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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Stability of a one degree of freedom Hamiltonian system in a case of zero
quadratic and cubic terms

Víctor Lanchares1, Boris Bardin2
1. Universidad de La Rioja, Spain
2. Moscow Aviation Institute, Russia

Abstract

We consider the stability of the equilibrium position of a periodic Hamiltonian system with one degree of
freedom. It is supposed that the series expansion of the Hamiltonian function, in a small neighborhood of the
equilibrium position, does not include terms of second and third degree. Moreover, we focus on a degenerate case,
when fourth-degree terms in the Hamiltonian function are not enough to obtain rigorous conclusions on stability
or instability. A complete study of the equilibrium stability in the above degenerate case is performed, giving
sufficient conditions for instability and stability in the sense of Lyapunov. The above conditions are expressed in
the form of inequalities with respect to the coefficients of the Hamiltonian function, normalized up to sixth-degree
terms inclusive.

1. Introduction
Let us consider a one degree of freedom Hamiltonian system, periodically dependent on time, defined by the
canonical differential equations

𝑑𝑥

𝑑𝑡
=
𝜕𝐻

𝜕𝑦
,

𝑑𝑦

𝑑𝑡
= −𝜕𝐻

𝜕𝑥
. (1.1)

We assume that the origin, 𝑥 = 𝑦 = 0, is an equilibrium position and that the Hamiltonian function 𝐻 = 𝐻 (𝑥, 𝑦, 𝑡)
can be expanded in a convergent power series in a sufficiently small neighborhood of the origin. That is,

𝐻 (𝑥, 𝑦, 𝑡) =
∞∑︁
𝑘=2

𝐻𝑘 (𝑥, 𝑦, 𝑡), 𝐻𝑘 (𝑥, 𝑦, 𝑡) =
∑︁
𝜈+𝜇=𝑘

ℎ𝜈𝜇𝑥
𝜈𝑦𝜇, (1.2)

where 𝜈 and 𝜇 are nonnegative integers and the coefficients ℎ𝜈𝜇 are continuous 2𝜋 periodic functions of time, 𝑡. We
also assume that a resonance of first or second order takes place in system (1.1). That is, the corresponding linear
system has multiple characteristic multipliers. In particular, 𝜌1,2 = 1, for a first order resonance, and 𝜌1,2 = −1,
for a second order resonance. In addition, the monodromy matrix is supposed to be diagonal. In the case it is
nondiagonal, the problem of stability, in the sense of Lyapunov, has been completely solved [3, 8].
Under these assumptions, the origin is linearly stable, but nonlinear analysis is necessary to obtain a rigorous

result about stability in the Lyapunov sense. Thus, terms of order three or higher in the Hamiltonian function
𝐻 (𝑥, 𝑦, 𝑡) must be taken into account. It can be seen that, after a series of canonical change variables, the
Hamiltonian function 𝐻 (𝑥, 𝑦, 𝑡) can be brought to the following form [10,12]

𝐻 (𝑞, 𝑝, 𝑡) =
𝑁∑︁
𝑘=3

𝐻𝑘 (𝑞, 𝑝) +
∞∑︁

𝑘=𝑁+1
𝐻𝑘 (𝑞, 𝑝, 𝑡), 𝐻𝑘 =

∑︁
𝜈+𝜇=𝑘

ℎ𝜈𝜇𝑞
𝜈 𝑝𝜇, (1.3)

where, for 3 ≤ 𝑘 ≤ 𝑁 (𝑁 can be set arbitrarily large), the coefficients ℎ𝜈𝜇 in 𝐻𝑘 are real numbers, whereas, for
𝑘 > 𝑁 , they are 𝑇-periodic functions of time 𝑡.
The stability of the origin for the system (1.1) with the Hamiltonian (1.3), in the case 𝐻3 ≠ 0, has been studied

in [10, 11] and we consider here the case 𝐻3 ≡ 0, which appears in the presence of second order resonance. Now,
the terms of fourth order in (1.3) play the most important role in the stability analysis of the equilibrium.
After a linear canonical change of variables [10], 𝐻4 can be brought to one of the following nine simple forms:

