
applied  
sciences

Article

Compact Fuzzy Systems Based on Boolean Relations

Helbert Espitia 1,* , José Soriano 1 , Iván Machón 2 and Hilario López 2

����������
�������

Citation: Espitia, H.; Soriano, J.;

Machón, I.; López, H. Compact Fuzzy

Systems Based on Boolean Relations.

Appl. Sci. 2021, 11, 1793. https://

doi.org/10.3390/app11041793

Academic Editor: Youngchul Bae

Received: 29 December 2020

Accepted: 10 February 2021

Published: 18 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, 11021-110231588 Bogotá, Colombia;
jairosoriano@udistrital.edu.co

2 Departamento de Ingeniería Eléctrica, Electrónica de Computadores y Sistemas, Universidad de Oviedo,
Campus de Viesques, 33204 Gijón/Xixón, Spain; machonivan@uniovi.es (I.M.); hilario@uniovi.es (H.L.)

* Correspondence: heespitiac@udistrital.edu.co

Abstract: This document presents some considerations and procedures to design a compact fuzzy
system based on Boolean relations. In the design process, a Boolean codification of two elements is
extended to a Kleene’s of three elements to perform simplifications for obtaining a compact fuzzy
system. The design methodology employed a set of considerations producing equivalent expressions
when using Boole and Kleene algebras establishing cases where simplification can be carried out,
thus obtaining compact forms. In addition, the development of two compact fuzzy systems based on
Boolean relations is shown, presenting its application for the identification of a nonlinear plant and
the control of a hydraulic system where it can be seen that compact structures describes satisfactory
performance for both identification and control when using algorithms for optimizing the parameters
of the compact fuzzy systems. Finally, the applications where compact fuzzy systems are based
on Boolean relationships are discussed allowing the observation of other scenarios where these
structures can be used.

Keywords: Boole; compact; control; fuzzy systems; identification; Kleene

1. Introduction

Modeling, controlling, and performing any system is an essential task for the de-
signer/user to apply the necessary corrections to make it more effective. Frequently,
evaluating a system is done under fuzzy rules, for instance, by employing qualitative
instead of numeric marks or incomplete numeric functions, etc. [1]. Thus, fuzzy sys-
tems theory is built on concrete and practical formation for many relevant applications,
especially in decision-making processes [2,3].

Various real-life problems are problematic since they involve human beings, me-
chanical elements, and other issues. Consequently, cases like these or even simpler ones
may include diverse uncertainty conditions of high relevance when achieving satisfac-
tory outcomes. Uncertainty may include randomness, fuzziness, indistinguishability, and
incompleteness [4,5]. The theory on fuzzy sets and fuzzy logic permits manipulating
incomplete and imprecise information of objects belonging to a concept [6].

Zadeh proposed a Fuzzy Set (FS) as a focus to process and represent vagueness in the
real world [7]. Fuzzy Inference Systems (FIS) are utilized to generate sets of fuzzy rules in
problem solving in applications like detection [8,9], prediction [10,11], classification [12–14],
and other tasks [15–17].

In [18], a review of the main theories involved in hybrid models based on neuro-fuzzy
systems is presented. The basic concepts regarding the history of hybrid models, the
features of the leading models, and their applications also are presented; some neuro-
fuzzy structures observed are: fuzzy regression, adaptive neuro-based fuzzy inference
systems, autoassociative neuro-fuzzy systems, and fuzzy cognitive maps. It also reviews
fuzzification and defuzzification techniques and training algorithms. The authors exposed
that fuzzy neural network models and their derivations are useful for the design of system
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with high degree of accuracy and a suitable level of interpretability allowing applications
in different areas of science.

Using fuzzy sets provides a foundation for systematically handling vague and inaccu-
rate concepts; mainly, fuzzy sets can be used when representing linguistic variables, which
are values defined in a linguistic way [19]. Fuzzy logic sets are a suitable solutions alterna-
tive in cases with uncertainty, inaccuracy, and ambiguity in the presence of phenomena to
be controlled or modeled [20–22].

Regarding fuzzy inference systems, the most widely known are Mamdani, Takagi-
Sugeno, and Tsukamoto. Mamdani systems use fuzzy sets in inputs and outputs and
include and aggregation of fuzzy sets acquired from each rule’s implication. The result is
obtained by defuzzification. Takagi-Sugeno systems employ functions that depend on the
input value; the inference process result is accepted as a weighted addition whose value
is given by each rule’s inference process. On the other hand, Tsukamoto systems employ
fuzzy sets for input and output. In the output, it uses injective membership functions to
get the preimage of the value from the implication process; later, the results are weighted
with the values obtained in implication process.

Concerning additional fuzzy inference developments, complex fuzzy sets are proposed
to improve the design and modeling of real-life applications [23]. A Complex Fuzzy Set
(CFS) [24] is an extension of a fuzzy set where the membership function consists of an
amplitude term and one phase. Accordingly, paper [25] suggested a framework for logic
reasoning called Complex Fuzzy Logic (CFL), employing the CFL theory since this is useful
to make systems capable of managing different problems.

As a variation, the Mamdani Complex Inference System (M-CFIS) is proposed in [26].
Others are the CFIS like Neuro-complex, Adaptive Neuro-Complex Fuzzy Inferential
System (ANCFIS) with higher-order TSK models [27], the Randomized Adaptive Neuro-
Complex Fuzzy Inference System (RANCFIS) [28], and the Fast Adaptive Neuro-Complex
Fuzzy Inference System (FANCFIS) [29]. However, a deficiency detected on the M-CFIS
is that the base of rules may become redundant to a specific set of rules. In addition,
reference [23] presents the analysis of a collection of complex data using properties from
the fuzzy concept network and the complex soft set.

On the other hand, Mamdani Complex Fuzzy Inference System (M-CFIS) allows
managing events not restricted only to values of a point in a specific time but including
all the values inside some time intervals (phase term). In such scenarios, fuzzy complex
theory permits one to see the range and phase values of an event, which means better
performance; nevertheless, the set of rules may be redundant to a specific dataset [2].

Meanwhile, the fuzzy sets theory has been applied to manage uncertainty in numer-
ous areas; even so, it shows limitations to face situations of inaccuracy when sources of
vagueness appear [4]. Thus, the literary sources include different extensions of fuzzy sets
to overcome such limitations:

• Intuitionistic Fuzzy Sets (IFS) proposed by Atanassov [30]. These consider the mem-
bership and no membership grade for each element simultaneously.

• Type 2 Fuzzy Sets (T2FS), incorporate uncertainty in defining the membership function
through a fuzzy set to model the unitary interval. Type 2 Fuzzy Sets (T2FS) include
uncertainties when defining the membership function using a fuzzy set to model it [31].

• Interval Valued Fuzzy Sets (IVFS). The membership grade of an element is given
by a closed subinterval of the unitary interval; thus, the length of that interval is
understood as a measurement of lack of certainty to build an element’s accurate
membership grade [32].

• Multiset-Based Systems, where the membership grade of an element is given by a
subset of [0, 1] [33].

• The theory of Hesitant Fuzzy Sets (HFS) is about managing situations where a set
of values is possible to use in the process of defining the membership grade of an
element [34].
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Experts use intuitionist fuzzy sets to manage the evaluation of an alternative with specific
values of membership and nonmembership. Meanwhile, hesitant fuzzy sets handle situations
where experts doubt several possible membership values to evaluate an option [35].

The theory of fuzzy sets of Zadeh [7] has been applied in several fields. The idea of a
fuzzy set is welcome since it manages uncertainty and vagueness that the Cantorian set
cannot address. In fuzzy sets theory, the membership of an element is a unique value be-
tween zero and one. However, it may not always be true that the degree of nonmembership
of an element in a fuzzy set is equal to one minus the degree of membership because there
may be some degree of doubt; therefore, reference [30] introduced a generalization called
intuitionistic fuzzy sets. This includes a margin of hesitation defined as one minus the sum
of the degrees of membership and no membership [36].

