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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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� Departamento de Matemáticas de la Universidad de Oviedo
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4



Contents

On numerical approximations to diffuse-interface tumor growth models
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Gómez-Bueno I., Castro M.J., Parés C. and Russo G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

An algorithm to create conservative Galerkin projection between meshes
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Hernández-Verón M.A., Magreñán A.A., Martı́nez E. and Sukhjit S. . . . . . . . . . . . . . . . . . . . . . 242

6



CONTENTS

Recent developments in modeling free-surface flows with vertically-resolved velocity profiles using
moments
Koellermeier J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Stability of a one degree of freedom Hamiltonian system in a case of zero quadratic and cubic terms
Lanchares V. and Bardin B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Minimal complexity of subharmonics in a class of planar periodic predator-prey models
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Nonlinear Analysis in Lorentzian Geometry: The maximal hypersurface
equation in a Generalized Robertson-Walker spacetime

José A. S. Pelegrín1
jpelegrin@ugr.es Universidad de Granada, Spain

Abstract
In this article we obtain a uniqueness result for the maximal hypersurface equation in a spatially open

Generalized Robertson-Walker spacetime by means of Bochner’s technique and a generalized maximum principle.

1. Introduction
Maximal hypersurfaces have played a key role in the study of General Relativity since they describe the physical
space that can be measured in the transition from an expanding to a contracting phase of the universe. Maximal
hypersurfaces constitute a useful initial set for theCauchy problem inGeneral Relativity [20]. Namely, Lichnerowicz
proved that a Cauchy problem with initial conditions on a maximal hypersurface is reduced to a second order
nonlinear elliptic differential equation and a first order linear differential system [10]. Moreover, the existence
of constant mean curvature spacelike hypersurfaces (and in particular maximal) is necessary for the study of the
structure of singularities in the space of solutions of Einstein’s equations [2].

From a mathematical standpoint, maximal hypersurfaces enable us to understand the structure of the spacetime.
Indeed, for some asymptotically flat spacetimes the existence of a foliation by maximal hypersurfaces was proved
in [4]. As amatter of fact, maximal hypersurfaces appear as critical points of the area functional (see for instance [3]).

The study of maximal hypersurfaces from a mathematical perspective was boosted by the discovery of new
nonlinear elliptic problems associated to these geometric objects. Indeed, the function defining a maximal graph
in the (𝑛 + 1)-dimensional Lorentz-Minkowski spacetime satisfies a second order PDE known as the maximal
hypersurface equation in L𝑛+1. Furthermore, the well-known Calabi-Bernstein theorem states that the only entire
solutions to the maximal hypersurface equation in L𝑛+1 are the affine functions. This result was proved by Calabi [5]
for 𝑛 ≤ 4 and later extended to arbitrary dimension by Cheng and Yau [6].

These Calabi-Bernstein type results for the maximal hypersurface equation have been a subject of study in recent
years, being extended to several ambient spacetimes such as standard static spacetimes [18, 19], pp-waves [16],
doubly warped product spacetimes [8], among others. In this article we will focus on the models known as
Generalized Robertson-Walker (GRW) spacetimes. These spacetimes were introduced in [1] to extend the classical
notion of Robertson-Walker spacetime to the case where the fiber does not necessarily have constant sectional
curvature. In particular, we will deal with the spatially open case, i.e., the case where the fiber is a complete
non-compact Riemannian manifold. This is due to the fact that some experimental observations and theoretical
arguments suggest that spatially open models provide a more accurate description of our current universe [7].
Furthermore, spatially closed universes lead to a violation of the holographic principle, making spatially open
spacetimes compatible with a possible theory that unifies gravity and quantum mechanics [13].

Consequently, our aim in this article will be to particularize some of the results obtained in [14] to the maximal
case, which will enable us to obtain uniqueness results for the maximal hypersurface equation in spatially open
GRW spacetimes. The technique that will be used is based on combining Bochner formula with a generalized
maximum principle (see [9, 15] for different ways of using these ideas to obtain parametric uniqueness results).

