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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Gómez-Bueno I., Castro M.J., Parés C. and Russo G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

An algorithm to create conservative Galerkin projection between meshes
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Overdetermined elliptic problems in onduloid-type domains with general
nonlinearities

Jing Wu
jingwulx@correo.ugr.es Universidad de Granada, Spain

Abstract
In this paper, we prove the existence of solutions to a general semilinear elliptic problem with overdetermined

boundary conditions. The proof uses a local bifurcation argument from the straight cylinder, in analogy with the
onduloids and the theory of Constant Mean Curvature surfaces. Such examples have been found already for linear
problems or with nonlinearity 𝑓 (𝑢) = 1. In this work we are able to extend this phenomenon for a large class of
functions 𝑓 (𝑢).
Remark: This manuscript, especially the whole proof, is a work in progress in collaboration with David Ruiz and
Pieralberto Sicbaldi.

1. Introduction
This paper is devoted to the existence of new solutions of a semilinear overdetermined elliptic problem in the form




Δ𝑢 + 𝑓 (𝑢) = 0 in Ω
𝑢 > 0 in Ω
𝑢 = 0 on 𝜕Ω
𝜕𝑢
𝜕a = constant on 𝜕Ω

(1.1)

where Ω is a domain of R𝑛+1, 𝑛 ≥ 1, 𝑓 : [0, +∞) → R is a 𝐶1,𝛼 function and a stands for the exterior normal unit
vector about 𝜕Ω.

A classical result by Serrin [16,23] states that the existence of a positive solution to the overdetermined problem
(1.1) yields that the smooth bounded domainΩmust be a ball. This result has applications in various mathematical
and physical problems, such as isoperimetric inequalities, spectral geometry and hydrodynamics (see [4,26,27] for
the details).

The case when the domain Ω is supposed to be unbounded is also very interesting. Indeed, overdetermined
boundary conditions appear in free boundary problems if the variational structure imposes suitable conditions on
the separation interface (see [2,6]). In this process, several methods applied to study the regularity of free boundary
problems are based on blow-up techniques that lead to the study of an elliptic problem in an unbounded domain.
In this framework, Berestycki, Caffarelli and Nirenberg [5] were concerned with the problem (1.1) in unbounded
domains and concluded the following conjecture:

BCN Conjecture. Assume that Ω is a smooth domain with R𝑛\Ω̄ connected, then the existence of a bounded
positive solution to problem (1.1) for some Lipschitz function 𝑓 implies that Ω is either a ball, a half-space, a
generalized cylinder 𝐵𝑘 × R𝑛−𝑘 (𝐵𝑘 is a ball in R𝑘 ), or the complement of one of them.
Such conjecture, in the case of exterior domains, is motivated by the works of Reichel [17], Aftalion and

Busca [1]. BCN Conjecture actually has motivated various interesting works. For example, Farina and Valdinoci
[11] obtained some natural assumptions to conclude thatΩmust be a half-space and 𝑢 is a function only depending
on one variable, when Ω is an epigraph for which the problem (1.1) has a solution. Furthermore, in [18] the BCN
conjecture is proved for some classes of nonlinearities 𝑓 ; the work [28] gives a complete classification of solutions
to harmonic overdetermined problems in the plane; Ros, Ruiz and Sicbaldi in [19] proved that if 𝜕Ω is connected
and unbounded in dimension 2, then Ω is a half-plane.

The conjecture has been answered with a counterexample for 𝑛 ≥ 3 in [25], where the second author constructed
a domain by a periodic perturbation of the straight cylinder 𝐵𝑛 × R for which there exists a periodic solution to
the problem (1.1) for 𝑓 (𝑢) = _𝑢, _ > 0. More precisely, such domains, as shown in [22], belong to a 1-parameter
family {Ω𝑠}𝑠∈(−𝜖 , 𝜖 ) and are given by

Ω𝑠 =

{
(𝑥, 𝑡) ∈ R𝑛 × R : |𝑥 | < 1 + 𝑠 cos

(
2𝜋
𝑇𝑠
𝑡

)
+𝑂 (𝑠2)

}

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 344–351)

