the 

MARS models, are composites of the linear piece-wise functions being, piece-wise 

higher-order polynomial functions that are able to model more complex relationships be-

tween the variables. Moreover, MARS models tend to have a good bias-variance trade-

off. The models are flexible enough to model nonlinearity and variable interactions (thus 

MARS models have fairly low bias), yet the constrained form of MARS basis functions 

prevents too much flexibility (thus MARS models have fairly low variance). 

 

The MARS technique constructs models according to the following expansion: 



 

11 

   
0

ˆ
M

i i

i

f x c B x


  

 

(1) 

Therefore, this technique approximates the dependent output variable y by means of an 

averaged addition of  iB x so that the coefficients
ic  are constant.  iB x  can be (Fried-

man 1991; Sekulic and Kowalski 1992; Friedman and Roosen 1995;  Hastie et al. 2003 

Chou et al. 2004; Zhang et al. 2015; García Nieto et al. 2015):  

 constant and equal to 1. This term is called intercept and corresponds to the term

0c ; 

 a hinge or hockey stick function: this function is  max 0,constant x or

 max 0, constantx  . The constant value is termed knot. The MARS technique 

chooses variables and knots values for these ones according to the procedure in-

dicated later; 

 the multiplication of hinge functions: in this case, these functions model nonlinear 

relationships between variables. 

 

For instance, Fig. 2 shows a couple of splines for q=1 at the node t=3.5. 

 

Fig. 2 An example of linear basis functions 

 

Two steps are the base of the MARS. First, it constructs a very complex model in the 

forward phase and then it simplifies it in the backward stage (Chou et al. 2004; Xu et al. 

2004; Freedman et al. 2007; Cheng and Cao 2014; Zhang et al. 2015): 

 Forward stage: MARS starts with the intercept term, calculated averaging the 

values of the dependent variable. Next, MARS sums linear combinations of pairs 
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of hinge functions with the aim of minimizing the least-squares error. These new 

hinge functions depend on a knot and a variable. Thus, to add new terms MARS 

has to try all the different combinations of variables and knots with the previous 

terms, called parent terms. Then, MARS determines the coefficients
ic  using lin-

ear regression. It adds terms until a certain threshold for the residual error or a 

maximum number of terms is reached. 

 Backward stage: the previous stage usually constructs an overfitted model. In 

order to construct a better model with greater generalization skill, this new stage 

simplifies the model removing terms, taking as a criterion the generalised cross-

validation (GCV) criterion described below, removing first the terms that add 

more GCV to the model. 

 

Generalised cross-validation (GCV) is the goodness-of-fit index utilised to assess the suit-

ability of the terms of the model in order to prune it from the model. GCV does not only 

take into account the residual error but also how complex the model is. High values of 

GCV mean high residual error and complexity. The formula of this index is (Friedman 

1991; Sekulic and Kowalski 1992; Friedman and Roosen 1995;  Hastie et al. 2003; Cheng 

and Cao 2014; Zhang et al. 2015):  

 
  

  

2

1

2

1 ˆ

1 /

n

i M i

i

y f
n

GCV M
C M n








 x

 

(2)  

where the parameter  MC grows with the number of terms in the regression function and 

thus, increases the value of the GCV index. It is given by (Friedman 1991; Sekulic and 

Kowalski 1992; Friedman and Roosen 1995;  Hastie et al. 2003): 
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    MdMMC  1  (3)  

where d is a coefficient that determines the importance of this parameter and M is the 

number of terms in Eq. (1). 

 

The relative importance of the independent variables that appear in the regression func-

tion (as only some of these variables remain in the final function) can be assessed using 

different criteria (Chou et al. 2004; Xu et al. 2004; Cheng and Cao 2014; Zhang et al. 

2015): (a) the GCV attached to a variable can be one of these criteria and it is measured 

taking into account how much this index increases if this variable is erased from the final 

function; (b) the same criterion can be applied using the RSS index; and (c) another crite-

rion is the number of subsets (Nsubset) of which the variable is a part. If it is part of more 

terms, its importance is greater. 