On the other hand, hesitant fuzzy sets are useful to deal with group decision-making
processes when the experts doubt possible memberships for an element. These possible
memberships may include crisp values [0, 1] and interval values [37]. Torra [34] uses
the same approach introducing an extension for sets called hesitant fuzzy sets, given
the standard difficulty that generally appears when it is necessary to define the grade of
membership. Such a problem is not given by error range (as in IFS) or any distribution of
possibilities (as in T2FS) but because there are possible values that make it difficult to decide
which one is accurate. This is a common situation in the decision-making process for an
expert regarding several grades of membership {0.43, 0.58, 0.79} of element x in the set A.
Thus, hesitant fuzzy sets become relevant since they make it easier to manage hesitation in
typical real-life situations. Consequently, many developments have been carried out from
different quantitative [37,38] and qualitative [39] perspectives, given that many doubts
arise, which model the uncertainty in both directions. Besides, many HFS operators have
been introduced to deal with this issue in various applications where decision-making is
the most remarkable aspect [4,40].

Meanwhile, inference fuzzy systems based on Boolean relations are suitable when
using Boole’s algebra with sets whose membership values are given by {0, 1}, then a true
table defines a model [41–43]. Nevertheless, these systems display low performance due to
abrupt transitions. Consequently, a way to improve the performance is by replacing the
Booleans for fuzzy sets [44]. When the concepts clearly define the membership in the range
[0, 1] which means that the limits of the concepts are “softened” (fuzzy) with a structure
equivalent to {0, u, 1}makes it possible to employ Kleene’s algebra [45].

About related works, document [41] suggests the use of the Boolean algebra system
design features. Conversely, paper [46] presents a practical approach of a methodology
based on the design of automations employing fuzzy sets for implementing the process
associated with defuzzification. Simultaneously, in [44] it is indicated that this proposal
can be interpreted as a fuzzy inference system. This technique considers the interaction of
sensors, actuators, and Boolean relations involved in control strategies of any industrial
process [44,46].

As part of the design process, [47] employs Kleene’s algebra to transform binary logic
functions into fuzzy logic. Besides, paper [48] describes a method to simplify formulas
using finite algebras. In addition, the work presented in [49] offers the vagueness modeling,
ambiguity, and contrariness with trivalent and tetravalent fuzzy logic, employing Kleene
and De Morgan algebraic structures, focusing on the tables and graphs. Thus, the design
methodology based on these elements is presented in [50].

The proposed methodology considers a design using Boole’s algebra, later extended
to a fuzzy system, employing Kleene’s algebra. Nevertheless, it is necessary to keep in
mind that in Boole’s algebra, the variable simplification is rooted in the law of excluded
middle, which is not accomplished using Kleene’s. However, a similar simplification with
Kleene algebra may be achieved employing the absorption law.
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Proposal Approach and Document Organization

This document offers a design proposal to fuzzy logic systems based on Boolean
relations with compact structure. Previously in [50], a methodological design is proposed
to implement fuzzy inference systems based on Boolean relations. This work is currently
continued considering specific design cases of fuzzy systems with simplifications applied
to equations in the inference process, providing compact systems useful in different appli-
cations as in identification and control of dynamic systems.

Related applications of these systems can be observed in [51] to predict chaotic time
series while reference [52] identifies a variable charge in a distribution system; besides,
document [53] displays a control of a synchronous generator of permanent magnets. Finally,
the voltage control in a electrical grid is shown in [54]. Although in these works compact
fuzzy structures are employed, these do not use the design methodology presented in [50]
via Kleene’s algebra that allow the formalization of these systems which is the main topic
of this work.

The document is organized as follows: Section 2 describes the definitions employed
for the design process of fuzzy inference systems based on Boolean relations and the
simplification procedure with Kleene algebra used to determine the structures of compact
systems. Section 3 shows the design process for specific cases of fuzzy inference systems
based on Boolean relations called “compact systems”, where Kleene algebra is employed
for the simplification analysis. Section 4 introduces compact systems structures that
are obtained considering two cases where the simplification of configurations that are
represented in a truth table can be performed. Section 5 describes the application for the
identification of a nonlinear plant, while Section 6 presents the application of a fuzzy PID
(Proportional Integral Derivative) controller. Finally, Section 7 presents the discussion, and
the conclusions are given in Section 8.

2. Framework

This section presents definitions and concepts necessary for the design of compact
fuzzy systems based on Boolean relations. The methodology proposes the design in a
Boolean table. Through design criteria, this table is converted into a Kleene’s considering
an intermediate variable u; then the equations that represent the true table are established
to finally perform the implementation of the system.

The concepts shown in this section are used to determine the equations to implement
compact fuzzy systems based on Boolean relations. For the design, the conversion of a
truth table and the simplification of the terms are carried out using Kleene’s algebra to
establish compact structures.

First the definitions of De Morgan, Kleene, and Boole algebra are reviewed and also
the Disjunctive Normal Form (DNF) in Kleene algebra obtained from a relations table.
Subsequently, the description of fuzzy inference systems based on Boolean relationships is
presented. Finally, a review of the design criteria used to convert a Boolean into a Kleene
table is presented.

2.1. De Morgan, Kleene, and Boole Algebras

Boolean and Kleene algebras are used to carry out the design of compact fuzzy
systems based on Boolean relations; therefore, the required concepts are detailed below.
The following definitions are based on [45,55,56].
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Definition 1 ([56]). A De Morgan algebraM = (M,∨,∧, ¯, 0, 1), consists of a set M with two
internal binary operations ∧ (meet), ∨ (join), an unit operation ¯ (complement) and the constants 0
and 1. Considering A, B, C ∈ M the following properties are defined:

A ∧ A = A A ∨ A = A (1)

A ∧ B = B ∧ A A ∨ B = B ∨ A (2)

A ∧ (B ∧ C) = (A ∧ B) ∧ C A ∨ (B ∨ C) = (A ∨ B) ∨ C (3)

A ∧ (A ∨ B) = A A ∨ (A ∧ B) = A (4)

A ∧ (B ∨ C) = (A ∧ B) ∧ (A ∧ C) A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) (5)

A ∧ 1 = A A ∨ 0 = A (6)

(A ∧ B) = Ā ∧ B̄ (A ∨ B) = Ā ∨ B̄ (7)

0̄ = 1 1̄ = 0 (8)
¯̄A = A (9)

Properties (1)–(4) indicate that M is a lattice, also if it complies with (5) the lattice is
distributive; thus, the operations ∧ and ∨ are associative, commutative, and distributive (∨ with
respect to ∧ and vice versa). The property (6) indicates that the lattice is bounded. Fulfilling
properties (1)–(9) implies thatM is a De Morgan algebra.

Definition 2 ([56]). A Kleene algebra K = (K,∨,∧, ¯, 0, 1) is a De Morgan algebra that meets (10).

A ∧ Ā ≤ B ∨ B̄ (10)

Definition 3 ([56]). A Boole algebra B = (B,∨,∧, ¯, 0, 1) is a Kleene algebra that satisfies (11)
y (12).

A ∨ Ā = 1 (11)

A ∧ Ā = 0 (12)

Compared to Boolean algebra, in Kleene algebra the relation (13) is satisfied.

A ∨ Ā ≤ 1

A ∧ Ā ≥ 0
(13)

2.2. Disjunctive Normal Form

An element a in a lattice is∨-irreducible (join-irreducible) if it is different from 0 and cannot
be written as the disjunction of strictly minor elements; then, in a finite distributive lattice
each element is uniquely the disjunction of incomparable elements ∨-irreducible [55–57].
The disjunctive normal form for an element a is a representation of the type a0 ∨ a1 ∨ . . .∨ al,
where each ai is incomparable respect to each aj, (0 ≤ i, j ≤ l) if i 6= j and each ai is
∨-irreducible.

Disjunctive Normal Form Obtained from Tables

The following three rules are used to obtain the disjunctive normal form in K of a
function f from a table [56].

• For rows that have value 1 in the column of f : Elaborate the conjunction of variables
that have value 1 with the complements of variables that have value 0 and the constant
1 for variables that have value u.

• For rows that have value u in the column of f : Construct the conjunction of the
variables that have value 1 with the complements of variables that have value 0 and
the conjunction of both the variable and its complement for those that have value u.
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• Elaborate the disjunction of the conjunctions obtained with the two previous rules. If
there are no conjunctions, an empty disjunction will be obtained since it represents
the disjunctive normal form for 0.

Table 1 shows an example of the ∨-irreducible terms used to elaborate the disjunctive
normal form (DNF).

Table 1. Example of terms use for elaborate DNF in K.

