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1 Introduction

The gauge/gravity duality [1–3], aka holography, has been successful in describing some

qualitative properties of the quark-gluon plasma, in particular predicting an almost perfect

fluid behavior and producing the famous KSS formula for the shear viscosity over entropy

density ratio [4, 5], that captures the right order of magnitude deduced from hydrodynamic

simulations of heavy ion collisions [6–10].

One of the most indicative signals of the formation of a deconfined quark gluon plasma

is jet quenching (see [11] for a comprehensive review). If a highly energetic parton collision
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takes place close to the surface of the plasma ball, some of the particles produced may

escape almost immediately, producing an observable jet, while the path of particles moving

in the opposite direction might have to cross a significant portion of the plasma. In this

case energy dissipation produced by the interaction with the plasma components weakens

or prevents the formation of a back jet. The observation of jet quenching in heavy ion

collisions is one of the most convincing evidences in favor of the formation of a deconfined

plasma, and one of the most important probes into its properties.

Early on, the duality has been used to model the energy loss of heavy quarks moving

through the plasma [12–15] in order to give an estimation of jet quenching.1 The energy loss

can be determined from the drag force the quark experiences, which in turn can be obtained

from the expectation value of a Wilson line along the quark trajectory. Following [12, 13],

the heavy quark maps to a dragging string moving through a black brane geometry in the

holographic dual, from which the expectation value of the Wilson line can be extracted.

The string ends at the asymptotic boundary of space and extends all the way to the black

brane horizon. According to the usual holographic map, these two regions correspond to

energy scales of the UV and IR of the field theory, respectively. This means that the heavy

quark motion is sensitive to all the energy scales of the theory, in contrast for instance to

hydrodynamic evolution, which is limited to the IR. The sensitivity to multiple energy

scales is a challenge for the holographic description. In QCD the gauge coupling becomes

weak at high energies, and if this feature was introduced in the holographic model, then the

curvature in the dual geometry would become large and stringy corrections to the classical

gravity approximation would not be negligible anymore. Introducing stringy corrections

may be doable in principle by adding higher derivative terms in the gravitational action.

In this fashion, the first corrections away from the strong coupling limit of some properties

of the plasma have been studied for conformal theories [19–24]. However, for a theory with

a running coupling like QCD, finding these corrections has not been attempted yet.

As a full string theory description of holographic duals is out of reach at the moment, it

is desirable to tackle this issue in a way that avoids dealing with large curvature corrections.

A possibility is to adopt a purely phenomenological approach and model the weakly coupled

region neglecting possible higher curvature corrections. A second possibility is to follow

an effective theory approach and use the holographic model to describe a limited range

of energy scales where the theory is strongly coupled. In this category fall the hybrid or

semi-holograhic models studied for instance in [25–32]. A drawback of hybrid models is

that the theory changes abruptly when the holographic model is used, with no obvious

systematic way to improve the method. We can compare this situation with the usual low

energy effective field theory approach. In this case the couplings in the effective action are

free parameters that have to be fixed by experiments or by matching to the microscopic

theory, and a systematic improvement of the low energy effective theory is possible. This

is one of the main properties that makes the effective field theory so successful, and hybrid

models could be significantly improved if a similar procedure could be implemented for the

holographic model. We will take the first steps in this direction by applying the method

1Different estimations of jet quenching involve particles moving at the speed of light [16] or light quarks

or gluons [17, 18].
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Figure 1. The holographic dual of a heavy quark moving at speed v is a string (red curve) ending

at the asymptotic boundary at the position of the quark (black dot). The strings extends from the

asymptotic boundary at the top to the black brane horizon at the bottom of the figure. A cutoff

(dashed blue line) is introduced and the shaded region between the boundary and the cutoff is

“integrated out”. One is left with the string in the region between the cutoff and the horizon and

determined boundary conditions for the endpoint of the string at the cutoff (blue dot).

of holographic “Wilsonian” renormalization [33, 34] to a moving string. Our analysis is an

extension of [35], where we applied this method to static strings in order to extract the

quark-antiquark potential.

In the Wilsonian method we introduce a cutoff in the dual geometry localized at a fixed

distance from the asymptotic boundary. The region between the cutoff and the boundary

is replaced by an action for the string endpoints at the cutoff, as sketched in figure 1. The

cutoff action ensures that the string satisfies the right boundary conditions, in such a way

that the force felt by the heavy quark is independent of the position of the cutoff. The

coefficients of the cutoff action satisfy RG flow equations that are determined by the local

geometry around the cutoff, in such a way that all the knowledge about the region between

the cutoff and the asymptotic boundary is hidden in integration constants of the RG flow

equations. Then, for a given IR effective theory, with a holographic dual corresponding to

the geometry between the horizon and the cutoff, it is possible to match to multiple UV

theories by appropriately tuning the integration constants of the RG flow.

We will derive the cutoff action and RG flow equations of the coefficients for a heavy

quark moving at approximately constant velocity. We will consider a general black brane

geometry, but we will also present the results for a IR geometry approximated by an AdS5

black brane, as a simple example to illustrate the method. We will use these results to

compute the drag force, including a couple of contributions proportional to the acceleration

of the quark and the jerk, or acceleration rate. The first can be interpreted as originating

from a thermal correction to the mass of the quark, while the second can be thought of

as a combination of the Abraham-Lorentz force [36, 37], due to Larmor radiation, and a

viscous contribution produced by the surrounding fluid [38]. The two contributions add up

giving the total value found in [39].
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The paper is organized as follows. In section 2 we introduce the holographic description

of a heavy quark moving through a strongly coupled plasma as a string in a general black

brane geometry. We simplify the analysis by considering a homogeneous and isotropic

state for the plasma, and slow variations of the quark trajectory, compared to the inverse

temperature. In section 3 we introduce a cutoff and derive the cutoff action for the string

and the RG flow equations for the coefficients. In section 4, we apply the general formalism

to a specific case where the theory has an IR fixed point and consequently the IR geometry

is an AdS5 black brane. We compute the drag force and the corrections proportional to

the acceleration and the jerk. In section 5, we explain how the cutoff action and RG flow

equations can be obtained more generally using the cutoff independence of the string action,

and show that they agree with the previous results obtained by direct integration. We end

with a discussion of the results in section 6. Some technical details of the calculations have

been collected in the appendices.

2 Holographic description of a heavy quark in a plasma

We will start by reviewing the holographic dual to a heavy quark in a high temperature

deconfined phase. We will simplify the analysis by imposing that the heavy quark is moving

along one spatial direction in a trajectory of almost constant velocity, with changes in the

trajectory that are slow compared to the time scale set by the inverse temperature. This

last approximation is necessary in order to apply a low energy effective description. Note

that the trajectory is fixed, so we are not considering the dynamics of the quark, only the

force of the plasma acting over it.

The holographic dual of the plasma is a five-dimensional geometry with an event hori-

zon extended along four directions, that are identified with the dual field theory directions.

A homogeneous and isotropic black brane geometry dual to a strongly coupled 3+1 plasma

can be cast in the general form

ds2 = GMNdx
MdxN = Gzz(z)dz2 +Gtt(z)dt2 +Gxx(z)δijdx

idxj . (2.1)

where (t, xi), i = 1, 2, 3 are coordinates along the field theory directions and z is the

holographic radial coordinate. The holographic radial direction is identified with energy or

length scales in the dual field theory. Low energies, or long wavelengths (IR) correspond

to the region close to the horizon, and high energies or short wavelengths (UV) to an

asymptotic region far away from the horizon. If the space is asymptotically AdS5, the

region approaching the conformal boundary is the far UV. In addition to the metric shown

in (2.1), there can be additional internal directions, but they will not play any role in

the following.