2. Preliminaries
Let (𝐹, 𝑔𝐹 ) be an 𝑛(≥ 2)-dimensional (connected) Riemannian manifold, 𝐼 an open interval in R and 𝑓 a positive
smooth function defined on 𝐼. Consider now the product manifold 𝑀 = 𝐼 × 𝐹 endowed with the Lorentzian metric

𝑔 = −𝜋∗𝐼 (𝑑𝑡2) + 𝑓 (𝜋𝐼 )2 𝜋∗𝐹 (𝑔𝐹 ), (2.1)

where 𝜋𝐼 and 𝜋𝐹 denote the projections onto 𝐼 and 𝐹, respectively. The Lorentzian manifold (𝑀, 𝑔) is a warped
product (in the sense of [12, Chap. 7]) with base (𝐼,−𝑑𝑡2), fiber (𝐹, 𝑔𝐹 ) and warping function 𝑓 . Endowing

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 307–312)
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(𝑀, 𝑔) with the time orientation induced by 𝜕𝑡 := 𝜕/𝜕𝑡 we can call it, following the terminology introduced in [1],
an (𝑛 + 1)-dimensional Generalized Robertson-Walker (GRW) spacetime.

In any GRW spacetime there is a distinguished timelike and future pointing vector field, 𝐾 := 𝑓 (𝜋𝐼 )𝜕𝑡 that
satisfies

∇𝑋𝐾 = 𝑓 ′(𝜋𝐼 ) 𝑋 (2.2)

for any 𝑋 ∈ 𝔛(𝑀), where ∇ is the Levi-Civita connection of the Lorentzian metric (2.1). Thus, 𝐾 is conformal
and its metrically equivalent 1-form is closed.

Given an 𝑛-dimensional manifold 𝑀 , an immersion 𝜓 : 𝑀 → 𝑀 is called spacelike if the Lorentzian metric
(2.1) induces a Riemannian metric 𝑔 on 𝑀 through 𝜓. In this codimension one case, 𝑀 is called a spacelike
hypersurface. Along this article, we will denote the restriction of 𝜋𝐼 along 𝜓 by 𝜏. It can be easily seen that its
gradient is given by ∇𝜏 = −𝜕>𝑡 , where 𝜕>𝑡 is the tnagential component of 𝜕𝑡 along 𝜓. In addition, we also have
sinh2 𝜑 = |∇𝜏 |2.

Furthermore, the time-orientation of 𝑀 allows to globally define on each spacelike hypersurface 𝑀 in 𝑀 a
unique unitary timelike vector field 𝑁 ∈ 𝔛⊥ (𝑀) with the same time-orientation as 𝜕𝑡 .

Denoting by 𝐴 the shape operator associated to 𝑁 , the mean curvature function associated to 𝑁 is 𝐻 :=
−(1/𝑛)trace(𝐴). A spacelike hypersurface with identically zero constant mean curvature is called maximal
hypersurface.

Among the family of spacelike hypersurfaces in aGRWspacetimewe should highlight the subfamily of spacelike
graphs. Given an 𝑛(≥ 2)-dimensional Riemannian manifold (𝐹, 𝑔𝐹 ) and a smooth function 𝑓 : 𝐼 −→ R+ we can
consider in the GRW spacetime 𝑀 = 𝐼 × 𝑓 𝐹 the graph

Σ𝑢 = {(𝑢(𝑝), 𝑝) : 𝑝 ∈ Ω},
whereΩ ⊆ 𝐹, 𝑢 ∈ 𝐶∞ (Ω) and 𝑢(Ω) ⊆ 𝐼. The induced metric onΩ from the Lorentzian metric on 𝑀 , via the graph
Σ𝑢 is given by

