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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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A predictor-corrector iterative scheme for improving the accessibility of
the Steffensen-type methods

M.A. Hernández-Verón1, A. A. Magreñán1, Eulalia Martínez2, Sukhjit Singh3
1. Dept. of Mathematics and Computation, University of La Rioja. Logroño, Spain.

2. Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València. València, Spain.
3. Department of Mathematics, Dr BR Ambedkar National Institute of Technology, Jalandhar, India.

Abstract
Solving equations of the form 𝐻 (𝑥) = 0 is usually done by applying iterative methods. The Steffensen-type

methods, defined by means divided differences and derivative free, are usually considered to solve these problems
when𝐻 is a non-differentiable operator due its accuracy and efficiency. But, in general, the accessibility of iterative
methods that use divided differences in their algorithms is reduced. Themain interest of this paper is to improve the
accessibility, domain of starting points, for Setffensen-type methods. So, by using a predictor-corrector iterative
process we can improve this accessibility. For this, we use a predictor iterative process with a good accessibility
and after we consider a Steffensen-type iterative method for a good accuracy, since this type of iterative process has
quadratic convergence. Thus we will obtain a predictor-corrector iterative process with good accessibility, given
by the predictor iterative process, and an accuracy like the Steffensen-type methods. Moreover, we analyze the
semilocal convergence of the predictor-corrector iterative process proposed in two cases: when 𝐻 is differentiable
and 𝐻 is non-differentiable. So, we present a good alternative for the non-applicability of Newton’s method to
non-differentiable operators. The theoretical results are illustrated with numerical experiments. CEDYA/CMA
2020.

1. Introduction
One of the most studied problems in numerical mathematics is the solution of nonlinear systems of equations

𝐻 (𝑥) = 0, (1.1)

where 𝐻 : Ω ⊂ R𝑚 −→ R𝑚 is a nonlinear operator, 𝐻 ≡ (𝐻1, 𝐻2, . . . , 𝐻𝑚) with 𝐻𝑖 : Ω ⊆ R𝑚 → R, 1 ≤ 𝑖 ≤ 𝑚,
and Ω is a non-empty open convex domain. Iterative methods are a powerful tool for solving these equations.
In this paper, we consider iterative processes free of derivatives. But these methods have a serious shortcoming:

they have a region of reduced accessibility. In [4], the accessibility of an iterative process is increased by means of
an analytical procedure, that is, by modifying the convergence conditions. However, in our work, we will increase
accessibility by building an iterative predictor-corrector process. This iterative process has a first prediction phase
and a second accurate approximation phase.
Kung and Traub presented in [10] a class of iterative processes without derivatives. These iterative processes

considered by Kung and Traub contain Steffensen-type methods as a special case. From the biparametric family of
iterative processes given in [2],




𝑥0 ∈ Ω, 𝛼, 𝛽 ≥ 0
𝑦𝑛 = 𝑥𝑛 − 𝛼𝐻 (𝑥𝑛),
𝑧𝑛 = 𝑥𝑛 + 𝛽𝐻 (𝑥𝑛), ,
𝑥𝑛+1 = 𝑥𝑛 − [𝑦𝑛, 𝑧𝑛;𝐻]−1𝐻 (𝑥𝑛), 𝑛 > 0.

(1.2)

The three best-known Steffensen-type methods appear. So, for 𝛼 = 0 and 𝛽 = 1 we have the original Steffensen
method, the Backward-Steffensen method for 𝛼 = 1 and 𝛽 = 0 and the Central-Steffensen method for 𝛼 = 1 and
𝛽 = 1.
Notice that, if we consider the Newton’s method,

𝑥𝑛+1 = 𝑥𝑛 − [𝐻 ′(𝑥𝑛)]−1𝐻 (𝑥𝑛), 𝑛 ≥ 0; 𝑥0 ∈ Ω is given, (1.3)

which is one of the most used iterative methods to approximate a solution 𝑥∗ of 𝐻 (𝑥) = 0, the Steffensen-type
methods are obtained as a special case of this method, where the evaluation of 𝐻 ′(𝑥) in each step of Newton’s
method is approximated by the divided difference of first order [𝑥 − 𝛼𝐻 (𝑥), 𝑥 + 𝛽𝐻 (𝑥);𝐻]. The Stetffensen-type
methods have been widely studied ( [1, 3, 6]).