A1 A2 f DNF

0 0 0 -
0 u u Ā1 ∧ (A2 ∧ Ā2)
0 1 1 Ā1 ∧ A2
u 0 u (A1 ∧ Ā1) ∧ Ā2
u u u (A1 ∧ Ā1) ∧ (A2 ∧ Ā2)
u 1 1 1∧ A2
1 0 1 A1 ∧ Ā2
1 u 1 A1 ∧ 1
1 1 1 A1 ∧ A2

The equation associated with the DNF of the Table 1 is:

f = [Ā1 ∧ A2 ∧ Ā2] ∨ [Ā1 ∧ A2] ∨ [A1 ∧ Ā1 ∧ Ā2] ∨ [A1 ∧ Ā1 ∧ A2 ∧ Ā2]∨
A2 ∨ [A1 ∧ Ā2] ∨ A1 ∨ [A1 ∧ A2] (14)

Using Boolean sets, the rules can easily be represented by a truth table; however, using
only values 1 and 0 there are intermediate cases that cannot be represented; therefore, the
possibility of representing intermediate concepts is enhanced when adding the variable u
that represents a value between 1 and 0.

2.3. Formula Simplification

For expressions obtained in normal forms applying the distributive property together
with the absorption property in K, the number of literals and operators can be reduced. As
an example, Table 2 shows a possible codification for the Y function.

Table 2. Codification example for a Kleene table.

A1 A2 Y

1 1 1
u u u
0 0 0
0 u 0
0 1 0
u 1 u
1 0 0
1 u u
u 0 0

The respective equation for Y from Table 2 is:

Y1 = (A1 ∧ A2) ∨ (A1 ∧ Ā1 ∧ A2 ∧ Ā2) ∨ (A1 ∧ Ā1 ∧ A2) ∨ (A1 ∧ A2 ∧ Ā2) (15)

Using the distributive and absorption properties:

Y1 = (A1 ∧ A2) ∧ [1∨ (Ā1 ∧ Ā2) ∨ Ā1 ∨ Ā2] (16)
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Then the simplified equation for Y is:

Y1 = A1 ∧ A2 (17)

2.4. Fuzzy Inference Systems Based on Boolean Relations

The fuzzy inference systems based on Boolean relations (FIS-BBR) use coding and
design tools of Boolean algebra. The structure of the inference process is given by the
truth table associated with the system design. In order to implement the FIS-BBR the
two-element Boolean encoding extends to a three-element Kleene encoding.

In the operation of a FIS-BBR, actions that contribute to carry out a total action on a
system are considered. The actions are fully accomplished by weighting an actuator vm
(virtual actuator) using a function Ym that operates on it (activation function), which is a
fuzzy function with values between zero and one. In this way, the output in a FIS-BBR
is calculated as the sum of the partial results ym = vmYm (virtual outputs), as shown in
Equation (20).

Table 3 shows the coding for the inputs and outputs of a FIS-BBR. The rows of left
side represent the rules that provide an activation output. The columns on the right side
correspond to the activation functions. In this way two parts are identified in Table 3,
one corresponding to an encoding for the sets of each entry; the other corresponds to the
activation outputs associated with virtual outputs.

Table 3. Truth table with rules and activation functions.

Sets Associated to the Input Output Activation Functions

A1 A2 · · · Aj · · · Ap Y1 Y2 · · · Ym · · · Yw
a1,1 a1,2 · · · a1,j · · · a1,p f1,1 f1,2 · · · f1,m · · · f1,w
a2,1 a2,2 · · · a2,j · · · a2,p f2,1 f2,2 · · · f2,m · · · f2,w

...
... · · ·

... · · · ...
...

... · · · ... · · · ...
ak,1 ak,2 · · · ak,j · · · ak,p fk,1 fk,2 · · · fk,m · · · fk,w

...
... · · ·

... · · · ...
...

... · · · ... · · · ...
aq,1 aq,2 · · · aq,j · · · aq,p fq,1 fq,2 · · · fq,m · · · fq,w

In Table 3, variables ak,j and fk,m represent relationships between Aj and Ym. Value of
variables in the Boolean case are {0, 1}; in Kleene’s case the values are {0, u, 1}. Table 3 can
be a Boolean or Kleene truth table [56]. It is noteworthy that Aj can be a Boolean or fuzzy
set associated with the input, and Ym is an activation function associated with the output.

The combination of sets Aj when using a disjunctive normal form can be expressed as:

p∧

j=1

Â(ak,j, fk,m) (18)

where Â is a function that can be 0, 1, Aj, Āj or Aj ∧ Āj, it depends on ak,j and fk,m

respectively [22,45,56]. Table 4 shows the values of Â for the case of Kleene or Boole.
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Table 4. Function values for Â.

ak,j fk,m Â

0 0 0
u 0 0
1 0 0
0 u Āj
u u Aj ∧ Āj
1 u Aj
0 1 Āj
u 1 1
1 1 Aj

The m-th activation output Ym, using the DNF can be represented as:

Ym =
q∨

k=1

p∧

j=1

Â(ak,j, fk,m) (19)

Considering the activation outputs of Table 3, the total system output is calculated as:

y =
w

∑
m=1

Ymvm (20)

where vm corresponds to m-th virtual actuator; then, it is obtained the m-th virtual output:

ym = Ymvm (21)

In Equation (21) Ym ∈ [0, 1] is the activation function and vm ∈ R is the value of the
virtual actuator. In control systems, the actuator is used to apply the control action [22]; in
some applications (with Boolean logic) it is possible to use several actuators for the control
action (several batteries, valves, switches, etc.). However, when there is only one action
element, this can be considered as the sum of several actuators called “virtual”.

In control applications, the value of vm is associated with the value (range) of the
actuator utilized, for example, in the application of the hydraulic system described in [50],
vm corresponds to the valve’s maximum flow for filling the tank. In general, for neuro-
fuzzy applications the value of vm can be an adaptation parameter when the optimization
process of the fuzzy system is carried out.

It is noticeable that when using Kleene algebra in some cases it is possible to have
a simplified activation Ym with a smaller number of literals and connectors. This is the
principle applied to have compact fuzzy systems based on Boolean relations.

2.5. Extension of Boolean Tables to Kleene Tables

For the conversion of a Boolean table to a Kleene table, two aspects must be considered.
First, the regularity conditions that allow handling the ambiguity. The second are the
aspects for encoding three elements table which are the monotonous transitions between
Boolean actions.

2.5.1. Regularity Conditions

According to [58,59], regularity conditions allow handling ambiguity, from a ternary
logic view. The regularity conditions indicate that if the ambiguity at the input increases,
then the ambiguity at the output also increases.

Definition 4 ([58,59]). Considering E = {0, u, 1} a n-variable in ternary logic, then, a function
f mapped from En to E such that X ∈ En assigns f (X) ∈ E. Considering Figure 1 a relationship
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of ambiguity � corresponds to:

0 � u, 1 � u, i � i, (22)

0 1

u

Figure 1. Ambiguity partial order � [59].

The above means that 0 and 1 are less ambiguous than u, if i � j, then i is more
ambiguous than j. In addition, for different elements X = (x1, . . ., xn) and Y = (y1, . . ., yn)
of En, then X is less ambiguous than Y if xi � yi for i = 1, 2, . . ., n, namely X � Y.

Considering that 0 and 1 are defined states and u is not state defined as 0 or 1. Then
the partial order � describe ambiguity [59].

Definition 5 ([58,59]). A function f is regular if it meets the condition of ambiguity monotonic-
ity given by:

f (A) � f (B) when A � B (A, B ∈ En). (23)

This condition implies that if A is equal to or less ambiguous than B, then, f (A) is equal
to or less ambiguous than f (B). For example, with (x1, x2) from Figure 2; for combinations
(1, 1) and (u, 1), it is that (1, 1) � (u, 1); therefore, f (1, 1) � f (u, 1), in this way, if f (1, 1) = 1
implies that f (u, 1) can be 1 or u in order to f (x1, x2) be a regular function.

x1

x2

0 u 1

0

u

1

f(0, 0) f(0, u) f(0, 1)

f(u, 0) f(u, u) f(u, 1)

f(1, 0) f(1, 1) f(1, 1)

Figure 2. Example of a three-element table.

