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Dissimilarities are a very usual way to compare two fuzzy sets and also two interval-
valued fuzzy sets. In both cases, the dissimilarity between two sets is a number. In this
work, we introduce a generalization of the notion of dissimilarity for interval-valued fuzzy
sets such that it assumes values on the set of subintervals instead of the set of numbers.
This seems to be more realistic taking into account the available information. We also
investigate its relationship with the classical notions of dissimilarity between fuzzy sets
and we obtain that the new class is richer than the existing one.
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1. Introduction

There are several ways how a grade of mutual difference between two fuzzy sets can
be expressed. Families of such estimations are known as similarities (with their dual
functions dissimilarities), divergences or similitudes (dual function dissimilitudes).
The motivation for our work comes from similarities, but also other measures of
difference could be used.
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Fig. 1. Two pairs of interval-valued fuzzy sets

Currently several measures of comparison between fuzzy sets have been studied.
In 1996, Bouchon-Meunier! defined a general measure of comparison for fuzzy sets.
Later more measures for comparing fuzzy sets have been introduced (see, among
many others,? ?). There also methods of generating dissimilarities from a given fuzzy
equivalence relation, by residuation, automorphism, t-norm or conorm, studied by
He, Li and Qin (see'®12). A comprehensive study of this topic can be found in Couso
et at.'> Among all them, the most usual measures of comparison are dissimilarities
(see'?).

The mapping of our interest are interval-valued fuzzy sets, i.e. mappings from
the universe X to the set of all closed subintervals of [0, 1]. Here we face a problem
that cannot be presented when working with fuzzy sets only. Namely, the nature of
mutual difference between interval-valued fuzzy sets A, B in Fig. 1 is very different
from that between interval-valued fuzzy sets C, D in the same figure.

We can think of particular representatives of our interval-valued fuzzy sets in the
following way: by a representative of an interval-valued fuzzy set A we understand a
fuzzy set f such that f(z) € A(x) for each € X. For a given measure of similarity
for fuzzy sets and interval-valued fuzzy sets A, B we are able to work with the set of
those measures taking all possible pairs of the representatives of A and B. However,
as we see in the Fig. 1, some representatives of one interval-value fuzzy set may also
be representatives of the other one, so we should take into consideration the least
and the biggest possible distance of the representatives. This leads us to the idea
of expressing the dissimilarity of interval-valued fuzzy sets by means of pairs of
non-negative numbers.

Comparing two interval-valued sets we can distinguish two different aspects.
First, how far are they in some sense from each other adn second, how “wide” they
are. It is obvious also from the Fig. 1, that a single number cannot represent both
types of the difference. Our definition provides a more complete information and
we suppose it can be useful in some cases where both aspect of the difference are
important.

This attitude allows us to present not only the mutual distance of the interval-
valued fuzzy sets, but it also accounts the width of particular values (intervals),
therefore we use the term uncertainty-aware similarity measures for such functions.
On the other hand, this way we estimate bounds for all reasonable dissimilarity
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measures for a given pair of interval-valued fuzzy sets.

This contribution is organized as follows. In Section 2 we give a short overview of
dissimilarities and interval-valued fuzzy sets. In Section 3 we introduce dissimilarity
measures between interval-valued fuzzy sets such that the value is an interval and we
study their relationship with the well-known dissimilarity measures between fuzzy
sets. Then, in Section 4 we show how these new dissimilarities can be applied in a
practical situation. Finally, our last section details our conclusions and we discuss
possible future lines of research.

2. Basic notions

Interval-valued fuzzy sets were introduced independently in the seventies by
Grattan-Guiness,'® Jahn,'6 Sambuc!” and Zadeh.'® From them, a lot of studies
have been done about them, and nowadays they are well-known. The same happens
with the notions of fuzzy set and dissimilarity measure. Thus, we are going only to
introduce the necessary concepts, just to fix the notation along this work.

