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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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4



Contents

On numerical approximations to diffuse-interface tumor growth models
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On the Amplitudes of Spherical Harmonics of Gravitational Potencial
and Generalised Products of Inertia

Luis Floría1
Universidad de Zaragoza, Spain

Abstract

The vector field of the force of gravitational attraction due to an extended rigid body (of arbitrary irregular
geometrical shape, and with an arbitrary internal mass distribution inside it) at any point outside the body can
be derived from the gradient of a scalar field, its gravitational potential. In terms of spherical polar coordinates
(distance from the origin, colatitude or latitude, and longitude) that potential can be expanded as an absolutely
convergent series of spherical harmonics, involving Legendre polynomials and associated Legendre functions of
the first kind depending on the colatitude (or the latitude) and circular functions depending on the longitude.
In the present contributed paper we establish, in terms of the so–called “integrals of inertia” (or “generalised

products of inertia”) of the body, general formulae for the amplitudes (i.e., for the coefficients) of the different
zonal, tesseral, and sectorial harmonics of any degree and order in the said series expansion of the gravitational
potential outside the body.

Key words and expressions: Celestial Mechanics, Potential Theory, extended rigid body, gravitational potential,
Legendre functions, spherical harmonics, inertia integrals (generalised products of inertia).

Mathematics Subject Classification (MSC) 2020: 70 F 15, 33 C 55, 42 C 10, 86 A 20.

1. Introduction: Theoretical Context and Scope
We consider the usual model of three–dimensional space R 3 , endowed with the well–known algebraic, geometric
and topological structures of a linear, affine and Euclidean space over the field R of the real numbers.
We also consider a rigid body of arbitrary geometrical shape containing a mass distribution inside its volume.

A simple mathematical model for this situation is provided by a bounded, connected open subset D in ordinary
space R 3 , delimited by a closed and sufficiently smooth surface S = 𝜕D (the boundary ofD ). We further
assume that this distribution of matter is characterised by an arbitrary scalar function of position describing the
local density of mass at each point of the body (say, in a neighbourhood of the point); although in principle this
function can be supposed to be bounded and Riemann–integrable over the volume of the body, for certain purposes
it should be assumed to be of the class C ( 1

(D ⊆ R 3 , R
)
over the said volume of the body.

In particular, this model provides us with a first approach to the study of the force field of gravitational attraction
created by many celestial bodies (and, more specifically, the Earth).
It is a well–known fact in some branches of Space Technology and Mathematical and Physical Sciences (e. g.,

Vector Analysis, Potential Theory, Celestial Mechanics, Astrodynamics, Physical Geodesy, Geophysics) that the
vector field corresponding to the gravitational force of attraction created by a mass distribution confined inside an
open, bounded and connected set contained in ordinary, three dimensional space can be expressed in terms of the
gradient of a single scalar function of position, known as the (scalar) potential of that vector field.
Moreover, if spherical polar coordinates ( 𝑟 , 𝜃 , 𝜆 ) are chosen to analyse this issue, that scalar potential can

be expressed in the form of an absolutely convergent series of spherical harmonics in which products of associated
Legendre functions of the first kind (depending on cos 𝜃 , the cosine of the colatitude 𝜃 ) and elementary circular
functions (namely, cosine and sine functions) of integer multiples of the longitude 𝜆 are involved.
The so–called integrals of inertia (also known as inertial integrals or inertia integrals) were introduced as a

generalisation of the triple integrals (taken over the whole volume of the body) that define the position vector of the
centre of mass of the body and its moments and products of inertia. For this reason they are also called generalised
products of inertia. Accordingly, the volume integrals defining both the centre of mass and the moments and
products of inertia of the body are viewed as particular instances of inertia integrals.
The preceding statements and comments, as well as most of the theoretical background concerning this paper,

can be documented in detail and justified with the help of some pertinent bibliographical references. For example
(just to mention but a few of them), Brouwer and Clemence, [2], Chapter III, pp. 115–133; Cid and Ferrer, [3],
Chapter 7, pp. 185–216, and Appendix B, pp. 443-479; Fitzpatrick, [4], Chapter 12, pp. 265–309; Heiskanen and

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 177–183)
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Moritz, [5], Chapter 1, pp. 1–45, and Chapter 2, §2.5–§2.6, pp. 57–63; MacMillan, [6], Chapter II, pp. 24–95, and
Chapter VII, pp. 325–406; Roy, [7], Chapter 7, §7.5, pp. 201–206, and Chapter 11, §11.7, p. 342.