𝑔𝑢 = −𝑑𝑢2 + 𝑓 (𝑢)2𝑔𝐹 .
Note that 𝑔𝑢 is positive definite (i.e., Σ𝑢 is spacelike) if and only if 𝑢 satisfies

|𝐷𝑢 | < 𝑓 (𝑢).
In this case,

𝑁 =
1

𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑓 (𝑢)2𝜕𝑡 + 𝐷𝑢

)

is a future pointing unit normal vector field on Σ𝑢 and when Ω = 𝐹 the spacelike graph is said to be entire.
From [12, Prop. 7.35] we obtain that the mean curvature function of a spacelike graph associated to 𝑁 is

𝐻 = div

(
𝐷𝑢

𝑛 𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

)
+ 𝑓 ′(𝑢)
𝑛
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑛 + |𝐷𝑢 |

2

𝑓 (𝑢)2
)
, (2.3)

where div represents the divergence operator in (𝐹, 𝑔𝐹 ).

Our aim in this article will be to obtain a uniqueness result for the solutions of the maximal hypersurface
equation in a spatially open GRW spacetime. Namely, we are interested in the solutions on (𝐹, 𝑔𝐹 ) of the following
second order nonlinear elliptic PDE:

div

(
𝐷𝑢

𝑛 𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

)
+ 𝑓 ′(𝑢)
𝑛
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑛 + |𝐷𝑢 |

2

𝑓 (𝑢)2
)
= 0, (E.1)

|𝐷𝑢 | < _ 𝑓 (𝑢), 0 < _ < 1, (E.2)
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3. Main results
In order to obtain our uniqueness result for equation (E) we will first deal with the parametric version of the problem,
considering maximal hypersurfaces in a spatially open GRW spacetime which are not necessarily graphs. To prove
our main uniqueness results we will need the following lemma, which bounds the Laplacian of the hyperbolic angle
of these hypersurfaces.

Lemma 3.1 Let 𝜓 : 𝑀 → 𝑀 be a complete maximal hypersurface in a GRW spacetime 𝑀 = 𝐼 × 𝑓 𝐹. Then, the
hyperbolic angle of 𝑀 satisfies

1
2
Δ sinh2 𝜑 = cosh2 𝜑

(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) − 𝑛(log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
+ |Hess(𝜏) |2 (3.1)

+ 𝑓
′(𝜏)2
𝑓 (𝜏)2 sinh

2 𝜑(𝑛 + sinh2 𝜑) + |∇ cosh 𝜑 |2.

where Ric𝐹 denotes the Ricci tensor of the fiber 𝐹 and 𝑁𝐹 is the projection of 𝑁 on 𝐹.

Proof The crucial idea of this proof is to compute the Laplacian of the function cosh 𝜑, which is defined by

cosh 𝜑 = −𝑔(𝑁, 𝜕𝑡 ).
Using (2.2) we can compute this function’s gradient, obtaining

∇ cosh 𝜑 = 𝐴𝜕>𝑡 +
𝑓 ′(𝜏)
𝑓 (𝜏) cosh 𝜑 𝜕

>
𝑡 . (3.2)

Choosing a local orthonormal reference frame {𝐸1, . . . , 𝐸𝑛} on 𝑇𝑀 we can obtain the Laplacian of cosh 𝜑 using
(3.2) as follows

Δ cosh 𝜑 =
𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖 (𝐴𝜕>𝑡 ), 𝐸𝑖) +
𝑛∑︁
𝑖=1

𝑔

(
∇𝐸𝑖

(
𝑓 ′(𝜏)
𝑓 (𝜏) cosh 𝜑 𝜕

>
𝑡

)
, 𝐸𝑖

)
. (3.3)

In fact, we can rewrite (3.3) as

Δ cosh 𝜑 =
𝑛∑︁
𝑖=1

𝑔((∇𝐸𝑖 𝐴)𝜕>𝑡 , 𝐸𝑖) +
𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖𝜕>𝑡 , 𝐴𝐸𝑖) −
𝑓 ′′(𝜏)
𝑓 (𝜏) cosh 𝜑 sinh

2 𝜑 (3.4)

+2 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑 sinh

2 𝜑 + 𝑓
′(𝜏)
𝑓 (𝜏) 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 )