As fuzzy sets can be considered as a particular case of interval-valued fuzzy sets,
we briefly recall its definition and the concept of dissimilarity between them. Let
X denote the universe. A fuzzy subset of X is a mapping A from X into the real
interval [0, 1], where the value A(z), for a particular € X, represents the degree
of membership of x to A. For any universe X, F(X) will denote the set of all fuzzy
sets on X.

The most usual way to compare two fuzzy sets is by means of similarity measures
or their dual measures, the dissimilarity ones. The concept of dissimilarity on F(X)
is given as follows.

Definition 1. A mapping d : F(X) x F(X) — [0,1] is said to be a dissimilarity
measure between fuzzy sets if it satisfies the following conditions for all f, g € F(X):

(dl) d(f.9) =0« f =y,
(d2) d(f,9) = d(f,9),
(d3) if f < g < h then d(f,g) < d(f,h) and d(g,h) < d(f,h).

Example 1. Typical examples of dissimilarities are:

e The trivial dissimilarity:

Liff#g

e The weighted Hamming distance:

da(f,9) = > aulf(@) — g(2)]

rzeX

where o, > 0 for any z € X and )y a, = 1.
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Fuzzy sets model uncertainty about the membership of an element to a set, but
it may appear paradoxical that the membership value itself should be one precise
real number. Thus, in order to try to solve this drawback, interval-valued fuzzy sets
appeared as a generalisation where the membership value is replaced by a more
sophisticated mathematical entity, such as an interval. Therefore, the interval [0, 1]
is replaced by the set of subintervals of [0,1]. Thus, if CI[0,1] denotes the set of
all closed subintervals of [0,1], that is, C1[0,1] = {[a,b] : a,b € [0,1],a < b}, an
interval-valued fuzzy set, IVF-set for short, is a mapping A : X — CI[0,1]. From
now on, we will denote the set of all interval-valued fuzzy sets on X as ZVF(X).

As we will deal with closed subintervals of [0, 1], we introduce the usual partial
order'® 20 among them: for any [a,b], [c,d] € CI[0, 1], the inequality [a,b] < [c,d]
means that ¢ < cand b < d. From here, we can consider a partial order on ZVF(X),
so the notation A < B for any A, B € ZVF(X) means that A(x) < B(x) for each
rzeX.

In order to handle different mutual relations of IVF-sets, as we discussed in
Section 1, we consider a another type of relation on ZVF(X) x ZVF(X), which is,
in fact, the typical inclusion between sets.

Definition 2. Let A, B € IVF(X), A(x) = [a1(z), az(z)], B(z) = [b1(x), b2(z)] for
each € X. Then A C B if by(x) < ay1(z) < az(x) < by(z) for each x € X.

This relation will be used in Definition 3 for dissimilarity of interval-valued fuzzy
sets.

It is immediate that A C B iff A(z) C B(z) for each € X and that C is also a
partial order on ZVF(X). Moreover, if AC B and B € F(X), then A = B, so this
order is just the equality when we deal with fuzzy sets.

Example 2. Let X = {z,y} be the universe and let A, B,C be three IVF-sets
defined as follows:

x y
A[[0.2,0.4][ [0.3,0.7]
B|[0.3,0.5]| [0.3,0.9]
C|[0.1,0.4]([0.2,0.85]

It is cleat that A< Band AC C.

The utility of this kind of sets in order to deal with imprecision is evident. The
necessity to compare two sets is a very usual step in many cases. Thus, we will
devote next section to study how to adapt the concept of dissimilarity for this kind
of sets. The imprecision will be collected by the dissimilarity, since its value will
also be an interval.

