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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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SEIRD model with nonlocal diffusion
Calvo Pereira A.N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Two-sided methods for the nonlinear eigenvalue problem
Campos C. and Roman J.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Fractionary iterative methods for solving nonlinear problems
Candelario G., Cordero A., Torregrosa J.R. and Vassileva M.P. . . . . . . . . . . . . . . . . . . . . . . . . 105

Well posedness and numerical solution of kinetic models for angiogenesis
Carpio A., Cebrián E. and Duro G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Variable time-step modal methods to integrate the time-dependent neutron diffusion equation
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Minimal complexity of subharmonics in a class of planar periodic
predator-prey models

Julián López-Gómez1, Eduardo Muñoz-Hernández1, Fabio Zanolin 2
1. julian@mat.ucm.es and eduardmu@ucm.es Universidad Complutense de Madrid, Spain

2. fabio.zanolin@uniud.it Università degli Studi di Udine, Italy

Abstract
This contribution analyzes the existence of 𝑛𝑇-periodic coexistence states, for 𝑛 ≥ 1, in two classes of

non-autonomous predator-prey Volterra systems with periodic coefficients. In the first place, when the model
is non-degenerate it is shown that the Poincaré–Birkhoff twist theorem can be applied to get the existence of
subharmonics of arbitrary order. In the second place, it will be analyzed a degenerate predator-prey model
introduced in [9] and [5] and, then, deeply studied in [7]. By analyzing the iterates of the Poincaré map of the
system, it is shown that it admits nontrivial 𝑛𝑇-periodic coexistence states for every 𝑛 ≥ 2.

1. Introduction
In this contribution, we study the existence of positive subharmonics of arbitrary order (𝑛𝑇-periodic coexistence
states) of the periodic Volterra predator-prey model{

𝑢′ = _𝛼(𝑡)𝑢(1 − 𝑣),
𝑣′ = _𝛽(𝑡)𝑣(−1 + 𝑢), (1.1)

where _ > 0 is regarded as a parameter, and, for some𝑇 > 0, 𝛼(𝑡) and 𝛽(𝑡) are𝑇-periodic real continuous functions.
Throughout this note, we set

𝐴 :=
∫ 𝑇

0
𝛼(𝑠)𝑑𝑠 and 𝐵 :=

∫ 𝑇

0
𝛽(𝑠)𝑑𝑠.

Two different cases can arise according to whether, or not, the following condition holds

supp 𝛼 ∩ supp 𝛽 ≠ ∅. (1.2)

In this non-degenerate situation, which has been sketched in Figure 1, the existence of subharmonics of arbitrary
order, for sufficiently large _, can be obtained through an updated version of the celebrated Poincaré–Birkhoff twist
theorem.

Fig. 1 𝛼 (continuous line) and 𝛽 (dashed line) satisfying (1.2).

However, in the degenerate case when, instead of (1.2), the next condition holds

supp 𝛼 ∩ supp 𝛽 = ∅, (1.3)

then the Poincaré–Birkhoff theorem is unable to provide, in general, with subharmonics of arbitrary order, unless
𝛼(𝑡) and 𝛽(𝑡) have some special nodal structure. An admissible distribution of 𝛼 and 𝛽 is sketched in Figure 2.
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Fig. 2 𝛼 (continuous line) and 𝛽 (dashed line) satisfying (1.3).

2. The non-degenerate case
The non-degenerate case when (1.2) holds has been recently analyzed in [8] by adapting, in a sophisticated way,
some original ideas going back to [3] (later revised and applied in [2] and [10]), where a Poincaré–Birkhoff version
for Hamiltonian systems was delivered. Note that the change of variables

𝑥 = log 𝑢, 𝑦 = log 𝑣,

transforms (1.1) into the planar Hamiltonian system{
𝑥 ′ = −_𝛼(𝑡) (𝑒𝑦 − 1),
𝑦′ = _𝛽(𝑡) (𝑒𝑥 − 1). (2.1)

The updated version of the Poincaré–Birkhoff twist theorem that will be used reads as follows:

Theorem 2.1 (Poincaré–Birkhoff) Assume that there exist 0 < 𝜚0 < 𝜚1 and a positive integer 𝜔 such that

rot𝜚0 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] > 𝜔 and rot𝜚1 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] < 𝜔,
where

rot𝜌 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] = \ (𝑛𝑇) − \ (0)
2𝜋

with | | (𝑥0, 𝑦0) | | = 𝜌; \ (𝑡) being the angular polar coordinate of the solution starting at (𝑥0, 𝑦0), say (𝑥(𝑡), 𝑦(𝑡)).
Then, (2.1) admits, at least, two 𝑛𝑇-periodic solutions lying in different periodicity classes with rotation number 𝜔.