CEDYA/CMA 344 ISBN 978-84-18482-21-2



where 𝜖 is a small constant, 𝑇𝑠 = 𝑇0+𝑂 (𝑠) and𝑇0 depends only on the dimension 𝑛. In [10], Fall, Minlend andWeth
provided the same kind of work for 𝑓 (𝑢) = 1. In [8] similar solutions are found for the Allen-Cahn nonlinearity
𝑓 (𝑢) = 𝑢−𝑢3, but in domains that are perturbations of a dilated straight cylinder, i.e. perturbations of (𝜖−1 𝐵𝑛) ×R
for 𝜖 small. In addition, Ros, Ruiz and Sicbaldi [20] found a perturbation of the complement of a ball 𝐵𝑅 that
supports a bounded solution to the problem (1.1), when 𝑓 is a nonlinear function 𝑓 (𝑢) = 𝑢𝑝 − 𝑢.
The aim of this paper is to perform such a construction under somewhat minimal assumptions on the nonlinearity

𝑓 (𝑢). For technical reasons, we need the following assumptions:
Assumption 1: There exists a positive radially symmetric solution 𝜙1 ∈ 𝐶2,𝛼 (𝐵) of the problem{

Δ𝜙1 + 𝑓 (𝜙1) = 0 in 𝐵
𝜙1 = 0 on 𝜕𝐵

(1.2)

with 𝜕a (𝑥) ≠ 0 for 𝑥 ∈ 𝜕𝐵.
Assumption 2: Define the linearized operator 𝐿𝐷 : 𝐶2,𝛼0,𝑟 (𝐵) → 𝐶0,𝛼𝑟 (𝐵) by

𝐿𝐷 (𝜙) = Δ𝜙 + 𝑓 ′(𝜙1)𝜙 , (1.3)

where𝐶2,𝛼0,𝑟 (𝐵) and𝐶0,𝛼𝑟 (𝐵) denote the spaces of radial functions in𝐶2,𝛼0 (𝐵) and𝐶0,𝛼 (𝐵) respectively. We assume
that the linearized operator 𝐿𝐷 is non-degenerate; in other words, if 𝐿𝐷 (𝜙) = 0 then 𝜙 = 0.
Observe that by [12], any solution 𝜙1 of (1.2) needs to be a radially symmetric function.
We are now in position to state our main result:

Theorem 1.1 If 𝑛 ≥ 1, 𝑓 : [0, +∞) → R is 𝐶1,𝛼 and assumptions 1 and 2 hold, then there exists a positive number
𝑇∗ and a smooth map

(−𝜖, 𝜖) → 𝐶2,𝛼 (R/Z) × R
𝑠 ↦→ (𝑣𝑠 , 𝑇𝑠)

with 𝑣0 = 0 and 𝑇0 = 𝑇∗ such that the overdetermined problem (1.1) has a solution in the domain

Ω𝑠 =

{
(𝑥, 𝑡) ∈ R𝑛 × R : |𝑥 | < 1 + 𝑣𝑠

(
𝑡

𝑇𝑠

)}
.

The solution 𝑢 = 𝑢𝑠 of problem (1.1) is 𝑇𝑠-periodic in the variable 𝑡 and hence bounded. Moreover
∫ 1

0
𝑣𝑠 (𝑡) 𝑑𝑡 = 0

and
𝑣𝑠 (𝑡) = 𝑠 cos(2𝜋 𝑡) + O(𝑠2) .

As a consequence, for all functions 𝑓 satisfying assumptions 1 and 2 we produce a counterexample to the BCN
conjecture diffeomorphic to a cylinder. Assumptions 1 and 2 hold for example in the following cases among many
others:

(1) If 𝑓 (0) > 0 and 𝑓 ′(𝑠) < _1 for any 𝑠 ∈ (0, +∞), where _1 is the first eigenvalue of the Dirichlet Laplacian
in the unit ball of R𝑛.

(2) If 𝑓 (𝑢) = 𝑢𝑝 − 𝑢, 1 < 𝑝 < 𝑛+2
𝑛−2 if 𝑛 > 2, see [15].

(3) If 𝑓 (𝑢) = _𝑒𝑢 and _ ∈ (0, _∗), _∗ > 0 receives the name of extremal value, see for instance [9].
Obviously, our theorem covers the result in [10] and is complementary to the results in [22, 25].