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 242–246)
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Symmetric divided differences generally perform better. Moreover, maintain the quadratic convergence of
Newton’s method, by approximating the derivative through symmetric divided differences with respect to the 𝑥𝑛,
and the Center-Steffensen method also has the same computational efficiency as Newton’s method. But, in order to
achieve the second order in practice, we need an iteration close enough to the solution to have a good approximation
of the first derivative of 𝐻 used in Newton’s method. In other case, some extra iterations in comparison with
Newton’s method are required. Basically, when the norm of 𝐻 (𝑥) is big, the approximation of the divided
difference to the first derivative of 𝐻 is bad. So, in general, the set of starting points of the Steffensen-type methods
is poor. This justify that Steffensen-type methods are less used than Newton’s method to approximate solutions of
equations for differentiable operators.
Thus, two are our main objectives in this work. On the one hand, in the case of differentiable operators, to which

Newton’s method can also be applied, to construct a predictor-corrector iterative process that has accessibility
and efficiency like Newton’s method, but using symmetric divided differences. And, secondly, that this predictor-
corrector iterative process considered can have a behavior like Newton’s method has in the differentiable case, but
considering the case of non-differentiable operators where Newton’s method cannot be applied.
Following this idea, in this paper we consider the derivative-free point-to-point iterative process given by{

𝑥0 given in Ω,
𝑥𝑛+1 = 𝑥𝑛 − [𝑥𝑛 − Tol, 𝑥𝑛 + Tol;𝐻]−1𝐻 (𝑥𝑛), 𝑛 ≥ 0, (1.4)

where Tol = (𝑡𝑜𝑙, 𝑡𝑜𝑙, . . . , 𝑡𝑜𝑙) ∈ R𝑚 for a real number 𝑡𝑜𝑙 > 0. Thus, we take a symmetric divided difference to
approximate the derivative in Newton’s method. Furthermore, by varying the parameter 𝑡𝑜𝑙, we can approach the
value 𝐹 ′(𝑥𝑛). Notice that, in the differentiable case, for 𝑡𝑜𝑙 = 0 we obtain the Newton’s method.
However, although reducing the value of 𝑡𝑜𝑙 we can reach a speed of convergence similar to Newton’s method, its

order of convergence is linear. That is why we will consider this method as a predictor, due to its good accessibility,
and we will consider the Center-Steffensen method as a corrector, whose order of convergence is quadratic.
So, we consider the predictor-corrector method given by




{
Given an initial guess u0 ∈ Ω,
𝑢 𝑗+1 = 𝑢 𝑗 − [𝑢 𝑗 − Tol, 𝑢 𝑗 + Tol;𝐻]−1𝐻 (𝑢 𝑗 ), 𝑗 = 0, ..., 𝑁0 − 1,




𝑥0 = 𝑢𝑁0 ,

𝑦𝑛 = 𝑥𝑛 − 𝐻 (𝑥𝑛), 𝑛 > 0,
𝑧𝑛 = 𝑥𝑛 + 𝐻 (𝑥𝑛), 𝑛 > 0,
𝑥𝑛+1 = 𝑥𝑛 − [𝑦𝑛, 𝑧𝑛;𝐻]−1𝐻 (𝑥𝑛), 𝑛 > 0,

(1.5)

where Tol = (𝑡𝑜𝑙, 𝑡𝑜𝑙, . . . , 𝑡𝑜𝑙) ∈ R𝑚 for a real number 𝑡𝑜𝑙 > 0. Thus, this predictor-corrector method will be a
Steffensen-type method with good accessibility and quadratic convergence from an iteration to be determined.
The paper is organized as follows. First, we introduce the motivation of the paper. Next, we establish a semilocal

convergence analysis of the new method when operator 𝐻 is both differentiable and non-differentiable cases.

2. Semilocal convergence
The semilocal study of the convergence is based on demanding conditions to the initial approximation 𝑢0, from
certain conditions on the operator 𝐻 , and provide conditions required to the initial approximation that guarantee the
convergence of sequence (1.5) to the solution 𝑥∗. To analyze the semilocal convergence of iterative processes that
do not use derivatives in their algorithms, the conditions usually are required for the operator divided difference.
Although, in the case that the operator 𝐻 is Fréchet differentiable, the divided difference operator can be defined
from the Fréchet derivative of the operator 𝐻.

2.1. Differentiable operators
Now, we establish the semilocal convergence of iterative process given in (1.5) for differentiable operators. So, we
consider 𝐻 : Ω ⊂ R𝑚 −→ R𝑚 a Fréchet differentiable operator and there exists

[𝑣, 𝑤;𝐻] =
∫ 1

0
𝐻 ′(𝑡𝑣 + (1 − 𝑡)𝑤) 𝑑𝑡, (2.1)

for each pair of distinct points 𝑣, 𝑤 ∈ Ω. Notice that, as 𝐻 is Fréchet differentiable [𝑥, 𝑥;𝐻] = 𝐻 ′(𝑥).
Now, we suppose the following initial conditions:
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(D1) Let 𝑢0 ∈ Ω such that exists Γ0 = [𝐻 ′(𝑢0)]−1 with ‖Γ0‖ ≤ 𝛽 and ‖𝐻 (𝑢0)‖ ≤ 𝛿0.
(D2) ‖𝐻 ′(𝑥) − 𝐻 ′(𝑦)‖ ≤ 𝐾 ‖𝑥 − 𝑦‖, 𝑥, 𝑦 ∈ Ω, 𝐾 ∈ R+.
In first place, we obtain some technical results.