1) 𝑞4 + 𝑎𝑞2𝑝2 + 𝑝4, 𝑎 > −2, 5) 𝑞2 (𝑞2 + 𝑝2), 9) 𝑞4.
2) 𝑞4 + 𝑎𝑞2𝑝2 + 𝑝4, 𝑎 < −2 6) 𝑞2𝑝2,
3) 𝑞4 + 𝑎𝑞2𝑝2 − 𝑝4, 𝑎 ∈ R, 7) 𝑞3𝑝,
4) 𝑞2 (𝑞2 − 𝑝2), 8) − 𝑞3𝑝,

(1.4)

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 253–257)
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In [10], it is also proved that in the case 1) the equilibrium is stable in the sense of Lyapunov, whereas it is unstable
in the cases 2), 3), 4), 7). Cases 5) and 6) are considered in [12] and [9], respectively. In particular, considering
terms up to six order, sufficient conditions for stability and instability in the Lyapunov sense are derived.
We concentrate our attention on the case 9), already considered in [7], where partial stability results are given.

Our goal is to apply the results developed in [2] to derive complete and rigorous solution of the stability problem
in this particular case.

2. Method of study and main result
To study the stability of the origin, it is convenient to introduce polar canonical variables by means of the canonical
transformation

𝑞 =
√
2𝑟 sin 𝜑, 𝑝 =

√
2𝑟 cos 𝜑. (2.1)

Now, the Hamiltonian function (1.3) is written as

𝐻 = 𝑟2Ψ(𝜑, 𝑟) +𝑂 (𝑟 (𝑁+1)/2), (2.2)

where

Ψ(𝜑, 𝑟) =
𝑁∑︁
𝑘=4

𝑟
𝑘−4
2 Ψ𝑘 (𝜑), (2.3)

and Ψ𝑘 (𝜑) is a homogeneus function of order 𝑘 with respect to sin 𝜑 and cos 𝜑.
It is shown in [5,10,14] that, if the functionΨ4 (𝜑) does not have real roots, then the origin is a stable equilibrium

point. This is what happens in the case 1), listed in (1.4). On the other hand, if Ψ4 (𝜑) has a simple real root 𝜑0,
such that 𝑑Ψ4𝑑𝜑 (𝜑0) < 0, there is instability. This situation takes place in cases 2), 3), 4) and 7).
In the cases 5), 6) and 9) the function Ψ4 (𝜑) has only multiple real roots and we say that a degeneracy takes

place. To solve now the stability problem, it is necessary to consider the terms of order higher than 𝑟2. To this end,
we will use a technique for degenerate cases developed in [2]. The key idea is that simple roots of the function
(2.3), coming from a multiple root of Ψ4 (𝜑), play an important role for the stability problem. Thus, it is necessary
to determine whether multiple roots of Ψ4 (𝜑) give rise to simple distinct roots, when terms of order higher than
𝑟2 in the Hamiltonian function (2.2) are considered. Even more, we have to ensure that additional terms of higher
order cannot destroy the simple real roots of function (2.3). In this way, we introduce the concepts of main part and
simple main part of a root (see [2]).
Let 𝜑0 be a root of multiplicity 𝑀 > 1 of the function Ψ4 (𝜑). Thus, according to the implicit function

theorem [6], Ψ(𝜑, 𝑟) = 0 has exactly 𝑀 roots approaching 𝜑0 with 𝑟 → 0. Lut us denote by 𝜑∗ (𝑟) one of these
roots, which can be represented as a series expansion in fractional powers of 𝑟

𝜑∗ (𝑟) = 𝜑0 +
∞∑︁
𝑗=1
𝑎 𝑗𝑟

𝑗
𝑚 , (2.4)

where 𝑚 is an even integer (2 ≤ 𝑚 ≤ 2𝑀) and 𝑎 𝑗 are obtained by equating to zero the coefficients of powers of 𝑟 ,
after substituting (2.4) into (2.3).