3. Dissimilarity on ZVF(X)

The motivation for our research is the following: Let d be a given dissimilarity on
IVF(X) and let A, B be two elements in ZVF(X). Denote by R4, Rp the set of
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all representatives for A, B respectively, as described in Section 1. Then the natural
bounds for a measure of dissimilarity for A, B should be the numbers I(4, B) =
inf{d(fA,fB),fA S RA,fB € RB} and u(A,B) = Sup{d(fA,fB),fA € RA,fB S
Rp}. Thus we obtain the interval [[(A, B), u(A, B)] spanning from the least possible
dissimilarity of the representatives to the largest one. This construction should lead
to the axiomatic definition for the dissimilarity of IVF-sets. Based on this motivation
we have the following definition, where the difference between two interval-valued
fuzzy sets is given by an interval instead of the usual case considered in the literature,
where it is just a number.?1"2% Thus, in the literature, we can find dissimilarity
measures between interval-valued fuzzy sets, which are characterized in all the cases
by Definition 2 and its dual measures, the similarities. In general, a similarity is
obtained from a dissimilarity by applying on it a decreasing map ¢ such that ¢(0) =
1. Since interval-valued fuzzy-sets are mathematically equivalent to intuitionistic
fuzzy sets, a revision about this topic can be found in Montes et al.?6 Similarities
and dissimilarities assume values on the unit interval [0, 1]. Therefore, the classical
definition of dissimilarity cannot be compared to the new one we are going to
introduce, since they are working on a different codomain.

Definition 3. The mapping dis : (ZVF(X))? — CI[0,1] is an uncertainty aware
dissimilarity measure on ZVF(X), if for any A, B,C,D € IVF(X) the following
conditions are fulfilled:

(disl) dis(A,B) =[0,0] < A, B € F(X),A =B,

(dis2) dis(A, B) = dis(B, A),

(dis3) if A < B < C then dis(A, B) < dis(A,C) and dis(B,C) < dis(A,C),
(dis4) if AC B,C C D then dis(A,C) C dis(B, D).

If no confusion can arise, we will speak shortly just on a dissimilarity on ZVF(X).

As we can see, the main difference between Definition 2 and Definition 3 is Axiom
(dis4). Its aim is to guarantee the connection between the dissimilarity values and
inclusion relations of the considered interval-valued sets. In fact thanks to (dis4)
the dissimilarity is monotone with respect to a set inclusion.

We try to collect the imprecision we have about the real value of the membership
function in the case of interval-valued fuzzy sets. Thus, if the hesitance is lower for
set A than for set B, the width of the interval obtained when we compare them with
a third set C is also lower, since we have more information. This main difference
is also realized by the case we compare a set and itself. As the membership value
is an interval for any element in X, we are comparing interval-valued structures
and therefore, two different point membership valued could be allowed. Thus, for
arbitrary A € ZVF(X) the value dis(A, A) is of the type [0,a]. To show this, take
an arbitrary fuzzy set fa € Ra. Then f4 C A and from (disl) and (dis4) we have
that [0,0] = dis(fa, fa) C dis(A, A), which implies that 0 € dis(4, A). However,
the upper bound could be different from zero, as we will see at the next examples.
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Example 3. An easy example of dissimilarity for interval-valued fuzzy sets is:

[0,0] if A,Be F(X),A=B

diso(A, B) = { [0,1] otherwise

It is easy to prove that disg is a dissimilarity on ZVF(X) and it can be called the
trivial dissimilarity.

If we replace [0, 1] by [1, 1], the remaining map disf is not a dissimilarity, since
for X = {z}, A(x) = C(z) = [0.4,0.4], B(z) = D(z) = [0.2,0.6], we have that
AC B, CC D, but disi(A,C) = [0,0] Z [1,1] = dis}(B, D).

Moreover, we have that disg(B, B) = [0,1]. Thus, as we commented previously,
the upper bound is not always equal to zero.

In the following we clarify the connection between a dissimilarity on F(X) and
the related induced dissimilarity on ZVF(X).

