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Foreword

It is with great pleasure that we present the Proceedings of the 26" Congress of Differential Equations and Appli-
cations / 16" Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEMA, which is held in Gijén, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Mélaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijén, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijén. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijon; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijén, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo



Scientific Committee

e Juan Luis Vazquez, Universidad Auténoma de Madrid
e Maria Paz Calvo, Universidad de Valladolid

e Laura Grigori, INRIA Paris

e José Antonio Langa, Universidad de Sevilla

e Mikel Lezaun, Euskal Herriko Unibersitatea

e Peter Monk, University of Delaware

e Ira Neitzel, Universitit Bonn

e JoséAngel Rodriguez, Universidad de Oviedo

Fernando de Terdn, Universidad Carlos III de Madrid

Sponsors

e Sociedad Espafiola de Matemadtica Aplicada

e Departamento de Matemadticas de la Universidad de Oviedo

Escuela Politécnica de Ingenieria de Gijon

Gijon Convention Bureau

Ayuntamiento de Gijon

Local Organizing Committee from the Universidad de Oviedo

e Pedro Alonso Veldzquez
e Rafael Gallego

e Mariano Mateos

e Omar Menéndez

e Virginia Selgas

Marisa Serrano

Jesus Sudrez Pérez del Rio



Contents

On numerical approximations to diffuse-interface tumor growth models
Acosta-Soba D., Guillén-Gonzdlez F. and Rodriguez-Galvan J.R. . . . . . . . . . . oo v v v v v v oot 8

An optimized sixth-order explicit RKN method to solve oscillating systems
Ahmed Demba M., Ramos H., Kumam P. and Watthayu W. . . . . . ... ... ..o v vvi oo 15

The propagation of smallness property and its utility in controllability problems
N o) 8 /20 23

Theoretical and numerical results for some inverse problems for PDEs
Apraiz J., Doubova A., Ferndndez-CaraE. and Yamamoto M. . . . . ¢ v v v v v v v v v v v v v v v v v v s 31

Pricing TARN options with a stochastic local volatility model
Arregui L and Réfales J. . . . . v v i v i i i e e e e e e e e e e e e e e 39

XVA for American options with two stochastic factors: modelling, mathematical analysis and
numerical methods
Arregui I, Salvador B, Sev€ovic D.and Vazquez C. . . . . . v v i i i it i ittt e e 44

A numerical method to solve Maxwell’s equations in 3D singular geometry
Assous FandRaichik I . v v v v 0 o i it it e i e e e e e e e e e e 51

Analysis of a SEIRS metapopulation model with fast migration
Atienza P.and Sanz-Lorenzo L. . . . . o v 0 i i i i i e e e e e e e e e e e e e e e e e e 58

Goal-oriented adaptive finite element methods with optimal computational complexity
Becker R., Gantner G., Innerberger M. and Praetorius D. . . . . . ... i it ittt 65

On volume constraint problems related to the fractional Laplacian
BellidoJ.C.and Ortega A. v v v v v v i i i i e e e e e e e e e et e e e e 73

A semi-implicit Lagrange-projection-type finite volume scheme exactly well-balanced for 1D
shallow-water system
Caballero-Cardenas C., Castro ML.J., Morales de Luna T. and Mufioz-RuizM.L. .. ... .......... 82

SEIRD model with nonlocal diffusion
Calvo Pereira AN, & v i i i e i e e e e e e e e e e e e e e e e e e ettt e et 90

Two-sided methods for the nonlinear eigenvalue problem
Campos C.andRoman J.E. . . . . o o i i i i i i it i i it e e i i ettt 97

Fractionary iterative methods for solving nonlinear problems
Candelario G., Cordero A., Torregrosa J.R. and VassilevaM.P. . ... ... ... ... ... 105

Well posedness and numerical solution of kinetic models for angiogenesis
Carpio A, Cebridn E. and DUuro G. .+« v v v v v v i it i e e e e e e et e ettt e 109

Variable time-step modal methods to integrate the time-dependent neutron diffusion equation
Carrefio A., Vidal-Ferrandiz A., Ginestar D. and Verdud G. . + « v v v v v v v v o v e e e e e et o oo v v u 114