+ 𝑓
′(𝜏)
𝑓 (𝜏) cosh 𝜑

𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖𝜕>𝑡 , 𝐸𝑖).

where we have used that (∇𝑋 𝐴)𝑌 = ∇𝑋 (𝐴𝑌 ) − 𝐴(∇𝑋𝑌 ) for all 𝑋,𝑌 ∈ 𝔛(𝑀). On the other hand, using Codazzi
equation 𝑔(R(𝑋,𝑌 )𝑁, 𝑍) = 𝑔((∇𝑌 𝐴)𝑋, 𝑍) − 𝑔((∇𝑋 𝐴)𝑌, 𝑍) (where R denotes the curvature tensor of 𝑀) and
choosing our local frame in 𝑇𝑝𝑀 satisfying

(
∇𝐸 𝑗𝐸𝑖

)
𝑝
= 0 we deduce from (3.4)

Δ cosh 𝜑 = −Ric(𝜕>𝑡 , 𝑁) + 2
𝑓 ′(𝜏)
𝑓 (𝜏) 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 ) + cosh 𝜑 trace(𝐴2) (3.5)

− 𝑓
′′(𝜏)
𝑓 (𝜏) cosh 𝜑 sinh

2 𝜑 + 3 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑 sinh

2 𝜑 + 𝑛 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑,

where Ric is the Ricci tensor of 𝑀 . Decomposing 𝑁 as 𝑁 = 𝑁𝐹 − 𝑔(𝑁, 𝜕𝑡 )𝜕𝑡 , being 𝑁𝐹 the projection of 𝑁 on the
fiber 𝐹, we can use [12, Cor. 7.43] to write

Ric(𝜕>𝑡 , 𝑁) = − cosh 𝜑
(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) + (𝑛 − 1) (log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
. (3.6)

Now, (3.6) can be used in (3.5) to obtain
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Δ cosh 𝜑 = cosh 𝜑
(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) − (𝑛 − 1) (log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
(3.7)

+2 𝑓
′(𝜏)
𝑓 (𝜏) 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 ) + cosh 𝜑 trace(𝐴2) −

𝑓 ′′(𝜏)
𝑓 (𝜏) cosh 𝜑 sinh

2 𝜑

+3 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑 sinh

2 𝜑 + 𝑛 𝑓 ′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑.

If we now compute |Hess(𝜏) |2 we have

|Hess(𝜏) |2 =
𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖𝜕>𝑡 ,∇𝐸𝑖𝜕>𝑡 ) =
𝑓 ′(𝜏)2
𝑓 (𝜏)2

(
𝑛 − 1 + cosh4 𝜑

)
(3.8)

+ cosh2 𝜑 trace(𝐴2) + 2 𝑓
′(𝜏)
𝑓 (𝜏) cosh 𝜑 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 ).

Combining (3.7) and (3.8) leads to

cosh 𝜑 Δ cosh 𝜑 = cosh2 𝜑
(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) − 𝑛(log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
(3.9)

+|Hess(𝜏) |2 + 𝑓
′(𝜏)2
𝑓 (𝜏)2 sinh

2 𝜑(𝑛 + sinh2 𝜑).

We conclude the proof noticing that

1
2
Δ sinh2 𝜑 = cosh 𝜑 Δ cosh 𝜑 + |∇ cosh 𝜑 |2,

and using (3.9) to obtain (3.1). �

To prove our main results we also need the following lemma that extends [17, Lemma 3] and gives a bound for
the Ricci curvature of constant mean curvature spacelike hypersurfaces in GRW spacetimes.

Lemma 3.2 Let 𝜓 : 𝑀 → 𝑀 be a maximal hypersurface in a GRW spacetime 𝑀 = 𝐼× 𝑓 𝐹 whose warping function
satisfies (log 𝑓 ) ′′(𝜏) ≤ 0. If either the fiber 𝐹 has non-negative sectional curvature, 𝑀 has bounded hyperbolic
angle and the sectional curvature of the fiber 𝐹 is bounded from below, then the Ricci curvature of 𝑀 is bounded
from below.