Lemma 2.1 The following items are verified.

(𝑖) Let 𝑅 > 0 with 𝐵(𝑢0, 𝑅 + ‖Tol‖) ⊆ Ω. If 𝛽𝐾 (𝑅 + ‖Tol‖) < 1 then, for each pair of distinct points
𝑦, 𝑧 ∈ 𝐵(𝑢0, 𝑅 + ‖Tol‖), there exists [𝑦, 𝑧;𝐻]−1 such that

‖ [𝑦, 𝑧;𝐻]−1‖ ≤ 𝛽

1 − 𝛽𝐾 (𝑅 + ‖Tol‖) . (2.2)

(𝑖𝑖) If 𝑢 𝑗 , 𝑢 𝑗−1 ∈ Ω, for 𝑗 = 0, 1, . . . , 𝑁0, then

‖𝐻 (𝑢 𝑗 )‖ ≤ 𝐾2 (‖Tol‖ + ‖𝑢 𝑗 − 𝑢 𝑗−1‖)‖𝑢 𝑗 − 𝑢 𝑗−1‖. (2.3)

(𝑖𝑖𝑖) If 𝑥 𝑗 , 𝑥 𝑗−1 ∈ Ω, , for 𝑗 > 1, then

‖𝐻 (𝑥 𝑗 )‖ ≤ 𝐾2 (‖𝐻 (𝑥 𝑗−1‖ + ‖𝑥 𝑗 − 𝑥 𝑗−1‖)‖𝑥 𝑗 − 𝑥 𝑗−1‖. (2.4)

To simplify the notation, from now on, we denote

𝐴 𝑗 = [𝑢 𝑗 − Tol, 𝑢 𝑗 + Tol;𝐻], 𝐵 𝑗 = [𝑥 𝑗 − 𝐻 (𝑥 𝑗 ), 𝑥 𝑗 + 𝐻 (𝑥 𝑗 );𝐻],

and the parameters 𝑎0 = 𝛽2𝐾𝛿0 and 𝑏0 = 𝛽𝐾Tol. Other parameters that we are going to use are the following:

𝑀 =
𝐿

2
(𝑏0 + 𝐿𝑎0), where 𝐿 =

1
1 − 𝑏0 − 𝛽𝐾𝑅 .

Moreover, notice that the polynomial equation 𝑝(𝑡) = 0, with

𝑝(𝑡) = 2𝑎0 (1 − 𝑏0) − (2 + 𝑎0 − 5𝑏0 + 3𝑏20)𝛽𝐾𝑡 + (4 − 5𝑏0)𝛽2𝐾2𝑡2 − 2𝛽3𝐾3𝑡3,

has at least a positive real root since that 𝑝(0) > 0 and 𝑝(𝑡) → −∞ as 𝑡 → ∞. Then, we denote by 𝑅 the smallest
positive real root of the polynomial equation 𝑝(𝑡) = 0.
Finally, we denote by [𝑥] the integer part of the real number 𝑥.

Theorem 2.2 Let 𝐻 : Ω ⊂ R𝑚 −→ R𝑚 a Fréchet differentiable operator defined on a nonempty open convex
domain Ω. Suppose that conditions (𝐷1) and (𝐷2) are satisfied and there exists 𝑡𝑜𝑙 > 0 such that 𝑀 < 1,
𝑅 <

1 − 𝑏0
𝛽𝐾

and 𝐵(𝑢0, 𝑅 + ‖Tol‖) ⊆ Ω. If we consider

𝑁0 >



1 +

[
𝑙𝑜𝑔(‖Tol‖/𝛿0)

𝑙𝑜𝑔(𝑀)

]
if ‖Tol‖ < 𝛿0,

1 if ‖Tol‖ > 𝛿0,
(2.5)

then the iterative process predictor-corrector (1.5), starting at 𝑢0, converges to 𝑥∗ a solution of 𝐻 (𝑥) = 0.Moreover,
𝑢 𝑗 , 𝑥𝑛, 𝑥

∗ ∈ 𝐵(𝑢0, 𝑅) for 𝑗 = 1, . . . , 𝑁0 and 𝑛 > 0.

Next, we get an uniqueness result for the iterative process predictor-corrector (1.5).

