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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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FCF formulation of Einstein equations: local uniqueness and numerical
accuracy and stability

Isabel Cordero-Carrión1, Samuel Santos-Pérez1, Pablo Cerdá-Durán2
1. Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain.

2. Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain.

Abstract

We present Einstein equations in the so-called Fully Constrained Formulation (FCF). This formulation has
two different sectors: the elliptic sector formed by the Hamiltonian and Momentum constraints together with the
equations derived from the gauge choice, and the hyperbolic sector which encodes the evolution of the rest of
degrees of freedom of the spacetime metric including the gravitational waves. We present a modification of both
sectors that keeps local uniqueness properties but has a better behaviour regarding the relativistic expansion of the
equations. We also comment on numerical properties of this reformulation.

1. Introduction
Astrophysical scenarios containing compact objects are modeled by complex spacetimes which require, in general,
to solve Einstein equations numerically. This is also true in the case of complex cosmological models. In the
3+1 decomposition of Einstein equations, spacetime is foliated through spacelike hypersurfaces. Doing this, the
equations are decomposed in a set of elliptic equations, also called constraint equations, and a set of hyperbolic
equations, also called evolution equations.

Constraint equations are only solved initially in the case of the approach by free evolution schemes. It is well
known that if we evolve in time analytically some given initial data that satisfies the constraint equations using the
evolution equations, then this data will also satisfy the constraint equations in posterior times, see [5]. This is true
theoretically, but it may not be the case numerically. Formulations that solve the constraint equations on each time
step are called constrained schemes. This work focuses on these schemes, and in particular in the so-called Fully
Constrained Formulation (FCF) of the Einstein equations [2, 4].

This document is structured as follows. In Section 2 we introduce Einstein equations and the geometry of
foliations. Section 3 describes technical details of a new reformulation of the FCF. In Section 4 we present the
solution of the spacetime geometry of a neutron star considering the new reformulation of the FCF.We compare our
solution with the one obtained with LORENE library, which employs spectral methods. We also make a comparison
between our solution with the modification of the FCF equations and other approximate formulation that neglects
the hyperbolic sector; this comparison confirms the accuracy improvement in the proposed reformulation of the
FCF equations. Finally, in Section 5 we draw some conclusions and comment on future steps. From now on we
use geometrical units in which 𝑐 = 𝐺 = 1, where 𝑐 denotes the speed of light and 𝐺 the universal constant of
gravitation.

2. Einstein equations and foliations

Einstein Equations tells us how spacetime is curved according to the energy andmatter content. These equations
read

𝐺`a = 8𝜋𝑇`a , (2.1)

where 𝐺`a is the Einstein tensor, representing the information about the geometry of spacetime, and 𝑇`a is the
energy-momentum tensor, concerning the distribution of energy and momentum. Einstein equations are a set of 10
non-linear coupled partial differential equations. They have exact solution only in a very few special cases, mostly
in presence of symmetries. In general, they need to be solved numerically and this is the goal ofNumerical Relativity.

Globally hyperbolic spacetimes allow to chose coordinates (𝑡, 𝑥𝑖) such that level sets 𝑡 = constant are spacelike
hypersurfaces, that is, every tangent vector of these hypersurfaces is spacelike. Spacetime is thus foliated through
spacelike hypersurfaces. The normal vector to these hypersurfaces is associatedwith the so-called Eulerian observer.

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 148–154)
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One important variable in Numerical Relativity is the lapse function 𝑁 (𝑡, 𝑥𝑖), which is the factor connecting the
lapse of proper time 𝜏 of this observer and the lapse of coordinate time 𝑡:

𝑑𝜏 = 𝑁 (𝑡, 𝑥𝑖)𝑑𝑡. (2.2)

Another important variable is the shift vector 𝛽(𝑡, 𝑥𝑖), which can be seen as the velocity between the Eulerian
observer and the curves 𝑥𝑖 = constant:

𝑥𝑖𝑡+𝑑𝑡 = 𝑥
𝑖
𝑑𝑡 − 𝛽𝑖 (𝑡, 𝑥𝑖)𝑑𝑡. (2.3)

As the curves 𝑥𝑖 = constant are not associated with any observer in general, the shift vector can be superluminical.
This does not represent any physical propagation velocity, but just a foliation choice. The metric tensor of spacetime
can be expressed as