2.5.2. Monotonous Transitions

For the extension of a Boolean table to a Kleene table, it is first necessary to meet the
condition (23) to handle the ambiguity and secondly, the suitable configuration to achieve
monotonous transitions between Boolean actions [50].

Definition 6. The “Boolean actions” can be defined as the actions obtained by the activation
function with the respective virtual actuator considering the respective Boolean encoding, thus the
m-th Boolean action corresponds to:

ym = Ymvm (24)

Definition 7. The monotonic transitions between Boolean relations correspond to the condition to
have a continuous and monotonic transition from ym to yn which are two Boolean actions.

Kleene table is obtained by adding intermediate cases to the Boolean table, that is, u
in the antecedent and {0, u, 1} in the consequent according to the previous considerations.

An example of the extension of a table of two elements to one of three elements consid-
ering the regularity conditions can be seen in Figure 3. In order to meet the condition (23),
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two options are possible; however; the last configuration is used to achieve monotonous
transitions between Boolean actions.

0

1

0

0 0

1

x1 x2 f

0

1

1

1 0

0

x1

x2
0 1

0

1

1

0 0

0

x1

x2
0 u 1

0

u

1

1

u

0

u

u

0, u

0

0, u

0

x1

x2
0 u 1

0

u

1

1

u

0

u

u

0

0

0

0

Figure 3. Example of the extension from bivalent to trivalent tables meeting regularity conditions.

3. Compact Fuzzy Systems Based on Boolean Relations

Compact fuzzy systems based on Boolean relations can be established when applying
the procedure of terms simplification employing Kleene’s algebra. Thus, compact fuzzy sys-
tems are obtained when an activation function has a single inference rule since disjunction
operation is eliminated. It should be noted that by applying the respective simplifications
through Kleene algebra, an expression equivalent to the simplification performed with
Boolean algebra can be obtained.

According to the possible configurations in the truth table (Boolean case) the following
cases are considered:

• YU : Activation function with unitary dependence. The coding is presented in Table 5.
• YT : Activation function with total dependence. Respective coding in Table 6.

On Tables 5 and 6 the cells marked with X indicate that the Boolean variable can be 1
or 0. In Table 5, for the function YU the action is found when Am is “activated”, that is, it
only depends on a set of the input. Meanwhile, in Table 6 for YT there is an action when
A1, A2 . . . An are activated simultaneously; therefore, it depends on all sets of the input.

Table 5. Coding for activation with a set at the input.

A1 · · · Am · · · An−1 An YU

X · · · 1 · · · X X 1
X · · · 0 · · · X X 0

Table 6. Encoding for activation with all sets on input.

A1 A2 · · · An−1 An YT

1 1 · · · 1 1 1
0 X · · · X X 0
X 0 · · · X X 0
X X · · · 0 X 0
X X · · · X 0 0

In order to establish the equations for the cases considered, the procedure to obtain
the terms of a function in the disjunctive normal form is used. Depending on the case, the
simplification is done using Kleene or Boole algebras.

3.1. Equations with Boolean Algebra

Considering the procedure for expressing the functions in disjunctive normal form
and using Boolean algebra, the equation for YU corresponds to:

YU = A1 ∧ (A2 ∨ Ā2) ∧ · · · ∧ (An−1 ∨ Ān−1) ∧ (An ∨ Ān) (25)

YU = A1 (26)
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meanwhile, the expression for YT corresponds to:

YT = A1 ∧ A2 ∧ · · · ∧ An−1 ∧ An (27)

3.2. Boolean Table Extension to Kleene Table

To extend a Boolean table into a Kleene table, it is noteworthy that the cases marked
with X can be 1, 0, or u. In order to comply with the conditions of regularity and
monotonous transitions between Boolean actions, the following considerations are taken:

• For the cases that are added where there is no transition of the output, the value must
be kept 1 or 0 according to the case.

• For additional cases where there is a transition between the output states, the value of
u is placed in the output.

3.3. Activation Function with Unitary Dependence

In the case of an activation function with unit dependency, Table 7 shows the extent of
the table from Boole to Kleene, where X can be {1, u, 0}.

Table 7. Kleene extension of coding for activation with a set on input.

A1 · · · Am · · · An−1 An YU

X · · · 1 · · · X X 1
X · · · u · · · X X u
X · · · 0 · · · X X 0

In this extension, to have a regular table and maintain a monotonous transition YU is 1
for any case that Am = 1, it is also u when Am = u and 0 for Am = 0. As observed, when
there is a transition of YU between 0 and 1 is assigned u.

Considering the rules to establish the disjunctive normal form, it can be seen that Am
appears in the terms when YU is 1 or u; therefore, the equation can be written as:

YU = (Am ∧ FB) ∨ (Am ∧ FE) ∨ Am = Am (28)

where:

• FB: corresponds to the disjunction of all the conjunctions obtained in the truth table
for which YU is 1 eliminating from these the variable Am.

• FE: corresponds to the disjunction of all the conjunctions obtained in the truth table
for which YU is u eliminating from these the variable Am.

As seen, when having a value of 1 in the column for YU , the conjunction where the
variable Am is 1 and the rest of variables u it is obtained the variable Am, hence when this
variable occurs in the rest of the terms, an absorption process happens since it appears in
all the terms. That is, for all conjunctions when YU is 1 always appears Am and when YU is
u it is always found the conjunction Am ∧ Ām.

3.3.1. Example for a Two-Variable Table

Table 8, which a truth table of two variables, serves as a first example to show the
design of these systems.

Table 8. Boolean relations for two variables.

A1 A2 fU

0 0 0
0 1 0
1 0 1
1 1 1
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The simplification using Boolean algebra is:

fU = (A1 ∧ A2) ∨ (A1 ∧ Ā2) = A1 ∧ (A2 ∨ Ā2) = A1 (29)

It is noteworthy that the previous procedure is not fulfilled when employing Kleene
algebra since A2 ∨ Ā2 ≤ 1; however, with Kleene’s algebra by including the variable u
can be obtained the equivalent result. By using the codification of Table 9, there is also
an equivalence with the formula employing Boolean algebra; besides, it also meets the
regularity condition.

Table 9. Kleene extension coding for two variables.

A1 A2 fU

0 0 0
0 u 0
0 1 0
1 1 1
1 0 1
1 u 1
u 0 u
u 1 u
u u u

Another way to represent the extended table is shown in Figure 4.

A1

A2

0

u

1

0 u 1

0 u 1

0 u 1

0 u 1

Figure 4. Alternative Kleene encoding representation.

Applying Kleene algebra is obtained:

fU = (A1 ∧ A2) ∨ (A1 ∧ Ā2) ∨ A1

∨(A1 ∧ Ā1 ∧ Ā2) ∨ (A1 ∧ Ā1 ∧ A2) ∨ (A1 ∧ Ā1 ∧ A2 ∧ Ā2) (30)

= A1 ∧ (A2 ∨ Ā2) ∨ A1 ∨ A1 ∧ [(Ā1 ∧ Ā2) ∨ (Ā1 ∧ A2) ∨ (Ā1 ∧ A2 ∧ Ā2)]

= A1

This expression can be written as:

fU = [A1 ∧ FB(A2, Ā2)] ∨ [A1 ∧ FE(Ā1, A2, Ā2)] ∨ A1 = A1 (31)

3.3.2. Example for a Table of Three Variables

Table 10 is employed as a second example that corresponds to a truth table of
three elements.

Table 10. Boolean relations for three variables.

A1 A2 A3 fU

0 X X 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
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The simplification using Boolean algebra is:

fU = (A1 ∧ Ā2 ∧ Ā3) ∨ (A1 ∧ A2 ∧ Ā3) ∨
(A1 ∧ Ā2 ∧ A3) ∨ (A1 ∧ A2 ∧ A3)

= A1 ∧ [(Ā2 ∧ Ā3) ∨ (A2 ∧ Ā3) ∨ (Ā2 ∧ A3) ∨ (A2 ∧ A3)] (32)

= A1 ∧ [(Ā3 ∧ (Ā2 ∨ A2)) ∨ (A3 ∧ (Ā2 ∨ A2))]

= A1 ∧ (Ā3 ∨ A3) ∧ (Ā2 ∨ A2)

= A1

Considering the third element u when building the Kleene table, the configuration
displayed in Table 11 is found.

Table 11. Kleene relations for three variables.