We pick coordinates in such a way that there is a horizon at Gtt(zh) = 0. For the AdS5

black brane metric

Gtt(z) = −R
2

z2
h(z), Gzz(z) =

R2

z2h(z)
, Gxx =

R2

z2
, h(z) = 1− z4

z4
h

. (2.2)

Therefore, R is the AdS radius and the boundary is at z → 0. The Hawking temperature

of the black brane maps to the temperature of the field theory and, as the temperature

– 4 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
9

is increased, the horizon moves towards the asymptotic region, indicating that there are

degrees of freedom of higher energy contributing to the plasma. The temperature for

the AdS5 black brane geometry is T = 1/(πzh). For a general metric we will define the

functions

h(z) ≡
∣∣∣∣GttGzz

∣∣∣∣1/2 , f(z) ≡ Gxxh(z), g(z) ≡ Gxx
h(z)

. (2.3)

In AdS5 the function h coincides with its usual definition, while f = |Gtt| and g = Gzz. In

general, f and g are not equal to metric components, but we will still assume that there is

an asymptotic boundary at z → 0 even if the space is not asymptotically AdS5.

We now introduce a heavy quark in the plasma. Considering the mass of the heavy

quark to be effectively infinite, the heavy quark maps to a Wilson line and the holographic

dual is a string ending at the quark trajectory on the asymptotic boundary. This identifi-

cation was done originally for static quarks [40–42] and later on generalized to quarks in

motion [12–15]. So we do not solve for the quark motion but rather find the force with

which the plasma acts when the quark follows a fixed path.

To start with, we consider the simplest case of a heavy quark in N = 4 SYM. The

dual geometry is AdS5 × S5, with a string attached to the AdS5 boundary at the location

of the Wilson line and localized at a point in the internal space, in this case the S5. To be

more precise, this corresponds to a 1/2 BPS loop that also couples to N = 4 SYM scalars,

but for simplicity we will restrict to this case. We will assume in the following that this

setup can be generalized to other holographic duals, i.e. we will use a string to describe a

Wilson loop in different geometries, implicitly taking the metric in the string frame and

neglecting any motion along internal space directions.

The dynamics of the string are given by the Nambu-Goto action for the embedding

functions XM

SNG = −Ts
∫
d2σLNG = −Ts

∫
d2σ

√
− det gab(X), (2.4)

where Ts = 1/(2πα′) is the string tension, σa, a = 0, 1 are the worldsheet coordinates and

gab is the induced metric

gab = GMN (X)∂aX
M∂bX

N . (2.5)

2.1 Slowly moving quarks

In the first place we will consider a heavy quark that is almost at rest, but can move with

a small varying velocity. Let us assume that the quark moves along one spatial direction.

An ansatz for the embedding functions in the static gauge is

t = X0 = σ0, X1 = X(t, z), X2 = X3 = 0, z = Xz = σ1. (2.6)

The Nambu-Goto action simplifies to

LNG =
√
|Gtt|Gzz

√
1 +Gxx

(
1

Gzz
(X ′)2 − 1

|Gtt|
(Ẋ)2

)
. (2.7)

Where we have defined the derivatives X ′ = ∂zX, Ẋ = ∂tX.
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A slowly moving string Ẋ � 1 will have a profile that is almost a straight line X ′ � 1,

as long as we are not too close to the horizon. Then, the string action can be approximated

away from the horizon by the quadratic terms

LNG '
√
|Gtt|Gzz −

g(z)

2
(Ẋ)2 +

f(z)

2
(X ′)2 . (2.8)

Within this approximation the equations of motion take the simple form

(fX ′)′ − gẌ = 0. (2.9)

Assuming that the quark follows a trajectory xµ = (t, x(t), 0, 0), we should fix the position

of the string at the boundary to X(z = 0, t) = x(t). Since we are considering slow motion

we can use a derivative expansion to find the solutions, at least away from the horizon

where the function g(z) remains bounded. We expand the profile of the string according

to the order in time derivatives

X = X(0) +X(1) +X(2) + · · · (2.10)

Order by order we have the set of equations(
fX(0)′

)′
=
(
fX(1)′

)′
= 0,

(
fX(n)′

)′
= gẌ(n−2), n ≥ 2. (2.11)

The equations can be solved recursively. The lowest order solutions are

X(0)(t, z) = x(t) + p(0)(t)a(z), X(1)(t, z) = p(1)(t)a(z), a(z) =

∫ z

0

du

f(u)
. (2.12)

where p(0)(t), p(1)(t) are integration constants. The solutions at higher orders take the

general form

X(n)(t, z) = p(n)(t)a(z) +

∫ z

0

du

f(u)

∫ u

zc

dvg(v)Ẍ(n−2)(t, v). (2.13)

We have fixed the limits of the integrals in such a way that

X(t, z = 0) = x(t), ∂zX
∣∣∣
z=zc

=
1

f(zc)

(
p(0)(t) + p(1)(t) + p(2)(t) + · · ·

)
≡ p

f(zc)
. (2.14)

2.2 Fast moving quarks

The previous analysis is a perturbation around a quark at rest. We can generalize it by

taking as the unperturbed solution a quark moving at constant velocity. The background

profile is the “dragging string” found in the original calculations of the drag force [12, 13].

The ansatz for the embedding functions is a modification of the ansatz used in the

static gauge. Taking σ0 = t, σ1 = z,

X0 = t+ t0(z), X1 = vt+ x0(z) +X(t, z), X2 = X3 = 0, Xz = z. (2.15)

The background profile has constant velocity v. The functions t0(z), x0(z) determine the

profile of the dragging string. t0 determines the gauge and can be conveniently chosen,

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
9

and x0 is obtained by solving the equations of motion of the background profile. They are

fixed to

t′0 =
Gxx
|Gtt|

vx′0, x′0 = p0

√
|Gtt|Gzz

Gxx
(
|Gtt|Gxx − p2

0

)
(|Gtt| −Gxxv2)

(2.16)

Where p0 is a constant. Note that our gauge choice differs from [12, 13], where t0 = 0.

The condition that the solution is real everywhere fixes

p2
0 = |Gtt|Gxx

∣∣∣
z=z∗

, v2 =
|Gtt|
Gxx

∣∣∣
z=z∗

. (2.17)

The point z∗ is where the speed of the string equals the speed of light on a radial slice, it

corresponds to an effective horizon on the string worldsheet outside the black hole horizon.

If the geometry is the AdS5 black brane, the solution to these equations is

z∗ = γ1/4zh, p0 =
R2

z2
h

γv, γ =
1√

1− v2
. (2.18)

The Nambu-Goto action expanded to quadratic order in the perturbation is

LNG '
√
|Gtt|GzzGxx

√
|Gtt| −Gxxv2

|Gtt|Gxx − p2
0

+ p0X
′ − v

√
|Gtt|G3

xxGzz(
|Gtt|Gxx − p2

0

)
(Gtt −Gxxv2)

Ẋ

− 1

2
gv(z)(Ẋ)2 +

1

2
fv(z)(X ′)2. (2.19)

Where we have defined the functions

gv(z) = (|Gtt|GxxGzz)1/2

(
|Gtt|Gxx − p2

0

)1/2
(|Gtt| −Gxxv2)3/2

,

fv(z) = (|Gtt|GxxGzz)−1/2

(
GttGxx − p2

0

)3/2
(|Gtt| −Gxxv2)1/2

. (2.20)

The terms linear in the perturbation are total derivatives, as expected in an expansion

around a solution of the equations of motion. Therefore, they do not affect to the equations

of motion of the perturbation. The quadratic terms take the same form in this gauge as

those for a slowly moving quark (2.8), replacing the functions f, g by fv, gv. Then, we can

apply the same type of derivative expansion as for the slowly moving quark and all the

results have a straightforward generalization to the case of a fast moving quark.