CONTENTS

Homoclinic bifurcations in the unfolding of the nilpotent singularity of codimension 4 in R*
Casas PSS, Drubi F. and Ibanez S. . v v v v v v i i e e e e e e e e e ettt o e e ettt et 122

Different approximations of the parameter for low-order iterative methods with memory
Chicharro FI., Garrido N., Sarrfa L. and Orcos L. . & . v v vt v it i e e e e e e e e e e et oo e oo oo 130

Designing new derivative-free memory methods to solve nonlinear scalar problems
Cordero A., Garrido N., Torregrosa JR. and TrigueroP. . . . . . . . . v v v v v vt i i i i i oo oo n 135

Iterative processes with arbitrary order of convergence for approximating generalized inverses
Cordero A., Soto-Quirds P. and Torregrosa JR. . . v v v v v v i i i i i i s s e e e e e e e 141

FCF formulation of Einstein equations: local uniqueness and numerical accuracy and stability
Cordero-Carrién 1., Santos-Pérez S. and Cerda-Durdn P. . .« ¢ v v v v v v v v i e e i e e e e e e e e e e u 148

New Galilean spacetimes to model an expanding universe
DelaFuente D. . . . v v i i i i i i it i e e e e e i e ettt i e e e e e 155

Numerical approximation of dispersive shallow flows on spherical coordinates
Escalante C.and Castro ML.J. & & . v i i i i i i it et e e e e e i e e e et e 160

New contributions to the control of PDEs and their applications
Ferndndez-CaraE.. . . o . o 0 0 i i i i i it e i e i i e e e et e e e e e e 167

Saddle-node bifurcation of canard limit cycles in piecewise linear systems
Fernandez-Garcia S., Carmona V. and Teruel A E. . . .« v v v v v i i i i e e e e e et e ettt oo oo o un 172

On the amplitudes of spherical harmonics of gravitational potencial and generalised products of
inertia

Turing instability analysis of a singular cross-diffusion problem
Galiano G. and Gonzdlez-Tabernero V. « . v v v v v v v v v v v i e e e e e e st e e e e e 184

Weakly nonlinear analysis of a system with nonlocal diffusion
Galiano G. and Velasco J. & v v v v v i i i i it e e e e e e e e e e e e e e e e e e e e e e 192

What is the humanitarian aid required after tsunami?
Gonzalez-Vida J.M., Ortega S., Macias J., Castro M.J., Michelini A. and Azzarone A. . . . . .. ... ... 197

On Keller-Segel systems with fractional diffusion
Granero-BelinChOn R. & & & v v v i v i i i i i e et e e e e e et ettt 201

An arbitrary high order ADER Discontinous Galerking (DG) numerical scheme for the multilayer
shallow water model with variable density
Guerrero Fernandez E., Castro Diaz M.J., Dumbser M. and Moralesde LunaT. . ... ... ... ..... 208

Picard-type iterations for solving Fredholm integral equations
Gutiérrez J.M. and Herndndez-Veron MLA. . & . v ¢ v v v v v v i o e et o o v o e e oo oo oot o e o e 216

High-order well-balanced methods for systems of balance laws based on collocation RK ODE solvers
Gomez-Bueno 1., Castro M.J.,, Parés C. and RuSSO G. & ¢ v v v v v v v v o e e e e e ettt e o oo oo aen 220

An algorithm to create conservative Galerkin projection between meshes
Goémez-Molina P, Sanz-Lorenzo L. and CarpioJ. . . . . v v v v i v i it i ittt ittt i et e e e 228

On iterative schemes for matrix equations
Herndndez-Veron MLA.and Romero N. . & o v v o v vt i i it e e e e e ettt et e e 236

A predictor-corrector iterative scheme for improving the accessibility of the Steffensen-type methods
Hernandez-Verén M.A., Magrefidan A.A., Martinez E. and SukhjitS. . ... ... ... ... ... ..., 242



CONTENTS

Recent developments in modeling free-surface flows with vertically-resolved velocity profiles using
moments
Koellermeier J. v v v v v v v i i e e e e e e e e et e e e e e e e e e 247