𝑔`a𝑑𝑥
`𝑑𝑥a = −𝑁2𝑑𝑡2 + 𝛾𝑖 𝑗 (𝑑𝑥𝑖 + 𝛽𝑖) (𝑑𝑥 𝑗 + 𝛽 𝑗𝑑𝑡), (2.4)

where 𝛾𝑖 𝑗 is the 3-metric in each hypersurface 𝑡 = constant, also called the spatial metric. Therefore, Einstein
equations can be decomposed in a set of evolution equations that have a hyperbolic character, and another set of
constraint equations with elliptic character which have to be satisfied in each hypersurface and only depend on the
spatial coordinates 𝑥𝑖 .

3. Fully Constrained Formalism

The next manipulations are motivated by previous works and ideas described in [5]. First, we introduce a time
independent flat background metric 𝑓𝑖 𝑗 , which coincides with 𝛾𝑖 𝑗 at spatial infinity, and the following conformal
decomposition:

𝛾𝑖 𝑗 = 𝜓4�̃�𝑖 𝑗 . (3.1)

We call 𝛾𝑖 𝑗 the conformal metric and 𝜓 := (𝛾/ 𝑓 )1/12 is the conformal factor, where 𝛾 = det 𝛾𝑖 𝑗 and 𝑓 = det 𝑓𝑖 𝑗 .
Let us denote by 𝐾 𝑖 𝑗 the extrinsic curvature on each hypersurface. We define the tensor 𝐴𝑖 𝑗 as the traceless part of
𝐾 𝑖 𝑗 :

𝐴𝑖 𝑗 = 𝐾 𝑖 𝑗 − 1
3
𝐾𝛾𝑖 𝑗 , (3.2)

where 𝐾 represents the trace of extrinsic curvature. We also define ℎ𝑖 𝑗 = �̃�𝑖 𝑗 − 𝑓 𝑖 𝑗 . Moreover, the gauge freedom
of Einstein equations allow us to impose 4 extra conditions. In our case these will be 𝐾 = 0 and

D𝑘 �̃�𝑘𝑖 = 0, (3.3)

where D is the Levi-Civita connection associated with 𝑓 𝑖 𝑗 . The first condition is called maximal slicing and the
second one generalized Dirac gauge. The next step is introducing a conformal decomposition of the extrinsic
curvature,

𝐾 𝑖 𝑗 = 𝜓10 �̂�𝑖 𝑗 , (3.4)

and at the same time its longitudinal/transverse decomposition,

�̂�𝑖 𝑗 = (𝐿𝑋)𝑖 𝑗 + �̂�𝑖 𝑗𝑇𝑇 , (3.5)

introducing in this way the vector field 𝑋 𝑖 and the traceless and transverse tensor �̂�𝑖 𝑗𝑇𝑇 ,D𝑖 �̂�
𝑖 𝑗
𝑇𝑇 = 0. 𝐿 is the Killing

operator. These last two definitions are motivated by the resolution of local uniqueness issues as it can be checked
in [3].
Finally, we introduce two new fields

¤𝑋 𝑖 = 𝜕𝑡𝑋 𝑖 ,
𝑉 𝑖 = 2𝑁𝜓−6𝑋 𝑖 − 𝛽𝑖 ,

in order to fix accuracy issues as we will discuss later on. These last two variables are introduced originally in this
work. The following projections of the energy-momentum tensor are introduced for completeness,

𝑆𝑖 𝑗 = 𝑇`a𝛾
`
𝑖 𝛾

a
𝑗 ,

𝑆𝑖 = −𝛾𝑖`𝑇`a𝑛a ,
𝑆 = 𝛾𝑖 𝑗𝑆𝑖 𝑗 ,

𝐸 = 𝑇`a𝑛
`𝑛a ,
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and also the rescaled quantities 𝑆∗𝑖 = 𝜓
6𝑆𝑖 , 𝑆∗ = 𝜓6𝑆 and 𝐸∗ = 𝜓6𝐸 . After all these definitions, we end up with an

evolution equation for ℎ𝑖 𝑗 ,

𝜕𝑡ℎ
𝑖 𝑗 = 𝛽𝑘D𝑘ℎ𝑖 𝑗 − ℎ𝑖𝑘D𝑘 𝛽 𝑗 − ℎ𝑘 𝑗D𝑘 𝛽𝑖 + 23 ℎ

𝑖 𝑗D𝑘 𝛽𝑘

+2𝑁𝜓−6 �̂�𝑖 𝑗𝑇𝑇 + (𝐿𝑉)𝑖 𝑗 − 𝑋 𝑗D𝑖 (2𝑁𝜓−6) − 𝑋 𝑖D 𝑗 (2𝑁𝜓−6) + 2
3
𝑓 𝑖 𝑗𝑋 𝑘D𝑘 (2𝑁𝜓−6),

