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Abstract: In the context of soil pollution, plants suffer stress when exposed to extreme concentrations
of potentially toxic elements (PTEs). The alterations to the plants caused by such stressors can be
monitored by multispectral imagery in the form of vegetation indices, which can inform pollution
management strategies. Here we combined geochemistry and remote sensing techniques to offer
a preliminary soil pollution assessment of a vast abandoned spoil heap in the surroundings of
La Soterraña mining site (Asturias, Spain). To study the soil distribution of the PTEs over time,
twenty-seven soil samples were randomly collected downstream of and around the main spoil heap.
Furthermore, the area was covered by an unmanned aerial vehicle (UAV) carrying a high-resolution
multispectral camera with four bands (red, green, red-edge and near infrared). Multielement analysis
revealed mercury and arsenic as principal pollutants. Two indices (from a database containing up
to 55 indices) offered a proper correlation with the concentration of PTEs. These were: CARI2,
presenting a Pearson Coefficient (PC) of 0.89 for concentrations >200 mg/kg of As; and NDVIg, PC of
−0.67 for >40 mg/kg of Hg. The combined approach helps prediction of those areas susceptible to
greatest pollution, thus reducing the costs of geochemical campaigns.

Keywords: soil pollution; mining; multispectral images; UAV; vegetation index

1. Introduction

Mining and industrial activities commonly release contaminants, which in turn affect the quality
of environmental compartments [1,2]. In this regard, pollution has been reported not only in urban
zones [3,4] but also in more rural or natural areas, where the quality of sensitive ecosystems is being
seriously compromised [5]. Although industries are not usually located in rural areas, this is not true
for mining operations as the ores of interest are commonly found in these areas. In the case of mining
activities in hilly regions and subsequent waste disposal, residues are exposed to hard weathering
and a challenging geomorphology. Therefore, pollutants can be widely dispersed, and the costs and
uncertainties of geochemical campaigns may be very high [6].

Given these considerations and in the context of soil pollution studies, there is a need to find
appropriate non-invasive approaches that reduce the cost and time required for these campaigns.
Remote sensing techniques are widely used in natural environment research, such as studies on forest
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studies [7–9], relative climate change [10–12], topography [13–17], and precision agriculture [18,19],
among others. Of note, in recent years, some studies have combined techniques of remote sensing
and geochemistry, especially in areas affected by heavy metal pollution, either with satellites or
high-altitude manned aircrafts [20–23] or unmanned aerial vehicles (UAVs) [24–28]. Remote sensing
uses electromagnetic radiation to obtain information about an object or phenomenon without involving
physical contact [29]. Data are gathered through measurements of electromagnetic reflectance and
different frequencies [30]. Within this discipline, UAVs are one of the supports used for the development
of remote sensing tools for soil applications, with most of the required information being collected by
means of optical sensors, which have also been recently used in geological applications [31,32].

To date, studies addressing the electromagnetic spectrum have been based on the use of proximal
or airborne sensors. However, several authors have recently used proximal aerial sensors, also known
as UAVs, for this purpose, due to the advantages they present over satellite, and high-altitude
manned aircrafts, such as short revist time and high spatial resolution [33]. This approach has also
found applications in soil contamination research [33,34]. The direct study of contaminants in soil
through remote sensing is complex; therefore, indirect techniques are used, among which vegetation as
a bioindicator of soil condition stands out [30]. One of the most common ways to analyze vegetation
with multispectral remote sensors is through vegetation indices, which are simple algebraic operations
between the different bands of the electromagnetic spectrum [35–37]. In this regard, Shabou et al. [38]
used the NDVI and MIR indices over test fields to achieve bare soil measurements from satellite images.

With respect to target pollutants, metal mining is a frequent source of potentially toxic elements (PTEs).
These elements are characterized not only by their toxicity, but also by their capacity to bioaccumulate,
biomagnify and persist in the food chain [39], giving rise to multiple health and environmental
problems [40]. Among PTEs, mercury (Hg) is highly toxic to organisms, even at very low concentrations,
especially when present in methyl-Hg form [41]. In this context, in 2005, the EU promoted an initiative
to reduce the emissions of this element. Later, in 2017, the Minamata Convention, a global treaty to
regulate the emissions and distribution of this toxic element, was approved. This treaty encourages
countries to reduce and monitor the different sources of Hg pollution [42]. Since then, various studies
have addressed the environmental impact of Hg mining [43–45].