In the present paper we derive general expressions, in terms of inertia integrals, for the coefficients of the diverse
(zonal, tesseral, and sectorial) spherical harmonics of any degree 𝑛 and order 𝑘 occurring in the series expansion
of the gravitational potential.

2. Some Basic Concepts and Notations
• We consider the usual affine and Euclidean three–dimensional space R 3 , and a fixed, inertial Cartesian
reference frame 𝑂 𝑥 1 𝑥 2 𝑥 3 , or 𝑂 𝑥 𝑦 𝑧 , with its origin at a point 𝑂 in R 3 . This rectangular coordinate system
is determined by the choice of point 𝑂 and an ordered basis { i 1 , i 2 , i 3 } that we also suppose orthonormal and
positively oriented (right–handed or dextrorse basis) in Euclidean vector space R 3 . This spatial coordinate frame
is also denoted {𝑂 , { i 1 , i 2 , i 3 }} .
• Given a point 𝑃 in R 3 , it position vector with respect to this Cartesian reference frame 𝑂 𝑥 𝑦 𝑧 is

−−−→
𝑂 𝑃 ≡ r ≡ x = 𝑥 i 1 + 𝑦 i 2 + 𝑧 i 3 ≡ ( 𝑥 , 𝑦 , 𝑧 ) ( i 1 , i 2 , i 3 ) ≡ ( 𝑥 , 𝑦 , 𝑧 ) . (2.1)

• Let D ⊆ R 3 be a bounded domain or bounded region (a connected open subset) in R 3 , delimited by a
closed and smooth surface S = 𝜕D (the boundary of D ), and D = D ∪ 𝜕D its topological closure.
• Let 𝑄 ∈ D be an arbitrary point in this domain, located in space by its position vector (relative to the above

Cartesian coordinate system),
−−−−→
𝑂𝑄 = 𝜉 i 1 + 𝜂 i 2 + 𝜁 i 3 ≡ ( 𝜉 , 𝜂 , 𝜁 ) . The Euclidean distance between 𝑄

and 𝑃 , that is, the Euclidean norm of the position vector of 𝑃 relative to 𝑄 , is

𝑄 𝑃 = | | −−−→𝑄 𝑃 | | =
√︃
( 𝑥 − 𝜉 ) 2 + ( 𝑦 − 𝜂 ) 2 + ( 𝑧 − 𝜁 ) 2 . (2.2)

• In what follows the notations for the position variables of the orthogonal curvilinear system of spherical
polar coordinates will be ( 𝑟 , 𝜃 , 𝜆 ) , where 𝑟 = | | −−−→𝑂 𝑃 | | = | | r | | stands for the radius vector of 𝑃 (Euclidean
distance of point 𝑃 from the origin 𝑂 of the coordinate system), 𝜃 designates the colatitude of 𝑃 (that is, the
polar angle of the radius vector, measured from the positive part of the 𝑂 𝑧 ≡ 𝑂 𝑥 3 coordinate axis), and 𝜆 is
the longitude of 𝑃 (azimuthal angle –measured from the positive part of the 𝑂 𝑥 ≡ 𝑂 𝑥 1 coordinate axis– that
locates the plane that contains point 𝑃 and is orthogonal to the coordinate plane 𝑂 𝑥 𝑦 ≡ 𝑂 𝑥 1𝑥 2 .
Accordingly, 𝑟 ≥ 0 , i.e., 𝑟 ∈ [ 0 , +∞ ) = R + ∪ { 0 } ; 0 ≤ 𝜃 ≤ 𝜋 , that is, 𝜃 ∈ [ 0 , 𝜋 ] ; and