2. Some details
The operator 𝐿𝐷 defined in Assumption 2 has a diverging sequence of eigenvalues 𝛾𝐷 𝑗 , hence there are only a
finite number 𝑙 of them which are negative, i.e.

𝛾𝐷1 < 𝛾𝐷2 < · · · < 𝛾𝐷𝑙 < 0, 𝛾𝐷𝑙+1 > 0.

Actually, these eigenvalues 𝛾𝐷 𝑗 are all simple.
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Let 𝑧 𝑗 ∈ 𝐶2,𝛼0,𝑟 (𝐵) (normalized by ‖𝑧 𝑗 ‖𝐿2 = 1) be the eigenfunctions corresponding to the eigenvalues 𝛾𝐷 𝑗 , i.e.{
Δ𝑧 𝑗 + 𝑓 ′(𝜙1)𝑧 𝑗 + 𝛾𝐷 𝑗 𝑧 𝑗 = 0 in 𝐵
𝑧 𝑗 = 0 on 𝜕𝐵

. (2.1)

As is well known, the operator 𝐿𝐷 is related to the quadratic form

𝑄𝐷 : 𝐻10,𝑟 (𝐵) → R, 𝑄𝐷 (𝜙) :=
∫
𝐵

( |∇𝜙|2 − 𝑓 ′(𝜙1)𝜙2) .
The first eigenvalue of 𝐿𝐷 is given by

𝛾𝐷1 = inf
{
𝑄𝐷 (𝜙) : ‖𝜙‖𝐿2 (𝐵) = 1

}
.

We also define the quadratic form

𝑄 : 𝐻1𝑟 (𝐵) → R, 𝑄(𝜓) :=
∫
𝐵

( |∇𝜓 |2 − 𝑓 ′(𝜙1)𝜓2) + 𝑐 𝜔𝑛𝜓(1)2,
where 𝜔𝑛 is the area of S𝑛−1 and 𝑐 = −𝜙′′1 (1) = 𝑛 − 1 +

𝑓 (0)
𝜙′1 (1)

.

Observe that,
𝑄 |𝐻 10,𝑟 (𝐵) = 𝑄𝐷 .

Analogously, we can define

𝛾1 = inf
{
𝑄(𝜓) : ‖𝜓‖𝐿2 (𝐵) = 1

}
. (2.2)

It is rather standard to show that 𝛾1 is achieved by the minimizer 𝜓1, and that 𝛾1 is simple, so 𝜓1 is uniquely
determined up to a sign. In addition, there holds: 𝛾1 < min{0, 𝛾𝐷1 }. In fact, it is evident that 𝛾1 ≤ 𝛾𝐷1 from the
variational characterization of the eigenvalues. The strict inequality follows because of the uniqueness of solutions
of Initial Vale Problems for ODEs (see [21] for details).
Next, we will consider the Dirichlet problem for the linearized equation in a straight cylinder for periodic

functions, namely, {
Δ𝜓 + 𝑓 ′(𝜙1)𝜓 = 0 in 𝐵 × R
𝜓(𝑥) = 0 on (𝜕𝐵) × R (2.3)

where 𝜓(𝑥, 𝑡) is 𝑇-periodic in the variable 𝑡.
Define:

𝐶𝑇1 = 𝐵 × R/𝑇Z.
Hence (2.3) is just the linearization of the problem:{

Δ𝜙 + 𝑓 (𝜙) = 0 in 𝐶𝑇1
𝜙 = 0 on 𝜕𝐶𝑇1

. (2.4)

If 𝜙1 is the solution of Problem (1.2), then the function 𝜙1 (𝑥, 𝑡) = 𝜙1 (𝑥) (we use a natural abuse of notation)
solves (2.4). Define the linearized operator 𝐿𝑇𝐷 : 𝐶

2,𝛼
0,𝑟 (𝐶𝑇1 ) → 𝐶𝛼𝑟 (𝐶𝑇1 ) (associated to Problem (2.4)) by

𝐿𝑇𝐷 (𝜙) = Δ𝜙 + 𝑓 ′(𝜙1)𝜙,
and consider the eigenvalue problem

𝐿𝑇𝐷 (𝜙) + 𝜏𝜙 = 0.