 

 Differential evolution (DE) algorithm 

The differential evolution (DE) method, which was initially discovered by Storn and Price 

(Storn and Price 1997), optimises the problem iteratively by attempting to improve a can-

didate solution concerning a well-known quality measurement. The total population

 1 2X x , x ,..., x
T

M
involves M individuals in such a way that the n-th individual is rep-

resented by an objective vector designating an individual’s position in the search space. 

The objective vector pertaining to the n-th individual at the t-ith iteration of the optimi-

sation is expressed as (Storn and Price 1997; Price et al. 2005): 

 
(4) 
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The differential evolution (DE) technique requires five stages to be able to build the op-

timisation algorithm; which are indicated as follows (Storn and Price 1997; Price et al. 

2005, Feoktistov 2006; Rocca et al. 2011): 

 Initialization 

Firstly, the initial objective vectors of M individuals are created (or produced) in the de-

sign space H. This task is carried out in a random way so that the initial objective vector 

(0-th iteration: corresponds to the initial location of the particle) of dimension p 

  1,...,p P
is given via: 

 
(5) 

so that rand(0,1) represents a random number evenly distributed in the interval [0,1]. 

 Mutation 

A benefactor vector is produced using differences of scale among individuals for each 

individual of the population. The n-th benefactor vector is generated by means of the 

following mutation strategy,  and is written as the expression: 

 
(6) 

where r1, r2 and r3 are random integers evenly distributed in the interval  1, M such that 

1 2 3r r r n   , and G is a scaling factor. 

 Crossover 

In order to ensure diversity, a crossover stage must be carried out. Indeed, in order to 

generate a trial vector with guarantees, we will do a crossover of the individual elements 

from both the objective vector and the benefactor vector. In this study, we have used the 
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binomial crossover to create the n-th trial vector in the p-th dimension governed by the 

expression: 

 

(7) 

where  0,1CR is a parameter called crossover probability and
nr is a random integer  

spread evenly in the interval  1, P . Consequently, elements of the trial vector are taken 

from the benefactor vector with a probability CR so that at least one element of the ben-

efactor vector is accepted. 

 Selection 

Next, the trial vector is checked and the n-th objective vector is computed at the next 

iteration via: 

 

(8) 

 

Therefore, the objective vector is replaced by the trial vector if its performance is greater 

than or equal to the performance of the objective vector. 

 Stopping criterion 

The algorithm is stopped if the permitted maximum number of function evaluations is 

reached and after all M objective vectors have been upgraded. Otherwise, the above steps, 

from the second one to the fifth, are repeated. 

 

The pseudocode of the DE algorithm can be written as: 
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Random initialization of the individuals and calculate the objective 

while Current_number_of_function_evaluations < Max_function_evaluations do 

for n = 1:M do 

Carry out the mutation according to Eq. (6) 

Carry out the binomial crossover according to Eq. (7) 

Calculate the objective taking into account the constraints of the trial vector 

end for 

for  n = 1:M do 

Upgrade the n-th objective vector according to Eq. (8) 

end for 

end while 

 

Accuracy measure 

Tables 1 and 2 show the independent economic and environmental variables used in this 

work, respectively (Tajbakhsh and Hassini 2018; CATF 2918; EIA 2018; USEPA 2018; 

FERC 2018). Thus, there were a total of 11 predictors in both the DE/MARS and M5 

models. The units of the obtained variables (net annual electricity generation, and carbon 

dioxide (CO2) emissions) are TWh and Mton (Tajbakhsh and Hassini 2018; CATF 2918; 

EIA 2018; USEPA 2018; FERC 2018), respectively. 

 

Table 1 Economic parameters used in this work, with their mean and standard deviation 
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Table 2 Environmental variables in this work to investigate the power plant case study 

with their mean and standard deviation 

 

The goodness-of-fit criterion applied in this article to foretell the output variables from 

the  variables left over was the determination coefficient R2, which is a ratio that shows 

the relationship between the variation in the predicted variable defined by the analysis 

model and the behaviour in the same variable across the data set. Let’s name the observed 

values 
it  and the estimated value of the respective model

iy . These variabilities can be 

evaluated with the following expressions (Wasserman 2003; Freedman et al. 2007): 

 

  
2

1

n

err i i

i

SS t y


   
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2

1

n

tot i

i

SS t t


   

where t is the average value of the observed n samples: 





n

i

it
n

t
1

1
 

(9) 

 

Then, the coefficient of determination is: 

2 1 err

tot

SS
R

SS
   

(10) 

The coefficient of determination defines the suitability of the regression values come 

close to the actual values (i.e. the closer to 1 the better). 
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Furthermore, the MARS method depends on the following hyperparameters (Friedman 

and Roosen 1995; Xu et al. 2004; Vidoli 2011): 

 Interactions: It describes a maximum number of basis functions included in a sit-

uation where the effect of one causal variable on an outcome depends on the state 

of another causal variable by basis functions, multiplying in a term. 