Historically, Spain has been one of the world’s largest producers of Hg, especially the Almadén
district [46], the largest Hg deposit in the world. In the case of Asturias (NW Spain), numerous cinnabar
deposits have been mined, the remains of which are now scattered throughout the region mainly as
spoil heaps enriched in Hg-As waste. The impact of some of these mining operations has been examined
in detail. As shown in the studies carried out at the mines of El Terronal [47] and Caunedo [43], and at
the Muñón-Cimero complex (Soterraña), which is the focus of the present study [48,49]. Here we
describe an innovative approach that combines a classical geochemical campaign and a UAV-based
multispectral airborne camera to monitor the impact of Hg-As spoil heaps. The main objective of this
study is a first approach to the possibility of evaluating As or Hg levels in soil polluted areas through
low-cost multispectral sensors.

2. Materials and Methods

In order to summarize and synthetize the procedures followed, the different steps carried out
along the study (data collection, geochemistry and remote sensing techniques, statistical analysis, etc.)
are shown in Figure 1.
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method was used on a low temperature hydrothermal epigenetic type deposit, in which the main 
mineral paragenesis comprised cinnabar, realgar and oropiment, with important deposits of 
arsenopyrite, marcasite and pyrite hosted in fractured limestones and shales [48]. Once the materials 
had been extracted, the ore was treated at La Soterraña mine itself, together with the material of other 
smaller mines located in the province. For this purpose, rotary kilns, condensers and coolers were 
used, as well as other equipment typical of Hg metallurgy. 

The tailings generated by ore mining and processing were indiscriminately dumped in a spoil 
heap, which is the principal focus of pollution. At present, the mechanical dispersion of this material 
is the main cause of pollutant distribution in the surrounding soils, in addition to the processes of 
oxidation and leaching. This main spoil heap is located over layers of limestone and shale, along an 
average slope of 30°. There is virtually no vegetation on the heap due to the high concentrations of 
metals and its steep slope. Downstream of the heap, herbaceous colonies of Centaurea nigra and 
Equisetum telmateia predominate. These species are of special interest due to their capacity to 
bioaccumulate Hg and As [49,50]. In fact, E. telmateia and C. nigra showed notable Bioaccumulation 
Indices (BAC); BACAs = 14.39 and BACHg = 76.95, and BACAs = 2.30 and BACHg = 4.84 respectively [51]. 
In the surroundings of the spoil heap, there are also notable tree species, including Betula celtibérica, 
Quercus robur and Castanea sativa. 
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2.1. Context of the Study Area: Activity in La Soterraña, Geology and Vegetation

The main activity of the Hg mountain mine of La Soterraña (Asturias, Spain. Figure 2) took
place between the 1940s and the mid-1970s, the latter decade marking the crisis of the Hg sector.
During its time of operation, ore mining and processing were carried out onsite. The room and pillar
mining method was used on a low temperature hydrothermal epigenetic type deposit, in which the
main mineral paragenesis comprised cinnabar, realgar and oropiment, with important deposits of
arsenopyrite, marcasite and pyrite hosted in fractured limestones and shales [48]. Once the materials
had been extracted, the ore was treated at La Soterraña mine itself, together with the material of other
smaller mines located in the province. For this purpose, rotary kilns, condensers and coolers were used,
as well as other equipment typical of Hg metallurgy.

The tailings generated by ore mining and processing were indiscriminately dumped in a spoil heap,
which is the principal focus of pollution. At present, the mechanical dispersion of this material is
the main cause of pollutant distribution in the surrounding soils, in addition to the processes of
oxidation and leaching. This main spoil heap is located over layers of limestone and shale, along an
average slope of 30◦. There is virtually no vegetation on the heap due to the high concentrations
of metals and its steep slope. Downstream of the heap, herbaceous colonies of Centaurea nigra
and Equisetum telmateia predominate. These species are of special interest due to their capacity to
bioaccumulate Hg and As [49,50]. In fact, E. telmateia and C. nigra showed notable Bioaccumulation
Indices (BAC); BACAs = 14.39 and BACHg = 76.95, and BACAs = 2.30 and BACHg = 4.84 respectively [51].
In the surroundings of the spoil heap, there are also notable tree species, including Betula celtibérica,
Quercus robur and Castanea sativa.
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2.2. UAV Flight, Sampling, Preparation and Chemical Determinations

The first step consisted of designing the coverage of UAV flights. For the purpose of this study,
we selected a surface area of 25 ha downstream of the spoil heap (Figure 1), which is the area most
affected by erosion and washing by surface runoff.

