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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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SEIRD model with nonlocal diffusion
Calvo Pereira A.N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Two-sided methods for the nonlinear eigenvalue problem
Campos C. and Roman J.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Fractionary iterative methods for solving nonlinear problems
Candelario G., Cordero A., Torregrosa J.R. and Vassileva M.P. . . . . . . . . . . . . . . . . . . . . . . . . 105

Well posedness and numerical solution of kinetic models for angiogenesis
Carpio A., Cebrián E. and Duro G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Variable time-step modal methods to integrate the time-dependent neutron diffusion equation
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An algorithm to create conservative Galerkin projection between meshes
P. Gómez-Molina1, L. Sanz-Lorenzo2, J. Carpio1

1. Departamento de Ingeniería Energética
2. Departamento de Matemática Aplicada a la Ingeniería Industrial
E.T.S.I. Industriales, José Gutiérrez Abascal, 2, 28006 Madrid

Universidad Politécnica de Madrid

Abstract

Wepresent in this paper an algorithm to solve pure-convection problemswith a conservative Lagrange-Galerkin
formulation in the framework of the finite element method. The integrals obtained from the Lagrange-Galerkin
formulation will be computed with an algorithm which leads to conservation of mass up to machine accuracy,
when we transfer information from the mesh moved by the characteristic curves of the convection operator to the
current mesh. The algorithm to compute the integrals considers the intersection of meshes composed by triangles
(2-dimensions) and tetrahedra (3-dimensions) with straight sides. Wewill illustrate the good features of themethod
in terms of stability, accuracy and mass conservations in different pure-convection tests with non-divergence-free
velocity fields.

1. Introduction
Nowadays, in the resolution of problems related with fluids, such as aerodynamics, combustion and heat transfer,
we usually find convection-dominated equations. However, its resolution via finite element methods is not straight-
forward, since the treatment of the convective terms is a source of numerical problems due to the fact that the
standard Galerkin formulation is unstable.
One methodology that brings about the stabilization of the convective term in a natural way is related to the

Lagrangian description of the flow. Here, we use the information of the characteristic curves of the convection
operator in order to integrate the equation in time. In the so-called Lagrange-Galerkin method (also known as
Characteristic-Galerkin or semi-Lagrange-Galerkin method), see [1, 2], we identify each domain point x as a fluid
particle at time 𝑡𝑛 and seek backward in time the position of this particle at time 𝑡𝑛−1, that we call the foot of the
characteristic curve X(x, 𝑡𝑛; 𝑡𝑛−1), where the numerical solution 𝑢ℎ (x, 𝑡𝑛−1)) is known. The set of the feet of the
characteristic curves defines a backwards convected mesh, and the weak formulation of the problem performs a
𝐿2-projection of the known solution from this convected mesh to the fixed mesh.
In the context of Lagrange-Galerkin schemes, Colera et al. [3] derived a conservative Lagrange-Galerkin

formulation to solve pure-convection and convection-diffusion equations in the case of non-divergence-free velocity
fields. The method is mainly based on formulating a conservation integral equation for a weighted mass, that can
be discretized in time and in space with any order of accuracy, and is posed so that the terms that appear in the
formulation can be easily computed by means of standard finite element operations.
Although the weak formulation in [3] leads to mass conservation, the right-hand side of the equation consists

on an integral of functions that are defined in different element spaces (associated with the current triangulation
and its backwards convected mesh). In [3], the integrals are computed with high-order quadrature rules [4], which
is the reason the method proposed there is named “nearly-conservative”. Since the basis functions of the fixed
mesh are not polynomials, but only piecewise polynomials, over the elements of the convected mesh, the use of
quadrature rules over such elements does not produce an exact result.
In this work, we propose an algorithm based on an appropriate mesh intersection procedure to accurately

compute the right-hand side integral of the weak formulation. This techniques leads to better accuracy in the mass
conservation property and also it improves the stability properties of the Lagrange-Galerkin scheme. Following
Farrell et al. [5] we call this technique “supermesh technique”.
The layout of the paper is as follows: Section 2 starts with the presentation of the conservative Lagrange-