 Maximum number of base functions (Maxfuncs): it defines the number of base 

functions used before the previous phase. However, some of them are filtered. 

  Penalty parameter (d): it is considered for each node there is one GCV penalty 

related to that knot. 

 

Thus, the novel hybrid DE/MARS and M5 models have been constructed with predicted 

variables the net annual electricity generation and carbon dioxide (CO2) emissions and 

the other eleven economic and performance parameters as predictor variables (input var-

iables). The coefficient of determination R2 is used as a criterion to assess the success of 

each model. 

 

As mentioned previously, the success of the methodology is largely due to the MARS 

model parameters, which makes the right fit to be absolutely essential. Therefore, each 

set of parameters in relation with a model must be evaluated so that they can be compared, 

which takes up the greater part of the computer processing time. Accordingly, the fewer 

models are evaluated in the process, the better, as fewer model evaluations are required. 

Consequently, the hyperparameters have been optimized by divers models (Friedman and 

Roosen 1995; Xu et al. 2004; Vidoli 2011) and the DE optimisation technique was found 

to be the most appropriate, effective and simple tool in order to estimate the net annual 
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electricity generation and carbon dioxide (CO2) emissions from the other eleven eco-

nomic and performance parameters (input variables).  Fig. 3 shows the flowchart of the 

DE/MARS method used in this work. 

 

Fig. 3 DE/MARS method flowchart 

 

Furthermore, cross–validation was used for computing the coefficient of determination 

(R2) (Picard and Cook 1984; Wasserman 2003; Freedman et al. 2007). Thus, a ten–fold 

cross–validation algorithm was used to estimate the predictive capacity of the DE/MARS 

model. 

 

The DE module for the validation process was used to optimise the MARS parameters. 

The validation process seeks the best parameters for the data, using the mean value of the 

coefficient of determination, making R2 the objective function in this condition.  

 

Initially, sets of three parameters (30 different, random ones with members of the popu-

lation) were calculated within the search space (Table 3). A model was defined with each 

of these parameter sets, and the corresponding R2 cross-validation was estimated. As DE 

looks for a minimum and we are trying to obtain the highest R2, the fitness function asso-

ciated to a given model (set of three parameters) was minus R2 because the minimum of 

this function would be the maximum of R2. A new population was created by using mu-

tation and recombination; once again, the suitability of each model was estimated. The 

aptitude of the models was selected, each new member of the population was compared 

with his previous partner, and the worst was discarded. Subsequently, a new population 

of 30 members was created containing a combination of the new and old populations. The 
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steps of mutation, recombination and selection were repeated until the stop criterion was 

reached. Finally, if the best fitness of the last iteration differs less than 10-8 with the best 

fitness of the previous one, with a condition of allowing for a maximum of 200 iterations, 

the process stops. The MARS regression was performed with the Earth library (Milbor-

row 2014) along with the DE function from DEOptim library (Mullen et al. 2011; Ardia 

et al. 2016) from the R project. The model with the best fitness in the last iteration was 

then selected to define the result. 

 

Table 3 Search for space in the DE tuning process for each of the MARS parameters 

 

Results and discussion 

Effective conservation efforts and the transition to an energy future are both essential to 

avoid catastrophic climate change (Vidadili  et al. 2017). Fossil fuel-based thermal power 

generation is one of the earliest forms of large-scale energy generation. Over consumption 

of electricity calls for an urgent need to improve the efficiency of fossil-fuel thermal 

power generation in order to save fossil fuel resources while minimizing contaminants. 