A1 A2 A3 fU A1 A2 A3 fU A1 A2 A3 fU

1 0 0 1 u 0 0 u 0 0 0 0
1 0 1 1 u 0 1 u 0 0 1 0
1 1 0 1 u 1 0 u 0 1 0 0
1 1 1 1 u 1 1 u 0 1 1 0
1 0 u 1 u 0 u u 0 0 u 0
1 1 u 1 u 1 u u 0 1 u 0
1 u 0 1 u u 0 u 0 u 0 0
1 u 1 1 u u 1 u 0 u 1 0
1 u u 1 u u u u 0 u u 0

Alternatively, the relationship between the variables can be shown using the coding
in Figure 5.

A3 = 0

A1

A2

0

u

1

0 u 1

0 u 1

0 u 1

0 u 1

A3 = u

A1

A2

0

u

1

0 u 1

0 u 1

0 u 1

0 u 1

A3 = 1

A1

A2

0

u

1

0 u 1

0 u 1

0 u 1

0 u 1

Figure 5. Three-variable relationships for fU .

Applying Kleene algebra for fU is obtained:

fU = (A1 ∧ Ā2 ∧ Ā3) ∨ (A1 ∧ Ā2 ∧ A3) ∨ (A1 ∧ A2 ∧ Ā3) ∨ (A1 ∧ A2 ∧ A3) ∨
(A1 ∧ Ā2) ∨ (A1 ∧ A2) ∨ (A1 ∧ Ā3) ∨ (A1 ∧ A3) ∨ A1 ∨
(A1 ∧ Ā1 ∧ Ā2 ∧ Ā3) ∨ (A1 ∧ Ā1 ∧ Ā2 ∧ A3) ∨ (A1 ∧ Ā1 ∧ A2 ∧ Ā3) ∨ (A1 ∧ Ā1 ∧ A2 ∧ A3) ∨
(A1 ∧ Ā1 ∧ Ā2 ∧ A3 ∧ Ā3) ∨ (A1 ∧ Ā1 ∧ A2 ∧ A3 ∧ Ā3) ∨
(A1 ∧ Ā1 ∧ A2 ∧ Ā2 ∧ Ā3) ∨ (A1 ∧ Ā1 ∧ A2 ∧ Ā2 ∧ A3) ∨ (A1 ∧ Ā1 ∧ A2 ∧ Ā2 ∧ A3 ∧ Ā3) (33)

fU = A1 ∧ [(Ā2 ∧ Ā3) ∨ (Ā2 ∧ A3) ∨ (A2 ∧ Ā3) ∨ (A2 ∧ A3) ∨ Ā2 ∨ A2 ∨ Ā3 ∨ A3] ∨ A1 ∨
A1 ∧ [(Ā1 ∧ Ā2 ∧ Ā3) ∨ (Ā1 ∧ Ā2 ∧ A3) ∨ (Ā1 ∧ A2 ∧ Ā3) ∨ (Ā1 ∧ A2 ∧ A3) ∨
(Ā1 ∧ Ā2 ∧ A3 ∧ Ā3) ∨ (Ā1 ∧ A2 ∧ A3 ∧ Ā3) ∨
(Ā1 ∧ A2 ∧ Ā2 ∧ Ā3) ∨ (Ā1 ∧ A2 ∧ Ā2 ∧ A3) ∨ (Ā1 ∧ A2 ∧ Ā2 ∧ A3 ∧ Ā3)]

For this case the expression can be written as:

fU = (A1 ∧ FB) ∨ (A1 ∧ FE) ∨ A1 = A1 (34)
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3.4. Activation Function with Total Dependence

In this case, activation is performed by all input sets. Table 12 shows the extent of the
table from Boole to Kleene where X can be {1, u, 0} and Xu,1 the elements {u, 1}.

Table 12. Kleene extension of the encoding for activation with all sets on input.

A1 A2 · · · An−1 An YT

1 1 · · · 1 1 1
u Xu,1 · · · Xu,1 Xu,1 u

Xu,1 u · · · Xu,1 Xu,1 u
Xu,1 Xu,1 · · · u Xu,1 u
Xu,1 Xu,1 · · · Xu,1 u u

0 X · · · X X 0
X 0 · · · X X 0
X X · · · 0 X 0
X X · · · X 0 0

In this table, if any of the variables Am is 0 then YT = 0, if all variables Am are 1, then,
YT = 1; finally, if any of the variables Am is u and the other ones u or 1, then YT = u. Thus,
the cases where there is a transition from YT between 0 and 1 they are assigned u.

Using the rules to determine the disjunctive normal form, it is observed that the term
A1 ∧ Am ∧ . . . ∧ An appears for the expressions when YT is 1 or u. In general YT can be
written as:

YT = (A1 ∧ Am ∧ . . . ∧ An) ∨ (A1 ∧ Am ∧ . . . ∧ An ∧ FE) (35)

YT = A1 ∧ Am ∧ . . . ∧ An

where FE corresponds to the disjunction of all the conjunctions obtained in the truth table
for which YT is u eliminating from these the conjunction A1 ∧ Am ∧ . . . ∧ An.

It is important to note the term A1 ∧ Am ∧ . . .∧ An is presented in the terms calculated
for YT when is u, hence when the absorption process is carried out, it is obtained the
expression for YT .

Example for a Table of Three Variables

In order to show the case when having an activation function with total dependency,
it is used the coding in Table 13.

Table 13. Boolean relations for three variables.

A1 A2 A3 fT

0 X X 0
X 0 X 0
X X 0 0
1 1 1 1

The respective expression using Boolean algebra is:

fT = A1 ∧ A2 ∧ A3 (36)

Table 14 displays the configuration considering the third element u to build the
Kleene table.

Alternatively, the relationship between variables is described by the configuration
present in Figure 6.
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Table 14. Kleene relations for three variables.

A1 A2 A3 fT A1 A2 A3 fT A1 A2 A3 fT

1 0 0 0 u 0 0 0 0 0 0 0
1 0 1 0 u 0 1 0 0 0 1 0
1 1 0 0 u 1 0 0 0 1 0 0
1 1 1 1 u 1 1 u 0 1 1 0
1 0 u 0 u 0 u 0 0 0 u 0
1 1 u u u 1 u u 0 1 u 0
1 u 0 0 u u 0 0 0 u 0 0
1 u 1 u u u 1 u 0 u 1 0
1 u u u u u u u 0 u u 0

A3 = 0

A1

A2

0

u

1

0 u 1

0 0 0

0 0 0

0 0 0

A3 = u

A1

A2

0

u

1

0 u 1

0 0 0

0 u u

0 u u

A3 = 1

A1

A2

0

u

1

0 u 1

0 0 0

0 u u

0 u 1

Figure 6. Three-variable relationships for fT .

Applying Kleene algebra for fT is obtained:

fT = (A1 ∧ A2 ∧ A3) ∨ (A1 ∧ A2 ∧ A3 ∧ Ā3) ∨ (A1 ∧ A2 ∧ Ā2 ∧ A3) ∨ (A1 ∧ A2 ∧ Ā2 ∧ A3 ∧ Ā3) ∨
(A1 ∧ Ā1 ∧ A2 ∧ A3) ∨ (A1 ∧ Ā1 ∧ A2 ∧ A3 ∧ Ā3) ∨ (A1 ∧ Ā1 ∧ A2 ∧ Ā2 ∧ A3) ∨
(A1 ∧ Ā1 ∧ A2 ∧ Ā2 ∧ A3 ∧ Ā3) (37)

fT = (A1 ∧ A2 ∧ A3) ∨ [(A1 ∧ A2 ∧ A3) ∧ [Ā3 ∨ Ā2 ∨ (Ā2 ∧ Ā3) ∨
Ā1 ∨ (Ā1 ∧ Ā3) ∨ (Ā1 ∧ Ā2) ∨ (Ā1 ∧ Ā2 ∧ Ā3)]]

In this case, the equation is written as:

fT = (A1 ∧ A2 ∧ A3) ∨ (A1 ∧ A2 ∧ A3 ∧ FE) (38)

therefore:
fT = A1 ∧ A2 ∧ A3 (39)

4. Compact Fuzzy System Architectures Based on Boolean Relations

Considering the analysis carried out in Section 3, the compact configurations are
obtained for two particular cases similar to classical neuro-fuzzy structures [22]; however,
structures ad hoc can also be obtained with the proposed design methodology.