Galerkin formulation of pure convection problems with non-divergence-free velocity fields and concludes with the
weak formulation of the problem in the framework of the finite element method. Section 3 constitutes the core
of the paper, where we explain the numerical procedure to implement the “supermesh technique” to compute the
integral of the right hand side term of the weak formulation of the problem, to transfer information from the moved
mesh to the current mesh. In Section 4 we present numerical results to show the good properties of the proposed
algorithm, in terms of stability, accuracy and mass conservation. Finally, some conclusions and comments are
collected in Section 5.
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2. Conservative Lagrange-Galerkin formulation for pure-convection problems
Let us consider the conservative form of a pure-convection equation for the scalar variable 𝑢 = 𝑢(x, 𝑡){ 𝜕𝑢

𝜕𝑡
+ ∇ · (a𝑢) = 0 in Ω × (0, 𝑇]

𝑢(x, 0) = 𝑢0 (x) in Ω,
(2.1)

withΩ ⊂ R𝑑 (with 𝑑 = 2, 3) a bounded domain with smooth boundary 𝜕Ω, and a(x, 𝑡) a regular velocity field with
possible non-null divergence (we do not assume incompressible velocity). To solve numerically the problem (2.1)
by means of a Lagrange-Galerkin scheme we have to divide the time interval 𝐼 = [0, 𝑇] with a constant step size
Δ𝑡 = 𝑡𝑛 − 𝑡𝑛−1. Associated with the velocity field a(x, 𝑡) we can define the characteristic curves X(x, 𝑡𝑛; 𝑡) of the
convective or material derivative operator 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + a · ∇ that correspond to the position backward in time
of a fluid particle at time 𝑡 ≤ 𝑡𝑛 that will reach the domain point x at instant of time 𝑡𝑛. X(x, 𝑡𝑛; 𝑡) is the solution to
the system of equations {

𝑑X(x, 𝑡𝑛; 𝑡)
𝜕𝑡

= a (X(x, 𝑡𝑛; 𝑡), 𝑡) 𝑡 < 𝑡𝑛,

X(x, 𝑡𝑛; 𝑡𝑛) = x.
(2.2)

To obtain the weak conservative Lagrangian-Galerkin formulation of problem (2.1) we multiply the equation
by a test function 𝑣 = 𝑣(x, 𝑡) that satisfies the equation 𝐷𝑣/𝐷𝑡 = 0. Then, we obtain the expression

𝜕 (𝑢𝑣)
𝜕𝑡
+ ∇ · (a𝑢𝑣) = 0. (2.3)

Now, we integrate (2.3) in the domain Ω̃(𝑡), that evolves backward in time from 𝑡𝑛 to 𝑡 < 𝑡𝑛 according to the
velocity field a(x, 𝑡) and it is defined by the family of characteristic curves X(x, 𝑡𝑛; 𝑡)

Ω̃(𝑡) := {
X ∈ R𝑑 : X = X(x, 𝑡𝑛; 𝑡), x ∈ Ω}

with Ω̃(𝑡𝑛) = Ω. Therefore, applying the Gauss theorem to the second term followed by the Reynolds theorem, we
obtain the weak formulation of equation (2.3) as a temporal derivative over a integral extended to the fluid volume
Ω̃(𝑡). For all test functions we have

𝑑

𝑑𝑡

∫
Ω̃(𝑡)

𝑢𝑣𝑑𝑋 = 0 →
∫
Ω
𝑢𝑛 (x)𝑣𝑛 (x)𝑑𝑥 =

∫
Ω̃(𝑡𝑛−1)

𝑢𝑛−1 (X)𝑣𝑛−1 (X)𝑑𝑋, (2.4)

2.1. Finite element discretizacion and convected finite element space
The equation (2.4) forces us to consider an integration domain Ω̃(𝑡) that moves with the fluid particles, as well
as test functions 𝑣(x, 𝑡) that remain constant along the fluid trajectories. Then, we chose as integration domain at
instant of time 𝑡𝑛 the set Ωℎ := Ω̃(𝑡𝑛), a polygonal domain that approximates Ω and over which we define a regular
triangulation Tℎ composed of triangles (in 2D) or tetrahedra (in 3D).
Associated with the triangulation Tℎ we define a conforming finite element space 𝑉ℎ where the numerical

solution 𝑢𝑛ℎ (x) (shorthand for 𝑢ℎ (x, 𝑡𝑛)) is computed. To do so, we consider a reference element �̂� ∈ R𝑑 and define
�̂�ℎ as the space 𝑃𝑚 of polynomial functions of degree less or equal to 𝑚 and denote it dimension by 𝑛𝑣 . For each
element 𝐾 ∈ Tℎ we define the one-to-one affine mapping 𝐹𝐾 : �̂� → 𝐾