Proposition 1. Let d be a dissimilarity on F(X). If we consider the mapping
disq : (ZVF(X))? — CI[0,1] such that disq(A, B) = [I[(A, B),u(A, B)], then dis, is
a dissimilarity on ITVF(X), which is said to be induced by d.

Proof. (disl): Let A,B € IVF(X), suppose that disq(A,B) = [0,0]. Then
I(A,B) = u(A,B) = 0, and from the definition of [ and u we see that the set
{d(fa,fB), fa € Ra, f5 € Rp} is a singleton {0}. From the property (d1) we have,
that A and B have only one representative, hence they belong to F(X), moreover,
there representatives are equal, and so A = B.

The converse implication is obvious.

(dis2): This property follows directly from (d2).

(dis3): Let A, B,C € IVF(X),A < B < C. We will show that disg(4, B) <
diSd(A7 C)

Fix an arbitrary x € X. Then A(z) < B(z
are fa(z), fo(z) such that fa(z) < fp(x) <
arbitrary fg € Rp there are fa € Ra, fo €
Then we can also claim that

inf{d(fa, [B), fa € Ra, fB € Rp} <inf{d(fa, fc),fa € Ra, fc € Rc}.

In a similar way we can obtain the inequality

sup{d(fa, fB), fa € Ra, fp € Rp} < sup{d(fa, fc), fa € Ra, fc € Rc}.
From both these we obtain disq(A4, B) < disq(4, C). By the same argumentation
we can show the inequality disq(B,C) < disq(A,C).
(dis4): Let A,B,C,D € IVF(X),AC B,C C D. Then R4y C Rg,Rc C Rp
and so we have

{d(fa, fc), fa € Ra, fc € Rc} C{d(fB.[p),fB € RB, fp € Rp}.

The required property disq(A,C) C disq(B,D) is a direct consequence of this
inclusion. O

) < C(z) and so for any fp(z) there
fo(x). From (d3) it follows that for

c
Rc such that d(fa, fg) < d(fa, fc)-
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Thus, we can consider the induced dissimilarities from the examples considered
in Example 1.

Example 4.

e From the trivial dissimilarity d; we obtain the dissimilarity for interval-valued
fuzzy sets given by

[0,0] if fa = fB,Yfa € Ra, fp € Rp
diSl(A,B) = [0, ].] if A 75 B but E|fA € RAafB € Rp with fA = fB
[1,1] if fa # fB,Vfa € Ra, fp € Rp

Clearly, the condition fa = fB,Vfa € Ra, fp € Rp is equivalent to say that A
and B are two equal fuzzy sets.

e From the weighted Hamming distance between fuzzy sets do we obtain the
dissimilarity between interval-valued fuzzy sets diso defined as

e ey S OA@ = fo@I s S alfa(@) = fola)

fa€RA,fBERB 7

for any A, B € ZVF(X), where ay > 0,Vz € X and ) o, = 1.

If we consider the interval-valued fuzzy sets introduced in Example 2, we have
that disi (A, B) = [0,1] and diss2(A, B) = [0,0.45] if ap = oy = 1/2.

The order of dissimilarities on F(X) is inherited for the induced ones:

Proposition 2. Let dyi,ds be two dissimilarities on F(X) such that dy < dy. Then
for each A, B € TVF(X) there is disq, (A, B) < disq,(A, B).

The proof follows directly from the respective definitions.

Since the starting point is a dissimilarity between fuzzy sets, the induced dis-
similarity between fuzzy sets should match with the initial one when fuzzy sets are
compared. This follows immediately from the identities Ry = {f}, R, = {g} for any
fyg € F(X). Thus,

Corollary 1. If disg is induced by d, then for any f,g € F(X) there is disq(f, g) =
[d(f,9),d(f.9)]-

We have shown a method how any dissimilarity on F(X) generates a dis-
similarity on ZVF(X), moreover, as for all f,g € F(X) we have disq(f,g9) =
[d(f,9),d(f,g)], the mapping d — disq is injective. A natural question is, whether
it is even a bijection, i.e. whether any dissimilarity on ZVF(X) is generated by
some dissimilarity on F(X). The following example shows that the answer to this
question is negative.