3 Effective string action with a radial cutoff

We now proceed to the derivation of the holographic Wilsonian effective action for the

string. First we will use holographic renormalization on the string action to identify the

quantity that maps to the force acting on the heavy quark in the dual field theory. For

quarks moving along varying trajectories it is not exactly the canonical momentum con-

jugate to the position of the quark, as it was for quarks moving at constant velocities

in [12, 13], because the canonical momentum depends on the holographic radial coordinate
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in this case. Next, we will introduce a cutoff localized in the radial direction and “inte-

grate out” the region between the asymptotic boundary and the cutoff. As a result, the

remaining string action is defined in the region between the horizon and the cutoff, and

there is an additional boundary contribution at the cutoff. Finally, we will derive the RG

flow equations obtained from varying the position of the cutoff and use them to show that

physical observables obtained from the effective action are independent of the cutoff. As

the action for fast moving quarks can be mapped straightforwardly to the action for slowly

moving quarks, we will restrict the analysis in this section only to the latter, and show

results for both cases in the next section.

3.1 Force acting on the quark

The action (2.7) determines the string profile for a given quark trajectory x(t) by fixing the

position of the string at the asymptotic boundary z = 0. We will now identify the relevant

physical observable, the force acting on the quark. It is convenient to momentarily assume

that the metric is asymptotically AdS5. Then, when z → 0

f(z) ' g(z) ' R2

z2
, (3.1)

Then, the equation for the profile can be approximated by

X ′′ − 2

z
X ′ − Ẍ = 0. (3.2)

Solutions to this equation have a boundary expansion

X(t, z) = x(t)− 1

2
ẍ(t)z2 +

F (t)

3R2
z3 + · · · . (3.3)

The string action evaluated on shell is

LNG '
R2

z2
+ ∂z

(
f

2
X ′X

)
. (3.4)

The action is divergent, we will regularize it by introducing a UV cutoff zΛ and adding a

boundary counterterm that cancels the divergence when zΛ → 0. The boundary countert-

erm is determined by the induced metric at the boundary

Sc.t = TsR

∫
dt
√
−gb, gb = gb00 = gb00

∣∣∣
zΛ
' −R

2

z2
Λ

(1− Ẋ2(zΛ)). (3.5)

Since we are approximating the action to quadratic order,√
−gb ' R2

zΛ

(
1− 1

2
Ẋ(zΛ)2

)
. (3.6)

The regularized action is then

Sstring = lim
zΛ→0

Ts

∫
dt

[
−
∫ zh

zΛ

dzLNG +R
√
−gb

]
. (3.7)

– 8 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
9

The string action determines the effective potential felt by the quark Sstring = −
∫
dtVq, so

its variation respect to the position of the quark at the boundary determines the force

δSstring ' lim
zΛ→0

Ts

∫
dt

[
fX ′δX

∣∣∣
zΛ

+
R2

zΛ
Ẍ(zΛ)δX(zΛ)

]
= Ts

∫
dtF (t)δx. (3.8)

Where we have used (3.3). The force acting in the x direction is

Fx = −δVq
δx

= TsF (t). (3.9)

For a fast moving quark there is a small modification of this result, as the background

profile also gives a contribution to the force. The background contribution comes from the

linear terms in the action (2.19). Doing a variation, the term with a time derivative drops,

and the term with a radial derivative gives the boundary contribution

δSback ' lim
zΛ→0

Ts

∫
dt

(
−p0δX

∣∣∣
zΛ

)
= −Ts

∫
dt p0δx. (3.10)

Therefore, the contribution of the unperturbed string profile to the force is

Fvx = −Tsp0. (3.11)

Let us now find an expression for the slow moving quark, using the solu-

tions (2.12), (2.13). The derivatives give

f∂zX
(0) = p(0), f∂zX

(1) = p(1), f∂zX
(n) = p(n) +

∫ z

zc

g(v)Ẍ(n−2)(v). (3.12)

Summing over all orders in the expansion, the radial derivative is

fX ′ = p+ ẍ

∫ z

zc

g(v) + p̈

∫ z

zc

g(v)a(v) +O(∂4
t x, ∂

4
t p). (3.13)

We can do a Taylor expansion if we extract the divergent contribution from the term with

a factor ẍ:

fX ′ = p+ ẍ

[
A(z)− R2

z

]
+ p̈B(z) +O(∂4

t x, ∂
4
t p). (3.14)

Where we have defined

A(z) =
R2

zc
+

∫ z

zc

(
g(v)− R2

v2

)
, B(z) =

∫ z

zc

g(v)a(v). (3.15)

Then,

X ′ ' −ẍz + F (t)
z2

R2
+ · · · . (3.16)

Where the coefficient that determines the force is

F (t) = p+ ẍA(0) + p̈B(0) +O(∂4
t x, ∂

4
t p). (3.17)

– 9 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
9

Although it may not look like it at first sight, this expression is independent of zc. Us-

ing (2.14) and the equations of motion (2.9),

∂zcp = ∂zc(f(zc)X
′(zc)) = g(zc)Ẍ(zc). (3.18)

Then, the derivative of the force is

∂zcF = g(zc)Ẍ(zc)− g(zc)ẍ− g(zc)a(zc)p̈+O(∂4
t x, ∂

4
t p) = 0 +O(∂4

t x, ∂
4
t p). (3.19)

where we have used that X(zc) = x+ pa(zc) +O(∂2
t x, ∂

2
t p).

3.2 Introducing a cutoff

Once we have determined that the force is (3.9), we will formulate a prescription to compute

it when there is a cutoff at z = zc in the geometry such that the string does not reach the

AdS boundary, but it is extended between the horizon and the cutoff.

First, we will split the string action in two parts, corresponding to the integration

along the radial coordinate in the UV region zc > z > zΛ and the IR region zh > z > zc.

Sstring = SIR + SUV. (3.20)

Where

SIR = −Ts
∫
dt

∫ zh

zc

dzLNG,

SUV = lim
zΛ→0

Ts

∫
dt

[
−
∫ zc

zΛ

dzLNG +R
√
−gb

]
.

(3.21)

We will use the on-shell expression (3.4) and the counterterm (3.6) to evaluate the UV

action expanded to quadratic order in the perturbation

SUV ' Ts
∫
dt

[
R2

zc
− f(zc)

2
X(zc)X

′(zc) +
1

2
lim
zΛ→0

(
f(zΛ)X(zΛ)X ′(zΛ) +

R2

zΛ
Ẋ(zΛ)2

)]
.

(3.22)

From now on we will denote the position of the string at the cutoff as X(zc) ≡ xc. As we

show in appendix A, for a slowly moving quark the UV action can be approximated by

SUV 'Ts
∫
dt

[
Mc −

1

2
Kcẋ

2 − 1

2ac
(xc − x)2 +

1

2
mc(ẋc − ẋ)2

− κcẍ(xc − x) +O(∂4
t x, ∂

4
t xc)

]
. (3.23)

Where we have defined the coefficients as

Mc =
R2

zc
, Kc = A(0), ac = a(zc), mc =

1

a2
c

∫ zc

0
dvg(v)a(v)2, κc =

1

ac

∫ zc

0
dvg(v)a(v).