(3.6)

and another one for �̂�𝑖 𝑗𝑇𝑇 ,

𝜕𝑡 �̂�
𝑖 𝑗
𝑇𝑇 = D𝑘

(
𝛽𝑘 �̂�𝑖 𝑗

)
− �̂�𝑘 𝑗D𝑘 𝛽𝑖 − �̂�𝑖𝑘D𝑘 𝛽 𝑗 + 23 �̂�

𝑖 𝑗D𝑘 𝛽𝑘 + 2𝑁𝜓−6�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙

+3
4
𝑁𝜓−6�̃�𝑖 𝑗 �̃�𝑙𝑘 �̃�𝑛𝑚 �̂�𝑘𝑚 �̂�𝑙𝑛 + 𝑁𝜓2 �̃�𝑖 𝑗∗ −

1
4
𝑁𝜓2 �̃��̃�𝑖 𝑗 − 1

2
(�̃�𝑖𝑘D𝑘ℎ𝑙 𝑗 + �̃�𝑘 𝑗D𝑘ℎ𝑖𝑙)D𝑙 (𝑁𝜓2)

+D𝑘
(
𝑁𝜓2

2

)
�̃�𝑘𝑙D𝑙ℎ𝑖 𝑗 − 8𝜋𝑁𝜓10𝑆𝑖 𝑗 + 4𝜋𝑁𝑆∗�̃�𝑖 𝑗

−(𝐿 ¤𝑋)𝑖 𝑗 + 4�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘𝜓D𝑙 (𝑁𝜓) + 4�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑙𝜓D𝑘 (𝑁𝜓) − 2�̃�𝑖 𝑗 �̃�𝑘𝑙D𝑘𝜓D𝑙 (𝑁𝜓)

+𝑁𝜓
2

2
�̃�𝑘𝑙D𝑘

(D𝑙ℎ𝑖 𝑗 ) − �̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘D𝑙 (𝑁𝜓2),

(3.7)

where

�̃�
𝑖 𝑗
∗ =

1
2

(
−D𝑙ℎ𝑖𝑘D𝑘ℎ 𝑗𝑙 − �̃�𝑘𝑙 �̃�𝑚𝑛D𝑚ℎ𝑖𝑘D𝑛ℎ 𝑗𝑙 + �̃�𝑛𝑙D𝑘ℎ𝑚𝑛 (�̃�𝑖𝑘D𝑚ℎ 𝑗𝑙 + �̃� 𝑗𝑘D𝑚ℎ𝑖𝑙)

)
+1
4
�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘ℎ𝑚𝑛D𝑙 �̃�𝑚𝑛,

and

�̃� =
1
4
�̃�𝑘𝑙D𝑘ℎ𝑚𝑛D𝑙 �̃�𝑚𝑛 − 12 �̃�

𝑘𝑙D𝑘ℎ𝑚𝑛𝐷𝑛�̃�𝑚𝑙 .

There is an issue concerning the post-newtonian order of the variables appearing in these equations. This means
to expand variables in powers of 1/𝑐 in the approximation of low gravity and low velocity of the sources. These
orders can be decuded from [1]. For instance, in equation (3.6) 𝜕𝑡ℎ𝑖 𝑗 has leading post-newtonian order of 1/𝑐5
which matches with the right hand side post-newtonian order. This is thanks to the introduction of the vector field
𝑉 𝑖 . If this were not the case, cancellations on the lower-order side must happen theoretically but it may not be the
case numerically. A previous expression of (3.6) in [3], undergoes this problem as well as the equation (3.7): the
left hand side has order 1/𝑐6, meanwhile the terms of the last two lines of the right hand side of this equation have
order 1/𝑐4. This order correction is still a work in progress, but we already reduced the numbers of terms that
should cancel analytically to get a lower order of 1/𝑐6.