Proof Given a point 𝑝 ∈ 𝑀 , let us choose a local orthonormal reference frame {𝐸1, . . . , 𝐸𝑛} around 𝑝. From the
Gauss equation we have that the Ricci curvature of 𝑀 , Ric, satisfies

Ric(𝑋, 𝑋) ≥
𝑛∑︁
𝑖=1

𝑔(R(𝑋, 𝐸𝑖)𝐸𝑖 , 𝑋)

for all 𝑋 ∈ 𝔛(𝑀). Using [12, Prop. 7.42] we obtain

𝑛∑︁
𝑖=1

𝑔(R(𝑋, 𝐸𝑖)𝐸𝑖 , 𝑋) =
𝑛∑︁
𝑖=1

𝑔𝐹 (RF (𝑋𝐹 , 𝐸𝐹𝑖 )𝐸𝐹𝑖 , 𝑋𝐹 ) + (𝑛 − 1)
𝑓 ′(𝜏)2
𝑓 (𝜏)2 |𝑋 |

2

−(𝑛 − 2) (log 𝑓 ) ′′(𝜏) 𝑔(𝑋,∇𝜏)2 − (log 𝑓 ) ′′(𝜏) |∇𝜏 |2 |𝑋 |2,

being RF the curvature tensor of 𝐹 and 𝑋𝐹 and 𝐸𝐹𝑖 the projections of 𝑋 and 𝐸𝑖 on the fiber. If (log 𝑓 ) ′′(𝜏) ≤ 0
and 𝐹 has non-negative sectional curvature, we see that the Ricci curvature of 𝑀 is bounded from below. On the
other hand, if 𝜑 is bounded and the sectional curvature of 𝐹 is bounded from below we can consider 𝑋 ∈ 𝔛(𝑀)
such that |𝑋 |2 = 1 and decompose it as

𝑋 = −𝑔(𝑋, 𝜕𝑡 )𝜕𝑡 + 𝑋𝐹 .
Moreover, we can also see that
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|𝑋𝐹 |2 |𝐸𝐹𝑖 |2 =
(
1 + 𝑔(𝑋,∇𝜏)2

) (
1 + 𝑔(𝐸𝑖 ,∇𝜏)2

)
,

as well as

𝑔(𝑋𝐹 , 𝐸𝐹𝑖 )2 = 𝑔(𝑋, 𝐸𝑖)2 + 𝑔(𝑋,∇𝜏)2𝑔(𝐸𝑖 ,∇𝜏)2 + 2𝑔(𝑋, 𝐸𝑖)𝑔(𝑋,∇𝜏)𝑔(𝐸𝑖 ,∇𝜏).
Thus, if the sectional curvature of 𝐹 is bounded from below by a constant 𝐶 the above expressions yield

𝑛∑︁
𝑖=1

𝑔𝐹 (RF (𝑋𝐹 , 𝐸𝐹𝑖 )𝐸𝐹𝑖 , 𝑋𝐹 ) ≥ 𝐶
(
𝑛 − 1 + sinh2 𝜑 + (𝑛 − 2)𝑔(𝑋,∇𝜏)2

)
. (3.10)

Thus, if the hyperbolic angle of 𝑀 is bounded the classical Schwarz inequality guarantees that the left hand side of
(3.10) is bounded from below by a constant. Therefore, we conclude again that if (log 𝑓 ) ′′(𝜏) ≤ 0, then the Ricci
curvature of 𝑀 is bounded from below. �

In addition, we will make use of the following consequence of the Omori-Yau maximum principle obtained by
Cheng and Yau in [6].

Lemma 3.3 [6, 11] Let 𝑀 be a complete Riemannian manifold whose Ricci curvature is bounded from below. If
𝑢 ∈ 𝐶2 (𝑀) is a non-negative function that satisfies Δ𝑢 ≥ 𝐶𝑢2 for a positive constant 𝐶, then 𝑢 vanishes identically
on 𝑀 .

Taking these three lemmas into account, we are now in a position to prove our main parametric uniqueness
result.