As a consequence of Theorem 2.1, the following result holds.

Theorem 2.2 Assume (1.2). Then, for every positive integers𝜔 and 𝑛, there exists _𝜔𝑛 > 0 such that (2.1) possesses,
at least, two 𝑛𝑇-periodic solutions with rotation number 𝜔 for every _ > _𝜔𝑛 .

Proof Firstly, attention will be focused into the small solutions of (2.1). Obviously, there exists Y > 0 such that

(𝑒 b − 1)b ≥ b
2

2
if |b | < Y. (2.2)

Choose (𝑥0, 𝑦0) sufficiently close to (0, 0), say | (𝑥0, 𝑦0) | ≤ 𝜚0, so that the solution of (2.1) with (𝑥(0), 𝑦(0)) =
(𝑥0, 𝑦0), say (𝑥(𝑡), 𝑦(𝑡)), satisfy | (𝑥(𝑡), 𝑦(𝑡)) | < Y for all 𝑡 ∈ [0, 𝑛𝑇]. This is possible by continuous dependence
on the initial conditions.
According to (1.2), there are 𝜏 ∈ (0, 𝑇) and 𝛿 > 0 such that 𝛼(𝑡)𝛽(𝑡) > 0 for every 𝑡 ∈ [𝜏 − 𝛿, 𝜏 + 𝛿] ( [0, 𝑇].

Thus,
Z := min

𝑡 ∈[𝜏−𝛿,𝜏+𝛿 ]
{𝛼(𝑡), 𝛽(𝑡)} > 0.

Consequently, due to (2.1) and (2.2), we obtain that, for every 𝑡 ∈ [0, 𝑛𝑇],

\ ′(𝑡) = 𝑦′(𝑡)𝑥(𝑡) − 𝑥 ′(𝑡)𝑦(𝑡)
𝑥2 (𝑡) + 𝑦2 (𝑡) =

_𝛽(𝑡) (𝑒𝑥 (𝑡) − 1)𝑥(𝑡) + _𝛼(𝑡) (𝑒𝑦 (𝑡) − 1)𝑦(𝑡)
𝑥2 (𝑡) + 𝑦2 (𝑡) ≥ _

2
𝛽(𝑡)𝑥2 (𝑡) + 𝛼(𝑡)𝑦2 (𝑡)

𝑥2 (𝑡) + 𝑦2 (𝑡) ≥ _Z
2
.

(2.3)
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Hence, owing to (2.3),

rot𝜚0 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] =
\ (𝑛𝑇) − \ (0)

2𝜋
=
1
2𝜋

∫ 𝑛𝑇

0
\ ′(𝑠)𝑑𝑠 ≥ 𝑛

2𝜋

∫ 𝜏+𝛿

𝜏−𝛿
\ ′(𝑠)𝑑𝑠 ≥ 𝑛_Z2𝛿

2𝜋
.

Therefore,
rot𝜚0 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] > 𝜔 if _ >

𝜋𝜔

𝑛Z𝛿
=: _𝜔𝑛 .

On the other hand, sufficiently large solutions do not rotate. Indeed, arguing by contradiction, assume that,
for some solution (𝑥(𝑡), 𝑦(𝑡)), we have that rot𝜚 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] ≥ 1. Then, e.g., it must cross entirely the third
quadrant. So, there exists [𝜏1, 𝜏2] ⊂ [0, 𝑛𝑇] such that 𝑦(𝜏1) = 0, 𝑥(𝜏1) < 0, 𝑦(𝜏2) < 0, 𝑥(𝜏2) = 0, and 𝑥(𝑡) < 0 and
𝑦(𝑡) < 0 for all 𝑡 ∈ (𝜏1, 𝜏2). Hence, for every 𝑡 ∈ [𝜏1, 𝜏2], we find that

|𝑥(𝑡) | = |_
∫ 𝜏2

𝑡
𝛼(𝑠) (𝑒𝑦 (𝑠) − 1)𝑑𝑠 | ≤ _

∫ 𝑛𝑇

0
𝛼(𝑠)𝑑𝑠 = _𝑛𝐴,

|𝑦(𝑡) | = |_
∫ 𝑡

𝜏1

𝛽(𝑠) (𝑒𝑥 (𝑠) − 1)𝑑𝑠 | ≤ _
∫ 𝑛𝑇

0
𝛽(𝑠)𝑑𝑠 = _𝑛𝐵.