For the development of compact fuzzy systems based on Boolean relations, the fol-
lowing configurations of the activation functions are considered:

• Architecture I: Employing activation functions with total dependence. Activation of
each virtual actuator is performed by all input sets. Similar to the scheme used in
radial-based neural networks.

• Architecture II: Using activation functions with unit dependency. Each virtual actuator
is activated by a single input set. It can be directly related to the structure of a dynamic
discrete time system.

Regarding possible applications, architecture I allows relationships between inputs to
obtain the output; therefore, it can be used in identification of dynamic systems where the
existence of products between the input variables is observed, as shown in Section 5. On the
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other hand, structure II permits the definition of direct analogies with linear controllers to
increase the adaptation capacity, as shown in the example of Section 6.

4.1. Compact System with Architecture I

In order to establish a system with architecture I, the coding shown in Table 15 is used.

Table 15. Coding for compact systems with architecture I.

A1,m(x1) A2,m(x2) · · · Ap,m(xp) Ym

1 1 · · · 1 1
0 X · · · X 0
X 0 · · · X 0
X X · · · 0 0

According to the previous analysis, from Table 15 is found that:

Ym = A1,m(x1) ∧ A2,m(x2) ∧ · · · ∧ Ap,m(xp) (40)

For the implementation using fuzzy sets the conjunction is made with the product
t-norm and each set Ap,m has a membership function associated µp,m. Taking m = 1 a
partial virtual output of this inference process can be seen in Figure 7, where v1 corresponds
to the respective virtual actuator.

µ1,1

µp,1

∏
v1

x1

...

Y1v1Y1

µ2,1

x2

xp

Figure 7. Partial virtual output of the inference process.

Using M virtual actuators with their respective activation functions, it is found the
scheme shown in Figure 8. A constant virtual actuator is used to complement the design
vc which corresponds to an encoding with an activation function Yc always active, that is,
with values of 1 in their respective column.

In this way, the expression for the inference process of this system is:

f = vc +
M

∑
m=1

vm

[
N

∏
p=1

µp,m(xp)

]
(41)

This scheme can be employed to systems identification since it has a structure similar
to that conventionally used in radial-based neural networks when used to µp,m Gaussian
membership functions [60].

The structure of Figure 8 can be interpreted as a neuro-fuzzy network. The respective
membership value for each input is obtained in the first layer. The second layer corresponds
to the product of the values obtained from the membership functions, that is, the calculation
of Ym, while Ymvm (virtual actuators multiplied by the respective activation functions) is
obtained in the third layer. Finally, in layer four it is performed the summation of all Ymvm
obtaining the inference output f .
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µ1,1

µp,1

∏
v1

µ1,m

µp,m

∏
vm

∑

b

b

x1

xp

f

Y1

Ym

...

...

...
...

...

vc

Figure 8. Representation of a compact system with architecture I.

Application for Dynamic Systems

In order to carry out the application of this configuration for dynamic systems, delays
can be used for the input signal and the feedback of the system output. As example, Figure 9
shows a configuration with one input delay and two for the output feedback. This fuzzy
system can be used for identification or control.

µ1,1

µ3,1

∏
v1

µ1,3

µ3,3

∏
v3

∑

b

b

u[n]

y[n− 1]

y[n]

Y1

Y2

Y3

vc

µ2,1

µ2,3

µ1,2

µ3,2

∏
v2b

y[n− 2]
µ2,2

u[n− 1]

1

z

1

z

1

z

Figure 9. Configuration of the neuro-fuzzy systems for identification and control.

4.2. Compact System with Architecture II

In this case, the coding of Table 16 is employed to find a fuzzy system where the
activation functions depend on a single input set.
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Table 16. Partial coding for a compact system with architecture II.

A1,1(x1) A1,2(x1) · · · A1,i(x1) Y1,1

1 X · · · X 1
0 X · · · X 0

From Table 16 is obtained Y1,1 = A1,1(x1). Generally increasing the columns, the
activation outputs are written as:

Y1,i = A1,i(x1) (42)

Having for each set A1,i a membership function µ1,i, and the respective virtual actuator
v1,i, then it is obtained the partial output y1 shown in Figure 10.

µ1,1

µ1,i

v1,1

v1,i

∑x1
µ1,2 v1,2

y1

Figure 10. Configuration example for a partial output.

Extending Table 16 for more input variables x1, x2,. . . , xj, it is determined the coding
of Table 17.

Table 17. General coding for a compact system with architecture II.

Aj,1(xj) Aj,2(xj) · · · Aj,i(xj) Yj,1 Yj,2 · · · Yj,i

1 X · · · X 1 0 · · · 0
X 1 · · · X 0 1 · · · 0
...

...
. . .

... ...
...

. . .
...

X X · · · 1 0 0 · · · 1

In this way, each activation function Yj,i directly depends on a set Aj,i. The resulting
expression is:

Yj,i = Aj,i(xj) (43)

Using the respective membership functions µj,i associated with sets Aj,i. Figure 11
shows the general scheme obtained.

The output of the inference process can be calculated as:

f =
M

∑
j=1

N

∑
i=1

vj,iµj,i(xj) (44)

As seen in Figure 11, the compact fuzzy system scheme can be interpreted as a neuro-
fuzzy network since input and output relationships are obtained through membership
functions and virtual actuators. The membership value for each input is obtained in the
first layer. Then, this value is multiplied using respective virtual actuator vj,i in the second
layer. In the third layer, the functions f j associated to each input xj are calculated. Finally,
in this same layer performing the summation of all f j the inference output f is determined.

In this way, the adaptation parameters correspond to the virtual actuators and the
configuration values for the membership functions. This architecture can be used in
identification and control since it allows for the representation of nonlinear relationships
between the input and the output that can be associated with a dynamic system.
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µ1,1

µ1,i

v1,1

v1,i

∑
x1

∑
x2

xj

µ1,2 v1,2

µ2,1

µ2,i

v2,1

v2,i

∑
µ2,2 v2,2

µj,1

µj,i

vj,1

vj,i

∑
µj,2 vj,2

...

f

f1

f2

fj

Figure 11. General diagram of a compact system with architecture II.

Application for Dynamic Systems

In this case, it is observed the direct relationship that a compact FIS-BBR has to
represent a nonlinear discrete time dynamic system. This equivalence is observed when
modifying a linear system of discrete time using fuzzy sets to represent the relationships of
the system. The model is obtained by replacing the linear relationships present for each
of the delays of both the input and the output feedback. Figure 12 shows the input and
output of the linear and fuzzy systems.

e[n] u[n]C(z)

E(z) U(z)

e[n] u[n]FIS-BBR

Figure 12. Linear system and fuzzy system.

In the first place, a linear system in discrete time is considered where its transfer
function is:

C(z) =
U(z)
E(z)

=
b0 + b1z−1 + b2z−2 + · · ·+ bNe z−Ne

1 + a1z−1 + a2z−2 + · · ·+ bNu z−Nu
(45)

Performing the respective operations:

U(z) + a1z−1U(z) + a2z−2U(z) + · · ·+ bNu z−Nu U(z) =

b0E(z) + b1z−1E(z) + b2z−2E(z) + · · ·+ bNe z−Ne E(z) (46)

The discrete time equation of this system is:

u[n] = b0e[n] + b1e[n− 1] + b2e[n− 2] + · · ·+ bpe[n− p] + · · ·+ bNe e[n− Ne]

− a1u[n− 1]− a2u[n− 2]− · · · − aqu[n− q]− · · · − aNu u[n− Nu] (47)
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where the respective coefficients aq, bp are constant. In the fuzzy system these constants
are replaced by nonlinear relationships, obtaining:

u[n] = fe,0(e[n]) + fe,1(e[n− 1]) + fe,2(e[n− 2]) + · · ·+ fe,Ne(e[n− Ne])

− fu,1(u[n− 1])− fu,2(u[n− 2])− · · · − fu,Nu(u[n− Nu]) (48)

As example, Figure 13 is proposed for setting the fuzzy system with different mem-
bership functions; besides, system output is calculated as:

u =
M

∑
j=1

N

∑
i=1

vj,iµj,i(xj) =
Ne

∑
p=0

fe,p(ep) +
Nu

∑
q=0

fu,q(uq) (49)

µ3,1

µ3,i

v3,1

v3,i

∑

1

z

e[n]

1

z

1

z

1

z

∑ u[n]

u[n− 1]

u[n− 2]

e[n− 1]

e[n− 2]

µ3,2 v3,2

µ4,1

µ4,i

v4,1

v4,i

∑
µ4,2 v4,2

µj,1

µj,i

vj,1

vj,i

∑
µj,2 vj,2

µ2,1

µ2,i

v2,1

v2,i

∑
µ2,2 v2,2

µ1,1

µ1,i

v1,1

v1,i

∑
µ1,2 v1,2

Figure 13. General scheme of the neuro-fuzzy system.