F𝐾 : �̂� −→ 𝐾, x = 𝐽𝐾 x̂ + b𝐾 , 𝐽𝐾 ∈ R𝑑×𝑑 and b𝐾 ∈ R𝑑 . (2.5)

and we denote 𝑉ℎ the resulting conforming finite element space and 𝑁𝑣 the number of mesh nodes.
Now, each element𝐾 ∈ Tℎ which composes domainΩℎ is convected backwards in time from 𝑡𝑛 to 𝑡𝑛−1 obtaining

𝐾𝑛−1 as the geometric place of the so-called feet of the characteristic curves X(x, 𝑡𝑛; 𝑡𝑛−1) with x ∈ 𝐾 , for which
we use the shorthand X𝑛−1 (x). We are going to consider an approximation 𝐾𝑛−1ℎ of 𝐾𝑛−1 given by the following
isoparametric transformation

F̃𝑛−1𝐾 : x̂ ∈ �̂� −→ Xℎ ∈ 𝐾𝑛−1ℎ , X𝑛−1ℎ (x̂) =
𝑛𝑣∑︁
𝑖=1

X𝑛−1 (v𝑖)�̂�𝑖 (x̂) , (2.6)

with v𝑖 the coordinates of the 𝑖-th local node of 𝐾 and �̂�𝑖 the 𝑖-th elemental nodal basis function of �̂�ℎ . The
transformation F̃𝑛−1𝐾 incurs an error in the approximation of X𝑛−1 (x) consistent with the space finite element
discretization, i.e.,

|X𝑛−1 (x) − X𝑛−1ℎ (x) | = O(ℎ𝑚+1),
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Note that X𝑛−1 (v𝑖) must be computed for the 𝑁𝑣 mesh nodes {v𝑖}𝑁𝑣𝑖=1 solving numerically the differential
equation (2.2). Moreover, the transformation F̃𝑛−1𝐾 has the advantage that X𝑛−1ℎ (x) and x share the same natural
coordinates in the reference element [1, 6], that is,

X𝑛−1 (x) ' X𝑛−1ℎ (x) := F̃𝑛−1𝐾

(
F−1𝐾 (x)

)
. (2.7)

For each 𝐾 ∈ Tℎ , the definition of the isoparametric transformation F̃𝑛−1𝐾 of (2.6) leads to an element 𝐾𝑛−1ℎ with
polynomial edges of degree𝑚, the order of the finite element space approximation �̂�ℎ , and which is an aproximation
of the real convected element 𝐾𝑛−1. Let T̃𝑛−1ℎ be the mesh composed by these approximate convected elements
T̃𝑛−1ℎ :=

{
𝐾𝑛−1ℎ : 𝐾 ∈ Tℎ

}
. In the present paper we are going to consider linear finite elements, 𝑚 = 1, in order to

have approximated convected elements 𝐾𝑛−1ℎ with straight edges (sides in 3D). We can see Fig. 1 for an explanatory
scheme of the above explanation.

v̂3

v̂1

v̂2

v1

v3

v2

X(v3, tn; tn−1)

X(v1, tn; tn−1)

X(v2, tn; tn−1)

X
n−1

h
(x)

∈ Th

K̃
n−1

h
∈ T̃

n−1

h

K̃
n−1

x = FK(x̂)

X
n−1

h
= F̃

n−1

K
(x̂)

Fig. 1 Convected nodes X𝑛−1 (v𝑖) backward in time from triangle 𝐾 ∈ Tℎ . From the convected nodes, we approximate the
real convected element by an isoparametric 𝐾𝑛−1

ℎ
∈ T̃𝑛−1

ℎ
element via application X𝑛−1

ℎ
(x) = F̃𝑛−1𝐾

(
F−1𝐾 (x)

)
.