The constraint equations are the ones from the original elliptic sector of the FCF equations with some modifica-
tions and simplifications by the use of the vector field 𝑉 𝑖 , and additional elliptic equations for the variables 𝑉 𝑖 , ¤𝑋 𝑖 .
The whole elliptic sector is presented hereinafter (the post-newtonian order is placed beside each equation):

Δ𝑋 𝑖 + 1
3
D𝑖D 𝑗𝑋

𝑗 = −�̃�𝑖𝑚
(
D𝑘 �̃�𝑚𝑙 − 12D𝑚�̃�𝑘𝑙

)
�̂�𝑘𝑙 + 8𝜋�̃�𝑖 𝑗 (𝑆∗) 𝑗 = O

(
1
𝑐3

)
; (3.8)

�̃�𝑘𝑙D𝑘D𝑙𝜓 = −2𝜋𝜓−1𝐸∗ − 1
8
𝜓−7�̃�𝑖𝑙 �̃� 𝑗𝑚 �̂�𝑙𝑚 �̂�𝑖 𝑗 + 18𝜓�̃� = O

(
1
𝑐2

)
; (3.9)

�̃�𝑖𝑘D𝑖D𝑘 (𝑁𝜓2) = 2𝜓−1�̃�𝑖𝑘D𝑘𝜓D𝑖 (𝑁𝜓2) − 2𝜓−2 (𝑁𝜓2)�̃�𝑖𝑘D𝑘𝜓D𝑖𝜓 + 34𝜓
−8 (𝑁𝜓2)�̃�𝑖𝑙 �̃� 𝑗𝑚 �̂�𝑙𝑚 �̂�𝑖 𝑗

+1
4
(𝑁𝜓2) �̃� + 4𝜋𝜓−2 (𝑁𝜓2)𝑆∗ = O

(
1
𝑐4

)
;

(3.10)

Δ𝑉 𝑖 + 1
3
D𝑖D 𝑗𝑉

𝑗 = −ℎ𝑘𝑙D𝑘D𝑙𝑉 𝑖 − 13 ℎ
𝑖𝑘D𝑘D 𝑗𝑉

𝑗 + 2𝑁𝜓−6
(
ℎ𝑘𝑙D𝑘D𝑙𝑋 𝑖 + 13 ℎ

𝑖𝑘D𝑘D𝑙𝑋 𝑙
)

D𝑘D𝑙 (2𝑁𝜓−6)
(
�̃�𝑘𝑙𝑋 𝑖 + 1

3
�̃�𝑖𝑘𝑋 𝑙

)
+ D𝑘 (2𝑁𝜓−6)

(
2�̃�𝑘𝑙D𝑘𝑋 𝑖 + 13 �̃�

𝑖𝑘D𝑙𝑋 𝑙 + 13 �̃�
𝑖 𝑗D 𝑗𝑋

𝑘 − �̂�𝑖𝑘
)
= O

(
1
𝑐5

)
;

(3.11)
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Δ ¤𝑋 𝑗 + 1
3
D 𝑗D𝑖 ¤𝑋 𝑖 =

𝛽𝑘D𝑖D𝑘 �̂�𝑖 𝑗 − D𝑖 �̂�𝑖𝑘D𝑘 𝛽 𝑗 − �̂�𝑖𝑘D𝑖D𝑘 𝛽 𝑗 + 23 �̂�
𝑖 𝑗D𝑖D𝑘 𝛽𝑘 + 53D𝑖 �̂�

𝑖 𝑗D𝑘 𝛽𝑘

−1
2
𝑁𝜓−6�̃� 𝑗𝑙D𝑙

(
�̃�𝑖𝑛�̃�𝑘𝑚 �̂�

𝑛𝑚 �̂�𝑖𝑘
)
− 𝜓−8�̃� 𝑗𝑙 �̃�𝑖𝑛�̃�𝑘𝑚 �̂�𝑛𝑚 �̂�𝑖𝑘D𝑙 (𝑁𝜓2) + 8𝜓−7𝑁�̃� 𝑗𝑙 �̃�𝑖𝑛�̃�𝑘𝑚 �̂�𝑛𝑚 �̂�𝑖𝑘D𝑙𝜓

+2𝑁𝜓−6D𝑖 (�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙) − 16𝜓−7𝑁�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙D𝑙𝜓 + 2𝜓−8�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙D𝑙 (𝑁𝜓2)