Then the functions 𝑧 𝑗 (𝑥, 𝑡) = 𝑧 𝑗 (𝑥) from (2.1) solve the problem{
Δ𝑧 𝑗 + 𝑓 ′(𝜙1)𝑧 𝑗 + 𝜏𝑗 𝑧 𝑗 = 0 in 𝐶𝑇1
𝑧 𝑗 = 0 on 𝜕𝐶𝑇1

.

Let us define the quadratic form 𝑄𝑇𝐷 : 𝐻
1
0,𝑟 (𝐶𝑇1 ) → R related to 𝐿𝑇𝐷 ,

𝑄𝑇𝐷 (𝜓) :=
∫
𝐶𝑇1

( |∇𝜓 |2 − 𝑓 ′(𝜙1)𝜓2) .
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We will also need to define the quadratic form 𝑄𝑇 : 𝐻1𝑟 (𝐶𝑇1 ) → R,

𝑄𝑇 (𝜓) :=
∫
𝐶𝑇1

( |∇𝜓 |2 − 𝑓 ′(𝜙1)𝜓2) + 𝑐
∫
𝜕𝐶𝑇1

𝜓2.

In next proposition we study the behavior of these quadratic forms:

Proposition 2.1 Define:

𝛼 = inf

{
𝑄𝑇𝐷 (𝜓) : 𝜓 ∈ 𝐻10,𝑟 (𝐶𝑇1 ), ‖𝜓‖𝐿2 = 1,

∫
𝐶𝑇1

𝜓 𝑧 𝑗 = 0, 𝑗 = 1, . . . 𝑙.

}
,

𝛽 = inf

{
𝑄𝑇 (𝜓) : 𝜓 ∈ 𝐻1𝑟 (𝐶𝑇1 ), ‖𝜓‖𝐿2 = 1,

∫
𝜕𝐶𝑇1

𝜓 = 0,
∫
𝐶𝑇1

𝜓 𝑧 𝑗 = 0, 𝑗 = 1, . . . 𝑙.

}
,

then
𝛼 = min

{
𝛾𝐷𝑙+1 , 𝛾𝐷1 +

4𝜋2

𝑇2

}
, 𝛽 = min

{
𝛾𝐷𝑙+1 , 𝛾1 +

4𝜋2

𝑇2

}
.

Moreover, those infima are achieved. If 𝛽 = 𝛾1 + 4𝜋2𝑇 2 , the minimizer is equal to

𝜓1 (𝑥) cos
(
2𝜋
𝑇
(𝑡 + 𝛿)

)
,

where 𝜓1 is the minimizer for (2.2) and 𝛿 ∈ [0, 1].

Proof Just by defining �̄�(𝑥) =
∫ 𝑇
0 𝜓(𝑥, 𝑡)𝑑𝑡 and the Poincaré-Wirtinger inequality, see [21] for details. �

Corollary 2.2 Define 𝑇 as:

𝑇 =

{
2𝜋√−𝛾𝐷1

if 𝛾𝐷1 < 0,
+∞ if 𝛾𝐷1 > 0.

(2.5)

Then, for 𝑇 ∈ (0, 𝑇), we have that 𝑄𝑇𝐷 (𝜓) > 0 for any 𝜓 ∈ 𝐻10,𝑟 (𝐶𝑇1 ) such that
∫
𝐶𝑇1

𝜓𝑧 𝑗 = 0, 𝑗 = 1, 2, · · · , 𝑙 . As a
consequence, 𝐿𝑇𝐷 is nondegenerate.

Defining the cylinder-type domain

𝐶𝑇1+𝑣 =
{
(𝑥, 𝑡) ∈ R𝑛 × R/Z : 0 ≤ |𝑥 | < 1 + 𝑣

( 𝑡
𝑇

)}
,

we start with the following result, that allows us to obtain a solution for the Dirichlet problem in the domain 𝐶𝑇1+𝑣
and its smooth dependence on 𝑇 and 𝑣.