Therefore, if there exists 𝜏0 ∈ [0, 𝑛𝑇] such that (𝑥(𝜏0), 𝑦(𝜏0)) lies in the third quadrant and 𝑥2 (𝜏0) + 𝑦2 (𝜏0) >
𝑅21 := _

2𝑛2 (𝐴2 + 𝐵2), then (𝑥(𝑡), 𝑦(𝑡)) cannot cross the entire third quadrant. Similarly, since |𝑒𝑥 (𝑡) − 1| (resp.
|𝑒𝑦 (𝑡) − 1|) are bounded in the second (resp. fourth) quadrant, there exists 𝑅2 > 0 (resp. 𝑅3 > 0) such that
𝑥2 (𝑡) + 𝑦2 (𝑡) < 𝑅22 (resp. 𝑥2 (𝑡) + 𝑦2 (𝑡) < 𝑅23) if the solution crosses the second (resp. fourth) quadrant. Therefore,
taking 𝑅 := max{𝑅1, 𝑅2, 𝑅3}, if (𝑥(𝑡), 𝑦(𝑡)) lies in the second, third or fourth quadrants and 𝑥(𝑡)2 + 𝑦(𝑡)2 > 𝑅 for
some 𝑡 ∈ [0, 𝑛𝑇], then, the solution (𝑥(𝑡), 𝑦(𝑡)) cannot cross the corresponding quadrant.
Finally, let 𝑠0 ∈ [0, 𝑛𝑇] be such that 𝑥(𝑠0) = 0 and 0 < 𝑦(𝑠0) ≤ 𝑅, and consider the maximal interval

[𝑠1, 𝑠0] ⊂ [0, 𝑠0] such that 𝑥(𝑡), 𝑦(𝑡) ≥ 0 for all 𝑡 ∈ [𝑠1, 𝑠0]. By (2.1), 𝑦(𝑡) is non-decreasing in [𝑠1, 𝑠0] and, hence,
0 ≤ 𝑦(𝑡) ≤ 𝑅 for all 𝑡 ∈ [𝑠1, 𝑠0]. Since 𝑦(𝑡) is bounded, 𝑥(𝑡) must be bounded too. Thus, there exists a constant
𝑅∗ ≥ 𝑅 > 0 such that if 𝑥2 (𝑡) + 𝑦2 (𝑡) > 𝑅2∗ for some 𝑡 ∈ [0, 𝑛𝑇] with (𝑥(𝑡), 𝑦(𝑡)) lying in the first quadrant,
then the solution (𝑥(𝑡), 𝑦(𝑡)) cannot cross neither the second, nor the third and fourth quadrants. Therefore,
𝑥(0)2 + 𝑦(0)2 = 𝜚21 > 𝑅2∗ implies that rot𝜚1 [(𝑥(0), 𝑦(0)); [0, 𝑛𝑇]] < 1 and hence, the hypothesis of Theorem 2.1
holds for every _ > _𝜔𝑛 , which ends the proof. �

Remark 2.3 Although Theorem 2.2 has a counterpart for a more general class of Hamiltonian systems of the type{
𝑥 ′ = −_𝛼(𝑡) 𝑓 (𝑦),
𝑦′ = _𝛽(𝑡)𝑔(𝑥),

where 𝑓 and 𝑔 satisfy certain boundedness and sign conditions (see [8, Sec. 2]), in this note we are focusing our
attention into the predator-prey model (1.1). Thus, we restrict ourselves to consider 𝑓 and 𝑔 as they appear in (2.1).