Theorem 3.4 Let 𝜓 : 𝑀 → 𝑀 be a complete maximal hypersurface in a GRW spacetime 𝑀 = 𝐼 × 𝑓 𝐹 whose fiber
𝐹 has non-negative sectional curvature. If the warping function satisfies

sup
𝑀
(log 𝑓 ) ′′(𝜏) < 0, (A)

then 𝑀 is a totally geodesic spacelike slice.

Proof Under these assumptions, we deduce from Lemma 3.1 that 𝜑 satisfies

1
2
Δ sinh2 𝜑 ≥ −𝑛 (log 𝑓 ) ′′(𝜏) (1 + sinh2 𝜑) sinh2 𝜑.

Moreover, (A) allows us to use Lemma 3.2 to guarantee that the Ricci curvature of 𝑀 is bounded from below as
well as ensures the existence of a positive constant 𝐶 such that

Δ sinh2 𝜑 ≥ 𝐶 sinh4 𝜑.
Finally, we can use Lemma 3.3 to conclude that 𝑀 is a totally geodesic spacelike slice. �

Remark 3.5 Note that assumption (A) cannot be omitted in order to obtain these results in spatially open GRW
spacetimes. For instance, in the Lorentz-Minkowski spacetime of arbitrary dimension L𝑛+1 this assumption does
not hold and there is no analogous uniqueness result for complete maximal spacelike hypersurfaces.

As a consequence of Theorem 3.4 we can obtain our main non parametric result for the maximal hypersurface
equation in a GRW spacetime whose fiber has non-negative sectional curvature.

Corollary 3.6 Let 𝑓 : 𝐼 −→ R+ be a smooth function such that inf 𝑓 > 0 and sup (log 𝑓 ) ′′ < 0. Then, the only
entire solutions to the equation

div

(
𝐷𝑢

𝑛 𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

)
+ 𝑓 ′(𝑢)
𝑛
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑛 + |𝐷𝑢 |

2

𝑓 (𝑢)2
)
= 0, (E.1)

|𝐷𝑢 | < _ 𝑓 (𝑢), 0 < _ < 1, (E.2)

on a complete Riemannian manifold 𝐹 with non-negative sectional curvature are the constant functions 𝑢 = 𝑡0,
with 𝑡0 ∈ 𝐼 such that 𝑓 ′(𝑡0) = 0.
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Proof Note that constraint (E.2) implies that the hyperbolic angle of the graph Σ𝑢 satisfies

cosh 𝜑 <
1√
1 − _2

. (3.11)

Furthermore, using the classical Schwarz inequality we deduce

𝑔𝑢 (𝑣, 𝑣) ≥ |𝐷𝑢 |2𝑔𝑢 (𝑣, 𝑣) + 𝑓 (𝑢)2𝑔𝐹 (𝑑𝜋𝐹 (𝑣), 𝑑𝜋𝐹 (𝑣)), for all 𝑣 ∈ 𝑇Σ𝑢 . (3.12)
Hence, from (3.12) we obtain

𝑔𝑢 (𝑣, 𝑣) ≥ 𝑓 (𝑢)2
cosh2 𝜑

𝑔𝐹 (𝑑𝜋𝐹 (𝑣), 𝑑𝜋𝐹 (𝑣)). (3.13)

Denoting by 𝐿𝐹 (𝛾) and 𝐿𝑢 (𝛾) the length of a smooth curve 𝛾 on 𝐹 with respect to the metrics 𝑔𝐹 and 𝑔𝑢 ,
respectively, from (3.13) and (3.11) we have

𝐿𝑢 (𝛾) ≥ (1 − _2) (inf 𝑓 (𝑢)2)𝐿𝐹 (𝛾). (3.14)
Thus, since (𝐹, 𝑔𝐹 ) is complete and inf 𝑓 > 0 we obtain that the metric 𝑔𝑢 is also complete. This fact and the

rest of our assumptions enable us to apply Theorem 3.4 to end the proof. �
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