0 ≤ 𝜆 < 2 𝜋 , or 𝜆 ∈ [ 0 , 2 𝜋 ) .
• For any point 𝑄 ∈ D . its position in space will be characterized by means of its Cartesian coordinates

( 𝜉 , 𝜂 , 𝜁 ) , related to its spherical polar coordinates ( 𝜌 , Θ , Λ ) by means of the equations
𝜉 = 𝜌 sinΘ cosΛ , 𝜂 = 𝜌 sinΘ sinΛ , 𝜁 = 𝜌 cosΘ , with 𝜉 2 + 𝜂 2 + 𝜁 2 = 𝜌 2 . (2.3)

• In a similar way, let 𝑃 ∈ R 3 \ D be an exterior point, with Cartesian and spherical polar coordinates
( 𝑥 , 𝑦 , 𝑧 ) and ( 𝑟 , 𝜃 , 𝜆 ) , respectively,

𝑥 = 𝑟 sin 𝜃 cos𝜆 , 𝑦 = 𝑟 sin 𝜃 sin𝜆 , 𝑧 = 𝑟 cos 𝜃 , and 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑟 2 . (2.4)

• We consider a distribution of matter confined in the bounded domain D . The Newtonian potential of the
gravitational attraction created at point 𝑃 ( 𝑥 , 𝑦 , 𝑧 ) , at which a mass 𝑚 𝑃 is located outside of the body, by a
systems of material points 𝑄 ( 𝜉 , 𝜂 , 𝜁 ) contained in a domain D , is given by ( [2], Ch. III, §2, Eqs. (5)–(6), p.
117; [3], Ch. 7, §7.1, Eq. (7.1.2), p. 185, and §7.2, §§7.2.1, Eq. (7.2.6), p. 187; [4], Ch. 12, §12.4, Eq. (12.4.6), p.
290; [5], Ch. 1, §1.2, Eq. (1.11), pp. 3–4; [6], Ch. II, §20, Eq. (1), p. 24; [7], Ch. 7, §7.5, p. 202 )

𝑉 ( 𝑃 ) = G 𝑚 𝑃

∫ ∫ ∫
D

𝑑 𝑚 (𝑄 )
| |−−−→𝑄 𝑃 | |

= G 𝑚 𝑃

∫ ∫ ∫
D

𝜌 𝑣𝑜𝑙. (𝑄 )
| |−−−→𝑄 𝑃 | |

𝑑 𝑣 (𝑄) , (2.5)

where G is the universal gravitational constant, while 𝑑 𝑚 (𝑄 ) is the differential element of mass (or elementary
mass) at point 𝑄 , and | |−−−→𝑄 𝑃 | | is the Euclidean distance between 𝑄 and 𝑃 . In practice one takes 𝑚 𝑃 = 1 , the unit
mass. As for G , its value in SI units is G ≈ 6.67259 × 10 − 11 N m 2 / kg 2 = 6.67259 × 10 − 11 m 3 / kg s 2 .
If 𝜌 𝑣𝑜𝑙. (𝑄 ) is the local density of mass at point 𝑄 , and 𝑑 𝑣 (𝑄 ) the differential element of volume in the
neighbourhood of 𝑄 , then the differential element of mass can be expressed as 𝑑 𝑚 (𝑄 ) = 𝜌 𝑣𝑜𝑙. (𝑄 ) 𝑑 𝑣 (𝑄 ) .
• This function 𝑉 turns out to be harmonic at points outside the domain D (and consequently satisfiesLaplace’s

equation Δ𝑉 = ∇ 2𝑉 = 0 outside D ), while it satisfies Poisson’s equation Δ𝑉 = ∇ 2𝑉 = − 4 𝜋 G 𝜌 in D .
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• Let 𝑛 be a non–negative integer number, and 𝑘 a non–negative integer between 0 and 𝑛 , that is,
𝑛 ∈ N ∪ { 0 } , and 𝑘 ∈ { 0 , 1 , 2 , · · · , 𝑛 } . The Legendre polynomial of degree 𝑛 in the independent variable
𝑡 is denoted 𝑃𝑛 (𝑡) , while 𝑃 𝑘𝑛 (𝑡) will be the associated Legendre function of the first kind of degree 𝑛 and order
𝑘 . Note that for 𝑘 = 0 , 𝑃 0𝑛 (𝑡) = 𝑃𝑛 (𝑡) . For the purposes of the present paper, the scalar variable 𝑡 will be
taken as the cosine function of the colatitude.
• Within the framework of this theory of (surface) spherical harmonics, terms of the form 𝑃𝑛 (𝑡) are called