Now, let us consider a function 𝑣ℎ (x, 𝑡) which verifies 𝐷𝑣ℎ/𝐷𝑡 = 0 and 𝑣𝑛ℎ (x) ∈ 𝑉ℎ . Since 𝑣ℎ is constant along
the fluid trajectories, we can make the approximation 𝑣𝑛−1ℎ

(
X𝑛−1ℎ (x)) = 𝑣𝑛ℎ (x). Moreover, 𝑣𝑛−1ℎ belongs to the

convected finite element space

𝑉𝑛−1ℎ :=
{
𝑣𝑛−1ℎ : 𝑣𝑛−1ℎ

(
X𝑛−1ℎ (x)

)
= 𝑣𝑛ℎ (x) ∈ 𝑉ℎ

}
,

and hence 𝑉𝑛−1ℎ is also a 𝑃𝑚 space, but associated to the mesh T̃𝑛−1ℎ instead of Tℎ .
Finally, with the definition of Ωℎ , Ω̃𝑛−1ℎ and their associated triangulations Tℎ , T̃𝑛−1ℎ and the finite element

spaces 𝑉ℎ , 𝑉𝑛−1ℎ , we can define the numerical approximation of the weak conservative formulation (2.4) via the
finite element method∫

Ωℎ
𝑢𝑛ℎ𝑣

𝑛
ℎ𝑑𝑥 =

∫
Ω̃𝑛−1
ℎ

𝑢𝑛−1ℎ (X)𝑣𝑛−1ℎ (X)𝑑𝑋, ∀𝑣𝑛ℎ ∈ 𝑉ℎ (and its associated function 𝑣𝑛−1ℎ ∈ 𝑉𝑛−1ℎ ), (2.8)

where the initial value 𝑢0ℎ is taken as the 𝐿
2 projection of the initial condition 𝑢0 (x), i.e.,

∫
Ωℎ
𝑢0ℎ𝑣

0
ℎ𝑑𝑥 =

∫
Ωℎ
𝑢0𝑣0ℎ𝑑𝑥, ∀𝑣0ℎ ∈ 𝑉ℎ . (2.9)

The computation of the left-hand side of (2.8) lead us to the standard mass matrix associated to the triangulation
Tℎ and it is straightforward to compute it, however the right-hand side in (2.8) involves the product of 𝑢𝑛−1ℎ , which
is defined piecewise in Tℎ , and 𝑣𝑛−1ℎ , which is defined piecewise in T̃𝑛−1ℎ (see Fig. 2). Since these two meshes are
usually different, to compute this right-hand side we can follow the following strategies:
1) Integrate over the elements in T̃ℎ with high-order quadrature rules [4] as is done in Colera et al. [3].
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2) Develop a mesh intersection technique to accurately compute this term [5, 7, 8], which leads to better
accuracy in mass conservation. In the present work we adopt this approach and derive a technique to develop mesh
intersection of straight triangles in 2D and straight tetrahedra in 3D of high efficiency using very conventional
operations within the finite element methodology.

Trajectories of the fluid particles

Domain Ωh with mesh Th

Domain Ω̃
n−1

h
with mesh T̃

n−1

h

Fig. 2 Scheme that illustrates the domains and meshes that appear in the formulation. The nodes of the elements in Tℎ are
convected backwards in time with the flow velocity field to form T̃𝑛−1

ℎ
. The variables 𝑢𝑛

ℎ
, 𝑣𝑛
ℎ
and 𝑢𝑛−1

ℎ
are defined piecewise

in Tℎ , whereas 𝑣𝑛−1ℎ
is defined piecewise in T̃𝑛−1

ℎ
.

Note that, if in problem (2.1) the velocity field satisfies a · n = 0 on the boundary 𝜕Ωℎ , with n the outward
normal vector on the boundary, then the backward convected domain will be the same as the current volume (fluid
particles on the boundary 𝜕Ωℎ do not cross the boundary), i.e., Ωℎ = Ω̃𝑛−1ℎ (but Tℎ ≠ T̃𝑛−1ℎ if a ≠ 0). That means
that the conservation principle is satisfied in the domain Ωℎ for all instants of time∫

Ωℎ
𝑢𝑛ℎ (x)𝑑𝑥 =

∫
Ωℎ
𝑢0ℎ (x)𝑑𝑥, ∀𝑡𝑛 ∈ [0, 𝑇] . (2.10)

3. Algorithm for the intersection of meshes with straight elements
To compute (2.8) numerically, we replace the test function 𝑣𝑛ℎ by each of the 𝑁𝑣 basis functions 𝜑𝐼 (x) ∈ 𝑉ℎ and
𝑢𝑛ℎ =