3. The degenerate case
To analyze the problem (1.1) under the condition (1.3), we suppose that either

supp𝛼 ⊂ [𝑡10 , 𝑡11] and supp 𝛽 ⊂ [𝑡20 , 𝑡21], (3.1)

or else
supp 𝛽 ⊂ [𝑡10 , 𝑡11] and supp𝛼 ⊂ [𝑡20 , 𝑡21], (3.2)

for some partition
0 ≤ 𝑡10 < 𝑡11 ≤ 𝑡20 < 𝑡21 ≤ 𝑇.

By (1.3), the system (1.1) can be integrated. Thus, in case (3.1) we have that, for every 𝑡 ∈ [0, 𝑇],

𝑢(𝑡) = 𝑢0𝑒 (1−𝑣0)_
∫ 𝑡
0 𝛼(𝑠)𝑑𝑠 , 𝑣(𝑡) = 𝑣0𝑒 (𝑢 (𝑇 )−1)_

∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠 ,

whereas, in case (3.2),
𝑢(𝑡) = 𝑢0𝑒 (1−𝑣 (𝑇 ))_

∫ 𝑡
0 𝛼(𝑠)𝑑𝑠 , 𝑣(𝑡) = 𝑣0𝑒 (𝑢0−1)_

∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠,

for all 𝑡 ∈ [0, 𝑇]. Hence, in case (3.1), the 𝑇-time Poincaré map is

(𝑢1, 𝑣1) := P1 (𝑢0, 𝑣0) := (𝑢(𝑇), 𝑣(𝑇)) = (𝑢0𝑒 (1−𝑣0)_𝐴, 𝑣0𝑒 (𝑢1−1)_𝐵).
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while, in case (3.2), is given through

(𝑢1, 𝑣1) := P1 (𝑢0, 𝑣0) := (𝑢(𝑇), 𝑣(𝑇)) = (𝑢0𝑒 (1−𝑣1)_𝐴, 𝑣0𝑒 (𝑢0−1)_𝐵).

Consequently, iterating 𝑛 times these maps, it becomes apparent that either

(𝑢𝑛, 𝑣𝑛) := P𝑛 (𝑢0, 𝑣0) = P𝑛1 (𝑢0, 𝑣0) := (𝑢(𝑛𝑇), 𝑣(𝑛𝑇)) = (𝑢𝑛−1𝑒 (1−𝑣𝑛−1)_𝐴, 𝑣𝑛−1𝑒 (𝑢𝑛−1)_𝐵)
= (𝑢0𝑒 (𝑛−𝑣0−𝑣1−···−𝑣𝑛−1)_𝐴, 𝑣0𝑒 (𝑢1+𝑢2+···+𝑢𝑛−𝑛)_𝐵)

(3.3)

under condition (3.1), or

(𝑢𝑛, 𝑣𝑛) := P𝑛 (𝑢0, 𝑣0) = P𝑛1 (𝑢0, 𝑣0) := (𝑢(𝑛𝑇), 𝑣(𝑛𝑇)) = (𝑢𝑛−1𝑒 (1−𝑣𝑛)_𝐴, 𝑣𝑛−1𝑒 (𝑢𝑛−1−1)_𝐵)
= (𝑢0𝑒 (𝑛−𝑣1−𝑣2−···−𝑣𝑛)_𝐴, 𝑣0𝑒 (𝑢0+𝑢1+···+𝑢𝑛−1−𝑛)_𝐵)

(3.4)

under condition (3.2). By the uniqueness for the underlying Cauchy problem, the 𝑛𝑇-periodic coexistence states of
(1.1) are given by the positive fixed points of P𝑛. Thus, by (3.3) and (3.4), we are driven to solve the system{

𝑛 = 𝑢0 + 𝑢1 + · · · + 𝑢𝑛−1,
𝑛 = 𝑣0 + 𝑣1 + · · · + 𝑣𝑛−1.

(3.5)

Naturally, the 𝑢′𝑖𝑠 and the 𝑣
′
𝑖𝑠 are different depending on (3.1) or (3.2). Our next result deals with the 𝑇-periodic

and 2𝑇-periodic cases.