zonal harmonics of degree 𝑛 . Terms 𝑃 𝑘𝑛 (𝑡) cos (𝑘 𝜆) and 𝑃 𝑘𝑛 (𝑡) sin (𝑘 𝜆) with 0 ≠ 𝑘 ≠ 𝑛 are tesseral
harmonics of degree 𝑛 and order 𝑘 , while 𝑃 𝑛𝑛 (𝑡) cos (𝑛 𝜆) and 𝑃 𝑛𝑛 (𝑡) sin (𝑛 𝜆) are known as sectorial harmonics
of degree 𝑛 (and order 𝑛 ).

3. On the Series Expansion of the Gravitational Potential in Terms of Spherical Harmonics
• Taking 𝑚 𝑃 = 1 , the gravitational potential given in Eq. (2.5) can be recast in the form ( [3], Ch. 7, §7.6, §§7.6.1,
p. 206, Eq. (7.6.4); [4], Chapter 12, §12.1, p. 275, Eqs. (12.1.23)–(12.1.24), and §12.2, p. 279, Eq. (12.2.5); [5] Ch.
2, §2.5, Eqs. (2.37)–(2.38) and (2.39)–(2.40), pp. 59–60, with notations as in Ch. 1, §1.13, Eqs. (1.67), p. 29; [7]
Ch. 11 §11.7 p. 342 )

𝑉 =
G 𝑀
𝑟

{
1 + 1

𝑀

∞∑︁
𝑛 = 1

∫ ∫ ∫
D

( 𝜌
𝑟

)𝑛
[ 𝑃 𝑛 ( cos 𝜃 ) 𝑃 𝑛 ( cosΘ )

+ 2
𝑛∑︁

𝑘 = 1

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) ! 𝑃

𝑘
𝑛 ( cos 𝜃 ) 𝑃 𝑘𝑛 ( cosΘ ) cos { 𝑘 (Λ − 𝜆 ) }

]
𝑑 𝑚

}
, (3.1)

where 𝑀 stands for the total mass of the distribution of matter contained in the domain D .
• Introducing an auxiliary quantity 𝑅 = sup

{
𝜌 = | | −−−→𝑂𝑄 | | = distance (𝑂 , 𝑄 ) /𝑄 ∈ D

}
( [3], Ch. 7,

§7.6, §§7.6.1, p. 206; [4], Ch. 12, §12.1, p. 275 ), and defining the following coefficientes ( [3], pp. 206–207, Eqs.
(7.6.5); [5] Ch. 2, §2.5, Eqs. (2.38), p. 59, and Eqs. (2.40), p. 60 ),

𝐽 𝑛 = − 1
𝑀

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑛 ( cosΘ ) 𝑑 𝑚 , (3.2)

𝐶 𝑘
𝑛 = − 2

𝑀

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑘𝑛 ( cosΘ ) cos 𝑘 Λ 𝑑 𝑚 , (3.3)

𝑆 𝑘𝑛 = − 2
𝑀

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑘𝑛 ( cosΘ ) sin 𝑘 Λ 𝑑 𝑚 , (3.4)

the preceding potential (3.1) takes on the form ( [3], Eq. (7.6.6)), p. 207; [5], Eqs. (2.39)–(2.40), pp. 59–60 )

𝑉 =
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛 [
𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 ) +

𝑛∑︁
𝑘 = 1

𝑃 𝑘𝑛 ( cos 𝜃 )
(
𝐶 𝑘
𝑛 cos 𝑘 𝜆 + 𝑆 𝑘𝑛 sin 𝑘 𝜆

) ] }

=
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛 [
𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 ) +