Energy losses from energy conversion and distribution in the energy supply network are 

very significant. Energy efficiency enables the reduction of resources used for energy 

extraction, transformation, transportation and use. In this regard, active actions in the en-

ergy and environmental policy based on strategies about economic development, envi-

ronmental protection and social development are important (Rehbein et al. 2020). In order 

to make these kinds of changes,it is needes to have the right policies, regulations and 

energy performance analysis of the energy systems. These will target on overall energy 

policy, demand and supply-side measures, energy tariff regulations, power sector reform 

and promotion of energy efficiency auditing. 
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The optimal parameters for the obtained models (DE/MARS) by means of the differential 

evolution (DE) technique for the net annual electricity generation (NAEG) and carbon 

dioxide (CO2) emission (CDE) are shown in Table 4. In addition to that, Tables 5 and 6 

show these parameters to define the final models. Particularly,  they define a list of nine 

and seven main functions for the two adjusted DE/MARS models, just as their coeffi-

cients for the dependent variables net annual electricity generation and carbon dioxide 

emissions, respectively. Observe that h(x)=x if x >0 and h(x)=0 if 0x  . Moreover, a 

graphical representation of the two best DE/MARS models for the net annual electricity 

generation and carbon dioxide is shown in Figs. 4 and 5, respectively.  

 

Fig. 4 Representation of the partial relations within the MARS model for the NAEG ac-

cording to its independent variables: a first-order relation with AFC; b first-order relation 

with CDE; c first-order relation with AR; d second-order relation with AP and AR; e 

second-order relation with ANE and CDE; and f second-order relation with ANE and AR 

 

These graphs are an idea of which predictors in the MARS equation have the greatest 

effect on the predicted value when considering other predictor variables in their median 

values. Fig. 4 shows how variable AENG changes according to the model when all the 

variables but one (first-order relation) or but two (second-order relation) are fixed at its 

median value. A sharp change in the gradient of the straight line (first-order term) or 

curvature of the surface (second-order term) is indicative of different influence. Accord-

ingly, Fig. 4a shows the dependent variable NAEG (y-axis) as a function of the annual 

fuel consumed (AFC) (x-axis) considering the other input variables to be constant. It 

should be noted that the NAEG increases very slightly and then peaks at 4 TWh at about 

2000 MJ. Next, NAEG stabilizes at 4TWh, that is, its value remains constant for all AFC 



 

22 

values. Fig. 4b shows the NAEG (y-axis) as a function of the carbon dioxide (CO2) emis-

sions (CDE) (x-axis) so that NAEG remains constant up to a CDE value of 2.5 Mton and 

then NAEG grows following a straight line reaching a maximum value of 10 TWh for a 

CDE value of 20 Mton. Fig. 4c shows the line chart corresponding to NAEG (y-axis) as 

a function of AR (x-axis) follows a straight line. From AR 0 to 250 million dollars, NAEG 

increases slightly and then, from an AR value 250 to 1,600 million dollars,  NAEG in-

creases gradually with a maximum of 7.5 TWh at AR 1,600 million dollars. Similarly, 

the surface chart (see Fig. 4e) shows that NAEG rises dramatically and peaked as ANE 

and CDE increase. The combined effect of variables ANE and CDE have quite an impact 

on the dependent variables that is greater than the one obtained separately. 

 

Fig. 5 Description of the partial relations within the MARS model for the CDE with re-

spect to independent variables. In this case, all of the partial relationships are first-order 

terms 

 

Fig. 5 shows only first-order relationships as the DE-MARS model does not have second-

order basis functions. In this case, a simple model with only three independent variables, 

N2OE, ME, and AENG, was created. The variable CDE increases when any of these 

independent variables increase. Fig. 5a indicates the CDE as a function of the nitrous 

oxide (N2O) emissions (N2OE), keeping the remaining independent variables as con-

stants. It should be observed that CDE increases in a straight line from 0.5 Mton at 0 kton 

to 12 Mton at 100 kton. In this case, all the partial relationships are first-order terms: there 

are no second-order terms. Fig. 5b represents the dependent variable CDE (y-axis) as a 

function of the methane (CH4) emissions (kton) (ME) (x-axis). From ME value 0 to 20 
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kton, CDE decreases slightly reaching a minimum of 2 Mton. From ME value 20 to 65 

kton, CDE increases substantially in a straight line with a maximum of 6 Mton. Finally, 

Fig. 5c shows the CDE dependent variable as a function of the NAEG variable. From 

NAEG value 0 to 7 TWh, CDE grows substantially following a straight line up to a CDE 

value of 4.5 Mton. From NAEG value 7 to 17 TWh, CDE increases gradually in a straight 

line up to reach a maximum value of 6.5 Mton.  