Example 5. Let’s consider again the dissimilarity disgp on ZVF(C) introduced in
Example 3. If there exists a dissimilarity d on F(X) such that disq = disg, then
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from the previous corollary, we know that diso(f,g) = [d(f,g),d(f,g)] for any pair
of fuzzy sets f and g. But if we consider f # g, we have that diso(f,g) = [0, 1] and
therefore disy cannot be induced by any other dissimilarity on F(X).

The restriction for fuzzy sets considered in Corollary 1 can be done for any
dissimilarity between interval-valued fuzzy sets, not only for the ones induces by
dissimilarities between fuzzy sets. Thus, if we consider that [z, y]2 denotes the second
component of the pair [z,y], we have that

Proposition 3. Let dis be a dissimilarity on TVF(X). The map dg;s : F(X) X
F(X) — [0,1] defined as da;s(f,g) = [dis(f, g)]2 for any f,g € F(X) is a dissimi-
larity on F(X).

Proof. (dl): Let f,g € F(X). Then dg;s(f,9) = 0 is equivalent to [dis(f,g)]2 =0,
what is the same as dis(f, g) = [0,0]. By (dis1) this gives f = g.

(d2): The symmetry follows directly from the symmetry of dis.

(d3): Let f,g,h € (F(X), f < g < h. Then by (dis3) there is dis(f, g) < dis(f,h)
and from the definition of the < relation in C1[0, 1] we have [dis(f, g)]2 < [dis(f, h)]2
and therefore dg;s(f,9) < dais(f, h). The inequality dg;s(g,h) < dgis(f,h) can be
shown analogically. [0

It is clear from Proposition 3 that if dis; < disa then dg;s, < dais,, that is, the
order of dissimilarities on ZVF(X) is also inherited for the associated dissimilarities
on F(X).

Example 6. If we consider the dissimilarities between interval-valued fuzzy sets
given in Examples 3 and 4, we obtain that dg;s, = dg4is, and they coincide with the
trivial dissimilarity between fuzzy sets d; and that dg;s, coincides with the weighted
Hamming distance between fuzzy sets.

Moreover, since dg;s, = ddis,, we have proven that the mapping dis — dg;s is
not injective.

Constructing dissimilarities we can start with d on F(X), then create the in-
duced dissimilarity on ZVF(X) and that restrict it to F(X). At the previous exam-
ples we could see that we return back to the d. Is this true in general? The answer
is given at the next proposition.

Proposition 4. Let d be a dissimilarity on F(X). If we obtain the induced dissim-
ilarity disq on ZVF(X) and we use Proposition 3 to obtain the dissimilarity da;s,
on F(X), then dg;s, = d.

Proof. Note first that in case f,g € F(x) there is Ry = {f} and R, = {g}.
Because of this we have I(f, g) = u(f,g) = d(f, g). By use of these facts we obtain

ddisd (fag) = [dlsd(fv g)]2 = U(f, g) = d(.fa g)
and the identity is proved. OJ
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Thus, if we consider the class of dissimilarities on F(X) and the class of dissim-
ilarities on ZVF(X) induced by fuzzy dissimilarities, both classes are isomorphic.
However, not all the dissimilarities on ZVF(X) are induced by fuzzy dissimilari-
ties, as we could see in Example 5. Thus, the set of dissimilarities on ZVF(X) is
substantially richer than that on F(X).

Once we have studied in deep the relationship between the concept of uncertainty
aware dissimilarity measure and the well-known dissimilarity measures between
fuzzy sets, we could think on a theoretical study of the properties fulfilled by this

45,27 ayen in the

new concept. However, as we could see in several previous studies,
case of numerical measures, an extra requirement has to be considered in order to
obtain interesting properties. This is the property of the locality, which is based on
the pointwise decomposition of the measure for any element of the universe. For
this decomposition, an addition or in general an aggregation function has to be
considered. Thus, when we are working with intervals, this is not so straight and a
deep and detailed study should be considered, with some previous analysis about

the appropriate way to aggregate the intervals.