The UAV flight was carried out with a BlueGrass Multiespectal model UAV (Parrot SA, Paris,
France) which incorporates a Parrot Sequoia plus camera. This camera includes a multispectral sensor,
with four spectral bands: green, red, red edge and near infrared, and a sunlight sensor, which provides
absolute reflectance measurements without the need of calibration. The use of this camera with
the software PIX4D Mapper (Pix4D S.A. Prilly, Switzerland) allowed to obtain the optimal results,
as reflected by other authors [52–54]. With this procedure, a reduction in the time of the photogrammetric
survey and data processing is achieved. The photogrammetric survey is carried out with a transversal
and longitudinal reception of 70%, due to the strong orography, and with an average height of 90 m.
The date of the flight was chosen based on the vegetation conditions during the early spring of 2019 in
order to obtain radiometric information of the herbaceous vegetation when younger; in addition, in this
period of the year soil was not affected by extreme weather conditions such as droughts, or alterations
due to agro-livestock activities such as mowing or cattle grazing.

In turn, a geochemical campaign composed of a total of 27 soil samples was designed. The samples
were gathered randomly. Ten of these samples were collected within the limits of the area covered by
the UAV flight (Figure 2), while the others were gathered outside this area in order to assess the degree
of pollution in the surroundings for future research purposes. Each sample comprised five increments
of the first 20 cm of the soil by means of a Dutch Edelman probe, forming a 1-m edge square and its
central point to improve representativeness.

Sample preparation started with in-situ sieving of the soil through 20-mm mesh to remove large
particles. The finer fraction was then placed in sterilized plastic bags and stored at 4 ◦C until being taken
to the laboratory. Here, the fractions were air-dried at room temperature to prevent the evaporation of
Hg and quartered to maintain sample representativeness. Finally, for each sample, 1 g was ground



ISPRS Int. J. Geo-Inf. 2020, 9, 739 5 of 14

in an agate mortar to a particle size of < 100 µm and sent to an ISO 9002 and ISO-17025 accredited
laboratory in Vancouver (BC, Canada). The concentrations of the following PTEs were determined
after aqua regia extraction and ICP-MS (in parenthesis, their respective detection limits): As (0.5 ppm);
Cd (0.1 ppm); Co (0.1 ppm); Cr (1 ppm); Cu (0.2 ppm); Hg (0.01 ppm); Mn (1 ppm); Mo (0.1 ppm); Ni
(0.1 ppm); Pb (0.1 ppm); Sb (0.1 ppm); Tl (0.1 ppm); V (2 ppm); and Zn (1 ppm).

2.3. Statistical Analysis and Graphical Representations

The geochemical data were analyzed by means of descriptive statistics and compared with
the official Risk-Based Soil Screening Levels (RBSSLs) [55]. Moreover, Pearson’s Coefficient between
elements was also calculated. These operations allowed us to identify the main pollutants in the study area.
Additionally, the concentration of As and Hg for the whole area was mapped by means of ordinary kriging,
applying log-transformation to improve normality [56]. Apart from providing an estimation of the
distribution of elements in the soil, the interpolations are also useful to establish graphical comparisons
between distribution and the maps showing the vegetation indices. All map representations and
graphical information were treated through Geographical Information Systems (GIS), using a licensed
copy of ArcMap version 10.2.1. (ESRI, Redlands, CA, USA).

2.4. Multi-Spectral Analysis Tools: Vegetation Index

The multispectral images used were obtained from a Sequoia + multispectral camera mounted
on a UAV Parrot Bluegrass Fields. The camera had a spectral resolution of four bands—green,
(550 nm± 40 nm), red (660 nm± 40 nm), red edge (735 nm± 10 nm) and near infrared (790± 40 nm)—all
with a high spatial resolution of 16 cm.

The first step of multispectral analysis was the achievement of a raster dataset from each band,
which was carried out with software PIX4D Mapper using all photograms per each spectral resolution.
The second step consisted in obtaining a new raster dataset with information derived from an algebraic
operation between the bands obtained in first step. These new raster datasets are known as vegetation
indices, due to their widespread use for determining vegetation status. Up to a total of 55 different
vegetation indices were tested with the aim to obtain the best correlations.