Proposition 2.3 Assume that 𝑇 < 𝑇, where 𝑇 is given by (2.5). Then, for all 𝑣 ∈ 𝐶2,𝛼𝑒 (R/Z) whose norm is
sufficiently small, the problem {

Δ𝜙 + 𝑓 (𝜙) = 0 in 𝐶𝑇1+𝑣
𝜙 = 0 on 𝜕𝐶𝑇1+𝑣

(2.6)

has a unique positive solution 𝜙 = 𝜙1+𝑣,𝑇 ∈ 𝐶2,𝛼 (𝐶𝑇1+𝑣 ). Moreover, 𝜙 depends smoothly on the function 𝑣, and
𝜙 = 𝜙1 when 𝑣 ≡ 0.

Proof Following the nondegeneracy of the Dirichlet problem, please refer to [21] for details. �

For any 𝑇 < 𝑇 , there exists a neighborhood U of 0 in 𝐶2,𝛼𝑒,𝑚 (R/Z) where the following Dirichlet-to-Neumann
operator is well defined and 𝐶1:

𝐺 : U × (0, 𝑇) → 𝐶1,𝛼𝑒,𝑚 (R/Z),

𝐺 (𝑣, 𝑇) (𝑡) = 𝜕𝜙1+𝑣,𝑇
𝜕a

����
𝜕𝐶𝑇1+𝑣

(𝑇 𝑡) − 1
Vol(𝜕𝐶𝑇1+𝑣 )

∫
𝜕𝐶𝑇1+𝑣

𝜕𝜙1+𝑣,𝑇
𝜕a

, (2.7)

where 𝜙(𝑣, 𝑇) is the solution of (2.6) verified by Proposition 2.3.
We will next compute the Fréchet derivative of the operator 𝐺. For so, we will need the following lemmas.
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Lemma 2.4 Assume that 𝑇 < 𝑇, where 𝑇 is given by (2.5). Then for all 𝑣 ∈ 𝐶2,𝛼𝑒 (R/Z), there exists a unique
solution 𝜓𝑣,𝑇 to the problem {

Δ𝜓𝑣,𝑇 + 𝑓 ′(𝜙1)𝜓𝑣,𝑇 = 0 in 𝐶𝑇1
𝜓𝑣,𝑇 = 𝑣(·/𝑇) on 𝜕𝐶𝑇1

. (2.8)

Proof Let𝜓0 (𝑥, 𝑡) ∈ 𝐶2,𝛼 (𝐶𝑇1 ) such that𝜓0 |𝜕𝐶𝑇1 = 𝑣(·/𝑇). If we set𝜔 = 𝜓𝑣,𝑇 −𝜓0, the problem (2.8) is equivalent
to the problem {

Δ𝜔 + 𝑓 ′(𝜙1)𝜔 = −
(
Δ𝜓0 + 𝑓 ′(𝜙1)𝜓0

)
in 𝐶𝑇1

𝜔 = 0 on 𝜕𝐶𝑇1
.

Observe that the right hand side of the above equation is in𝐶𝛼𝑟 (𝐶𝑇1 ). Recall the Corollary 2.2, 𝐿𝑇𝐷 is nondegenerate.
Hence it is a bijection and the result follows. �

Lemma 2.5 Let 𝑣 ∈ 𝐶2,𝛼𝑒,𝑚(R/Z) and 𝜓𝑣 = 𝜓𝑣,𝑇 ∈ 𝐶2,𝛼𝑟 (𝐶𝑇1 ) be the solution of (2.8). Then∫
𝐶𝑇1

𝜓𝑣 𝑧 𝑗 = 0,
∫
𝜕𝐶𝑇1

𝜕𝜓𝑣
𝜕a

= 0 , 𝑗 = 1, 2, · · · , 𝑙 .

Proof We can get these results by the straight computation, refer to [21]. �

For 𝑇 < 𝑇 we can define the linear and continuous operator 𝐻𝑇 : 𝐶2,𝛼𝑒,𝑚 (R/Z) → 𝐶1,𝛼𝑒,𝑚 (R/Z) by

𝐻𝑇 (𝑣) (𝑡) = 𝜕a𝜓𝑣 (𝑇𝑡) + 𝑐 𝑣,

and 𝜓𝑣 = 𝜓𝑣,𝑇 as in Lemma 2.4. We present some properties of 𝐻𝑇 .

Lemma 2.6 For any 𝑇 < 𝑇, the operator

𝐻𝑇 : 𝐶2,𝛼𝑒,𝑚(R/Z) → 𝐶1,𝛼𝑒,𝑚(R/Z)

is a linear essentially self-adjoint operator and has closed range. Moreover, it is also a Fredholm operator of index
zero.