Definition 2.1 Let us consider the finite series

𝜑𝑞 (𝑟) = 𝜑0 +
𝑞∑︁
𝑗=1
𝑎 𝑗𝑟

𝑗
𝑚 , (2.5)

which is obtained by omitting terms of order higher than 𝑞/𝑚 in (2.4); 𝑞 is the maximal integer number such
that the equation for 𝑎𝑞 is obtained by substituting (2.5) in (2.3) and equating to zero the coefficient of 𝑟

𝜈
𝑚 , where

𝜈
𝑚 < 𝑁−3

2 . We call finite series (2.3) main part of root (2.4).

Definition 2.2 We say that root (2.4) has a simple main part if among roots of the equation Ψ(𝜑, 𝑟) = 0 there is
not another root with the same main part.

Taking these two definitions in mind, general conditions for instability in the case of a degeneracy are given by
the following theorem [2].

Theorem 2.3 Let us consider the canonical system defined by Hamiltonian (2.2). Suppose that all real roots of the
function Ψ4 (𝜑) are multiple and the function Ψ(𝜑, 𝑟) has a real root 𝜑∗ of form (2.4). If the root 𝜑∗ has a simple
main part 𝜑𝑞 and, for sufficiently small 𝑟 , the inequality 𝜕Ψ

𝜕𝜑 (𝜑∗, 𝑟) < 0 is satisfied, then the equilibrium 𝑟 = 0 is
unstable.
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As it was said previously, in the case 9), all real roots of the functionΨ4 (𝜑) = 4 sin4 𝜑 have multiplicity four and
the use of Theorem 2.3 will be our main tool to obtain sufficient conditions for instability. To begin our analysis,
we perform a series of near identity canonical transformations, in order to simplify the Hamiltonian function. This
procedure has been previously introduced by Markeev to study other degenarete cases [9, 11, 12] and applied by
Gutiérrez and Vidal [7] in the case we are dealing with.
Let us take 𝑁 = 6 in (1.3). Thus, the Hamiltonian function reads as

𝐻 = 𝑞4 + 𝐻5 (𝑞, 𝑝) + 𝐻6 (𝑞, 𝑝) + 𝐻 (7) (𝑞, 𝑝, 𝑡), (2.6)

where 𝐻 (7) (𝑞, 𝑝, 𝑡) is a convergent series in powers of 𝑞 and 𝑝, starting from terms of degree seven or higher,
whose coefficients are 𝑇-periodic functions of 𝑡.
Let us introduce new canonical variables 𝑄, 𝑃 by using a generating function 𝑆(𝑞, 𝑃) of the form

𝑆(𝑞, 𝑃) = 𝑞𝑃 + 𝑆3 (𝑞, 𝑃) + 𝑆4 (𝑞, 𝑃), 𝑆𝑘 (𝑞, 𝑃) =
∑︁
𝜈+𝜇=𝑘

𝑠𝜈𝜇𝑞
𝜈𝑃𝜇, (2.7)

being 𝑠𝜈𝜇 constant coefficients properly chosen in order to simplify the expression of the new Hamiltonian function.
Taking into account the relations

𝑝 =
𝜕𝑆

𝜕𝑞
, 𝑄 =

𝜕𝑆

𝜕𝑃
, (2.8)

we can express the old variables in a power series expansion of the new ones in such a way that the new Hamiltonian
function, 𝐾 , becomes [7]

𝐾 = 𝑄4 + 𝐾5 (𝑄, 𝑃) + 𝐾6 (𝑄, 𝑃) + 𝐾 (7) (𝑄, 𝑃, 𝑡),
𝐾5 (𝑄, 𝑃) = 𝛾23𝑄2𝑃3 + 𝛾14𝑄𝑃4 + 𝛾05𝑃5,
𝐾6 (𝑄, 𝑃) = 𝛾24𝑄2𝑃4 + 𝛾15𝑄𝑃5 + 𝛾06𝑃6.