 

Table 4 Optimal MARS model hyperparameters found with DE 

 

Table 5 DE/MARS model basis functions and their coefficients ci for the Net annual 

electricity generation (NAEG) 

 

Table 6 DE/MARS model basis functions and their coefficients ci for the carbon dioxide 

(CO2) emission (CDE) 

 

The correlation and determination coefficients for the DE/MARS models based on the 

data are shown in Table 7. 

 

Table 7 Cross-validation coefficients of determination (R2) and correlation (r) for 

DE/MARS models used in this analysis to determine the NAEG and CDE 

 

Consequently, the MARS technique in combination with DE optimisation proved to be 

the best model for estimating NAEG and CDE, since the two applied DE/MARS models 
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have coefficients of determination R2 equal to 0.9803 and 0.9901, and correlation coeffi-

cients equal to 0.9895 and 0.9947, respectively. Therefore, the results demonstrate a reli-

able goodness-of-fit and show a good level of agreement between our predicted, and ob-

served data. 

 

Additionally, the significance ranking of the economic and performance parameters (in-

put variables), and the NAEG and CDE as dependent variables (output variables) are 

presented. Tables 8 and 9, and Figs. 6 and 7 show these variables, respectively. Figs. 8 

and 9 show that both AENG and CDE DE/MARS models can predict with great accuracy 

the value of the dependent variable, as the observed values (blue line) are very close to 

the predicted values (red line) and there exist only small discrepancies between the two 

values. That means that the chosen independent variables provide enough information to 

ascertain the variations of the dependent variables that the DE/MARS model is able to 

replicate. 

 

Table 8 Results of the variables in relation with each variable to define their significance 

in the DE/MARS NAEG model 

 

 

Table 9 Results of the variables in relation with each variable to define their significance 

in the DE/MARS CDE model 

 

Fig. 6 Level of  importance of the parameters in the DE/MARS NAEG model in accord-

ance with Nsubsets criterion 
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Fig. 7 Level of  importance of the parameters in the DE/MARS CDE model in accordance 

with Nsubsets criterion 

 

Consequently, Annual revenue is the most representative variable in predicting NAEG 

for the MARS model, followed by carbon dioxide (CO2) emissions, annual number of 

employees, annual production expenses and book value of plant and land. 

 

The annual revenue indicates the direct cost of the net annual electricity generation, which 

makes it the major parameter in the model. The second most important factor is Carbon 

dioxide emissions, as it is a direct effect of combustion. Finally, the annual number of 

employees and annual production expenses are of less importance as they are related to 

the NAEG only in an indirect way, through the operation management of a power plant. 

The book value of the plant is related with the plant size, which involves different aspects 

of the conversion technology, not only the power capacity. 

 

Similarly, the relative level of importance of the independent variables in the Carbon 

dioxide (CO2) emission model is shown in Fig. 7 and Table 9. In this case, this second 

MARS model defines the emission of nitrous oxide as the first variable (N2O), followed 

by net annual electricity generation and, finally, Methane (CH4) emission. 

 

In this case, the GHG emissions are related with the combustion process.  The main factor 

is Nitrous oxide which, together with Carbon dioxide, depends on proper operating con-

ditions in the boiler. Ultimately, the greatest concern surrounding the net annual electric-

ity generation from fossil fuels is the level of carbon dioxide emissions. Finally, Methane 
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emissions have a lesser effect on the model as a result of its residual participation in the 

combustion process or energy management capacity. 

 

Thus, the present research allows for the prediction of the first dependent variable (net 

annual electricity generation (NAEG)) with results that correlate with the actual observed 

values. Fig. 8 compares the observed NAEG with that which was predicted using this 

hybrid DE/MARS model (see Fig. 8).  

 

Fig. 8 Experimental and foretold NAEG values from the cross-breed DE/MARS model 

(R2 = 0.9803) 

 

Similarly, Fig. 9 compares observed and predicted Carbon dioxide (CO2) emission values 

by the DE/MARS model. 