Proof By the straight computation, we can get that the operator 𝐻𝑇 is a linear essentially self-adjoint operator.
And the rest results follow from [3,14]. More details refer to [21]. �

We show now that the linearization of the operator 𝐺 with respect to 𝑣 at 𝑣 = 0 is given by 𝐻𝑇 , up to a constant.

Proposition 2.7 The map 𝐺 is 𝐶1, and 𝐷𝑣 (𝐺) |𝑣=0 = −𝜙′1 (1) 𝐻𝑇 .

Proof By the Proposition 2.3 (the function 𝜙(𝑣, 𝑇) depends smoothly on 𝑣), the operator 𝐺 is 𝐶1. The linear
operator obtained by the directional derivative of linearizing 𝐺 with respect to 𝑣, computed at (𝑣, 𝑇), is given by

𝐺 ′(𝑤) = lim
𝑠→0

𝐺 (𝑠𝑤, 𝑇) − 𝐺 (0, 𝑇)
𝑠

= lim
𝑠→0

𝐺 (𝑠𝑤, 𝑇)
𝑠

.

Let 𝑣 = 𝑠𝑤, for 𝑦 ∈ R𝑛 and 𝑡 ∈ R, we consider the parameterization of 𝐶𝑇1+𝑣 given by

𝑌 (𝑦, 𝑡) :=
((
1 + 𝑣

( 𝑡
𝑇

))
𝑦, 𝑡

)
.

Let 𝑔 be the induced metric such that 𝜙 = 𝑌 ∗𝜙 (smoothly depending on the real parameter 𝑠) solves the problem{
Δ𝑔𝜙 + 𝑓 (𝜙) = 0 in 𝐶𝑇1
𝜙 = 0 on 𝜕𝐶𝑇1

.

We remark that 𝜙1 = 𝑌 ∗𝜙1 is the solution of

Δ𝑔𝜙1 + 𝑓 (𝜙1) = 0

in 𝐶𝑇1 , and
𝜙1 (𝑦, 𝑡) = 𝜙1

((1 + 𝑠𝑤)𝑦, 𝑡)
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on 𝜕𝐶𝑇1 . Let 𝜙 = 𝜙1 + �̂�, we can get that{
Δ𝑔�̂� + 𝑓 (𝜙1 + �̂�) − 𝑓 (𝜙1) = 0 in 𝐶𝑇1
�̂� = −𝜙1 on 𝜕𝐶𝑇1

. (2.9)

Obviously, �̂� is a smooth function of 𝑠. When 𝑠 = 0, we have 𝜙 = 𝜙1. Then, �̂� = 0 and 𝜙1 = 𝜙1 as 𝑠 = 0.We set

¤𝜓 = 𝜕𝑠�̂� |𝑠=0.
Differentiating (2.9) with respect of 𝑠 and evaluating the result at 𝑠 = 0, we have{

Δ ¤𝜓 + 𝑓 ′(𝜙1) ¤𝜓 = 0 in 𝐶𝑇1
¤𝜓 = −𝜙′1 (1)𝑤 on 𝜕𝐶𝑇1

where 𝑟 := |𝑦 |. Then ¤𝜓 = −𝜙′1 (1) 𝜓𝑤 where 𝜓𝑤 is as given by Lemma 2.4 (with �̃� = 𝑤). Then, we can write

𝜙(𝑥, 𝑡) = 𝜙1 (𝑥, 𝑡) + 𝑠 ¤𝜓(𝑥, 𝑡) + O(𝑠2).
In particular, in a neighborhood of 𝜕𝐶𝑇1 we have

𝜙(𝑦, 𝑡) = 𝜙1
((1 + 𝑠𝑤)𝑦, 𝑡) + 𝑠 ¤𝜓(𝑦, 𝑡) + O(𝑠2)

= 𝜙1 (𝑦, 𝑡) + 𝑠
(
𝑤𝑟𝜕𝑟𝜙1 + ¤𝜓(𝑦, 𝑡)