(2.9)

The coefficients 𝛾𝑖 𝑗 in (2.9) are related to the coefficients of Hamiltonian (1.3) through the following identities [7]

𝛾23 = ℎ23, 𝛾14 = ℎ14, 𝛾05 = ℎ05,

𝛾24 = ℎ24 − 37 ℎ232 + 74 ℎ50ℎ14 − 18 ℎ23ℎ41,
𝛾15 = ℎ15 − 12 ℎ32ℎ23 + 14 ℎ41ℎ14 + 52 ℎ50ℎ05,
𝛾06 = ℎ06 − 14 ℎ32ℎ14 + 58 ℎ41ℎ05.

(2.10)

The main result of our stability study can be formulated in terms of the coefficients of the Hamiltonian (2.9)
and it is collected in the following Theorem [4].

Theorem 2.4 Let us consider the Hamiltonian system defined by (2.9), then

1. If at least one of the inequalities 𝛾05 ≠ 0, 𝛾14 ≠ 0 or 𝛾223 − 4𝛾06 > 0 is fulfilled, then the origin is an unstable
equilibrium.

2. If 𝛾05 = 𝛾14 = 0 and 𝛾223 − 4𝛾06 < 0 , then the origin is stable in the sense of Lyapunov.
3. In the case 𝛾05 = 𝛾14 = 0 and 𝛾223 − 4𝛾06 = 0 and 𝛾15 ≠ 0 the origin is unstable.

3. Sketch of the proof
A complete proof of Theorem 2.4 is given in [4]. Here we outline the main ideas. To begin with, we introduce a
scaling of the variables that will help us to see which are the relevant terms contributing to the proper splitting of
the multiple roots. In this way, we introduce the following canonical transformation

𝑄 = 𝜀𝑄̄, 𝑃 = 𝜀𝜅 𝑃̄, (3.1)

and the Hamiltonian (2.9) reads as

𝐾 = 𝑄4 + 𝐾5 (𝑄, 𝑃) + 𝐾6 (𝑄, 𝑃) + 𝐾 (7) (𝑄, 𝑃, 𝑡),
𝐾5 (𝑄, 𝑃) = 𝜀3𝜅−2𝛾23𝑄2𝑃3 + 𝜀4𝜅−3𝛾14𝑄𝑃4 + 𝜀5𝜅−4𝛾05𝑃5,
𝐾6 (𝑄, 𝑃) = 𝜀4𝜅−2𝛾24𝑄2𝑃4 + 𝜀5𝜅−3𝛾15𝑄𝑃5 + 𝜀6𝜅−4𝛾06𝑃6,

(3.2)

where bars have been suppressed. The scaling introduces an ordering which depends on the exponent 𝜅. Indeed, a
different exponent 𝜅 gives rise to a different ordering and, to solve the degeneracy, we look for a proper choice of
𝜅. To this end, we introduce the concept of leading exponent of a monomial.
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Definition 3.1 We say that the leading exponent of a monomial 𝑃𝛼𝑄𝛽 is 𝜆(𝛼, 𝛽) if the scaling (3.1), with
𝜅 = 𝜆(𝛼, 𝛽), places this monomial at the same order than 𝑄4. That is 𝜆(𝛼, 𝛽) = 4−𝛼

𝛽 .

monomial 𝑃5 𝑄𝑃4 𝑄2𝑃3 𝑃6 𝑄𝑃5 𝑄2𝑃4 𝑃7 𝑄𝑃6 𝑄2𝑃5 𝑃8

𝜅(𝛼, 𝛽) 4/5 3/4 2/3 2/3 3/5 1/2 4/7 1/2 2/5 1/2

Tab. 1 Leading exponent 𝜆(𝛼, 𝛽) for different monomials.

It can be seen that the first term that can solve the degeneracy is the one with the largest leading exponent [4].
Table 1 shows the leading exponent for those monomials appearing in the Hamiltonian function up to six order and
also monomials of order seven and eight. We can see that the monomial 𝑃5 has the maximum leading exponent
and it is the first term to be taken into account to proper split the multiple root. If this term fails, then the next term
to be considered is 𝑄𝑃4 and so on.
Now, we move to polar coordinates (2.1) in order to apply Theorem 2.3. The Hamiltonian function in the form