−1
2
D𝑖 (𝑁𝜓2)D𝑙ℎ𝑖𝑘D𝑘ℎ 𝑗𝑙 − 16 �̃�

𝑘 𝑗D𝑘ℎ𝑖𝑙D𝑖D𝑙 (𝑁𝜓2) − �̃�𝑖𝑘D𝑖ℎ 𝑗𝑙D𝑘D𝑙 (𝑁𝜓2)
−8𝑁�̃�𝑖𝑘D𝑖ℎ 𝑗𝑙D𝑘𝜓D𝑙𝜓 + 4𝑁�̃� 𝑗𝑙D𝑙ℎ𝑖𝑘D𝑖𝜓D𝑘𝜓 + 4𝜓−1�̃�𝑖𝑘D𝑖ℎ 𝑗𝑙

(D𝑙 (𝑁𝜓2)D𝑘𝜓 + D𝑘 (𝑁𝜓2)D𝑙𝜓)
−4𝜓−1�̃� 𝑗𝑙D𝑙ℎ𝑖𝑘D𝑖 (𝑁𝜓2)D𝑘𝜓 + �̃�𝑖 𝑗∗∗D𝑖 (𝑁𝜓2) + 𝑁𝜓2D𝑖 �̃�𝑖 𝑗∗∗ −

1
2
𝑁𝜓2�̃�𝑖 𝑗D𝑖 �̃�

−8𝜋𝜓−2𝐸∗�̃� 𝑗𝑙D𝑙 (𝑁𝜓2) + 16𝜋𝜓−1𝑁𝐸∗�̃� 𝑗𝑙D𝑙𝜓 + 16𝜋𝜓−1𝑁𝑆∗�̃� 𝑗𝑙𝐷𝑙𝜓

−8𝜋𝑁𝜓10D𝑖𝑆𝑖 𝑗 − 8𝜋𝜓8𝑆𝑖 𝑗D𝑖 (𝑁𝜓2) − 64𝜋𝜓9𝑁𝑆𝑖 𝑗D𝑖𝜓 = O
(
1
𝑐4

)
,

(3.12)

where

�̃�
𝑖 𝑗
∗∗ =

1
2

(
−�̃�𝑘𝑙 �̃�𝑚𝑛D𝑚ℎ𝑖𝑘D𝑛ℎ 𝑗𝑙 + �̃�𝑛𝑙D𝑘ℎ𝑚𝑛 (�̃�𝑖𝑘D𝑚ℎ 𝑗𝑙 + �̃� 𝑗𝑘D𝑚ℎ𝑖𝑙)

)
+ 1
4
�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘ℎ𝑚𝑛D𝑙 �̃�𝑚𝑛.

We can see how the elliptic sector can be solved hierarchically and this sector now is decoupled in equations
including terms with progressively lower post-newtonian orders: note that in equation (3.10) we solve 𝑁𝜓2 as we
find that it has post-newtonian order 1/𝑐4 instead of 1/𝑐2 as 𝑁 , see [1].

In the next Section we present the first tests of the proposed modified equations in this formulation by solving
the spacetime geometry of a neutron star.

4. Results and discussion
In the following we set ℎ𝑖 𝑗 = 0 in such a way we can compare our results with the ones obtained with the xCFC
formulation which imposes this condition, see [3], and can be seen as an approximation to the FCF. As a test we
use a neutron star model with an equatorial radius of 𝑅𝑒 = 12.859 km, central density 𝜌𝑐 = 7.91 · 1014 g/cm3 and
angular velocity 𝜔 = 606 rad/s. We consider that the star is composed of a perfect fluid with polytropic equation of
state 𝑝 = 𝐶𝜌Γ, where 𝑝 is the pressure, Γ = 2 and 𝐶 = 145731 (cgs units). For this compact object, spacetime is
stationary and we can adapt the coordinate time 𝑡 to this stationarity, setting the derivatives with respect to 𝑡 in (3.6)
and (3.7) to zero. Moreover, this spacetime is axisymmetric; we use spherical orthonormal coordinates adapting
them to this axisymmetry and fixing the rotation axis at \ = 0, being \ the polar angle in spherical orthonormal
coordinates.