In order to consider nonlinearities (including saturation) for the functions fe,p and fu,q,
the relationship shown in the Figure 14 can be used.
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u, e

fe,p(e), fu,q(u)

Figure 14. Nonlinear function to implement a discrete time dynamic system.

5. Application Example of Architecture I: Nonlinear Plant Identification

By the simplification procedure using Kleene’s algebra described in Sections 2 and 3,
the compact structures are established in Section 4; therefore, this section shows the
application of structure I for the identification of a nonlinear system.

The identification process builds mathematical models of dynamic systems based
on the real input observations, outputs, and disturbances. It also requires selecting the
structure of the model [61,62].

The system given by Equation (50) is taken as a case study, which has been described
in [22]. A stable functioning is guaranteed with u[n] ∈ [−2, 2]. The calculation of the
training data is made using y[0] = 0, and y[1] = 0.

y[n + 1] =
y[n](y[n− 1] + 2)(y[n] + 2.5)

8.5 + y[n]2 + y[n− 1]2
+ u[n] (50)

Figure 15 shows the architecture employed to identify the plant with one delay in the
input and two for feedback; u represents the input while the output is y and z−1 represents
a delay.

1

z

1

z

u[n]

y[n]

Compact Neuro-Fuzzy

System

Based on

Boolean Relations

Input

Output

1

z

Figure 15. Model employed for the identification.

5.1. Compact Neuro-Fuzzy System

In this case, Gaussian memberships are used for the configuration in each µi,l . Figure 16
is an example where x1, . . . , xi are inputs and µ1,l , . . . , µi,l , are the membership functions.
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x1

xi

µ1,l(x1)

µi,l(xi)

...

Figure 16. Gaussian sets for each input.

Considering the input, output, and delays, the structure of Figure 15 used in the
identification process is determined.

The system output is calculated as:

f (x) = vc +
M

∑
l=1

vl

[
N

∏
i=1

exp

(
−
(

xi − δi,l

σi,l

)2
)]

(51)

the resulting activation outputs are:

Yl =
N

∏
i=1

exp

(
−
(

xi − δi,l

σi,l

)2
)

(52)

System output is:

f = vc +
M

∑
l=1

vlYl (53)

where M represents the number of fuzzy rules, N number of inputs, vl the actuator, vc a
constant action of the input, xi is the system’s input datum with i = 1, 2, 3, . . ., N, while, δi,l
and σi,l are the center and the standard deviation of the Gaussian fuzzy set; finally, f = y[n]
is the fuzzy system’s output.

The rules that implement the estructure of Figure 17 can be represented as shown in
Boole Table 18. In general, for l = 1, . . . , 4 these rules are described as:

• If u[n] is µ1,l and u[n − 1] is µ2,l and y[n − 2] is µ3,l and y[n − 1] is µ4,l Then the
activation function is Yl .

Table 18. Rules associated with the estructure of Figure 17.

µ1,1 µ2,1 µ3,1 µ4,1 µ1,2 µ2,2 µ3,2 µ4,2 µ1,3 µ2,3 µ3,3 µ4,3 µ1,4 µ2,4 µ3,4 µ4,4 Y1 Y2 Y3 Y4 Yc

1 1 1 1 X X X X X X X X X X X X 1 0 0 0 1
X X X X 1 1 1 1 X X X X X X X X 0 1 0 0 1
X X X X X X X X 1 1 1 1 X X X X 0 0 1 0 1
X X X X X X X X X X X X 1 1 1 1 0 0 0 1 1

In this way, the output is calculated using Equation (54), where vc has associated an
activation function always active Yc = 1.

f = v1Y1 + v2Y2 + v3Y3 + v4Y4 + vc (54)
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µ4,1
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Figure 17. Representation of the neuro-fuzzy system employed.

5.2. Training Algorithm

For the system training, it is employed the Back Propagation (BP) algorithm that
uses the gradients calculated in relation to the parameters [51]. This approach aims at
minimizing the Je error defined as:

Je =
1
2
[yr(p)− f (x(p))]2 (55)

where yr is the real data, f the data from the fuzzy system, and p the variable associated
with each training data. The equations used in the training process are:

vc(q + 1) = vc(q)− α
∂Je

∂vc

∣∣∣∣
p

(56)

vl(q + 1) = vl(q)− α
∂Je

∂vl

∣∣∣∣
p

(57)

δi,l(q + 1) = δi,l(q)− α
∂Je

∂xi,l

∣∣∣∣
p

(58)
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σi,l(q + 1) = σi,l(q)− α
∂Je

∂σi,l

∣∣∣∣
p

(59)

Thus, the parameters are upgraded with:

vc(q + 1) = vc(q)− α( f − yr) (60)

vl(q + 1) = vl(q)− α( f − yr)Yl (61)

δi,l(q + 1) = δi,l(q)− α( f − yr)vl(q)Yl
2(xi[p]− δi,l(q))

σi,l(q)
2 (62)

σi,l(q + 1) = σi,l(q)− α( f − yr)vl(q)Yl
2(xi[p]− δi,l(q))

2

σi,l(q)
3 (63)

According to [51,63], parameters adaptation of the neuro-fuzzy system involves the
following steps:

1. The neuro-fuzzy system is chosen considering M and N. According to [63], M is
increased when having more parameters and, consequently, more calculations and
higher accuracy.

2. Output calculations for an input-output (x[p], yr[p]) in the q-th training stage.
3. Parameter upgrade vl(q + 1), δi,l(q + 1) and σi,l(q + 1). Where α is the learning rate.
4. Return to step 2 taking q = q + 1, until the error e = f − yr[p] is smaller than a value

ε, or until a maximum value of q.
5. Return to step 2 taking p = p + 1, taking the next input-output (x[p + 1], yr[p + 1]).

5.3. Training Process Results

Figure 18 displays the random data used (1000 samples). The training takes 70% of
the data and to validate 30%. Figure 19 shows the result after training where the Mean
Squared Error (MSE) is equal to 9.3592× 10−4 using 200 iterations, while Figure 20 shows
the validation process result with a MSE of 1.0× 10−3.
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Figure 18. Plant data used.
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Figure 19. Training result.
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Figure 20. Validation result.

6. Application Example of Architecture II: PID Control

Fuzzy logic systems allow link-up system inputs and outputs using linguistic terms
in the description [63]. This feature allows using fuzzy logic in control systems develop-
ment [22]; in addition, the FIS systems allows handling nonlinearities like products between
variables, saturations, and power functions, among others present in nonlinear dynamic
systems [64]. This section aims to show that the II architecture established in Section 4
through the procedure of Section 3 and the fundamentals of Section 2 can be used to control
systems. As a study case, it is shown the application of a hydraulic control system employing
compact FIS-BBR with architecture II.

6.1. Hydraulic System

The considered model is like the one used in [50], consisting of a hydraulic system
displayed in Figure 21. The system variables and parameters values are shown in Table 19. As
can be observed in Equation (64), the model has a square root that incorporates a nonlinear
component in the system behavior. In addition, there is a limitation in the maximum
tank inflow.

b

b

qe

qo

Input flow

Output flow

u

h(t)

Figure 21. Tank filling system.

Table 19. System parameter values.

