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Abstract 

The effect of a free surface on stress distribution along the three-dimensional crack front is discussed. Generalized stress intensity 
factor methodology and out-of-plane constraint based procedure are used for a reliable estimation of the stress state in front of the 
crack tip. The two present methodologies are discussed and compared. The out-of plane, in-plane constraint parameters and 
generalized stress intensity factor were estimated. It is shown significant changes of the singularity exponents and fracture 
parameters values close to the free surface. Therefore, conventional methodologies can lead to inaccurate description of the stress 
state and cannot be used for reliable description of fatigue crack propagation in this area. 
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1. Introduction 

The fracture mechanics description of the three-dimensional crack front was intensively studied in different 
works [1,2,3,4]. The main problem is description of the area close to the free surface, where the stress field is more 
complicated than in the center region. Usual fracture mechanics description of the stress field in the linear elasticity 
is based on stress intensity factor, which is related to square-root stress singularity. This concept is generally valid 
and has been used with success several decades, especially for structures where the plain strain conditions prevail. 
However, in the case of thin structures or in the area close to the free surface this simple description fails and it is 
necessary generalized usually used concept. Generally, the problem can be solved by two ways. A first stress 
description can be generalized using vertex singularity. A second possible description is based on out-of plain 
constraint concept. Both approaches explain more or less the same effect using different methodologies. 
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Over the last 30 years a number of papers which address various aspects of the influence of vertex singularity on 
the crack behaviour has been published, e.g.[3,4,5,6]. The three-dimensional singular stress field near the point 
where the crack front intersects the free surface (vertex point) of an elastic body was already investigated by Bažant 
and Estenssoro [7], Benthem [5], Ghahremani [8]. Using separation variables technique or variation principle, 
Benthem and Bažant showed that the stress singularity exponent induced by the free surface can be found resulting 
in power of the singularity weaker than the classical value of 0.5. As a result, the singularity exponent induced by 
the free surface differs from 0.5 and depends on Poisson’s ratio  of material. Following the literature, the 
singularity exponent in the vertex point varies between 0.5 (corresponding to 0 ) and 0.33 (corresponding 
to ). Despite the intensive effort performed to describe the stress distribution around the vertex singularity by 
a combination of analytical and numerical methods little has been done to explain the crack behaviour near the free 
surface from the perspective of fracture mechanics. The methodology based on generalized stress intensity factor, 
able to describe the crack behaviour close to the free surface, was proposed recently by Hutar et al., see [9,10]. 

0.5

Fig. 1. Schematic MT specimen (left) and preview of finite element mesh used for numerical calculations (right) 

The stress description around the 3D crack front based on out of plane constraint is proposed e.g. by Guo et al., 
see [11,12] or Fernandez-Canteli et al. [13]. The former proposed different descriptions of the stress field as a 
function of the in-plane constraint (given by T-stress) and out of plane constraint (given by Tz) focused mainly on 
fracture toughness aplication. The latter proposed description of the singular stress field around crack front by 
means of expression:  
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 were hij(z; ;B) represents stress intensity tensor and tij(z;B) constraint tensor. To prove quality of the different 
descriptions of the stress field the numerical simulations of the middle-crack tension MT specimen (see Fig.1.) were 
performed and three different approaches for stress field description were compared. Finally, possible usage of the 
proposed methodologies is discussed. The aim of the present contribution is to discuss and compare different 
approaches for assessment of 3D character of stress field caused by the existence of body free surfaces. The 
consequences of stress field changes in the region near the free surface on fatigue crack propagation are then 
considered. 

2. Finite element modeling 

The numerical simulations were performed using finite element method software package ANSYS. The tension 
specimens of length 2H = 200mm, width 2w = 50mm and thicknesses 2B = 2 and 20mm were loaded by applying a 
uniform stress on the top, see Fig.1. This geometry corresponds to MT specimens used for fatigue crack growth 
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testing. The 20-nodes iso-parametric elements SOLID 95 with quadratic base-function were used for mesh 
generation, whereas a very fine mesh was used in the region around the crack front to achieve precise results. 
Making advantage of the existing symmetry, only one-quarter of the specimen was modeled. A constant Young’s 
modulus E = 200 GPa was assumed throughout while the Poisson’s ratio  was varied between 0 and 0.49 to study 
its influence. The applied loading stress was considered to be equal to  = 100MPa. The linear elastic fracture 
mechanics conditions were assumed to study stress distribution along the crack front. 

3. Stress distribution at the crack front 

The knowledge of the stress distribution in the crack vicinity is crucial for the assessment of the crack behaviour. 
Usually, the stress description around the crack tip is characterized by means of one (K) or two (K,T) fracture 
parameters, which are found to be representative for whole crack front. In general, the effect of the free surface on 
the stress distribution along the crack front is strong so that local fracture parameters have to be introduced.                               