In order to compare elliptic sectors in both xCFC and modified FCF formulations, we will focus on this work
on equations (3.8)–(3.12) regarding the modified FCF scheme. By using spherical orthonormal coordinates and
considering axisymmetry, we just solve equations in the 2-dimensions. The mesh consist in 100 points in the
radial coordinate 𝑟 and 32 points in polar angle \. We use one ghost cell to properly compute the discretization of
derivatives close to the numerical domain boundaries. All discretizations of the differential operators are 2nd order
and we use the LAPACK library to invert the Laplacian operators. In some equations the variable under resolution
appears outside the main Laplacian operator in the source term; here we apply fix-point iterative methods with a
relaxation factor.

Concerning boundary conditions, we apply periodicity in the polar angle \ and for the radial coordinate we
set 𝑢(𝑟, \) = ±𝑢(𝑟, 𝜋 − \) for the inner boundary, where 𝑢 represents a generic variable and the election of the
sign depends on the symmetry of this variable. At the outer boundary we impose a Robin condition, assuming
𝑢 = 𝑢0+𝑀/𝑟𝑛, which is equivalent to impose 𝜕𝑢/𝜕𝑟 = −𝑛(𝑢−𝑢0)/𝑟 , and only 𝑛 and 𝑢0 need to be specified. We have
𝑛 = 1 for scalars fields and 𝑛 = 2 for vector fields. 𝑢0 is the asymptotic value of the variable at spatial infinity 𝑟 →∞.

In Figure 1 we show the results obtained for the numerical solutions of the variables 𝑋 , 𝜙 and 𝑁 . Only the
angular component of 𝑋 𝑖 , 𝑋 𝜙 , is non-zero. We plot the radial profile of these variables at \ = 𝜋/2. Figure 2 shows
the numerical solution of the new introduced vector field𝑉 𝑖 , and the shift vector 𝛽𝑖 directly computed from𝑉 𝑖 . For
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this vector fields again only the angular components 𝑉 𝜙 and 𝛽𝜙 are non-zero. We plot the radial profile of these
variables at \ = 𝜋/2.

Fig. 1 Radial profiles of 𝑋 𝜙 , the conformal factor 𝜓 and the lapse function 𝑁 at \ = 𝜋/2.

Fig. 2 Radial profiles of 𝑉 𝜙 and third component of the shit vector 𝛽𝜙 at \ = 𝜋/2.

Finally, the numerical solution for the other new vector field introduced ¤𝑋 𝑖 is shown in Figure 3. Here only the
angular component, ¤𝑋 𝜙 , is exactly equal to zero. Therefore, we plot the radial profile of ¤𝑋𝑟 and ¤𝑋 \ at \ = 𝜋/2.
This is the first time that the vector field ¤𝑋 is computed numerically. Being a time derivative, it must be zero as our
spacetime is stationary. Nevertheless, we get values different from zero due to the fact that the tensor ℎ𝑖 𝑗 has been
neglected. In Figures 1– 3, the radial outer boundary is placed at 1.5 times the equatorial star radius 𝑅.

Fig. 3 Radial profiles of ¤𝑋𝑟 and ¤𝑋 \ at \ = 𝜋/2.
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A deeper analysis of the accuracy has been carried out by considering different resolutions in the radial coordi-
nate as well as different locations of the outer boundary. Placing further the outer boundary, we expect to increase
accuracy in the numerical solutions of our variables. This is expected since placing further the outer boundary
translate into a closer tend to the main decay of the variables as 𝑟 →∞, as we know that spacetime is asymptotically
flat.

In other to numerically check the accuracy of our results, we compute the residuals as the comparison between
the solution obtained with LORENE [6], and our numerical solutions; specifically,

𝜎( 𝑓 ) = max | 𝑓 − 𝑓LORENE |, (4.1)

where 𝑓 and 𝑓LORENE are the numerical solutions computed by us and by LORENE, respectively.

Figure 4 shows the residuals of the lapse function 𝑁 , the conformal factor and the shift vector in logarithmic
scale in terms of the spatial radial resolution also in logarithmic scale, employing the xCFC and modified FCF
equations. Each colour refers to a specific location of the outer boundary; for example, 𝐵/𝑅 = 1.5 means that the
outer boundary has been placed at 1.5 times the equatorial coordinate radius of the neutron star, 𝐵 would be the
size of the radial grid.