Stability of a one degree of freedom Hamiltonian system in a case of zero quadratic and cubic terms
Lanchares V.and Bardin B. . . . . . o o v i i i i i i it e e e e e e e e e e 253

Minimal complexity of subharmonics in a class of planar periodic predator-prey models
Lépez-Gémez J., Muioz-Herndndez E. and Zanolin F.. . . . . . . ..o v i i vt i i i i oo oo 258

On a non-linear system of PDEs with application to tumor identification
Maestre F.and Pedregal P. . . . . . 0 v i i i i i i i et e e e e e e e e e e e e e 265

Fractional evolution equations in dicrete sequences spaces
1 2 T 271

KPZ equation approximated by a nonlocal equation
MOINO A, . o i e i e e e e e e e e e e e e e e e e e e e e e e 277

Symmetry analysis and conservation laws of a family of non-linear viscoelastic wave equations
Mirquez A.and BruzOn M. . . . v v v v vt e e e e e e e e e e e e et e e e e e e 284

Flux-corrected methods for chemotaxis equations
Navarro Izquierdo A.M., Redondo Neble M.V. and Rodriguez GalvanJ.R. . . .. ... ... ... ... .. 289

Ejection-collision orbits in two degrees of freedom problems
Ollé M., Alvarez-Ramirez M., Barrabés E. and Medina M. . . .« v v v v v v v v v v e e ot e e v v e e e 295

Teaching experience in the Differential Equations Semi-Virtual Method course of the Tecnolégico de
Costa Rica
OVIEdO N.G. & & v e e ettt e et e e e e e e e e e e e e e e e e e e e e e e e e e e 300

Nonlinear analysis in lorentzian geometry: the maximal hypersurface equation in a generalized
Robertson-Walker spacetime
Pelegrin J A S, o v o i i e e e e e e e e e e e e e e e e e 307

Well-balanced algorithms for relativistic fluids on a Schwarzschild background
Pimentel-Garcia E., Parés C.and LeFloch P.G. . . . . vt v v v v i i i e e e e e e ettt o et oo e o 313

Asymptotic analysis of the behavior of a viscous fluid between two very close mobile surfaces
Rodriguez J.M. and Taboada-Vazquez R.. . . . . .« o v i i i i i i it i it ettt i e e 321

Convergence rates for Galerkin approximation for magnetohydrodynamic type equations
Rodriguez-Bellido M.A., Rojas-Medar M.A. and Sepulveda-Cerda A. . . .. ... ... 325

Asymptotic aspects of the logistic equation under diffusion
Sabinade Lis J.C. and Segurade Ledn S. . . . . . o o i i i i i it i i e e e e e e e 332

Analysis of turbulence models for flow simulation in the aorta
Santos S., Rojas J.M., Romero P., Lozano M., Conejero J.A. and Garcia-FerndndezI. .. ... ....... 339

Overdetermined elliptic problems in onduloid-type domains with general nonlinearities
L 344



XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMATICA APLICADA

Gijon, 14-18 junio 2021

(pp. 325-331)

Convergence rates for Galerkin approximation for magnetohydrodynamic
type equations

Maria Angeles Rodriguez-Bellido', Marko Antonio Rojas-Medar?, Alex Sepilveda-Cerda®
1. angeles@us. es Universidad de Sevilla, Spain
2. mmedar@academicos.uta.cl Universidad de Tarapacd, Chile
3. alex.sepulveda@ufrontera.cl Universidad de La Frontera, Chile

Abstract

The motion of incompressible electrical conducting fluids can be modeled by magnetohydrodynamics equa-
tions, which consider the Navier-Stokes equations coupled with Maxwell’s equations. For the classical Navier-
Stokes system, there exists an extensively study of the convergence rate for the Galerkin approximations. Here,
we extend the estimates rates of spectral Galerkin approximations for the magnetohydrodynamic equations. We
prove optimal error estimates in the LZ(€) and H'! (Q)-norms, we obtain a result similar to the Rautmann for the
H?2(€)-norm, and we reach basically the same level of knowledge as in the case of the classical Navier-Stokes.