∑𝑁𝑣
𝐽=1𝑈

𝑛
𝐽𝜑𝐽 (x). Then, the left hand side reads∫

Ωℎ
𝑢𝑛ℎ (x)𝜑𝐼 (x)𝑑𝑥 =

∑︁
𝐾 ∈Tℎ

(
𝑁𝑣∑︁
𝐽=1

𝑈𝑛𝐽

∫
𝐾
𝜑𝐼 (x)𝜑𝐽 (x)𝑑𝑥

)
,

which can be computed exactly with a quadrature rule since both 𝜑𝐼 (x) and 𝜑𝐽 (x) are basic function in 𝑉ℎ .
However, for the right hand side we have

∫
Ω̃𝑛−1
ℎ

𝑢𝑛−1ℎ (X𝑛−1 (x))𝜑𝑛−1𝐼 (X𝑛−1 (x))𝑑𝑋 =
∑︁

𝐾𝑛−1
ℎ
∈T̃𝑛−1
ℎ

(
𝑁𝑣∑︁
𝐽=1

𝑈𝑛−1𝐽

∫
𝐾𝑛−1
ℎ

𝜑𝑛−1𝐼 (X𝑛−1 (x))𝜑𝐽 (X𝑛−1 (x))𝑑𝑋
)
, (3.1)

and inside the integral there are two kinds of basis functions: 𝜑𝐽 ∈ 𝑉ℎ associated with the elements 𝐾 ∈ Tℎ
and 𝜑𝑛−1𝐼 ∈ 𝑉𝑛−1ℎ associated with the elements 𝐾𝑛−1ℎ ∈ T̃𝑛−1ℎ . Therefore, as the basis functions are piecewise
polynomials over each element of their respective meshes, the use of intersection techniques is required to compute
this right hand side exactly with quadrature rules, as can be seen in Fig. 2.
In this work we propose a mesh intersection algorithm based in [5]. We are going to simplify the notation

in accordance with those introduced in that paper. We define Tℎ as the donor mesh, and denote donor elements
𝐾𝐷 ≡ 𝐾 ∈ Tℎ , whereas we define as T̃𝑛−1ℎ the target mesh, so that the target elements are 𝐾𝑇 ≡ 𝐾𝑛−1ℎ ∈ T̃𝑛−1ℎ .
Moreover, as we have considered in Fig. 1 and Fig. 2, we are going to illustrate the main stages of the algorithm
with figures of meshes composed of triangles in two-dimensions. For tetrahedra in three-dimensions the situation
is analogous, but spatial figures are more difficult to understand. Then, the algorithm to compute integral (3.1) has
the following stages:

1. For each 𝐾 ∈ Tℎ , find the set of elements 𝐾𝑇𝐷 :=
{
𝐾𝐷1 , 𝐾𝐷2 , ...

} ⊂ Tℎ such that 𝐾𝐷𝑖 ⋂𝐾𝑇 ≠ ∅ with
𝐾𝑇 ∈ T̃𝑛−1ℎ . Those elements are shown in Fig. 3.

2. Compute the supermesh associated with the intersection 𝐾𝐷𝑖
⋂
𝐾𝑇 for each 𝐾𝐷𝑖 ∈ 𝐾𝑇𝐷 . The supermesh is

the set 𝐾𝑇 𝐷𝑖 =
{
𝐾𝑇 𝐷𝑖 ,1, 𝐾𝑇 𝐷𝑖 ,2, ...

}
where 𝐾𝑇 𝐷𝑖 is included in both 𝐾𝑇 and 𝐾𝐷𝑖 . Fig. 4 shows a scheme

of this stage of the algorithm. To create a triangulation of the intersection zone there are several procedures,
and one of the simplest (useful for convex polytopes in two and three dimension) is the Sutherland-Hodgman
clipping algorithm [9].
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K ∈ Th

K̃
n−1

h
≡ KT ∈ T̃

n−1

h
KD1

KD2

KD3

Fig. 3The element𝐾𝑇 ∈ T̃𝑛−1ℎ
(convected from𝐾 ∈ Tℎ) intersects with the triangles of the set𝐾𝑇𝐷 =

{
𝐾𝐷1 , 𝐾𝐷2 , 𝐾𝐷3

} ∈
Tℎ .