Fig. 4 Residuals of the the lapse function 𝑁 (left), conformal factor 𝜓 (center) and shift vector 𝛽𝜙 (right) versus the spatial
resolution of the radial coordinate. Logarithmic scale is employed in both axis. Asterisks correspond to xCFC and circles to
FCF. Each colour/line is linked with a grid size according to the common legend.

In all cases, the main reason to increase accuracy above a certain radial reasonable resolution is the location of
the outer boundary for both the xCFC and the modified FCF equations: the further the outer boundary is located,
the better the numerical accuracy for all the variables. This is a key point in the numerical resolution of the elliptic
sector and we also expect to find a similar behavior for the numerical resolution of the hyperbolic sector in future
works, taking into account that this hyperbolic sector encodes the gravitational radiation of the studied astrophysical
scenario.

We lose some accuracy for the lapse function 𝑁 in the modified FCF case, but this could be because we have to
deal with a spatial derivative of the lapse function in the source terms. This fact does not happen in the xCFC case
(see [3], to check the exact expressions in the elliptic sector for this formulation). The difference in the residuals de-
crease when increasing the radius of the location of the outer boundary and are expected to be comparable for good
resolutions. We want to explore in more details the possibility of including the spatial derivative on the right hand
side of (3.10) in the discretization of the elliptic operator on the left hand side, so checking weather the numerical
accuracy of the lapse function can increase. When radial resolution is increased we observe a slightly improvement
in the values of the residuals, but they cannot be noticed in Figures 4 due to the logarithmic scales of the vertical axis.
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For the vector fields 𝑉 𝑖 and 𝛽𝑖 , the numerical resolution of the modified FCF equations provide a much better
accuracy. In the case of the shift vector 𝛽𝑖 we gain around two orders of magnitude. This is also quite reasonable
since the introduction of the 𝑉 𝑖 vector is strongly related to the shift vector. We want to remind that for the xCFC
case, an elliptic equation for the shift vector is solved, see [3], while in the modified FCF equations the vector 𝑉 𝑖 is
solved and then the shift vector is computed directly from the vector 𝑉 𝑖 definition.

Going from the xCFC to the modified FCF equations, we also have the possibility of including non zero ℎ𝑖 𝑗
values in the source of the equations in the elliptic sector, thus getting better accuracy in the computation of our
numerical variables. This is indeed the case for a rotating neutron star, where a conformally flat metric cannot
reproduce the geometry of this spacetime. This is actually a step for future works: include non-zero values for ℎ𝑖 𝑗 ,
include the corresponding hyperbolic sector, and take into account these terms also in the sources of the equations
of the elliptic sector.

Despite the lack of reduction of the post-newtonian orders of the source terms in equation (3.7), we can take
advantage of the fact that these terms should be neglected up to 1/𝑐6 order to get an estimate of the ℎ𝑖 𝑗 components,
by solving the following elliptic equation:

(Δℎ)𝑖 𝑗 = 2(𝑁𝜓2)−1
(
8𝑁 𝑓 𝑖𝑘 𝑓 𝑗𝑙D𝑙𝜓D𝑘𝜓 − 2𝑁 𝑓 𝑖 𝑗 𝑓 𝑘𝑙D𝑘𝜓D𝑙𝜓 + 𝑓 𝑖𝑘 𝑓 𝑗𝑙D𝑘D𝑙 (𝑁𝜓2)

+(𝐿 ¤𝑋)𝑖 𝑗 + 8𝜋𝑁𝜓10𝑆𝑖 𝑗 − 4𝜋𝑁𝑆∗ 𝑓 𝑖 𝑗
)
.

This point should be further analyzed in next works to check if a better proposal can be obtained. Moreover, we
also want to numerically solve these equations and check our results.

5. Conclusions
We have been accomplished the first step towards a Fully Relativistic Formulation in the Fully Constrained Formal-
ism. Constrained formulations allow to carry out long term simulations without constraint equations violations.
Besides, it posses the properties of local uniqueness, hierarchical resolutions and correct relativistic expansion with
the exception of those terms mentioned in equation (3.7).

It remains for the future to check accuracy in complex numerical simulations, as well as include the hyperbolic
sector of the evolution equations. This has huge impact in the calibration of gravitational waves templates. Another
possible project would be to use leading terms in simplified numerical simulations for cosmological applications,
e.g., to compute gravitational waves estimates in cosmological contexts, where requirements of being far away from
the source (as in the famous quadrupole formula) do not apply.
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