Theorem 3.1 Assume (3.1) or (3.2). Then, (1.1) does not admit any non-trivial 𝑇-periodic coexistence state.
Moreover, (1.1) possesses exactly two non-trivial 2𝑇-periodic coexistence states if, and only if,

_ >
2√
𝐴𝐵

. (3.6)

Proof First, suppose (3.1). Then, by (3.3), (𝑢1, 𝑣1) = P1 (𝑢0, 𝑣0) = (𝑢0, 𝑣0) if, and only if, 𝑣0 = 1 and 𝑢0 = 𝑢1 = 1.
Thus, (𝑢(𝑡), 𝑣(𝑡)) is a 𝑇-periodic coexistence state if, and only if, (𝑢(𝑡), 𝑣(𝑡)) = (1, 1), which is the equilibrium of
the system (1.1). Similarly,

(𝑢2, 𝑣2) = P2 (𝑢0, 𝑣0) = (𝑢0𝑒 (2−𝑣0−𝑣1)_𝐴, 𝑣0𝑒 (𝑢1+𝑢2−2)_𝐵) = (𝑢0, 𝑣0)

if, and only if,
2 = 𝑣0 + 𝑣1 and 2 = 𝑢1 + 𝑢2 = 𝑢0 + 𝑢1,

or, equivalently,
2 = 𝑣0 + 𝑣0𝑒 (𝑢1−1)_𝐵 = 𝑣0 + 𝑣0𝑒 (1−𝑢0)_𝐵 and 2 = 𝑢0 + 𝑢0𝑒 (1−𝑣0)_𝐴. (3.7)

Hence,
𝑢0 =

2
1 + 𝑒 (1−𝑣0)_𝐴 .

Setting 𝑥 := 𝑣0 and substituting 𝑢0 in the first equation of (3.7) it is apparent that the 2𝑇-periodic coexistence states
are given by the zeros of the map

𝜑(𝑥) = 𝑥 [𝑒 𝑒
(1−𝑥)_𝐴−1
𝑒 (1−𝑥)_𝐴+1 _𝐵 + 1] − 2.

It is easily seen that

𝜑(𝑥) < 0 if 𝑥 ≤ 0, 𝜑(1) = 0, 𝜑(𝑥) > 0 if 𝑥 ≥ 2, and 𝜑′(1) = 2 − _2 𝐴𝐵
2
.

By (3.6), we find that 𝜑′(1) < 0. Thus, there are 0 < 𝑥1 < 1 < 𝑥2 < 2 such that 𝜑(𝑥1) = 𝜑(𝑥2) = 0, i.e., (1.1) has
two non-trivial 2𝑇-periodic coexistence states. The uniqueness follows by analyzing 𝜑′′, much like in the proof
of [7, Th. 2.1]. Similarly, one can derive the necessity of (3.6). This ends the proof when (3.1) is satisfied.
Now, assume (3.2). Then, by (3.4) and arguing as above, we find that

(𝑢1, 𝑣1) = P1 (𝑢0, 𝑣0) = (𝑢0, 𝑣0)

if, and only if, (𝑢(𝑡), 𝑣(𝑡)) = (1, 1). Moreover,

(𝑢2, 𝑣2) = P2 (𝑢0, 𝑣0) = (𝑢0𝑒 (2−𝑣1−𝑣2)_𝐴, 𝑣0𝑒 (𝑢0+𝑢1−2)_𝐵).
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Fig. 3 Global bifurcation diagram to 2𝑇 -periodic coexistence states.

Thus, in this occasion, the 2𝑇-periodic coexistence states of (1.1) are given by the zeros of the map

𝜓(𝑥) = 𝑥 [𝑒 1−𝑒
(𝑥−1)_𝐴

1+𝑒 (𝑥−1)_𝐴 _𝐵 + 1] − 2.

Those with 𝑥 ≠ 1 provide us with the non-trivial 2𝑇-periodic coexistence states of (1.1). Adapting the previous
argument, it readily follows the same result as before. This concludes the proof. �

Figure 3 shows the global bifurcation diagram of 2𝑇-periodic coexistence states of (1.1) in each of the cases
(3.1), or (3.2). In both cases, they bifurcate supercritically from the equilibrium (1, 1) at _ = 2√

𝐴𝐵
.