Theorem 2.3 Under conditions of the previous Theorem, the solution 𝑥∗ of the equation 𝐻 (𝑥) = 0 is unique in
𝐵(𝑢0, 𝑅).
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2.2. Non-differentiable operators
To obtain a result of semilocal convergence for iterative process (1.5) when 𝐻 is a non-differentiable operator, we
must suppose that for each pair of distinct points 𝑥, 𝑦 ∈ Ω, there exists a first-order divided difference of 𝐻 at
these points. As we consider Ω an open convex domain of R𝑚, this condition is satisfied ( [5], [7]). Moreover,
it is also necessary to impose a condition for the first-order divided difference of the operator 𝐻. As it appears
in [11] and [9], a Lipschitz-continuous condition or a Hölder-continuous can be considered, but in the above cases,
it is known [8], that the Fréchet derivative of 𝐻 exists in Ω. Therefore, these conditions cannot be verified if the
operator 𝐻 is non-differentiable. Then, to establish the semilocal convergence of iterative process given in (1.5)
for non-differentiable operator 𝐻, we suppose the following conditions:

(ND1) Let 𝑢0 ∈ Ω such that 𝐴−10 exists with | |𝐴−10 | | ≤ 𝛽0 and | |𝐻 (𝑢0) | | ≤ 𝛿0.
(ND2) | | [𝑥, 𝑦;𝐻] − [𝑢, 𝑣;𝐻] | | ≤ 𝑃 + 𝐾 ( | |𝑥 − 𝑢 | | + | |𝑦 − 𝑣 | |) , 𝑃, 𝐾 ≥ 0, with 𝑥, 𝑦, 𝑢, 𝑣 ∈ Ω, 𝑥 ≠ 𝑦, 𝑢 ≠ 𝑣.

To simplify the notation, from now on, we denote

𝑀 = 𝛽0 (𝑃 + 𝐾 (𝛽0𝛿0 + 2‖Tol‖)) and 𝑆 =
𝑀

1 − 𝛽0 (𝑃 + 2𝐾 (𝑅 + ‖Tol‖))
In this conditions, we start our study obtaining a technical result, the proof of which is evident from algorithm

given in (1.5).

Lemma 2.4 The following items can be easily verified.

(𝑖) If 𝑢 𝑗 , 𝑢 𝑗−1 ∈ Ω, for 𝑗 = 0, 1, . . . , 𝑁0, then

𝐻 (𝑢 𝑗 ) =
([𝑢 𝑗 , 𝑢 𝑗−1;𝐻] − 𝐴 𝑗−1) (𝑢 𝑗 − 𝑢 𝑗−1) . (2.6)

(𝑖𝑖) If 𝑥 𝑗 , 𝑥 𝑗−1 ∈ Ω, for 𝑗 > 1, then

𝐻 (𝑥 𝑗 ) =
([𝑥 𝑗 , 𝑥 𝑗−1;𝐻] − 𝐵 𝑗−1) (𝑥 𝑗 − 𝑥 𝑗−1). (2.7)

Theorem 2.5 Under the conditions (ND1)-(ND2), if the real equation

𝑡 =
𝛽0𝛿0 (1 − 𝛽0 (𝑃 + 2𝐾 (𝑡 − ‖Tol‖)))
1 − 𝛽0 (𝑃 + 2𝐾 (𝑡 + ‖Tol‖)) − 𝑀

, (2.8)

has at least one positive real root, the smallest positive root is denoted by 𝑅, and there exists 𝑡𝑜𝑙 > 0 such that satisfies

𝑀 + 𝛽0 (𝑃 + 2𝐾 (𝑅 + ‖Tol‖)) < 1, (2.9)

and 𝐵(𝑢0, 𝑅 + ‖Tol‖) ⊂ Ω. If we consider

𝑁0 >



2 +

[
𝑙𝑜𝑔(‖Tol‖/𝑀𝛿0)

𝑙𝑜𝑔(𝑀)

]
if ‖Tol‖ < 𝛽0𝛿0 (𝑃 + 𝛽0𝛿0𝐾)

1 − 2𝛽0𝛿0 ,

1 if ‖Tol‖ > 𝛽0𝛿0 (𝑃 + 𝛽0𝛿0𝐾)
1 − 2𝛽0𝛿0 ,

(2.10)

then the iterative process predictor-corrector (1.5), starting at 𝑢0, converges to 𝑥∗ a solution of 𝐻 (𝑥) = 0.Moreover,
𝑢 𝑗 , 𝑥𝑛, 𝑥

∗ ∈ 𝐵(𝑢0, 𝑅) for 𝑗 = 1, . . . , 𝑁0 and 𝑛 > 0.
Moreover, 𝑥∗ is unique in 𝐵(𝑢0, 𝑅) ⊂ Ω.

Theorem 2.6 Under conditions of the previous Theorem, the solution 𝑥∗ of the equation 𝐻 (𝑥) = 0 is unique in
𝐵(𝑢0, 𝑅).
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