𝑛∑︁
𝑘 = 1

(
𝐶 𝑘
𝑛 𝑃

𝑘
𝑛 ( cos 𝜃 ) cos 𝑘 𝜆 + 𝑆 𝑘𝑛 𝑃 𝑘𝑛 ( cos 𝜃 ) sin 𝑘 𝜆

) ] }

=
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛
[ 𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 )

+
𝑛∑︁

𝑘 = 1

(
𝐶 𝑘
𝑛

{
𝑃 𝑘𝑛 ( cos 𝜃 ) cos 𝑘 𝜆

} + 𝑆 𝑘𝑛 {
𝑃 𝑘𝑛 ( cos 𝜃 ) sin 𝑘 𝜆

} ) ] }

=
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛 [
𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 ) +

𝑛∑︁
𝑘 = 1

(
𝐶 𝑘
𝑛 C 𝑘𝑛 ( 𝜃 , 𝜆 ) + 𝑆 𝑘𝑛 S 𝑘𝑛 ( 𝜃 , 𝜆 )

) ] }
, (3.5)

where the notations C 𝑘𝑛 ( 𝜃 , 𝜆 ) and S 𝑘𝑛 ( 𝜃 , 𝜆 ) represent the surface spherical harmonics, namely
C 𝑘𝑛 ( 𝜃 , 𝜆 ) = 𝑃 𝑘𝑛 ( cos 𝜃 ) cos 𝑘 𝜆 , S 𝑘𝑛 ( 𝜃 , 𝜆 ) = 𝑃 𝑘𝑛 ( cos 𝜃 ) sin 𝑘 𝜆 . (3.6)

• The above constants 𝐽 𝑛 , 𝐶
𝑘
𝑛 , and 𝑆 𝑘𝑛 , introduced in Eqs. (3.2)–(3.4), are measures of the amplitudes

of the various harmonics C 0𝑛 ( 𝜃 , 𝜆 ) = 𝑃 𝑛 ( cos 𝜃 ) , C 𝑘𝑛 ( 𝜃 , 𝜆 ) , and S 𝑘𝑛 ( 𝜃 , 𝜆 ) , respectively ( [7], §11.7, p.
342).
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♣ In what follows we will propose general expressions for the adimensional coefficients (3.2), (3.3), and (3.4),
in terms of inertia integrals (4.5) of the body (see below).

4. Mathematical Formulae and Results Invoked in the Derivation of General Expressions for the Amplitudes
In this Section we collect some formulae and results to which we resort in our considerations and developments
leading to the construction of general expression for the coefficients of the spherical harmonics of the gravitational
potential.

4.1. Legendre Functions of the First Kind
• To calculate those coefficients, we will start from the following algebraic expression of the associated Legendre
function of the first kind of degree 𝑛 and order 𝑘 ( [3], App. B, §B.2, §§B.2.1, p. 453; [5], Ch. 1, §1.11, Eq. (1.62),
p. 24; [6], Ch. VII, §197, Eq. (8), p. 370 ),

𝑃 𝑘𝑛 ( 𝑡 ) =

(
1 − 𝑡 2 ) 𝑘/2
2 𝑛

𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

𝑗 ! ( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) ! 𝑡 𝑛− 𝑘 − 2 𝑗 , (4.1)

where 𝑠 is the greatest integer number ≤ ( 𝑛 − 𝑘 ) / 2 ; i.e., 𝑠 = ( 𝑛 − 𝑘 ) / 2 or 𝑠 = ( 𝑛 − 𝑘 − 1 ) / 2 ,
whichever is an integer. That is, 𝑠 = ( 𝑛 − 𝑘 ) / 2 or 𝑠 = ( 𝑛 − 𝑘 − 1 ) / 2 according as 𝑛 − 𝑘 is even or odd.
In other words, number 𝑠 is the integer part of ( 𝑛 − 𝑘 ) / 2 .
• Taking 𝑡 = cosΘ allows us to rewrite the preceding algebraic expression (4.1) in the trigonometric form

𝑃 𝑘𝑛 ( cosΘ ) =
sin 𝑘 Θ
2 𝑛

𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

𝑗 ! ( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) ! ( cosΘ )
𝑛− 𝑘 − 2 𝑗 Θ , (4.2)

• In particular, when 𝑘 = 0 , the Legendre polynomial of degree 𝑛 ( [3], App. B, §B.2, §§B.2.1 Eq. (B.2.6),
p. 452; ) reads

𝑃 𝑛 ( 𝑡 ) =
1
2 𝑛

𝑟∑︁
ℓ = 0
(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !

ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝑡 𝑛− 2 ℓ , (4.3)

𝑃 𝑛 ( cosΘ ) =
1
2 𝑛

𝑟∑︁
ℓ = 0
(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !

ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! ( cosΘ )
𝑛− 2 ℓ , (4.4)

where 𝑟 is the integer part of 𝑛 / 2 .

4.2. Integrals of Inertia of a Body
• The general definition of this concept (also known as inertial integrals, integrals of inertia, or generalised
products of inertia of the body) obeys the formula ( [4], Ch. 12, §12.4, p. 293; [6], Ch. II, §50, p. 89 )

𝐼 𝑖 , 𝑗 , 𝑘 = 𝐼 𝑖 𝑗 𝑘 =
∫ ∫ ∫

D
𝜉 𝑖 𝜂 𝑗 𝜁 𝑘 𝑑 𝑚 , where 𝑖 , 𝑗 , 𝑘 𝑖 are non–negative integers. (4.5)

For a given non–negative integer number 𝑛 , integrals 𝐼 𝑖 , 𝑗 , 𝑘 , with 𝑖 , 𝑗 , 𝑘 non–negative integers such that
𝑖 + 𝑗 + 𝑘 = 𝑛 , are also called moments of orden 𝑛 .
• When dealing with spherical harmonics of degree 𝑛 we will furthermore consider that 𝑖 + 𝑗 + 𝑘 = 𝑛 =

degree of the harmonic .
• Some authors use these integrals only in the case of harmonics of low degree ( [2], Ch. III, §6, p. 126 for

𝑛 = 3 , and §7, p 126, for 𝑛 = 4 ; [7], Ch. 7, §7.5, p. 204 for 𝑛 = 3 ).
• Obviously ( [4], p. 293), 𝐼 0 , 0 , 0 = 𝑀 = total mass of the body . Fitzpatrick ( [4], Ch. 12, §12.7, Eqs.

(12.7.1)–(12.7.4), pp. 306–307 ) gives explicit expressions for the terms of the gravitational potential up to degree
3, in terms of spherical coordinates, with the amplitudes of the spherical harmonics, namely coefficients

𝐽 1 , 𝐶
1
1 , 𝑆

1
1 , 𝐽 2 , 𝐶

1
2 , 𝑆

1
2 , 𝐶

2
2 , 𝑆

2
2 , 𝐽 3 , 𝐶

1
3 , 𝑆

1
3 , 𝐶

2
3 , 𝑆

2
3 , 𝐶

3
3 , 𝑆

3
3 ,

represented in terms of inertia integrals as linear combinations of the said integrals up to order three.

♣ Here we shall establish that the coeficientes 𝐽 𝑛 , 𝐶 𝑘
𝑛 , and 𝑆 𝑘𝑛 of the harmonics of degree 𝑛 depend on

linear combinations of integrals 𝐼 𝑖 , 𝑗 , 𝑘 with 𝑖 + 𝑗 + 𝑘 = 𝑛 = degree of the harmonic .
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4.3. Multiple–angle Formulae
According to Weisstein [9], for a positive integer 𝑘 ,

sin (𝑘 𝛼) =
ℎ∑︁
𝑝 = 0
(− 1 ) 𝑝

(
𝑘

2 𝑝 + 1

)
sin 2 𝑝 + 1 𝛼 cos 𝑘 − 2 𝑝 − 1 𝛼 , (4.6)

cos (𝑘 𝛼) =
𝐻∑︁
𝑝 = 0
(− 1 ) 𝑝

(
𝑘

2 𝑝

)
sin 2 𝑝 𝛼 cos 𝑘 − 2 𝑝 𝛼 , (4.7)

where ℎ is the integer part of ( 𝑘 − 1 ) / 2 , and 𝐻 denotes the integer part of 𝑘 / 2 .