(3.24)

The string action has now the desired form, it is the Nambu-Goto action in the region

of the space between the horizon and the cutoff plus a boundary action defined at the
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cutoff, that we will use to determine boundary conditions for the string profile in the IR

region. Note that the cutoff action depends on both the trajectory of the Wilson loop

and the position of the string at the cutoff, and their derivatives. The coefficients in the

cutoff action are determined by integrations over the region between the cutoff and the

asymptotic boundary, but the dependence on the cutoff is sensitive only to the region close

to its radial position. The cutoff action takes the form of the action for a particle at position

xc, defined as a scalar field on the wordline. The particle is subject to a potential that

pins it at the position of the Wilson loop, x, which is a fixed source in the field theory.

From this point of view, ac determines the strength of the effective potential at leading

(quadratic) order and mc renormalizes the two-derivative kinetic term. A combination of

mc and κc multiplies a term linear in xc, which is a source term, and Kc, mc and κc enter

in the coefficient of a background contribution ∼ ẋ2 to the energy.

The total action is stationary respect to changes in the profile of the string that change

the position at the cutoff but keep the position at the asymptotic boundary fixed

δSstring = δSIR + δSUV = 0. (3.25)

The variation of the on-shell action in the IR region is

δSIR = Ts

∫
dtfX ′δX

∣∣∣
z=zc

= Ts

∫
dt pδxc. (3.26)

The variation of the cutoff action (3.23) is

δSUV ' Ts
∫
dt

[
− 1

ac
(xc − x)−mc(ẍc − ẍ)− κcẍ+O(∂4

t x, ∂
4
t xc)

]
δxc. (3.27)

This results in the boundary condition

p ' 1

ac
(xc − x) +mc(ẍc − ẍ) + κcẍ+O(∂4

t x, ∂
4
t xc), (3.28)

which is a mixed boundary condition between the radial derivative p = f(zc)X
′(zc) and

the value of the profile xc = X(zc) at the cutoff.

Substituting in the expression for the force (3.17) and using B(0) = −acκc, A(0) = Kc

produces

F (t) ' 1

ac
(xc − x) + (mc − κc)ẍc + (Kc −mc + 2κc)ẍ+O(∂4

t x, ∂
4
t xc). (3.29)

We have managed to write the force in terms of the coefficients in the cutoff action, the

position of the string at the cutoff and the trajectory of the Wilson line. At this point,

all the information about the geometry in the UV region is hidden in the value of the

coefficients.

3.3 RG flow equations

The cutoff action (3.23) could be interpreted as an effective description of the Wilson line

after UV degrees of freedom have been integrated out up to the energy scale defined by the
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cutoff. It has a similar form as a putative Wilsonian action, although it may not be exactly

the same as the outcome of an actual field theory calculation. Nevertheless, this line of

thought can be pursued further in the context of holographic RG flows. In particular we

can define RG flow equations for the coefficients in the cutoff action from the dependence

on the position of the cutoff in the radial direction. The set of equations we obtain are

∂zcMc = −R
2

z2
c

,

∂zcKc = −g(zc),

∂zcac =
1

f(zc)
,

∂zcmc = − 2

f(zc)

mc

ac
+ g(zc),

∂zcκc = − 1

f(zc)

κc
ac

+ g(zc).

(3.30)

In addition, the position of the string at the cutoff obeys an RG flow equation. Taking into

account (3.28),

∂zcxc =
p

f(zc)
=

1

f(zc)

[
1

ac
(xc − x) +mc(ẍc − ẍ) + κcẍ

]
+O(∂4

t x, ∂
4
t xc), (3.31)

Using the RG flow equations it is straightforward to show that the force (3.29) is an RG-flow

invariant quantity

∂zcF (t) = 0 +O(∂4
t x, ∂

4
t xc). (3.32)

Although we used the AdS boundary expansion to help us identify (3.9) as the force, in

fact we can generalize (3.29) and also the cutoff action (3.23) to any geometry in the UV

region, since it only depends on quantities evaluated at the cutoff and the Wilson line

trajectory. Note that RG flow equations determine the coefficients of the cutoff action,

that only depend on the local geometry close to the cutoff up to integration constants,

where all the information about the UV is hidden.

4 Force in a heated IR fixed point

We will use the results of the previous section to find the first terms that appear in the

force when we do a derivative expansion of the quark trajectory in a specific example.

Consider a strongly coupled theory that has an IR fixed point. The theory is at finite

temperature, but low enough such that the physics is still dominated by the IR conformal

theory. The holographic dual for the geometry in the IR region can then be approximated

by the AdS5 black brane (2.2). The geometry in the UV region is in principle unknown,

but all the information about the UV will be hidden in integration constants of the RG

flow equations.

4.1 Profile of the string perturbation in the AdS5 black brane

The equations of motion for the string profile below the cutoff are (2.9). We will use an

expansion in plane waves to find solutions:

X(t, z) =

∫
dω

2π
Xω(z)e−iωt, (4.1)
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and we will use a similar expansion for the position of the string at the cutoff and the

quark trajectory

xc(t) =

∫
dω

2π
x̃c(ω)e−iωt, x(t) =

∫
dω

2π
x̃(ω)e−iωt. (4.2)

In addition, in order to remove the explicit dependence on the position of the horizon zh,

we do the change of variables

z = zhu, w = zhω. (4.3)

The position of the cutoff in the new coordinate is uc = zc/zh. The equation for the string

profile becomes

X ′′ω −
(

2

u
+

4u3

1− u4

)
X ′ω +

w2

(1− u4)2
Xω = 0. (4.4)

We must impose ingoing boundary conditions at the horizon Xω(u) ∼ (1 − u4)−iw/4 as

u→ 1. It is possible to do an expansion of the solutions in powers of the frequency, in such

a way that they take the form

Xω(u) ' x̃c (1− u4)−iw/4(1− iwχ1(u)− w2χ2(u) + iw3χ3(u) + . . . · · · ). (4.5)

The functions χi must be regular at the horizon and we will identify the overall coefficient

with the value of the profile solution at the cutoff Xω(uc) = x̃c. This fixes the values of

the functions χi at the cutoff. Finally, we have to impose the boundary condition (3.28).

4.2 Cutoff action and boundary conditions

In the following it will be convenient to define a rescaled version of the metric functions

and coefficients of the cutoff action, in terms of the coordinate u. First we introduce the

rescaled f and g functions

f̂(u) =
1− u4

u2
, ĝ(u) =

1

u2(1− u4)
. (4.6)

And, with these definitions, the rescaled functions that determine the coefficients of the

cutoff action

â(u) =

∫ u

0

du1

f̂(u)
, K̂(u) =

1

u
−
∫ u

0
du1

(
ĝ(u1)− 1

u2
1

)
,

m̂(u) =
1

â(uc)2

∫ u

0
du1ĝ(u1)â(u1)2, κ̂(u) =

1

â(uc)

∫ u

0
du1ĝ(u1)â(u1),

(4.7)

As before, we define âc = â(uc), K̂c = K̂(uc), m̂c = m̂(uc) and κ̂c = κ̂(uc). In addition,

we introduce f̂c = f̂(uc) and ĝc = ĝ(uc) to ease notation. The relation to the original

functions is

f(zc) =
R2

z2
h

f̂c, g(zc) =
R2

z2
h

ĝc, ac =
z3
h

R2
âc, Kc =

R2

zh
K̂c, mc =

R2

zh
m̂c, κc =

R2

zh
κ̂c. (4.8)
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Using the plane wave expansion and rescaling by the position of the horizon, the boundary

condition (3.28) becomes

f̂cX
′
ω(uc) =

(
1

âc
− w2m̂c

)
x̃c −

(
1

âc
− w2(m̂c − κ̂c)

)
x̃+O(w4x̃c, w

4x̃). (4.9)

This will determine the value of x̃c, that in turn we will use to compute the force (3.29).