The list of the 55 vegetation indices used was extracted from a remote sensing index database [57].
Initially all of them were studied, adapted to the available data and tested. Those found with the
greatest correlation with the available analytical data were the Chlorophyll Absorption Ratio Index 2
(CARI-2), and the Normalized Difference Vegetation Index-green (NDVIg).

The CARI2 index was defined by Kim [58] to study leaf area index (LAI), absorbed
photosynthetically active radiation, and primary production. It is described by Equation (1):

CARI − 2 =

∣∣∣(a·|Red|+ |Red|+ b)
∣∣∣

√
a2 + 1

·
Red Edge

Red
(1)

where:
a = ([Red Edge] − [Green])/150

b = [Green] − (a ·[Green])

In contrast, NDVIg is a modification of the classical NDVI index that uses absorbance of green light
(550 nm), which is more sensitive to a wide range of chlorophyll-a concentrations than red light [56].
It is defined using Equation (2):

NDVIg =
Near In f rared−Green
Near In f rared + Green

(2)
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3. Results and Discussion

3.1. Geochemical Characterization

A previous study by Fernández et al. [59] reported maximum total concentrations of 23,000 mg/kg
of As and 6000 mg/kg of Hg, corresponding to the mining waste of the spoil heap. As a consequence of
spoil heap weathering, the soils of the area showed extremely high concentrations of both elements, as
reflected in the descriptive statistics (Table 1) corresponding to the chemical analyses of the 27 soil
samples taken downstream of the heap. Table 1 also includes the official Risk-Based Soil Screening
Levels (RBSSLs) or threshold values in force for the use of soil [55].

Table 1. Descriptive statistics for the 27 soil samples analyzed. Concentrations expressed as mg/kg.

PTE RBSSL Range Mean Median Typical Deviation CV

As 40 44–9920 632.1 150.0 1876.4 296.8
Cd 2 0.2–0.9 0.4 0.5 0.2 40.3
Co 25 2.7–17 13.4 13.4 3.0 22.1
Cr 10,000 18–57 26.9 25.0 8.0 29.6
Cu 55 11–98 33.2 28.8 18.8 56.6
Hg 1 1.95–860 68.0 29.2 158.0 232.4
Mn 2135 251–1270 707.2 704.0 248.3 35.1
Mo 6 0.4–3.6 1.1 1.0 0.6 61.6
Nor 65 10–42 28.9 28.0 6.5 22.5
Pb 70 24–74 37.5 34.0 11.2 29.8
Sb 5 0.2–44 3.4 2.0 8.1 238.0
Tl 1 0.1–2 1.2 2.0 0.9 74.1
V 50 20–83 38.9 35.0 12.6 32.4
Zn 455 65–214 121.3 113.0 29.7 24.5

The differences between the mean and the median, or the high coefficients of variation (CV),
strongly suggest Hg and As as the main pollutants in the area as they present irregular distributions.
All the samples exceeded the RBSSL for Hg (1 mg/kg) and As (40 mg/kg) [46], values that correspond
to the category “Other Uses”, to which the soil of study currently belongs because it is located in
agricultural areas dedicated to pasture or crop cultivation.

Furthermore, most of the samples were also above the soil-chemical background levels of the
area determined in pristine areas by Loredo et al. (4.18 mg/kg for Hg and 39 mg/kg for As) [48].
Although the enrichment of these elements was consistent with the mineral paragenesis of the zone
described in Section 2.1, the extremely high concentrations detected revealed a gradual degradation of
the spoil heap over time due to weathering processes. These are attributable mainly to water erosion
by surface and subsurface runoff, which circulates throughout the heap during the months of flooding
(Figures 2 and 3). In this regard, higher concentrations of Hg and As were observed in areas close to
the runoff, thereby contributing to the dispersion of these pollutants downstream.