 

Fig. 9 Experimental and foretold Carbon dioxide (CO2) emission values with the hybrid 

DE/MARS–based model (R2 = 0.9895)  

 

Conclusions 

Comparing power generation and environmental assets is a very challenging problem due 

to differences in technology, operation and size. Energy efficiency and fossil-fuel thermal 

power station are becoming an increasingly important part of the changing energy system 

in the sustainable energy context, a fact that raises challenges for the current technologies. 

Investments in energy efficiency and environmental protection can reduce electricity de-

mand and allow the early decommissioning of old remaining coal and fossil fuel plants.  



 

27 

Computational fluid dynamics (CFD) techniques represented a very important advance, 

modelling in detail the energy and environmental parameters management (Díez et al. 

2005; Sankar et al. 2019). However, CFD techniques maintained important shortcomings: 

a huge computing time and modelling complexity. In this sense, the overall performance 

in thermal power plants developed in this work was accurately predicted and modelled 

by using this new hybrid DE/MARS model with success. In addition, this newer, less-

expensive method will provide an excellent alternative to the more expensive traditional 

methods. Furthermore, MARS models produce, through an expansion of functions 

(known as hinge functions and products of two or more hinge functions), an explicit 

mathematical formula. This formula shows the dependent variable as a function of the 

independent variables. This last feature is a fundamental difference compared to alterna-

tive automatic learning methods since most of them behave like a black box. 

 

A high result of  R2 (R2 = 0.9803) was obtained when the hybrid DE/MARS model was 

tested with the experimental data from the net annual electricity generation (see Fig. 8). 

Similarly, the model for the experimental dataset of the Carbon dioxide (CO2) emissions 

also obtained a high coefficient of determination (R2 = 0.9895), and the predicted results 

agreed with the observed Carbon dioxide (CO2) emission dataset values (see Fig. 9). 

 

This method also allows the ranking of the input variables involved in predicting the en-

ergy performance in thermal power stations. Thus, the annual revenue is the most influ-

ential parameter in the NAEG model, whilst the Nitrous oxide (N2O) emission is the most 

relevant to CDE concentration. Also, in the case of the CDE model, a particularly simple 

and highly effective model was created: only three variables remain and the model is 

piece-wise linear. The AENG model is more complex but it is still quite simple, reducing 
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the initial number of variables from ten to six. Both NAEG and CDE show their depend-

ence from the input variables. The energy analysis, in particular, can improve the effi-

ciency of fossil-fuel thermal power by either energy conservation within the system or 

through the differences between initial parameters and final performance parameters. 

NAEG is directly related to both the total gross power generation as well as the amount 

of electricity generated by a power plant. It depends on AR, CDE and ANE, parameters 

dependent on the power plant size and operation conditions. 

 

Finally, the hybrid DE/MARS regression method seems to considerably improve the pre-

dictive capacity obtained by the MARS-based regressor, with no need to optimise its pa-

rameters. 

 

However, the model as DE/MARS is a data-based model, it is relevant to be careful not 

to extrapolate the results for different situations. The DE/MARS model depends strictly 

on the results provided from the available data and is conceptually different from a deter-

ministic mathematical model based on a set of integral or differential equations. 

 

In conclusion, this highly effective new DE/MARS model should prove to be a valuable 

tool for estimating and predicting energy performance in thermal power stations. 
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Fig. 1 a An aerial photograph of an example of fossil-fuel power plant (i.e., Soto de 

Ribera power plant) and b the same fossil-fuel power plant at a larger scale 



 

 

 

 

 

 

 

Fig. 2 An example of linear basis functions 
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Fig. 3 DE/MARS method flowchart 

  



 

 

 

 

Fig. 4 Representation of the partial relations within the MARS model for the NAEG 

according to its independent variables: a first-order relation with AFC; b first-order 

relation with CDE; c first-order relation with AR; d second-order relation with AP and 

AR; e second-order relation with ANE and CDE; and f second-order relation with ANE 

and AR 

 

  



 

 

 

Fig. 5 Description of the partial relations within the MARS model for the CDE with 

respect to independent variables. In this case, all of the partial relationships are first-order 

terms 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig. 6 Level of importance of the parameters in the DE/MARS NAEG model in 

accordance with Nsubsets criterion 

  



 