KT ∈ T̃
n−1

h

KDi
∈ Th

KTDi,3

KTDi,1

KTDi,2

Fig. 4 The intersection of 𝐾𝑇 and 𝐾𝐷𝑖 is remeshed to obtain the supermesh. In this example that supermesh has three
elements: 𝐾𝑇𝐷𝑖 ,1, 𝐾𝑇𝐷𝑖 ,2 and 𝐾𝑇𝐷𝑖 ,3

3. Define the linear transformations x̂𝐷𝑖 = g𝐷𝑖𝑇 , 𝑗 (x̂) and x̂𝑇 = g𝑇 𝐷𝑖 , 𝑗 (x̂) between a common reference element
and a reference element associated to 𝐾𝐷𝑖 and 𝐾𝑇 , respectively. This is shown in Fig. 5

KT

KDiKTD ,j

x̂2

x̂1

x̂1Di

x̂2Di

x̂2T

x̂1T

x̂Di
= gDiT,j(x̂)

x̂T = gTDi,j(x̂)

x = FKDi
(x̂Di

)

Xn−1

h = ˜Fn−1

KT
(x̂T )

Fig. 5 Linear transformations from the standard reference element �̂� to those reference elements �̂�𝐷𝑖 and �̂�𝑇 associated
with the proper elements 𝐾𝐷𝑖 and 𝐾𝑇 , respectively.

4. Finally, the integral 𝑚𝐼 𝐽 |𝐾𝑇 :=
∫
𝐾𝑛−1
ℎ

𝜑𝑛−1𝐼

(
X𝑛−1 (x)) 𝜑𝐽 (

X𝑛−1 (x)) 𝑑𝑋 can be computed as:
𝑚𝐼 𝐽 |𝐾𝑇 =

∑︁
𝐾𝐷𝑖 ∈𝐾𝑇𝐷


∑︁

𝐾𝑇𝐷𝑖 , 𝑗 ∈𝐾𝑇𝐷𝑖

∫
𝐾𝑇𝐷𝑖 , 𝑗

𝜑𝑛−1𝐼

(
X𝑛−1 (x)

)
𝜑𝐽

(
X𝑛−1 (x)

)
𝑑𝑋


with∫
𝐾𝑇𝐷𝑖 , 𝑗

𝜑𝑛−1𝐼

(
X𝑛−1 (x)

)
𝜑𝐽

(
X𝑛−1 (x)

)
𝑑𝑋 =

𝑛𝑞∑︁
𝑠=1

𝜔𝑠 �̂�𝐼

(
g𝑇 𝐷𝑖 , 𝑗 (�̂�𝑠)

)
�̂�𝐽

(
g𝐷𝑖𝑇 , 𝑗 (�̂�𝑠)

)
det

(
𝜕F̃𝐾𝑇 (x̂𝑇 )
𝜕x̂𝑇

)
det

(
𝜕g𝑇 𝐷𝑖 , 𝑗 (x̂)

𝜕x̂

)
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where �̂�𝑠 , 𝑠 = 1, ..., 𝑛𝑞 are the quadrature points in the reference element and the product det

(
𝜕F̃𝐾𝑇 (x̂𝑇 )
𝜕x̂𝑇

)
det

(
𝜕g𝑇 𝐷𝑖 , 𝑗 (x̂)

𝜕x̂

)

equals the size of the supermesh element,
��𝐾𝑇 𝐷𝑖 , 𝑗 ��

4. Numerical test
Next, we present a numerical test to illustrate the performance of the numerical algorithm. Note that the trajectories
of the fluid particles can be computed with high accuracy or analytically for these problem, which allows us to obtain

the exact solution of pure-convection problems (2.1) through the formula𝑢(x, 𝑇) = 𝑢0 (X(x, 𝑇 ; 0)) det
(
𝜕X(x, 𝑇 ; 0)

𝜕x

)
[10], which means

𝑢(x, 𝑇) = 𝑢0 (X(x, 𝑇 ; 0)) exp
(
−

∫ 𝑇

0
[(∇ · a)]X(x,𝑇 ;𝑡) 𝑑𝑡

)
.