) + O(𝑠2).
In order to complete the proof of the result, it is enough to calculate the normal derivation of the function 𝜙 when
the normal is calculated with respect to the metric 𝑔. By using cylindrical coordinates (𝑦, 𝑡) = (𝑟𝑧, 𝑡) where 𝑟 > 0
and 𝑧 ∈ S𝑛−1, then the metric 𝑔 can be expanded in 𝐶𝑇1 as

𝑔 = (1 + 𝑠𝑤)2𝑑𝑟2 + 2𝑠𝑟𝑤′(1 + 𝑠𝑤)𝑑𝑟𝑑𝑡 + (
1 + 𝑠2𝑟2 (𝑤′)2)𝑑𝑡2 + 𝑟2 (1 + 𝑠𝑤)2 ◦ℎ

where
◦
ℎ is the metric on S𝑛−1 induced by the Euclidean metric. It follows from this expression that the unit normal

vector fields to 𝜕𝐶𝑇1 for the metric 𝑔 is given by

�̂� =
((1 + 𝑠𝑤)−1 + O(𝑠2))𝜕𝑟 + O(𝑠)𝜕𝑡 .

By this, we conclude that
𝑔(∇𝜙, �̂�) = 𝜕𝑟𝜙1 + 𝑠

(
𝑤𝜕2𝑟 𝜙1 + 𝜕𝑟 ¤𝜓

) + O(𝑠2)
on 𝜕𝐶𝑇1 . From the fact that 𝜕𝑟𝜙1 is constant and the fact that the term 𝑤𝜕

2
𝑟 𝜙1 + 𝜕𝑟 ¤𝜓 has mean 0 on 𝜕𝐶𝑇1 we obtain

𝐺 ′(𝑤) = 𝜕𝑟 ¤𝜓 + 𝜙′′1 (1) 𝑤 = −𝜙′1 (1) 𝜕𝑟𝜓𝑤 + 𝜙′′1 (1) 𝑤 = −𝜙′1 (1) 𝐻𝑇 (𝑤).
This concludes the proof of the result. �

We now define the first eigenvalue of the operator 𝐻𝑇 as

𝜎(𝑇) = inf
{ ∫ 1

0
𝐻𝑇 (𝑣)𝑣 : 𝑣 ∈ 𝐶2,𝛼𝑒,𝑚 (R/Z) ,

∫ 1

0
𝑣2 = 1

}
.

By the Divergence formula, we have

𝑄𝑇 (𝜓𝑣 ) = 𝑇𝜔𝑛
∫ 1

0
𝐻𝑇 (𝑣)𝑣.

Next lemma characterizes the eigenvalue 𝜎(𝑇) in terms of the quadratic form 𝑄𝑇 .

Lemma 2.8 For any 𝑇 < 𝑇 , we have

𝜎(𝑇) = min
{
1
𝑇
𝑄𝑇 (𝜓) : 𝜓 ∈ 𝐸,

∫
𝜕𝐶𝑇1

𝜓2 = 1

}
,

where

𝐸 =

{
𝜓 ∈ 𝐻1𝑟 (𝐶𝑇1 ) :

∫
𝜕𝐶𝑇1

𝜓 = 0,
∫
𝐶𝑇1

𝜓𝑧 𝑗 = 0, 𝑗 = 1, . . . 𝑙

}
. (2.10)

Moreover, the infimum is attained.
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Proof Define `1 := inf
{
𝑄𝑇𝐷 (𝜓) : 𝜓 ∈ 𝐸,

∫
𝜕𝐶𝑇1

𝜓2 = 1

}
∈ [−∞, +∞). We show that `1 is achieved by contradic-

tion. Then we can get
∫ 1
0 𝑣

2 = 1
𝑇 𝜔𝑛

, 𝐽𝑇 (𝑣) = 1
𝑇 𝜔𝑛

𝑄𝑇 (𝜓) = 1
𝑇 𝜔𝑛

`1, refer to [21]. �

We are now in position to prove the following useful result:

Proposition 2.9 There exists a real positive number 𝑇∗ = 2𝜋√−𝛾1 < 𝑇 , then

(i) if 𝑇 < 𝑇∗, then 𝜎(𝑇) > 0;
(ii) if 𝑇 = 𝑇∗, then 𝜎(𝑇) = 0;
(iii) if 𝑇 > 𝑇∗, then 𝜎(𝑇) < 0.
Moreover, Ker(𝐻𝑇∗ ) = R cos(2𝜋𝑡). In particular, dim Ker(𝐻𝑇∗ ) = 1.
Proof It follows from Lemma 2.8 and Proposition 2.1, taking into account that 𝐶2,𝛼𝑒,𝑚 (R/Z) contains only even
functions. �

Now, we are ready to prove that the operator 𝐺 satisfies the hypotheses of the Crandall-Rabinowitz bifurcation
theorem (see [7, 13, 24]). And then, Theorem 1.1 follows immediately from the following proposition and the
Crandall-Rabinowitz theorem.