With respect to the rest of the PTEs, Sb also appeared in an anomalous form, although to a lesser
extent than Hg and As, as revealed by its range or high CV, although the similarity between average
and median reveals more normality of the Sb distribution. In this regard, Sb appeared to be linked to
As (metalloids usually geochemically associated) [60]. The rest of the PTEs presented stable values
and were not hazardous for the environment in this case. The highest concentrations of As and Hg
were recorded within the UAV flight zone and in the two samples to the north, near the mining area
(Figure 3). Outside the area covered by the UAV, although the concentrations of both contaminants
were substantially lower for most samples, they continued to be high. Given this observation, it would
be advisable for future studies to collect more samples outside this area in order to better delimit the
extent of contamination. Finally, bivariate correlations revealed high correlations between Hg and Cr
(0.777), V (0.736) and Pb (0.697). In contrast, As showed an almost full correlation only with Sb (0.991).
Of note, there was a low correlation between As-Hg (0.270), reflecting independence between variables.
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This observation can be explained by the highly irregular distribution of As and Hg and their very
different behaviors.
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3.2. Mutispectral Analysis

The results presented in Section 3.1 revealed the severe contamination present within the UAV
flight area, the main contaminants being Hg and As. Therefore, it is feasible that such high concentrations
affect the physiology of plants in the zone. Of the 55 indices tested, those with the greatest correlation
with the available analytical data were CARI-2 and NDVIg for As and Hg, respectively. These indices
are shown in Figure 4.

The correlations between the concentrations of Hg and As obtained by chemical analysis
and the vegetation indices were established by means of Pearson’s coefficient and are shown in
Figure 5. The results obtained showed that the higher the concentration, the higher the correlation, in
absolute value. In the case of As, it was revealed a significant correlation starting with Pearson value’s
of 0.732 (corresponding to concentrations above 117 ppm) up to 0.970 (close to 400 ppm). Hg also
showed a significant correlation above 40 ppm (−0.670 Pearson coefficient), up to −0.730 (70 ppm).

The CARI-2 index correlated better with geochemical values for As, maintaining a logarithmic
(increasing) correlation that reached stabilization at 200 ppm (Pearson’s Coef. = 0.89). The positive
correlation reflects a direct relationship, that is, the higher the concentration, the greater the stress
present in plants. However, when the concentration reached 200 ppm, the plants reach the limit of
tolerance for the vegetation described in Section 2.1.
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Similarly, the NDVIg index presented an optimal correlation with Hg by means of an exponential
(decreasing) function whose stabilization was achieved at 40 ppm, a concentration under the industrial
limit and above the limits for residential and recreational uses, but unlike As, with a negative correlation
(Pearson’s Coef. = −0.67). This implies that the higher the concentration, the lower the value of the
NDVIg index. This finding allowed us to identify a direct alteration of the vegetation with increasing
concentrations of Hg, since the definition of the index itself shows that the lower its value, the less
photosynthetic activity occurs [61].

In any case, it can be said that the results of the vegetation indices presented high reliability for As
and acceptable reliability for Hg at the points where the concentrations of these two pollutants were
very high. All things considered, the mapping of the CARI2 and NDVIg indices (Figure 4) allows
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prediction of where the concentrations of As and Hg, respectively, will be highest, thus reducing the
costs of sampling campaigns.

3.3. Geostatistical Analysis

Figure 6 shows the geostatistical interpolations obtained by ordinary kriging. As anticipated in
the statistical analysis, the distribution of As and Hg was highly irregular along the UAV flight area.
Extremely polluted zones near the spoil heap alternated with others downstream presenting lower
concentrations of these heavy metals, although always exceeding RBSSLs. However, for academic
purposes, such alternation is not necessarily negative as the differences in concentrations allowed us to
test the reliability of the vegetation indices at a range of concentrations.

Our results also revealed that Hg showed less mobility than As in soils, a property that was
addressed in previous studies [62–64]. This was appreciable since changes in concentration were far
greater for Hg, or in other words, the bullseye was more easily identifiable. The lower mobility of Hg
also contributes to explaining why Pearson’s Coefficient was lower for this heavy metal. In this case,
low normality hampered the estimation. Nevertheless, even under this circumstance, the correlation
obtained was acceptable.
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3.4. Synergy between Multispectral Data and Geostatistical Analysis

Figure 7 aims to synergize the geostatistical results (Figure 6) and the multispectral analysis
(Figure 4). Areas in red correspond to concentrations of As and Hg exceeding the thresholds described
in the previous section (>200 mg/kg for As and >40 mg/kg for Hg). Our findings imply that, in these
locations, it is possible to use multispectral techniques to predict the extent to which the pollution
affects plants and subsequently predicting the degree of pollution. More specifically, around 89% of
reliability was achieved for As and 67% for Hg on the basis of Pearson’s Coefficient (Figure 5).
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We also observed that most of the area lent itself to study; although results are more reliable for
As than for Hg. This finding could be attributable to the previously mentioned higher mobility of As,
which reached higher concentrations than Hg far from the spoil heap. In contrast, the areas with low
concentrations of Hg and As are shown in green, where there was no correlation between the pollution
levels and the CARI2/NDVIg results.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 15 