1. Introduction

The motion of incompressible electrical conducting fluids can be modeled by the so-called equations of mag-
netohydrodynamics, which can be described as the coupling of the Navier-Stokes equations and the Maxwell’s
equations. To describe these equations, we consider a bounded domain Q C R3, T > 0, denoted Or =Qx(0,7T)
and S7 = dQ x (0,T). In the case where there is free motion of heavy ions, not directly due to the electric field
(see [11], [19], [20]), these equations can be reduced to the form:

0 1
M w-Vu- L Au+ —v(p*+ﬁh2) ~Hh.ovh = t,  inor,
ot Pm Pm 2 Pm
oh 1
A Ah+u-V)h—(h-Viu+Vg = 0, inOr, .1
ot uo
diva=divh = 0, in Or,
together with the following boundary and initial conditions:
u = 0, h = 0 on St,
. (1.2)
u(x,0) = wu(x), h(x0 = hy(x) inQ,

Here, u and h are unknown velocity and magnetic field, respectively, p* is an unknown hydrostatic pressure, g is
an unknown function related to the heavy ions (in such way that the density of electric current, jy, generated by
this motion satisfies the relation rotjo = —oVgq), p,, is the density of mass of the fluid (assumed to be a positive
constant), 4 > 0 is a constant magnetic permeability of the medium, o > 0 is a constant electric conductivity,
n > 0 is a constant viscosity of the fluid and f is a given external force field.

There are an extensive literature on the magnetohydrodynamic system (1.1)—(1.2): Lassner [9], by using the
semigroup results of Kato and Fujita [7], proved the existence and uniqueness of strong solutions, local in time for
any data and global in time for small data. Boldrini and Rojas-Medar [3] studied the existence of weak solutions
and the reproductive property using the Galerkin method. The same authors improved this result to local and
global strong solutions by using the spectral Galerkin method in [4,5]. Damdzio and Rojas-Medar [6] studied
the regularity of weak solutions, and Notte-Cuello and Rojas-Medar [10] used an iterative approach to show the
existence and uniqueness of the strong solutions. The initial value problem in time dependent domains was studied
by Rojas-Medar and Beltran-Barrios in [17], and by Berselli and Ferreira in [1]. The problem in unbounded
domains with boundary uniformly of C3-class was studied by Zhao in [22].

On the other hand, for the classical Navier—Stokes system there exists an extensively study of the convergence
rate for the Galerkin approximations. The first work in this way was given by Rautmann in [12], where he proved
the optimal convergence in the H'(Q)-norm, but the optimal convergence in the L?(€)-norm was left as an open
problem in [12] and was answered by Salvi in [18] (see also [2]). Applying the same method and assuming the
uniform boundedness in time of the L?(Q)-norm of the gradient of the velocity and the exponential stability in
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the H'(Q)-norm of the solution, Heywood [8] was able to derive optimal uniform in time error estimates for the
velocity in the H'(Q)-norm. Also, without explicitly assuming H'(€)-exponential stability, Boldrini and Rojas—
Medar [2] proved optimal uniform in time error estimates for the spectral Galerkin approximations in the H' (Q)
and L?(Q)-norms, assuming that the external force field has a mild form of decay.

The study of the convergence rate in the H>(Q)-norm is difficult, because estimates of higher order derivates
spatial of solution are required, which needs a compatibility condition to be satisfied by the initial value of the
solution. The work of Rautmann [15] give an answer to the question “how smooth a Navier-Stokes solution
can be at time t = 0 without any compatibility condition”. Making use of this result, Rautmann [13], [14]
proved the convergence rate in the H>(Q)-norm of the spectral Galerkin approximation to the solution without any
compatibility condition.

The aim of this work is to extend the estimates rates of spectral Galerkin approximations for the the Navier-
Stokes system to the magnetohydrodynamic equations (1.1)-(1.2). We prove optimal error estimates in the L2(Q)
and H' (Q)-norms and obtain a result similar to the Rautmann in [13], [14] for H?(€)-norms. In this way, we reach
the same level of knowledge as in the case of the classical Navier-Stokes equations. The complete proofs of all the
results contained in this manuscript can be consulted in [16].