The details of the calculation of the profile solutions and the derivatives can be found

in appendix B. The result, to the order in derivatives we are considering, is

x̃c = x̃+

3∑
i=1

si(−iw)ix̃+O(w4x̃). (4.10)

The coefficients in the expansion are

s1 = −âc,
s2 = âc (âc − κ̂c +H2(uc)) ,

s3 = âc [âc(m̂c + κ̂c − âc)− (2âc + c1(uc))H2(uc) +H3(uc)] .

(4.11)

The explicit expression for c1 is given in (B.7)

c1(uc) = −1

4
log(1− u4

c). (4.12)

The definitions of the functions H2(u) and H3(u) are in (B.11), but we will not use the

explicit expressions. Instead, we compute directly the cutoff values H2(uc) and H3(uc).

4.3 Force acting on a slowly moving quark

Using (4.10) to obtain the position of the string at the cutoff xc(t) and plugging the result

in the force (3.29), one finds the following terms to leading order in derivatives of the quark

trajectory

F (t) =
R2

z3
h

3∑
i=1

Fi (zh∂t)
ix+O(∂4

t x). (4.13)

With coefficients

F1 =
s1

âc
= −1,

F2 = K̂c + κ̂c +
s2

âc
= âc + K̂c +H2(uc),

F3 = (m̂c − κ̂c)s1 +
s3

âc
= âc(2κ̂c − âc)− (c1(uc) + 2âc)H2(uc) +H3(uc).

(4.14)

We can find the explicit values of F2 and F3 by solving RG flow equations for âc, κ̂c and

H2(uc), H3(uc). This is done in appendix C, the results are

âc =
1

4
log

1 + uc
1− uc

− 1

2
tan−1 uc =

1

2

(
tanh−1 uc − tan−1 uc

)
+ aUV,

K̂c =
1

uc
− âc +KUV,
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κ̂c = − 1

uc
+
âc
2

+
1

2âc
tanh−1(u2

c) +
κUV

âc
,

H2(uc) = − 1

uc
+ 1,

H3(uc) =
1

4
(π − log 4)− c1(uc)

uc
+ âc −

1

2
tan−1 uc +

1

4

(
2 log(1 + uc)− 3 log

(
1 + u2

c

))
.

(4.15)

Where aUV, KUV and κUV are integration constants that depend on the UV region. In the

case where the geometry is just the AdS5 black brane everywhere between the boundary

and the horizon, these integration constants vanish aUV = KUV = κUV = 0. They will be

generically non-zero in geometries that approach an AdS5 geometry close to the horizon

but deviate from it in other regions. A class of models that could be interesting to study

are holographic duals to RG flows between two fixed points, consisting of a domain wall

geometry between two AdS spaces of different radius, e.g. [43, 44]. In these models we

expect that the RG flow integration constants introduce an additional dependence on the

ratio between the temperature and the scale of the deformation that triggers the RG flow.

Plugging the solutions to the RG flow equations (4.15) in (4.14) produces the cutoff-

independent values

F2 = 1 +KUV, F3 =
1

4
(π − log 4) + 2(κUV − aUV). (4.16)

Let us now interpret the final result in field theory language. First we multiply by the

string tension as in (3.9). The holographic dictionary maps the AdS radius and the position

of the horizon to the ’t Hooft coupling λ and temperature T of the dual field theory

TsR
2 =

R2

2πα′
=

√
λ

2π
, zh =

1

πT
. (4.17)

The force acting on the heavy quark is, to third order in derivatives of the trajectory,

Fx '
√
λ

2π

(
−(πT )2∂tx+ πT F2 ∂

2
t x+ F3 ∂

3
t x
)

+O(∂4
t x). (4.18)

In the first place we observe that the coefficient of the term proportional to the velocity of

the quark, ∂tx, agrees with the drag force of [12, 13] and is insensitive to the UV physics,

at least in the approximation we are doing of fixing the IR geometry to the AdS black

brane solution.

The coefficient proportional to the acceleration, ∂2
t x, agrees with the expected ther-

mal correction to the quark mass in pure AdS when KUV = 0. The quark mass can be

determined from the length of a straight string extended between the horizon and a “flavor

brane” at z = zm

Mq = TsR
2

∫ zh

zm

dz

z2
= M0 −

TsR
2

zh
= M0 −

√
λT

2
. (4.19)

In the formula above M0 is interpreted as the quark mass at zero temperature. This term

modifies the inertial mass of the quark. Indeed if we allowed a very large, but not infinite,
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mass for the quark, the Newton equation for the quark would be

M0∂
2
t x = Fx. (4.20)

Moving the acceleration term in the force to the left side of the equation results in replacing

M0 by the thermal corrected mass Mq. Therefore, we can interpret KUV as a modification

of the thermal mass due to UV physics.

Finally, the coefficient of the jerk or acceleration rate, ∂3
t x, computed for the AdS5

black brane in [39], can be interpreted as a combination of the Abraham-Lorentz force

produced by the emission of Larmor radiation (see [36, 37]) and a viscous contribution from

the surrounding plasma that has been computed in [38] following the method developed

in [45]. In a conformal theory in vacuum the viscous part is absent and the coefficient

of the jerk term is
√
λ/(2π). At finite temperature the viscous correction is obtained by

subtracting the vacuum contribution from our result. Since the coefficient of the viscous

contribution does not depend on temperature, the T → 0 limit of the acceleration rate

contribution does not coincide with the T = 0 value, as noted in [39].

4.4 Force acting on a fast moving quark

As we showed in section 2.2, the quadratic action for the fast moving quark takes the same

form as for the slowly moving quark, replacing the functions f, g by the functions fv, gv
given in (2.20). Let us introduce the rescaled coordinates and embedding perturbation

s = γ−1/2 t

zh
, u = γ1/2 z

zh
, Y = γ3/2X (4.21)

Then, in the AdS5 black brane geometry, the quadratic terms in string action become

SNG ∼
TsR

2

z2
h

∫
dsdu

1

2

(
ĝ(∂sY )2 − f̂(∂uY )2

)
. (4.22)

Where we have used the expression for p0 in (2.18) and f̂ , ĝ have the same definition as

in (4.6). This allows us to translate directly the results for the slowly moving quark to

this case.

The variation of the action gives a boundary term

δSNG ∼ lim
u→0

TsR
2

z2
h

∫
ds

1

u2
∂uY δY = lim

z→0
Tsγ

∫
dt
R2

z2
∂zXδX. (4.23)

So we should add a factor of γ to the expression we found for the force of the slowly moving

quark.