4. Example of application

Dissimilarities discussed in the previous sections are applied in analysis of lake
deposits of the High Tatra Mountains within the project Deglaciation and post-
glacial climatic evolution recorded in the lake deposits of the High Tatra Moun-
tains (APVV-15-0292). As a part of the research project, cyclicities in sedimentary
records are studied using time series data extracted from drilled sedimentary cores.
These cores are taken from the bottom of the selected High Tatra Mountains lakes,
vertically split, and scanned. The resulting core images display climatic changes as
gray stripes of different intensity. The stripes we get this way are then transformed
into a time series for analysis using some standard methods like spectral analysis,
etc.

Unfortunately, quite often, the cores have some deformities, e.g. some parts
are partially shifted to each other or missing which makes transformation to fig-
ures difficult and error prone. In order to minimize the impact of image imper-
fections on the whole transformation process, we decided to include an image
quality measurement based on dissimilarities in it. Our idea stems from the fact
that each stripe can be represented by a triple (rank, start point, endpoint) and
this representation can be interpreted as an interval-valued fuzzy set A, for which
A(rank) = [startpoint, endpoint]. For each vertically aligned core image, present
stripes are identified independently in its left and right side and matched by their
ranks. Then local dissimilarities between matching left and right stripes are com-
puted.

Finally, a dissimilarity between complete left and right stripe representations
is determined. If dissimilarity between the left and right stripe representations is
unsatisfactory or if some local dissimilarities are too high, matching stripes with
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problematic values of dissimilarities are closely inspected and, if possible, their
transformation corrected. The analysis is then conducted separately on the dissim-
ilarity corrected left (right) stripe representation as well as on the average of left
and right representations.

We illustrate the above mentioned application numerically using the following
example.

Example 7. For simplicity, let us assume that we are measuring five consecutive
time points in a piece of core image. The length of that piece is ten centimetres and
bounds for each stripe position are computed as a distance in centimetres of the
corresponding bound from the beginning of the core image divided by the length of
the image. In this scenario, let us assume that we got the following interval-valued
fuzzy sets representing the stripes.

L =(1/[0.1,0.1],2/[0.15,0.16], 3/[0.17,0.19],4/[0.21,0.22], 5/[0.23, 24])
R = (1/[0.1,0.1],2/[0.14,0.16],3/[0.17,0.20], 4/[0.23,0.24], 5/[0.23, 24])

Let use “rough” dissimilarities disy and dis; from Examples 3 and 4, respectively.
We use disg to compute a “global” dissimilarity between the left and right stripes
and dis; to get an interval-valued fuzzy set representing “local” dissimilarities (point
by point):

diSQ(L, R) = [0, 1]
localdis, (L, R) = (1/[0,0],2/[0,1],3/[0,1],4/[1,1],5/0, 1]).

Interpretation of the result of this type would be that differences between stripes
are too high. The most problematic measurement is present in the forth time point,
where the local dissimilarity equals to [1, 1].

5. Conclusions

In this work we have introduced a new method for the comparison of two interval-
valued fuzzy sets, where the value of the difference between them is an interval
instead of a number. The proposed method is a generalization of the classical dissim-
ilarities between fuzzy sets. It deals with the imprecision by obtaining an imprecise
value of the difference of two imprecise sets.

We have also investigated some relationships among dissimilarities between fuzzy
sets and dissimilarities between interval-valued fuzzy sets. We have showed that the
interval-valued dissimilarities allow us to do comparisons taking into account more
points of view. This new method could be an appropriate alternative in some real
applications in which the data are interval-valued. An example where these measures
are applied is also explained.
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