Proposition 2.10 There exists a real number 𝑇∗ such that the linearized operator 𝐷𝑣𝐺 (0, 𝑇∗) has 1-dimensional
kernel and can be spanned by the function 𝑣0 = cos(2𝜋𝑡),

Ker 𝐷𝑣𝐺 (0, 𝑇∗) = R𝑣0.
The cokernel of 𝐷𝑣𝐺 (0, 𝑇∗) is also 1-dimensional, and

𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) ∉ Im 𝐷𝑣𝐺 (0, 𝑇∗).
Proof Recall from the Proposition 2.7, we know that 𝐷𝑣𝐺 (0, 𝑇∗) = −𝜙′1 (1)𝜙1𝐻𝑇∗ . Then we have

Im 𝐷𝑣𝐺 (0, 𝑇∗) = Im 𝐻𝑇∗ .
By the Proposition 2.9, we have that the kernel of the linearized operator 𝐷𝑣𝐺 (0, 𝑇∗) has dimension 1 and can be
spanned by the function 𝑣0 = cos(2𝜋𝑡),

Ker 𝐷𝑣𝐺 (0, 𝑇∗) = R 𝑣0.
Then, codim Im (𝐻𝑇∗ ) = 1 follows from the fact that 𝐻𝑇 is a Fredholm operator of index zero by Lemma 2.6.
Here, we are ready to prove 𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) ∉ Im 𝐷𝑣𝐺 (0, 𝑇∗). Taking b ∈ Im 𝐷𝑣𝐺 (0, 𝑇∗) = Im (𝐻𝑇∗ ), b =

𝐻𝑇∗ (𝑣), then we have ∫ 1

0
b𝑣0 =

∫ 1

0
𝐻𝑇∗ (𝑣)𝑣0 =

∫ 1

0
𝐻𝑇∗ (𝑣0)𝑣 = 0,

because of the fact 𝐻𝑇∗ (𝑣0) = 0. We have

Im (𝐻𝑇∗ ) =
{
b :

∫ 1

0
b𝑣0 = 0

}
.

Notice that𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) = −𝜙′1 (1)𝐷𝑇 |𝑇 =𝑇∗𝐻𝑇 (𝑣0), then, in order to prove𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) ∉ Im 𝐷𝑣𝐺 (0, 𝑇∗),
we just need to prove that ∫ 1

0

(
𝐷𝑇 |𝑇 =𝑇∗𝐻𝑇 (𝑣0)

)
𝑣0 ≠ 0.

Actually, ∫ 1

0

(
𝐷𝑇 |𝑇 =𝑇∗𝐻𝑇 (𝑣0)𝑣0

)
=
𝑑

𝑑𝑇

���
𝑇 =𝑇∗

∫ 1

0
𝐻𝑇 (𝑣0)𝑣0 = 1

𝜔𝑛

𝑑

𝑑𝑇

���
𝑇 =𝑇∗

(
1
𝑇
𝑄𝑇 (𝜓𝑣0 , 𝜓𝑣0 )

)

=
1
𝜔𝑛

𝑑

𝑑𝑇

���
𝑇 =𝑇∗

(
1
2
𝑄(𝜓1, 𝜓1) + 2𝜋

2

𝑇2

∫
𝐵
𝜓21

)
= − 4𝜋

2

𝜔𝑛𝑇
3∗

∫
𝐵
𝜓21 ≠ 0,

where the third equality is given by the straight computation of𝑄𝑇 (𝜓, 𝜓)with the function𝜓𝑣0 (𝑥, 𝑡) = 𝜓1 (𝑥) cos( 2𝜋𝑡𝑇 ).
�
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