A solution close to the AdS5 boundary has same form as (3.3) in the rescaled variables,

Y ' y(s)− 1

2
∂2
sy(s)u2 +

F̂ (s)

3
u3 + · · · . (4.24)

Then, from (4.21) and comparing to (3.3), we have that

F (t) =
1

z3
h

F̂ . (4.25)
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The coefficient F̂ is the same as (4.13) taking into account the rescaling

F̂ (s) =

3∑
i=1

Fi (∂s)
iy +O(∂4

sy) = γ3/2
3∑
i=1

Fi (γ1/2zh∂t)
ix+O(∂4

t x). (4.26)

Then, taking into account the background contribution to the force (3.11),

Fx '
√
λ

2π

(
−(πT )2γv − (πT )2γ3∂tx+ πT F2 γ

7/2∂2
t x+ F3 γ

4∂3
t x
)

+O(∂4
t x). (4.27)

Note that the term proportional to ∂tx could have been obtained by replacing v → v+∂tx in

the first term and expanding to linear order. The γ factors appearing in higher derivative

terms imply that this expansion requires time derivatives to be much smaller than the

temperature for very fast quarks ∂t � γ−1/2πT .

5 General RG flow equations

We have presented an explicit derivation of the cutoff action and RG flow equations from

a direct integration of the string action in the UV region using the approximation that

changes in the quark trajectory are slow in time compared to the time scale given by the

inverse temperature. It is possible to rederive and generalize these results by introducing

an ansatz for the cutoff action and using the conditions that the total action should be

invariant under changes in the position of the cutoff. In the following we will derive the

general RG flow equation for a quark moving in a straight trajectory and compare to the

previous results. The interest of this method is that it simplifies somewhat the derivation

and allows a systematic extension to non-linear and higher derivative terms, as well as

possibly curved trajectories of the quark.

5.1 String action and momentum

We will work in the static gauge (2.6) and assume that the background metric takes the

diagonal form

ds2 = Gzzdz
2 +Gttdt

2 +Gxxδijdx
idxj . (5.1)

We will not make other assumptions about the dependence of the metric components on

the coordinates. It will be useful to define a metric for the quark at rest γab, with non-zero

components γ00 = Gtt and γ11 = Gzz. The induced metric on the string worldsheet is

gab = γab +Gxx∂aX∂bX. (5.2)

The effective string action consists of the Nambu-Goto action in the IR region of the

geometry plus a boundary action defined at the cutoff

Sstring = SIR + Sc, (5.3)

where

SIR = −Ts
∫
dt

∫ zh

zc

LNG, Sc = Ts

∫
dtLc[xc, ẋc; zc]. (5.4)
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The Nambu-Goto Lagrangian density in the case we are considering is given by

LNG =
√
−g =

√
−γ∆1/2, (5.5)

where for later convenience we have defined

∆ = 1 +Gxxγ
ab∂aX∂bX. (5.6)

There is a conserved worldsheet current ∂ap
a
x = 0 corresponding to the shift symmetry

X → X + δX. It can also be identified as the conjugate momentum to the position X. It

can be obtained from the variation of the string action

pax = −δLNG

δ∂aX
= −
√
−γ

∆1/2
Gxxγ

ab∂bX. (5.7)

Using this expression we can solve for p0
x and X ′ in terms of p1

x and Ẋ.

p0
x = −Σ1/2Gxxγ

00Ẋ, X ′ = −Σ−1/2Gxxγ11p
1
x, (5.8)

where we have defined

Σ =
|γ| −Gxxγ11(p1

x)2

1 +Gxxγ00(Ẋ)2
. (5.9)

As we have seen, the cutoff action can be obtained from integrating along the radial

coordinate the string action in the UV region. The total action should then satisfy the

condition that it is stationary under changes of the string profile that preserve the boundary

conditions, in particular when the position of the string at the cutoff is displaced keeping

the string at the boundary and the horizon fixed

δSstring = δSIR + δSc = 0. (5.10)

The variation of the IR part is, using the conservation of the momentum ∂ap
a
x = 0,

δSIR = Ts

∫
dt

∫ zh

zc

dz (pax∂aδX) = Ts

∫
dt

∫ zh

zc

dz∂a (paxδX) = −Ts
∫
dt p1

xδxc. (5.11)

The variation of the cutoff action is proportional to the Euler-Lagrange equations of Lc

δSc = Ts

∫
dt

[
δLc
δxc
− ∂t

(
δLc
δẋc

)]
δxc. (5.12)

Then, we find the condition

p1
x

∣∣∣
z=zc

=
δLc
δxc
− ∂t

(
δLc
δẋc

)
≡ δxcLc. (5.13)

5.2 RG flow of the cutoff action

The RG flow equations for the cutoff action can be derived from the requirement that the

total action should be independent of the position of the cutoff, as it would be the case if

we had obtained it by integrating over the UV region. The condition is

d

dzc
Sstring =

d

dzc
SIR +

d

dzc
Sc = 0. (5.14)
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The IR term depends on zc just through the limits of integration

d

dzc
SIR = Ts

∫
dtLNG

∣∣∣
z=zc

. (5.15)

The cutoff action can have an explicit dependence and an implicit dependence in the

position of the string at the cutoff

d

dzc
Sc = Ts

∫
dt [∂zcLc + (δxcLc) ∂zcxc] . (5.16)

Note that there is an integration over time, so the RG flow equation for the cutoff action

will be defined up to a total derivative

∂zcLc = −(δxcLc) ∂zcxc − LNG

∣∣∣
z=zc

+ ∂tV
t. (5.17)

From (5.8) and (5.13) we can derive the RG flow equation for xc

∂zcxc = −Σ−1/2
c Gxxγ11(δxcLc)

∣∣∣
z=zc

, (5.18)

where now

Σc =
|γ| −Gxxγ11(δxcLc)2

1 +Gxxγ00(ẋc)2

∣∣∣
z=zc

. (5.19)

Using the same formulas, the evaluation of the Nambu-Goto action at the cutoff will be

LNG

∣∣∣
z=zc

=
√
−γ∆1/2

c

∣∣∣
z=zc

= |γ|Σ−1/2
c

∣∣∣
z=zc

. (5.20)

Adding all the contributions results in the RG flow equation

∂zcLc = −
√
−γ
(
1 +Gxxγ

00(ẋc)
2
)1/2(

1−Gxxγ11
(δxcLc)2

|γ|

)1/2 ∣∣∣
z=zc

+ ∂tV
t. (5.21)

This is our final result, it takes the form of a functional equation for the cutoff action Lc.
We do not have a complete solution, but as we will see this equation admits an expansion

in derivatives of xc, in such a way that at each order the RG flow equation for the action

reduces to RG flow equations for the coefficients in the expansion.

5.3 Slowly moving quark

We proceed to solve (5.21) in the case we have studied before, a slowly moving quark. An

obvious ansatz for the cutoff action is to adapt (3.23) to the more general formulas we have

derived, in particular the form of the non-derivative term. We will use2

Lc =
√
−γ
[
Λ− k0

2
(xc − x)2 +

k1

2
(ẋc − ẋ)2 +

k2

2
(ẋc)

2 +
k3

2
(ẋ)2 +O(∂4

t x, ∂
4
t xc)

]
. (5.22)

It is implicit in the formula above and the ones that will follow that all the functions depend-

ing on the radial coordinate are evaluated at the cutoff. The overall factor is convenient to

2Note that there is invariance under translations in the x direction, so terms that would break this

invariance, such as x2 are forbidden.
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cancel out similar factors in (5.21). Comparing with (3.23) requires some reshuffling and

an integration by parts, the map between the two sets of coefficients is

Mc =
√
−γΛ,

1

ac
=
√
−γk0, mc =

√
−γ(k1 + k2),

κc =
√
−γk2, Kc = −

√
−γ(k2 + k3). (5.23)

The derivative with respect to the cutoff position is

∂zcLc =
√
−γ
[
∇zcΛ−

1

2
∇zck0(xc − x)2 +

1

2
∇zck1(ẋc − ẋ)2

+
1

2
∇zck2(ẋc)