Fig. 7 Level of importance of the parameters in the DE/MARS CDE model in accordance 

with Nsubsets criterion 

 

 

  



 

Fig. 8 Experimental and foretold NAEG values from the cross-breed DE/MARS model 

(R2=0.9803)  

 

Fig. 9 Experimental and foretold Carbon dioxide (CO2) emission values with the hybrid 

DE/MARS–based model (R2=0.9895)  



 

Table 1 Economic parameters used in this work, with their mean and standard deviation 

Economic variables  Short name of the 

variable 

Mean Std 

Book value of plant and land (millions of $) BVPL 729.67 699.79 

Annual production expenses (millions of $) APE 164.07 152.23 

Plant nameplate capacity (Mw) PNC 1002.4 808.62 

Annual number of employees ANE 125.43 106.42 

Annual revenue (millions of $)  AR 410.48 378.76 

 Net annual electricity generation (TWh) NAEG 4.5214 4.1168 

 

  



 

 

Table 2 Environmental variables in this work to investigate the power plant case study 

with their mean and standard deviation 

Environmental variables  Short name of the variable Mean Std 

Annual fuel consumed (MJ) AFC 4038 8904.62 

Carbon dioxide (CO2) emissions (Mtons) CDE 3.8511 3.85255 

Nitrous oxide (N2O) emissions (kton) N2OE 17.798 20.699 

Methane (CH4) emissions (kton) ME 8.0223 11.4688 

Sulfur dioxide (SO2) emissions (kton) SDE 6.0031 9.5171 

Nitrogen oxide (NOx) emissions (kton) NOxE 3.3789 3.48999 

 

  



Table 3 Search for space in the DE tuning process for each of the MARS parameters 

MARS hyperparameters Lower limit Upper limit 

Maximum number of basis functions (MaxFuncs) 3 200 

Interactions 1 6 

Penalty parameter (d) -1 4 

 

 

Table 4 Optimal MARS model hyperparameters found with DE 

Hyperparameter Optimal value for AENG  Optimal value for CDE 

Interactions 5 2 

MaxFuncs 33 124 

Penalty 2 0 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5 DE/MARS model basis functions and their coefficients ci for the Net annual 

electricity generation (NAEG) 

iB  Definition ic  

1B  1 3.03492 

2B  h(4176–AFC) –0.00035 

3B  h(CDE–2.47926) 0.15613 

4B  h(179.192–AR) –0.00902 

5B  h(AR–179.192) 0.00592 

6B  ANE h(CDE–2.47926) 0.00239 

7B  h(332.835–APE)   h(AR–238.603) –0.000014 

8B  h(ANE–143)   h(AR–179.192) –0.00003 

9B  BVPL   h(143–ANE)   h(AR–179.192) 0.00000002 

 

 

Table 6 DE/MARS model basis functions and their coefficients ci for the Carbon dioxide 

(CO2) emission (CDE) 

iB  Definition ic  

1B  1 4.12415 

2B  h(7.464–N2OE) –0.11589 

3B  h(N2OE–7.464) 0.11160 

4B  h(19.205–ME) 0.01381 

5B  h(ME–19.205) 0.09285 

6B  h(8.29257–AENG) –0.42542 

7B  h(AENG–8.29257) 0.19642 

 

 

 

 



 

 

Table 7 Cross-validation coefficients of determination (R2) and correlation (r) for 

DE/MARS models used in this analysis to determine the NAEG and CDE 

 

Variable Coeff. of det. (R2)/corr. coeff. (r) 

AENG 0.9803 / 0.9901 

CDE 0.9895 / 0.9947 

 

 

Table 8  

Results of the variables in relation with each variable to define their significance in the 

DE/MARS NAEG model 

 

Variable Nsubsets GCV RSS 

AR 8 100.0 100.0 

CDE 6 17.7 17.4 

ANE 5 10.7 10.6 

APE 4 9.1 9.0 

AFC 3 7.8 7.5 

BVPL 2 5.6 5.4 

 

 

 

 

 

 

 

 



 

Table 9  

Results of the variables in relation with each variable to define their significance in the 

DE/MARS CDE model 

Variable Nsubsets GCV RSS 

N2OE 6 100.0 100.0 

AENG 5 27.2 27.0 

ME 4 17.6 17.4 

 