Parameter Symbol Value

Inflow qe(t) 0.25 L/s or 2.5× 10−4 m3/s (max)
Height of the liquid h(t) 1 m (max)

Tank cross-sectional area A 0.126 m2

Output valve cross-sectional area A0 0.317 cm2 (3.17× 10−5 m2)
Constant value of the valve Cv = A0

√
2g 1.4× 10−4 m5/2/s

The model of the hydraulic system is given by equation:

qe(t) = A
dh(t)

dt
+ Cv

√
h(t) (64)
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In addition, a delay time t0 of 0. s is associated with the valve operation; therefore, the
relation between control action u and the input flow is qe(t) = 2.5× 10−4u(t− t0) where
0 ≤ u ≤ 1. Figure 22 shows the plant response for different values of the action u(t− t0)
considering that the maximum value of h is 1 m.
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1

h
(t
)

t [min]

u(t− t0) = 0.08
u(t− t0) = 0.11
u(t− t0) = 0.14

Figure 22. Plant response.

6.2. Controller

The controller is defined from a discrete-time linear controller transformed into a
compact fuzzy shape when employing fuzzy sets. Then, the optimization of the controller
parameters takes place with the plant and controller. Such optimization happens with the
BFGS Quasi-Newton (Broyden–Fletcher–Goldfarb–Shanno) that explains the relevance of
the initial search point [65].

A PID controller in discrete time is described by the transfer function:

C(z) = Kp +
Ki

1− z−1 + Kd(1− z−1) (65)

performing the respective operations is obtained:

C(z) =
(Kp + Ki + Kd)− (Kp + 2Kd)z−1 + Kdz−2

1− z−1 (66)

in general, it can be written like:

C(z) =
b0 − b1z−1 + b2z−2

1− z−1 (67)

The respective equation in discrete time for this controller is

u[n] = b0e[n]− b1e[n− 1] + b2e[n− 2] + u[n− 1] (68)

For the fuzzy controller, the expression is:

u[n] = f1(e[n]) + f2(e[n− 1]) + f3(e[n− 2]) + f4(u[n− 1]) (69)

For implementing the fi sigmoidal functions are utilized to represent negative µN,i
and positive µP,i values, as shown in Figure 23. Thus, Figure 24 shows the fuzzy compact
PID controller.

0.5

1.0

u, e

µN,i(u), µN,i(e) µP,i(u), µP,i(e)

Figure 23. Membership functions employed.
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Figure 24. Compact fuzzy PID controller.

The fi functions are given in the form:

fi(xi) = vN,i

(
1 + e−σN,i(xi−γN,i)

)−1
+ vP,i

(
1 + e−σP,i(xi−γP,i)

)−1
(70)

The parameters employed are the following: for the centers γN,i = 0, γP,i = 0, for the
slope σN,i = −0.08, σP,i = 0.08; and the virtual actuators vN,i = −25, vP,i = 25. In this way,
Figure 25 shows the respective functions fi.

-50 0 50

-30

-20
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20

30

x
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)

Figure 25. Input-output relationship for each fi.

The rules used to implement the estructure of Figure 24 can be represented as shown
in Boole Table 20. In general, these rules are described as:

• If xi is µN,i Then the activation function is YN,i.
• If xi is µP,i Then the activation function is YP,i.
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Table 20. Rules associated with the estructure of Figure 24.

µN,1 µP,1 µN,2 µP,2 µN,3 µP,3 µN,4 µP,4 YN,1 YP,1 YN,2 YP,2 YN,3 YP,3 YN,4 YP,4

1 X X X X X X X 1 0 0 0 0 0 0 0
X 1 X X X X X X 0 1 0 0 0 0 0 0
X X 1 X X X X X 0 0 1 0 0 0 0 0
X X X 1 X X X X 0 0 0 1 0 0 0 0
X X X X 1 X X X 0 0 0 0 1 0 0 0
X X X X X 1 X X 0 0 0 0 0 1 0 0
X X X X X X 1 X 0 0 0 0 0 0 1 0
X X X X X X X 1 0 0 0 0 0 0 0 1

Then, the controller output is calculated as:

u = vN,1YN,1 + vP,1YP,1 + vN,2YN,2 + vP,2YP,2

+ vN,3YN,3 + vP,3YP,3 + vN,4YN,4 + vP,4YP,4 (71)

6.3. Optimization Process

The optimization process includes an operation that permits the calculation of the
control system dynamics. The optimization parameters X defines the response of the
control system yout(X). The reference output yre f (desired behavior) is found from the
reference model given by the transfer function display in Equation (72). Figure 26 shows
the reference model response for different values of r(t) where the settling time is the 1800 s
namely 30 min (time scale in minutes). The reference model is proposed to reduce the
settling time of the open-loop plant presented in Figure 22.

Yre f (s)
Rre f (s)

=
1

450 s + 1
(72)
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Figure 26. Reference model response.

Figure 27 shows the scheme used for the optimization process. The result of yout
and yre f are employed to calculate the performance index to optimize J(X). Thus, the
optimization process employs the performance index function. In addition, X corresponds
to the controller’s set of parameters, n is the discrete-time variable, and N is the number of
data employed. In this way, the performance function is obtained, which corresponds to
mean squared error:

J =
1
N

N

∑
n=1

(yre f (n)− yout(n, X))2 (73)

The Quasi-Newton method of BFGS (Broyden–Fletcher–Goldfarb–Shanno) is used in
the optimization process; this method performs a successive Hessian approximation [65].
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Figure 27. Scheme of the optimization process.

6.4. Results

This section displays the results after optimizing a compact fuzzy controller; the
optimization variables are the parameters of the membership function µN,i, µP,i, and the
actuators vN,i, vP,i. For this case, (PID controller), the action of feedback is not optimized
since it is the integral component. The value before the optimization is 0.0876085 for the
objective function. After the process, the value of the objective function is 4.75608× 10−5

using 100 iterations. Figure 28 shows the optimization process results. It is also seen the
response of the system with the training data; meanwhile, Figure 29 shows the controller’s
behavior for different references employed in the training process.
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Figure 28. Optimization results with training data.
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Figure 29. Controller results with different references.

7. Discussion

In this work, two schemes of compact fuzzy systems based on Boolean relationships
were formalized, which can be used in identification and control; however, other architec-
tures can be established, such as when an activation is used with partial dependence on the
input sets or ad hoc structures for dynamic systems. Additionally, more elaborate applica-
tions can be carried out for the prediction of chaotic series such as energy consumption in
electrical systems, as well as the development of nonlinear controllers and adaptive control
techniques for thermal, hydraulic, and generators among others.
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8. Conclusions

This work reviewed the methodology for designing fuzzy inference systems applied
to specific cases to have compact fuzzy inference systems based on Boolean relations. The
advantage of this methodology consists of presenting the rules of the system as a truth table
and establishing the equations for system implementation using Boole and Kleene algebras.

Possible application cases of the concepts used for the design of compact fuzzy systems
based on Boolean relations were presented. These systems can be generalized to have more
complex structures without losing interpretability. Through the cases under study, the
equivalence is achievable to simplify expressions using Boole and Kleene algebras, which
permits various configurations of compact inference systems based on Boolean relations.

The application examples considered to identify and control nonlinear dynamic sys-
tems allow a straightforward application of fuzzy systems based on Boolean relations
with interpretability and adaptability. Architecture I allowed for the identification of
the system that presents multiplications between the variables that describe its behavior;
meanwhile, architecture II allowed for the expansion of the adaptation capacity of a PID
controller achieving the desired behavior of this control system considering the desired
reference model.

For the architecture I used to plant identification, the value of the objective function
before training is 0.79851; the result after training is equal to 9.3592 × 10−4 using 200
iterations. Meanwhile, for architecture II applied to control, the value before the opti-
mization is 0.0876085 for the objective function; after the process, the value obtained is
4.75608× 10−5 using 100 iterations. These results show that the proposed architectures
allow the adaptation of their parameters using optimization algorithms.

The initial configuration to perform the optimization is essential; in this way, the
proposal allows for the easy establishment of the initial configurations of the proposed
systems. For architecture I, the initial configuration is obtained systematically, distributing
the sets in the range of the inputs. For the control application, the sigmoidal fuzzy sets were
configured considering the value of the desired output. With these initial configurations, an
adequate optimization of the fuzzy systems used for identification and control is achieved.

The researchers expect to employ compact fuzzy systems to design adaptive neuro-
fuzzy control systems in further work. Given the compact structure, these systems make
possible the use of Back Propagation and Dynamic Back Propagation algorithms for adap-
tive applications. Researchers will also consider carrying out MIMO applications using
compact subsystems based on Boolean relationships in such a way that different MIMO
configurations can be used for identification and control.
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