2 +
1

2
∇zck3(ẋ)2

]
, (5.24)

where we have defined, for any coefficient C,

∇zcC =
1√
−γ

∂zc
(√
−γC

)
=

(
∂zc +

∂zc
√
−γ√
−γ

)
C. (5.25)

Introducing (??) and (5.24) in (5.21), and expanding to quadratic order in x, xc and

derivatives, one finds that terms with derivatives of the cutoff do not completely match

with other terms. While terms in (5.24) only involve first time derivatives, terms from (??)

will include mixed contributions where one factor has two time derivatives and the other

none. This is fixed by an appropriate choice of the total time derivative term. In this case

all the terms can be matched for

V t = −
√
|γ|Gxxγ11k0(xc − x) [ k1(ẋc − ẋ) + k2ẋc] . (5.26)

Demanding that the coefficients of terms with different factors of x, xc and their time

derivatives vanish independently of each other leads to the RG flow equations for the

coefficients:

∇zcΛ = −1,

∇zck0 = −Gxxγ11k
2
0,

∇zck1 = −Gxxγ11k0(2k1 + k2),

∇zck2 = −Gxxγ00 −Gxxγ11k0k2,

∇zck3 = Gxxγ11k0k2.

(5.27)

If we use the AdS5 black brane solution (2.1) and (2.2), the RG flow equations simplify to

∂zc(
√
−γΛ) = −R

2

z2
c

,

∂zc(
√
−γk0) = −g(zc)k

2
0,

∂zc(
√
−γk1) = −g(zc)k0(2k1 + k2),

∂zc(
√
−γk2) = g(zc)(1− k0k2),

∂zc(
√
−γk3) = g(zc)k0k2.

(5.28)
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Using the identifications (5.23) and the definitions of f and g (2.3), it is straightforward to

recover the RG flow equations (3.30). We thus arrive to the same results both by doing a

direct integration of the string action between the boundary and the cutoff and by deriving

the RG flow equation for the cutoff action. However, this last method admits in principle

a simpler generalization to more complicated cases.

6 Discussion

The effective IR string action we have derived is valid in the region close to an arbitrary

static black brane geometry, assuming homogeneity and isotropy. In principle these con-

ditions could be relaxed. It would be particularly interesting to study time-dependent

geometries emulating the dual to a heavy ion collision, see section VII of [46] for a recent

review on the topic. An example of this type is the calculation of the drag force in [47], for

a plasma formed by the collision of two infinite sheets with finite energy density in a con-

formal theory. Another natural extension would be to use the general method presented in

section 5 for less constrained quark trajectories, allowing sudden changes in the trajectory

and motion in more than one spatial direction. The general method could also be used

to compute nonlinear contributions of acceleration to energy and momentum loss, that in

vacuum show in Liènard’s formula and the Abraham-Lorenz force [36, 48].

One should keep in mind that we are making an assumption by taking the Nambu-

Goto action for the string. In many cases the holographic dual is not presented as a

ten-dimensional geometry, but has been truncated to five dimensions, and the metric is

presented in the Einstein frame. The string action will then be modified by some additional

factors. Similarly, if the model is bottom-up, with not known string theory construction

behind, then the string action dual to a Wilson line may be chosen in a different way.

Nevertheless, in all these cases the method we have presented here can be easily generalized.

The derivative expansion of the action will be similar even if the detailed dependence of

the coefficients on the geometry can change.

The holographic Wilsonian renormalization method applied here to the string action

can be used more generally, for other observables like Wilson lines in different representa-

tions or ’t Hooft lines as well as for observables obtained from the background geometry,

such as the expectation value of local operators. A fully effective description would involve

introducing the cutoff and deriving the RG flow equations for the holographic actions dual

to all the observables under consideration. It would be interesting to combine the holo-

graphic Wilsonian approach with other phenomenological approaches trying to fit QCD

lattice data or experiments. Among these, we have the traditional holographic QCD mod-

els where the gravitational action is adjusted [49–53] or, more recently, the application

of machine learning [54–57] and Monte Carlo techniques [58] to constrain the background

geometry. In both cases, the holographic description of UV physics is expected to be prob-

lematic due to the asymptotic freedom of QCD. The holographic Wilsonian formalism

limits the range of energy scales where the model is applied, so it could be used to avoid

this issue without introducing additional assumptions.
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A Derivation of the cutoff action

In this appendix we explain how to derive the cutoff action from direct integration of the

string action between the boundary and the cutoff. We can expand the solutions using the

derivative expansion. Their form is (2.12), (2.13), and they satisfy the conditions (2.14).

This gives the following simplifications,

f(zc)X
′(zc) = p, lim

zΛ→0
X(zΛ) = x, lim

zΛ→0
Ẋ(zΛ) = ẋ. (A.1)

It remains to evaluate the derivative at the boundary. From (3.14)

lim
zΛ→0

(
f(zΛ)X(zΛ)X ′(zΛ) +

R2

zΛ
Ẋ(zΛ)2

)
= xF (t) + lim

zΛ→0

R

zΛ

(
ẍx+ ẋ2

)
. (A.2)

The last term is a total derivative and we can drop it, while F (t) is given by the expression

in (3.17). We are left with

SUV ' Ts
∫
dt

[
R2

zc
+

1

2
(F x− p xc)

]
. (A.3)

Instead of p, we would like the action to depend on the position of the string at the

cutoff and the boundary xc, x and on their derivatives. In order to solve for p, first we

integrate (3.14) between the boundary and the cutoff

xc − x = pa(zc) + ẍC(zc) + p̈D(zc) +O(∂4
t x, ∂

4
t p). (A.4)

Where we have defined

C(z) =

∫ z

0

dv

f(v)

(
A(v)− R2

v

)
,

D(z) =

∫ z

0
dv
B(v)

f(v)
. (A.5)

We can further simplify these expressions using the explicit form of A and B (3.15), the

definition of a(z) in (2.12) and integration by parts

C(z) =

∫ z

0
dva′(v)

∫ v

zc

du g(u) = a(z)

∫ z

zc

dug(u)−
∫ z

0
dvg(v)a(v),

D(z) =

∫ z

0
dva′(v)

∫ v

zc

du g(u)a(u) = a(z)B(z)−
∫ z

0
dvg(v)a(v)2.

(A.6)

– 22 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
9

Evaluating at the cutoff we obtain

C(zc) = −
∫ zc

0
dvg(v)a(v) = B(0), D(zc) = −

∫ zc

0
dvg(v)a(v)2. (A.7)

Then, we can solve for p as

p =
1

a(zc)
(xc − x)− C(zc)

a(zc)
ẍ− D(zc)

a(zc)2
(ẍc − ẍ) +O(∂4

t x, ∂
4
t xc). (A.8)

Introducing this in (3.17) to the same order,

F =
1

a(zc)
(xc−x)+

a(zc)C(zc)−D(zc)

a(zc)2
(ẍc−ẍ)+

(
A(0)− C(zc)

a(zc)

)
ẍ+O(∂4

t x, ∂
4
t xc). (A.9)

Finally, the UV action can be arranged, up to a total derivative in time, to be (3.23) with

coefficients

Mc =
R2

zc
, Kc = A(0), ac = a(zc), mc = −D(zc)

a(zc)2
, κc = −C(zc)

a(zc)
. (A.10)

Using that

C(zc) = −
∫ zc

0
dvg(v)a(v), D(zc) = −

∫ zc

0
dvg(v)a(v)2, (A.11)

leads to the expressions in (3.24).