Subsequently, we will make explicit the dependence of the functions 𝜑 and 𝜓 defined in the proof of Theorem
3.1 on the variables 𝑥 and _. Since

𝜑(𝑥, _) = 𝜓(𝑥,−_),
dealing with the case when _ > 0 under condition (3.1) is the same as dealing with the case when _ < 0 under
(3.2), in the sense that the 2𝑇-periodic coexistence states of (1.1) in each of these cases must coincide. From a
biological point of view, this is rather natural. Actually, it is equivalent to inter-exchanging the role of the prey and
the predator in the model.
Our last result provides us with the 𝑛𝑇-periodic coexistence states of (1.1) when 𝑛 ≥ 2 in case (3.1). To get it,

we must impose the following condition

𝐴 = 𝐵 and 𝑢0 = 𝑣0 = 𝑥. (3.8)

Theorem 3.2 Assume (3.8). Then, for every _ > 2
𝐴 , (1.1) admits, at least, 𝑛 coexistence states with period 𝑛𝑇 if 𝑛

is even, and 𝑛 − 1 coexistence states with period 𝑛𝑇 if 𝑛 is odd.

Proof First, we set 𝐸0 (𝑥) = 1, and

𝐸𝑛 (𝑥) :=
{
𝑒 [

𝑛+1
2 −𝑥 (𝐸0 (𝑥)+𝐸2 (𝑥)+···+𝐸𝑛−1 (𝑥)) ]_𝐴 if 𝑛 ∈ 2N + 1,

𝑒 [𝑥 (𝐸1 (𝑥)+𝐸3 (𝑥)+···+𝐸𝑛−1 (𝑥))−
𝑛
2 ]_𝐴 if 𝑛 ∈ 2N.

(3.9)

By (3.8), it turns out that
𝜑𝑛 (𝑥) = 𝜑𝑛−1 (𝑥) − 1 + 𝐸𝑛−1 (𝑥),

where 𝜑1 (𝑥) = 𝑥 − 1, is the map whose zeros provide us with the 𝑛𝑇-periodic coexistence states of (1.1). As the
analysis of these maps is fraught with a number of serious technical difficulties, in order to obtain some information
concerning the 𝑛𝑇-periodic coexistence states of (1.1), we are driven to analyze the variational equations of these
maps at the trivial curve (_, 1),

𝑝𝑛 (_) := 𝜕𝜑𝑛
𝜕𝑥
(_, 1).
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It is easy to prove that 𝑝𝑛 (_) is a sequence of polynomials in the indeterminate _ that satisfy the recursive formula
𝑝𝑛 (_) = [2 − (−1)𝑛𝐴_]𝑝𝑛−1 (_) − 𝑝𝑛−2 (_),

where 𝑝1 (_) = 1 and 𝑝2 (_) = 2 − 𝐴_. From this recursive formula, it can be shown that any root of 𝑝𝑛 is real and
algebraically simple. Thanks to these features, for any given 𝑟 ∈ 𝑝−1𝑛 (0), the transversality condition

𝑑𝑝𝑛 (𝑟)
𝑑_

(𝑁 [𝑝𝑛 (𝑟)]) ⊕ 𝑅[𝑝𝑛 (𝑟)] = R

holds, where 𝑁 and 𝑅 stand for the null space and the rank, respectively, of the underlying one-dimensional
operators. Thus, for any given 𝑟 ∈ 𝑝−1𝑛 (0), the algebraic multiplicity of Esquinas and López-Gómez [4] equals one
at every point (𝑟, 1). So, according to Crandall and Rabinowitz [1, Th. 1.7], a local bifurcation occurs at every
point (𝑟, 1). Moreover, by the unilateral theorem of López-Gómez [6, Th. 6.4.3], the underlying subcomponents of
𝑛𝑇-periodic coexistence states are unbounded in _, in agrement with Rabinowitz [11]. As the number of positive
roots of 𝑝𝑛 (_) equals 𝑛2 if 𝑛 is even and 𝑛−12 if 𝑛 is odd, the result holds. This ends the proof. �

Figure 4 shows the global bifurcation diagram provided by Theorem 3.2. It is an ideal global bifurcation
diagram as the local bifurcation directions and the eventual secondary bifurcations have not been analyzed yet.
According to [7, Th. 6.1], the local bifurcations of the 3𝑇-periodic component is transcritical, while the 4𝑇-periodic
component bifurcates subcritically from the trivial curve (_, 1).

Fig. 4 Bifurcation diagram of (1.1) under condition (3.8).
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