(2.2) is given by
𝐾 = 4𝑟2 (sin4 𝜑 + 𝑟1/2Ψ5 (𝜑) + 𝑟Ψ6 (𝜑)) + 𝐾̃ (𝜑, 𝑟, 𝑡),
Ψ5 (𝜑) =

√
2(𝛾23 sin2 𝜑 cos3 𝜑 + 𝛾14 sin 𝜑 cos4 𝜑 + 𝛾05 cos5 𝜑),

Ψ6 (𝜑) = 2(𝛾24 sin2 𝜑 cos4 𝜑 + 𝛾15 sin 𝜑 cos5 𝜑 + 𝛾06 cos6 𝜑).
(3.3)

Our goal is to analyze the real roots of the equation

Ψ(𝜑, 𝑟) ≡ sin4 𝜑 + 𝑟1/2Ψ5 (𝜑) + 𝑟Ψ6 (𝜑) = 0, (3.4)

emanating from multiple roots 𝜑 = 0 and 𝜑 = 𝜋 of the function sin4 𝜑.
To determine the main part of the roots, we introduce a fractional power series of the form (2.4), where the

fractional exponents are chosen according to the leading exponent. In this way, if 𝜆(𝛼, 𝛽) is the maximum leading
exponent, the first fractional exponent with nonzero coefficient in (2.4) is given by

𝑗

𝑚
=
1 − 𝜆(𝛼, 𝛽)
2𝜆(𝛼, 𝛽) . (3.5)

For instance, if 𝛾05 ≠ 0 we consider the series

𝜑1 = 𝑎1𝑟
1/8 + 𝑎2𝑟2/8 + · · · , 𝜑2 = 𝜋 + 𝑏1𝑟1/8 + 𝑏2𝑟2/8 + · · · .

It is almost straightforward to check that, in all the cases of instability of Theorem 2.4, the conditions of Theorem
2.3 are satisfied and we are done.

To prove item 2. of Theorem 2.4, we introduce proper action-angle variables. In this sense, we rewrite the
Hamiltonian function as

𝐻 = 𝐻0 (𝑄, 𝑃) + 𝐻̂ (𝑄, 𝑃, 𝑡) , (3.6)

where
𝐻0 (𝑄, 𝑃) = (𝑄2 + 𝛼𝑃3)2 + 𝛽𝑃6, 𝐻̂ (𝑄, 𝑃, 𝑡) = 𝛾15𝑄𝑃5 + 𝛾24𝑄2𝑃4 + 𝐻 (7) (𝑄, 𝑃, 𝑡) . (3.7)

The coefficients 𝛼 and 𝛽 read
𝛼 =

1
2
𝛾23, 𝛽 = 𝛾06 − 14𝛾

2
23 .

We note that𝐻0 is a positive definite function, provided that, under the conditions of item 2., 𝛽 > 0. Thus, the origin
of the truncted system with Hamiltonian 𝐻0 is stable and it is encircled by a family of closed curves, describing
periodic motion in a sufficient small neighborhood. Let be the action variable

𝐼 =
1
2𝜋

∮
𝑃(𝑄, ℎ) 𝑑𝑄, (3.8)

where the integral is calculated along a closed phase trajectory. Every trajectory is completely defined by ℎ, where
ℎ is a constant such that 𝐻0 = ℎ. A direct calculation shows that

𝐼 = ℎ
5
12 𝐽0 , (3.9)
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being 𝐽0 a constant. Then, it follows that 𝐻0 reduces to

ℎ(𝐼) =
(
𝐼

𝐽0

) 12
5

. (3.10)

Moreover, it can be proved that, in action-angle variables, the Hamiltonian takes the form

Γ = ℎ(𝐼) + ℎ1 (𝐼, 𝑤, 𝑡), (3.11)

where ℎ1 (𝐼, 𝑤, 𝑡) = 𝑜(ℎ(𝐼)). However, the nondegeneracy condition

𝑑2ℎ

𝑑𝐼2
=
84𝐼 25

25𝐽
12
5
0

≠ 0 (3.12)

is fulfilled for 0 < 𝐼 � 1. Thus, the Arnold-Moser theorem [1, 13] guarantees the stability of the equilibrium
position of the original canonical system.
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