We are going to show numerical results for the projection technique presented in this paper via intersection of
meshes. This technique is called “supermesh projection” as opposed to the “standard projection” where we use
high-order quadrature rules to compute the integrals with high accuracy. For the supermesh projection we need
quadrature rules of order only two (both in 2-dimension (𝑛𝑞 = 3) and 3-dimension (𝑛𝑞 = 4)), the minimum order
needed to integrate exactly the corresponding product of basis functions. For the standard projection we show in
figures the number of quadrature points used in each numerical simulation.
The test consists of a pure convection problem (2.1) with the following velocity field and initial condition:

a(x, 𝑡) = [0.45 + sin (𝑡 − 𝑥1) , 0.45 + sin (𝑡 − 𝑥2)]T , and 𝑢0 (x) = exp (−200 (2 − cos(𝑥1) − cos(𝑥2))) .

in a domain Ωℎ = [−1, 1] × [−1, 1] and final instant of time T=0.5. In this problem a · n ≠ 0, but the solution on
the boundary for all instant of time 𝑡 ≤ 𝑇 is negligible 𝑢 |𝜕Ω ' 0 and then the mass of the solution in the domain Ωℎ
is almost maintained (2.10).
The evolution of the solution with time can be seen in Fig.6. At time 𝑡 = 0 we have a gaussian hill in the middle

of the domain. When the time goes on, the solution moves along the line 𝑦 = 𝑥 and its width is reduced and the
value of its vertex is increased, to satisfy the conservation of mass at all instant of times following (2.10).

Fig. 6 Numerical solution of test at different instants of time in a uniform triangulation Tℎ with ℎ = 0.085.

Now, we are going to measure the error in the L2-norm between the numerical solution and the exact solution
and also the mass error, both at the last instant of time. We consider a time step size Δ𝑡 = 0.005 and different
meshes composed of regular elements of size ℎ. The results can be seen in Fig.7. The 𝐿2 error for supermesh
projection and standard projection is similar in both cases, and also its convergence with ℎ is close to the theoretical
one shown in the black dashed line (O(ℎ2) for linear finite elements). However, the difference between supermesh
projection and standard projection is remarkable in terms of mass conservation. We can observe in Fig. 7 that
supermesh projection is up to twelve orders of magnitude more accurate when computing the mass error.
Finally, in Fig.8 we show an interesting phenomenon when we analyze the 𝐿2-error at the last instant of time, as

a function of time step size Δ𝑡. Now, we are going to consider a uniformmesh with with ℎ = 0.085 and make several
numerical simulations with different time step sizes Δ𝑡. It is known that standard projection may get unstable when
using small time steps if the number of quadrature points used for integration is not high enough. However, for the
supermesh projection, this instability does not appear, since the integrals are computed exactly with low number of
quadrature points (the minimum needed to integrate exactly the corresponding product between basis functions).
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Fig. 7 𝐿2-error (on the left), mass error (in the middle), and computational requirement in terms of CPU time (on the right)
for different uniform meshes with size ℎ and Δ𝑡 = 0.005 maintained constant in all the simulations.
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Fig. 8 𝐿2-error for different time steps and the same mesh with ℎ = 0.085.

5. Conclusion
In this work we described in detail an algorithm to compute exactly the integrals that appear in the conservative
Lagrange-Galerkin formulation of a pure-convection problem in a linear finite element framework. This technique
is called “supermesh projection” as opposed to the “standard projection” where we use high-order quadrature rules
to compute the integrals with high accuracy. Both techniques have almost identical 𝐿2-error with moderately
large time step sizes Δ𝑡 and high quadrature rules for the standard projection (for supermesh projection we need
quadrature rules of order two, both in 2- and 3-dimensions). However, the main advantage of supermesh projection
is that it avoids instabilities when the integrals are computed with enough accuracy in standard projection and
when numerical error are accumulated in time (small time step sizes Δ𝑡). The main disadvantage of the supermesh
projection is that the computational requirement of the right hand side of the weak formulation is larger than
standard projection (nearly a factor two when the number of element which conformed the mesh is large). However,
in practice this issue is not a significant problem, since the Lagrange-Galerkin formulation usually is used in other
more complicated problems as convection-diffusion-reaction equations or Navier-Stokes equations. In these cases,
computing the convection terms is usually the less resource consuming step, so this time increase would not be that
relevant for the overall process. Moreover, the intersection mesh procedure can be carried out with straightforward
parallel programming. As future work, we want to extent the present algorithm of mesh intersection to finite
elements of high order (𝑚 > 1 order). In this case, convected elements 𝐾𝑛−1ℎ have sides given by a polynomial
function of degree 𝑚, and the intersection of elements is much more complicated.
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