4.4. The Multinomial Theorem
• TheMultinomial Theorem (attributed to Johann Bernoulli and Leibniz) is a generalisation of Newton´s Binomial
Theorem that provides us with a formula for the non–negative entire powers of a polynomial (say, multinomial)
expression. Let 𝑚 be a positive integer number, and 𝑛 a non–negative integer.
• Consider a multinomial expression ( 𝑎 1 + 𝑎 2 + · · · + 𝑎𝑚 ) with 𝑚 terms (𝑚 monomials). Then, from

Abramowitz and Stegun ( [1], Ch. 24, §24.1, §§24.1.2, §§§24.1.2.I, p. 823), and Weisstein [8],

( 𝑎 1 + 𝑎 2 + · · · + 𝑎𝑚 ) 𝑛 =

(
𝑚∑︁
𝑖 = 1

𝑎 𝑖

) 𝑛

=
∑︁

𝑛 1 + 𝑛 2 + · · · + 𝑛𝑚 = 𝑛

𝑛 !
𝑛 1 ! 𝑛 2 ! · · · 𝑛𝑚 ! 𝑎 𝑛 11 𝑎 𝑛 22 · · · 𝑎 𝑛𝑚𝑚

=
∑︁

𝑛 1 + 𝑛 2 + · · · + 𝑛𝑚 = 𝑛

(
𝑛

𝑛 1 , 𝑛 2 , · · · , 𝑛𝑚

) 𝑚∏
𝑖 = 1

𝑎 𝑛 𝑖𝑖 , (4.8)

where the sum of the (non–negative) exponents 𝑛 𝑖 ∈ N ∪ { 0 } is 𝑛 : ∑𝑚
𝑖 = 1 𝑛 𝑖 = 𝑛 . Note that the sum is taken

over all combinations of non–negative integers 𝑛 1 , 𝑛 2 , · · · , 𝑛𝑚 such that 𝑛 1 + 𝑛 2 + · · · + 𝑛𝑚 = 𝑛 .
• The multinomial coefficients (or multinomial numbers) are(

𝑛

𝑛 1 , 𝑛 2 , · · · , 𝑛𝑚

)
=

𝑛 !
𝑛 1 ! 𝑛 2 ! · · · 𝑛𝑚 ! . (4.9)

• The number of monomials in the above sums is
( 𝑛 + 𝑚 − 1 ) !
𝑛 ! (𝑚 − 1 ) ! . (4.10)

• In particular we are interested in the special case of the multinomial formula for 𝑚 = 3 . More specifically,
the trinomial expansion of 𝜌 2 = 𝜉 2 + 𝜂 2 + 𝜁 2 ( MacMillan [6], Ch. VII, §204, p. 383 ), namely

𝜌 2 ℓ =
(
𝜌 2

)ℓ
=

(
𝜉 2 + 𝜂 2 + 𝜁 2

) ℓ
=

∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

ℓ !
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 2 ℓ3 , (4.11)

ℓ 𝑗 ≥ 0 integer numbers. The number of terms of an expanded trinomial is

( ℓ + 3 − 1 ) !
ℓ ! ( 3 − 1 ) ! =

( ℓ + 2 ) !
ℓ ! 2 !

=
( ℓ + 2 ) ( ℓ + 1 )

2
, (4.12)

where ℓ is the exponent to which the trinomial is raised.

5. Formulae for the Amplitudes of Spherical Harmonics in terms of Inertia Integrals
Theorem 5.1 Coefficients of zonal harmonics. Let 𝑟 be the integer part of 𝑛 / 2 . Then

𝐽 𝑛 = − 1
2 𝑛 𝑀 𝑅 𝑛

𝑟∑︁
ℓ = 0
(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !

( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝐼 2 ℓ1 , 2 ℓ2 , 𝑛− 2 ℓ1 − 2 ℓ2

)
. (5.1)
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Proof From the definition (3.2) and the trigonometric form (4.4) of the Legendre polynomial of degree 𝑛 ,

𝐽 𝑛 = − 1
𝑀

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑛 ( cosΘ ) 𝑑 𝑚

= − 1
𝑀 𝑅 𝑛

1
2 𝑛

∫ ∫ ∫
D
𝜌 𝑛

𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! ( cosΘ )

𝑛− 2 ℓ 𝑑 𝑚

= − 1
2 𝑛 𝑀 𝑅 𝑛

∫ ∫ ∫
D

𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜌

𝑛 cos 𝑛− 2 ℓ Θ 𝑑 𝑚

= − 1
2 𝑛 𝑀 𝑅 𝑛

∫ ∫ ∫
D
I𝐽𝑛 𝑑 𝑚 = − 1

2 𝑛 𝑀 𝑅 𝑛
I 𝐽𝑛 .

The integrand I𝐽𝑛 of I 𝐽𝑛 will be treated in the following way,

I𝐽𝑛 =
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! ( 𝜌 cosΘ )

𝑛− 2 ℓ
(
𝜌 2

) ℓ

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜁

𝑛− 2 ℓ
(
𝜉 2 + 𝜂 2 + 𝜁 2

) ℓ

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜁

𝑛− 2 ℓ
( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

ℓ !
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 2 ℓ3

)

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 𝑛− 2 ℓ + 2 ℓ3
)

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 𝑛− 2 ℓ1 − 2 ℓ2
)
.

Note that 𝑛 − 2 ℓ + 2 ℓ3 = 𝑛 − 2 ℓ1 − 2 ℓ2 − 2 ℓ3 + 2 ℓ3 = 𝑛 − 2 ℓ1 − 2 ℓ2 . And integral I 𝐽𝑛 reads

I 𝐽𝑛 =
∫ ∫ ∫

D

𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜌 𝑛 cos 𝑛− 2 ℓ Θ 𝑑 𝑚

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝐼 2 ℓ1 , 2 ℓ2 , 𝑛− 2 ℓ1 − 2 ℓ2

)
,

from which (5.1) follows.
�

Theorem 5.2 Coefficients of tesseral and sectorial harmonics of the C 𝑘𝑛 ( 𝜃 , 𝜆 ) type:

𝐶 𝑘
𝑛 = − 2

2 𝑛 𝑀 𝑅 𝑛
( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

©­«
𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) !

×
[

𝑝∑︁
ℓ = 0
(− 1 ) ℓ

(
𝑘

2 ℓ

) { ∑︁
𝑗 1 + 𝑗 2 + 𝑗 3 = 𝑗

1
𝑗 1! 𝑗 2! 𝑗 3!

𝐼 𝑘 − 2 ℓ+2 𝑗 1 , 2 ℓ + 2 𝑗 2 , 𝑛− 𝑘 − 2 𝑗 1 − 2 𝑗 2

}])
,

(5.2)

with 𝑠 = integer part of ( 𝑛 − 𝑘 ) / 2 , and 𝑝 = integer part of 𝑘 / 2 .
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Theorem 5.3 Coefficients of tesseral and sectorial harmonics of the S 𝑘𝑛 ( 𝜃 , 𝜆 ) type:

𝑆 𝑘𝑛 = − 2
2 𝑛 𝑀 𝑅 𝑛

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

©­
«

𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) !
[

𝑞∑︁
ℓ = 0
(− 1 ) ℓ

(
𝑘

2 ℓ + 1

)

{ ∑︁
𝑗 1 + 𝑗 2 + 𝑗 3 = 𝑗

1
𝑗 1! 𝑗 2! 𝑗 3!

𝐼 𝑘 − 2 ℓ+2 𝑗 1 −1, 2 ℓ + 2 𝑗 2+1 , 𝑛− 𝑘 − 2 𝑗 1 − 2 𝑗 2

}])
, (5.3)

where 𝑠 = integer part of ( 𝑛 − 𝑘 ) / 2 , and 𝑞 = integer part of ( 𝑘 − 1 ) / 2 .

Remark 5.4 The proof of these last theorems follows the approach and treatment of the case of the coefficients of
zonal harmonics.
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