2. Function Spaces and framework

Throughout this paper we will use the following notation: Vector functions will be written in bold letters. The H™
norm is denoted by || - ||,n. Here H”™ = W™2(Q) (m > 0) are the usual Sobolev spaces. Hé denotes the closure of
Cy(Q) in the H !_norm. Let

Co,(Q):={ve (C(‘)’"(Q))3 :divv=0 in Q}, V= {closure of Cg‘j(r(Q) in H(l)(Q)} ,

H= {closure of Cg‘j(r(Q) in LQ(Q)} and V* = {topological dual of V} .

In order to give an operator interpretation of problem (1.1)-(1.2), we shall introduce the well known Helmholtz and
Weyl decomposition. The Hilbert space L?(€2) admits the Helmholtz and Weyl decomposition (cf. [21]):

L>=HoH",

where @ denotes direct sum and H* = {Vr : 7 € H'*(Q)}. Let P be the orthogonal projection from L?() onto
H. Then the operator A : H — H given by A = —PA with domain D(A) = VNH?(Q) is called the Stokes operator.
It is well known that A is a positive self-adjoint operator and is characterized by the following relation:

(Aw,v) = (Vw,Vv) for all we D(A),veV.

From now on, we also denote the inner product in H by the L?(Q)—inner product (-, -). The general L” (Q)-norm
will be denoted by || - || r (@) ; to make easier the notation, in the case p = 2 we simply denote the L*-norm by || - ||.
We shall denote by w (x) and A the eigenfunctions and the eigenvalues of the Stokes operator. It is well known
(see [21]) that wX (x) are orthogonal in the inner products (-,-), (V-,V-) and (A-, A-) and complete in the spaces
H, V and V N H?(Q), respectively. For each k € N, we denote by P the orthogonal projection from L?() onto
Vi =span[w! (x), ..., wK(x)].

Throughout this work, we will deal with the following notion of strong solution for (1.1)-(1.2).

Definition 2.1 Letug,hyg € Vandf € L2(0, T; Lz(Q)). By a strong solution of the problem (1.1)—(1.2), we mean
a pair of vector-valued functions (u, h) such thatu,h € L*(0,7; V)N L2(0,T; D(A)) and that satisfies (1.1)—(1.2).

As a first step to set up and prove the main results of this work, and using the properties of the operator P, we
can reformulate the problem (1.1)—(1.2), as follows: find u, h in suitable spaces, satisfying:

(ug, v) + (Vu,Vv) + ((u- V)u,v) = ((h-V)h,v) = (f,v), Vvev,

(b 2) + (Vh,V2) + (u-V)h.2) = ((h-V)u.z) = 0, VZeV, 21
u(x,0) = wup(x), x€Q, 2.1
h(x,0) = ho(x), x € Q.

Observe that, because we do not focus on the dependence of the error on the 1, u, o or p,,, then we consider them
all equal to 1.
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In order to establish the results concerning estimates for spectral Galerkin approximation, we need to fix
some problems. The spectral Galerkin approximations for (u,h) are defined for each k € N as the solution
(u*,h*) € C*([0,T]; Vi) x C*([0,T]; Vi) of:

(uf,v)+(Vuk,VV)+((uk -V)uk, v) — ((h* - V)hX,v) (f,v), Vv eV,

(hf, z) + (Vh*, Vz) + ((uf - V)h¥,z) — ((h* - V)uk,z) = 0, Vz € Vi, 2.2)
u(x,0) = Prup(x), x€Q, '
h(x,0) = Prhy(x), x € Q.
Recall that the eigenfunctions expansion of u and h can be written, respectively, as:
u(xt) = Y ai()W(x) and h(x,1) =Y e (W (x), (2.3)

i=1 i=1

where w' are the eigenfunctions of the Stokes operator. The partial sums of the series for u and h will also appear
in our study, whose expression are given, respectively, by:

k k

vE (1) = Pru(r) = Z a;(Hwi(x) and bX(r) = Pyh(r) = Z ci(OW (x). 2.4)

i=1 i=1

3. Known results

By using the spectral Galerkin approximations (2.2), Rojas-Medar and Boldrini ( [4], [5]) proved the following
results:

Theorem 3.1 Assume the following condition for the initial data vy, hy, and the external force f of (1.1)-(1.2):
ug, hg eV, feL*0,T;L*(Q) (3.1)

Then, on a (possibly small) time interval [0,T1], 0 < T1 < T, problem (1.1)-(1.2) has a unique strong solution
(u,h). This solution belongs C([0,T;]; V) x C([0,T;]; V). Moreover, there exist C'-functions F(t) and G (t) such
that for any t € [0,T], there hold:

A

IIVU(t)I|2+IIVh(t)II2+/0(IIAU(S)II2+IIAh(S)||2)dS < F(),

IA

/0 (e ()1 + Iy (5)17)dls G(1).

Moreover, the same kind of estimates holds uniformly in n € N for the Galerkin approximations (u",h™).

Theorem 3.2 Assume (3.1) and

wy, hg € D(A), f, € L*(0,T;L*(Q)). (3.2)
Then: t
IIut(t)II2+|Ihz(t)||2+/0 (IVu; ()I1? + IVhy ()[P)ds - < Ho(),
[Au()|® + AR > < Hi(1),
[ G + i as < a0,

Joranyt € [0,T], where H;(t), i =0, 1,2 are continuous functions t € [0,T}]. Therefore:
u(1),h(r) € C'([0.T1]: V) N C([0, T ]: D(A)).

Moreover, the same kind of estimates holds uniformly in n for the Galerkin approximations (u"*, h™).

Referring to the Navier—Stokes equations, the following lemma can be found in the Rautmann’s paper [12].
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Lemma 3.3

Ifu €V, then there holds:
1

k+1

lu— Prul|* < 7 IV,

Also, ifu € VN H?*(Q), we have:
1

1
lu—Prul> < —IlAul?,  [|Vu- VPu|* < 7 | Aull®.

K+l k+1

Some of the classical Sobolev interpolation inequalities, considered in this manuscript, can be found in the
following result:

Lemma 3.4 The following estimates are true:
e IVllLe @ < CllAV|l, V¥veVNnH*(Q),
* [Vllsey < CIVVIL Vv eV,
o [Wlls @y < CIVIMAIVVIYZ, Wy eV

* IVlls (o) < CIVIMHIVVIP, - v e V.

4. Estimates for the solution in H' (Q)

Our first result on error estimates read as follows:

Theorem 4.1 Assume hypothesis (3.1) for the data. Then, the approximations (u*, h*) satisfy:

lu(r) = u* @) + [Ih(r) - b ()| + /O (IVu(s) = Vu*(s)II* + [[Vh(s) = Vh* (s)]|%) ds < AC :

k+1
In addition, if we assume that (3.2), then the approximations (u*, h*) satisfy:
k(2 k(2 ¢
la() - u ()1 + Ih(1) - b4 D> < ——.
k+1

Theorem 4.2 [f in addition to (3.1) we assume (3.2), then we have that there exists a constant C > 0 such that:

I¥u() - Tut I + [Vh(r) - Th () < -

k+1

Corollary 4.3 Under the hypothesis of Theorem 4.2, there exists a positive constant C > 0 such that:

! C
[ o) =k 1P + I 5) = 91 ds < —

k+1

and, if £ € L*>(0,T; H (Q) then:

[ ues) - 4wt )17 + 1ah(s) - Ab (1P ds < £
0

k+1

Note that these estimates are made in the Sobolev spaces related to the strong regularity of the solution (see
Definition 2.1).

In the search of a proof for these theorems (and corollary), we have to use some preliminary results whose proof
needs to define the following auxiliary variables and problems:
Using (2.3) and (2.4), we define:

e“(n =u(n) -v(), &) =h()-b"(),

] 4.1)
Ef(r) = v (1) —u* (1), EX(1) =b*(1) —h* (),
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where u* and h* are the k" Galerkin approximations of u and h solutions of (2.2), respectively. One of our aim is
to “mesure” the distance between the solutions of (2.1) and (2.2), that we split as:

u(r) —uX(¢) = (1) + EF(r), and h(r) — h*(r) = & (1) + E* (1). (4.2)
These variables satisfy the following problem:

(Ef,v) + (VEX, Vv) + ((e* - V)u,v) + (EX - V)u, v) + ((u¥ - V)ek,v) + ((u* - V)EK,v)
—((&k - V)h,v) = ((E¥ - V)h,v) — ((h* - V)&, v) — (h* - V)EX,v) =0, Vv eV,
(EX,z) + (VEX, Vz) + ((€* - V)h,z) + ((EF - V)h,z) + ((uX - V)&, z) + ((u* - V)EK, 2)
—((&k - V)u, z) — ((EF - V)u, z) — ((h* - V)eX,z) — ((h* - V)EF,z) =0, Yz e Vg,

E*(x,0) = EF(x,0) =0, x€Q.
Using adequate estimates (see [16] for more details), the following results can be proved:

Lemma 4.4 Assume hypothesis (3.1) for the data. Then:

IEX()I> + IEX(0)]* <

A

In addition, if we assume (3.2), then:
IEX ()1 + IE* (1)1

IA

Corollary 4.5 Assume hypothesis (3.1) for the data. Then:

t
/ (IVEX ()| + [ VEX (5)|Pds < ~<—.
0 Ak+1

In addition, if we assume (3.2), then:
! - C
/ (IVEX(9)|I* + IVE* (9)[1*)ds < ——.
0 /lk+l
Lemma 4.6 Assuming (3.1) and (3.2) for the data, we have that there exists a constant C > 0 such that:

C
/1k+1 '

IVEX(0)[I> + | VE* (1)[I* <
Corollary 4.7 Under the hypotheses of Lemma 4.6, here exists a positive constant C > 0 such that:

t
- C
/ (IES () + B (5)1P)ds < =
0 k+1

5. H*(Q)-error estimates for the velocity and the magnetic field

The objective of this section is to state and sketch the estimates in the H?()-norm for the solutions of (1.1)-(1.2)
that we have obtained. Concretely, our result reads as follows:

Theorem 5.1 Assume (3.1)-(3.2). If moreover f € C([0,T], H (Q)) and ug,hy € D(A'*€), with € € (0, %), then

lAu(z) — Auk ()| + |lu, (r) —uk ()| < C —C(;:re”—ﬂl }
k+1 k+1

|Ah(z) — Ab* (1) + |[h, (1) —h¥ (1) < C[C(;H)Jr/ll }
K+l k+1
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For the proof of this theorem we will use the writing of u(z) — u*(¢) and h(¢) — h*(z) in terms of e*(¢) and
EX () and & (1) and EX (1), respectively, given in (4.2). Therefore, if we want to estimate Au — Au* and Ah — Ah¥,
then we need to estimate Au — AvK and AE¥ and Ah — AbX and AEX. With this objective, we precise, in first time,
to estimate A%u — A®vK and AYE* and A%h — A?b* and A?EF for a € [0, 1) and then obtain the desired result.

The regularity results for the solution obtained in the Theorems 3.1 and 3.2 will be also necessary in order

to obtain our results. Firstly, observe that we can write the following representation of the solution obtained in
Theorem 3.1:

u(r)

e Mg + / t e APt = (u(s) - V)u(s) + (h(s) - V)h(s))ds,
0
) (5.1)
h(r) = e “'hg+ / e~ A (—(u(s) - V)h(s) + (h(s) - V)u(s))ds.
0

Theorem 5.2 Suppose that f € C([0,T], H (Q)) and wg,hy € D(A'™*€), then the solution (u,h) of (1.1)-(1.2)
satisfies for 0 < € < 1/4,

wh e C([0,T]; D(A™)) N C'([0,T]; D(A€)).

The proof of Theorem 5.2 is based the properties of D (A %), the Stokes operator properties and the use of (4.1),
(4.2) and (5.1). In particular, the fractional powers A® with domain of definition D(A?) c H are defined for any
real & by means of the spectral representation of A. For @ < S the imbedding D(A®) c D(A?) is compact and
D(AP) is dense in D(A?), therefore A is a sectorial operator and A is the infinitesimal generator of an analytic
semigroup {e~?4}. On D(A?), the operator A” commute, with ¢4, and satisfies several properties (see [7]).
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