B Solution for the string profile in the AdS black brane

In this appendix we give explicit formulas for the solutions of the perturbation of the string

profile in the AdS5 black brane geometry. Introducing (4.5) into the equation (4.4) and

expanding in w, we get the following equations at each order in the expansion

χ′′i +
f̂ ′

f̂
χ′i −

1

f̂
ji = 0, (B.1)

where

j1 = 1, j2 = σ(u) + 2uχ′1 + χ1, j3 = σ(u)χ1 + 2uχ′2 + χ2, (B.2)

and we have defined

σ(u) =
1

u2
+

u2

1 + u2
. (B.3)

The general form of the solutions that satisfy regularity at the horizon u = 1 is

χi(u) = ci(uc) +

∫ u

uc

du1
Ji(u1)

f̂(u1)
, Ji(u) =

∫ u

1
du2ji(u2). (B.4)

where ci(uc) are integration constants.

The expansion of (4.5) in powers of w leads to

Xω(u) ' x̃c
(
1− iwΓ1(u)− w2Γ2(u) + iw3Γ3(u) + · · ·

)
, (B.5)
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where we have introduced the functions

Γ1(u) = χ1(u) +
1

4
log(1− u4),

Γ2(u) = χ2(u)− 1

32
log2(1− u4) +

1

4
Γ1(u) log(1− u4),

Γ3(u) = χ3(u) +
1

4
Γ2(u) log(1− u4)− 1

32
Γ1(u) log2(1− u4) +

1

384
log(1− u4)3.

(B.6)

The boundary condition at the cutoff is Γi(uc) = 0, this fixes the integration constants of

the solutions to

c1(uc) = −1

4
log(1− u4

c), c2(uc) =
1

32
log2(1− u4

c), c3(uc) = − 1

384
log3(1− u4

c). (B.7)

In order to determine x̃c we need to compute X ′ω given by (B.5) at the cutoff, introduce

it in the boundary condition (4.9) together with (4.10) and solve order by order in w. The

result is

s1 = âcf̂cΓ
′
1(uc),

s2 = âc

(
f̂cΓ
′
2(uc) + âc(f̂cΓ

′
1(uc))

2 − κ̂c)
)
,

s3 = âc

[
f̂cΓ
′
3(uc) + â2

c(f̂cΓ
′
1(uc))

3 + âcf̂cΓ
′
1(uc)

(
2f̂cΓ

′
2(uc)− m̂c − κ̂c

)]
.

(B.8)

These expressions can be further simplified. First, from the definitions (B.6) one can derive

the following relations

Γ′1(uc) =
J1(uc)

f̂c
− c′1(uc),

Γ′2(uc) =
J2(uc)

f̂c
− c1(uc)Γ

′
1(uc)− c′2(uc),

Γ′3(uc) =
J3(uc)

f̂c
− c1(uc)Γ

′
2(uc)− c2(uc)Γ

′
1(uc)− c′3(uc).

(B.9)

In addition, one can extract some constant factors

J2(u) = c1(uc)J1(u) +H2(u), J3(u) = c2(uc)J1(u) +H3(u), (B.10)

where

H2(u) =

∫ u

1
du1

(
σ(u1) + 2c′1(u1)J1(u1) +

∫ u1

uc

du2
J1(u2)

f̂(u2)

)
,

H3(u) =

∫ u

1
du1

(
χ1(u1)σ(u1) + 2c′1(u1)J2(u1) +

∫ u1

uc

du2
J2(u2)

f̂(u2)

)
.

(B.11)

C RG flow in AdS5 black brane

In this appendix we explain how to obtain the solutions to the RG flow equations in the

case where the IR geometry is approximately an AdS5 black brane. The RG flow equations

for the rescaled coefficients of the cutoff action (4.7) âc, K̂c and κ̂c are

∂uc âc =
1

f̂c
, ∂ucK̂c = −ĝc, ∂uc κ̂c = − 1

âcf̂c
κ̂c + ĝc. (C.1)
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From (4.6), f̂c = (1− u4
c)/u

2
c and ĝc = 1/(u2

c(1− u4
c). In pure AdS5 the coefficients satisfy

the conditions

âc

∣∣∣
uc

= 0, âcκ̂c

∣∣∣
uc=0

= 0. (C.2)

Otherwise there will be integration constants that depend on the UV geometry in a non-

trivial way.

By direct integration of the equations, one finds the following values for the coefficients

âc =
1

4
log

1 + uc
1− uc

− 1

2
tan−1 uc =

1

2

(
tanh−1 uc − tan−1 uc

)
+ aUV,

K̂c =
1

uc
− âc +KUV,

κ̂c = − 1

uc
+
âc
2

+
1

2âc
tanh−1(u2

c) +
κUV

âc
.

(C.3)

We will now derive RG flow equations for H2(uc) and H3(uc) obtained from evaluat-

ing (B.11) at the cutoff. We will be using that J1(uc) = uc − 1, the relations

c′1(u) =
u

f(u)
, c′2(u) = c1(u)c′1(u), c′3(u) = c2(u)c′1(u), (C.4)

and, from (B.10),

∂ucJ2(u) = c′1(uc)J1(u)− J1(uc)J1(u)

f̂c
=
J1(u)

f̂c
. (C.5)

Then, we derive the following RG flow equations

∂ucH2(uc) =σ(uc) + 2c′1(uc)J1(uc)−
J1(uc)

2

f̂c
= σ(uc) + 2

J1(uc)

f̂c
+
J1(uc)

2

f̂c
, (C.6)

∂ucH3(uc) = c1(uc)σ(uc) + 2c′1(uc)J2(uc)−
J2(uc)J1(uc)

f̂c
(C.7)

+

∫ uc

1
du

([
c′1(uc)−

J1(uc)

f̂c

]
︸ ︷︷ ︸

1/f̂c

σ(u) + 2c′1(u)
J1(u)

f̂c
+

1

f̂c

∫ u

uc

du1
J1(u1)

f(u1)

)

= c1(uc)σ(uc) + 2
J2(uc)

f̂c
+
J2(uc)J1(uc)

f̂c

+
1

f̂c

∫ uc

1
du

(
σ(u) + 2c′1(u)J1(u) +

∫ u

uc

du1
J1(u1)

f(u1)

)
︸ ︷︷ ︸

H2(uc)

= c1(uc)σ(uc) + 2
J2(uc)

f̂c
+
J2(uc)J1(uc)

f̂c
+
H2(uc)

f̂c
. (C.8)

Finally, with the explicit expressions for σ, J1 and f̂ , we get the simple RG flow equation

for H2:

∂ucH2(uc) =
1

u2
c

. (C.9)
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Similarly, if in addition we use that J2(uc) = c1(uc)J1(uc) +H2(uc), the RG flow equation

for H3 takes the simpler form

∂ucH3(uc) =
c1(uc)

u2
c

+
H2(uc)(J1(uc) + 3)

f̂c
. (C.10)

We can integrate both equations taking into account that H2(1) = 0, H3(1) = 0, the

solutions are

H2(uc) = − 1

uc
+ 1,

H3(uc) =
1

4
(π − log 4)− c1(uc)

uc
+ âc −

1

2
tan−1 uc +

1

4

(
2 log(1 + uc)− 3 log

(
1 + u2

c

))
.

(C.11)

Note that H2, H3 and their boundary conditions are defined in the IR region of the geom-

etry, so there are no additional integration constants associated to the RG flow equations

of H2(uc) and H3(uc).
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