 

3.4. Synergy between Multispectral Data and Geostatistical Analysis 

Figure 7 aims to synergize the geostatistical results (Figure 6) and the multispectral analysis 
(Figure 4). Areas in red correspond to concentrations of As and Hg exceeding the thresholds 
described in the previous section (> 200 mg/kg for As and > 40 mg/kg for Hg). Our findings imply 
that, in these locations, it is possible to use multispectral techniques to predict the extent to which the 
pollution affects plants and subsequently predicting the degree of pollution. More specifically, 
around 89% of reliability was achieved for As and 67% for Hg on the basis of Pearson’s Coefficient 
(Figure 5). 

We also observed that most of the area lent itself to study; although results are more reliable for 
As than for Hg. This finding could be attributable to the previously mentioned higher mobility of As, 
which reached higher concentrations than Hg far from the spoil heap. In contrast, the areas with low 
concentrations of Hg and As are shown in green, where there was no correlation between the 
pollution levels and the CARI2/NDVIg results. 

  

Figure 7. In red, areas that lend themselves to study by means of multispectral remote sensing 
techniques with a high degree of reliability. Left: As; right: Hg. 

4. Conclusions 

Hg-As mining spoil heaps pose an environmental risk due to their highly toxic load. Therefore, 
it is important to monitor their evolution in order to evaluate the dispersion of the contaminants. 
Here we examined the impact of weathering on the As- and Hg-rich spoil heap of the former La 
Soterraña mine. To this end, the synergy between classical geochemical tools and remote sensing 
methodologies using a UAV-based airborne multispectral camera was explored. 

First, the geochemical campaign confirmed severe As and Hg pollution of soils downstream of 
the spoil heap, and to a lesser extent the presence of Sb, in concentrations several orders of magnitude 
above RBSSLs. On the basis of the high level of pollution found, we reasoned that the vegetation of 
the area would be affected. This notion was confirmed by remote sensing techniques involving a 
multispectral camera mounted on a UAV. Algebraic operations with remote sensing data, also called 

Figure 7. In red, areas that lend themselves to study by means of multispectral remote sensing
techniques with a high degree of reliability. Left: As; right: Hg.

4. Conclusions

Hg-As mining spoil heaps pose an environmental risk due to their highly toxic load. Therefore,
it is important to monitor their evolution in order to evaluate the dispersion of the contaminants.
Here we examined the impact of weathering on the As- and Hg-rich spoil heap of the former La
Soterraña mine. To this end, the synergy between classical geochemical tools and remote sensing
methodologies using a UAV-based airborne multispectral camera was explored.

First, the geochemical campaign confirmed severe As and Hg pollution of soils downstream of
the spoil heap, and to a lesser extent the presence of Sb, in concentrations several orders of magnitude
above RBSSLs. On the basis of the high level of pollution found, we reasoned that the vegetation
of the area would be affected. This notion was confirmed by remote sensing techniques involving a
multispectral camera mounted on a UAV. Algebraic operations with remote sensing data, also called
vegetation indices, revealed reliable results between As and the CARI-2 index, and between Hg and
the NDVIg index, the former giving better results.

In this regard, our results demonstrated a very high correlation between plant stress and high
concentrations of As (0.89 correlation when As concentration > 200 ppm) and Hg (0.67 correlation
when Hg concentration > 40 ppm). These findings pave the way for new studies that combine classical
geochemical tools and remote sensing.
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The dispersion of the contaminants is attributable to the physical-chemical weathering of the
spoil heap, mainly through solid waste leaching processes, which results in the distribution of As
and Hg towards lower levels of the heap. However, thanks to the high correlations between the
concentrations of the two contaminants and the CARI-2 and NDVIg indices, the mapping of these
indices facilitates the identification of pollution hotspots in areas particularly affected by contamination,
thereby reducing the costs of geochemical characterization. On the whole, this study emphasizes the
potential of combining geochemical tools and remote sensing technology for soil pollution research.
However, future research efforts are expected to bring about the fine tuning of both the geochemical
aspects and the multispectral information.
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