Fig. 2. Cartesian and polar coordinate system on the crack front 

Conventionally, the asymptotic stress field ij ahead of a crack tip in a homogenous isotropic material under 
mode I (opening mode) loading, is expressed as: 

 ,  (2) 
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where KI is the stress intensity factor, Tij is T-stress, i,j is Cronecker delta, Oij covers all higher terms of Williams 
expansion, r and  are polar coordinates, fij( ) is a dimensionless function of the polar angle see Fig. 2. 
Accordingly, the singular stress distribution for loading mode I in each single layer perpendicular to the crack front 
is described by the stress intensity factor [14]: 
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whereas zz is 0 for plane stress conditions and ( xx+ yy) for plane strain conditions. For comparison with this 
classical stress description, the tensor approach proposed by [13] is considered, in which a new expression for the 
constant term is used. Assuming validity of the Williams expansion, also for the out-of-plane component zz, the 
stress distribution becomes: 
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where z is the location in the out-of-plane direction, see Fig. 2, Txx is the in-plane constraint, i.e., the conventional 
T-stress, and �zz is the out-of-plane normal strain. As a result, the stress state along the crack front is described by 
three fracture parameters, KI, Txx, Tzz so that Eq. (4) can be used, presumably, to reproduce more precisely the 
crack behaviour under failure conditions. 
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Fig. 3. Stress intensity factor KI  and T-stress (Txx) estimated using the direct method 

From the other part, the complicated stress state close to the free surface is the result of a change in the 
singularity at the vertex point, see e.g. [4,7]. In fact, for a straight crack front and semi-infinite three dimensional 
body, the stress singularity exponent in the vertex point is found to be weaker than 0.5 and depending on particular 
value of Poisson’s ratio [5,7]. The value of the singularity exponent changes continuously from the central part of 
the crack to the free surface, and can be estimated using a 3D numerical calculation [6,9]. A methodology, based on 
the generalized stress intensity factor, which takes into account the change of the stress singularity exponent close to 
the free surface, was proposed by Hutar et al. [10] allowing the stress distribution to  be expressed as: 

, ,
2

pI
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where HI is the generalized stress intensity factor, p is the exponent of the vertex singularity and fij is a known 
function. A detailed description of this approach is given in [10]. 

0.3

0.35

0.4

0.45

0.5

0.55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z/B [-]

p
 [

-]

Fig. 4. Vertex singularity exponent along the crack front for different values of the Poisson’s ratio 
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4. Results and discussion 

4.1. Estimation of the stress intensity factor, T-stress and exponent of the vertex singularity 

Numerical calculations were performed to achieve an accurate description of the stress field ij as a function of 
out-of-plane position z/B (see Fig. 2.). The first task comprised an estimation of the stress intensity factor KI (z/B)
and the T-stress Txx (z/B) along the crack tip for a crack size ratio a/w = 0.5. The stress intensity factor, the T-stress 
and the stress singularity exponent were estimated using the direct method. For this purpose, a specimen thickness 
of 2B = 20 mm was considered, and KI (z/B) and Txx (z/B) were calculated for different Poisson’s ratios ranging from 

 = 0 to 0.49. The results are shown in Fig. 3. 
      A drastic change for both KI and Txx is observed when the position at the crack front is approaching to the free 

surface of the specimen. This change is greater for increasing Poisson’s ratio. The results shown correspond to those 
published in [6]. Generally, the value of the stress intensity factor decreases while the T-stress increases when 
approaching to the free surface. The variation experienced by the singularity exponent along the crack front for a 
specimen thickness of 20 mm and a Poisson’s ratio in the range 0 ÷ 0.5 is shown in Fig. 4. The singularity exponent 
varies along the crack front being close to 0.5 in the middle of the specimen (z/B  0) while takes the value 
according to Bažant [7] and Benthem [5]  in the point where the crack front intersects the free surface. For = 0, the 
crack stress distribution coincides with that resulting for the classical two-dimensional solution thus being defined 
simply by KI , even also in the vertex point. For increasing Poisson’s ratio, the singularity exponent decreases in the 
region influenced by the vertex varying between 0.37 and 0.5, see Fig. 4.  

Fig. 5. Stress distribution along the crack front for a specimen thickness B = 20 mm and different Poisson’s ratios . The stress distribution near 
the crack tip under loading mode I – thick specimen  
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With the aim of determining the limiting position of some approaches, numerical calculations of the stresses for 
the plane  = 0° near the crack front were performed. A specimen thickness 2B = 20 mm was assumed throughout. 
Since materials with a Poisson’s ratio  0.3 are often used in engineering applications, the subsequent simulations 
were performed for = 0.3 and then compared with the results obtained using Poisson’s ratios = 0 and = 0.49. 
The effect of the Poisson’s ratio on the stress distribution along the crack front for the position x1 = 0.5 mm (see Fig. 
2) by thick specimens is depicted in Fig. 5. Sij_1p are the stresses obtained for a one-parameter linear elastic fracture 
mechanics computed using Eq. (3), Sij_Tij are the stresses obtained by including the T-stress Txx and Tzz, (Eq. (4)) 
according to [13], Sij_H are the stresses computed by using the generalized stress intensity factor H (Eq. (5)) and, 
finally, Sij_FEM are the stresses resulting from the application of the finite element method (FEM). 

4.2 Stress distribution near the crack front under loading mode I  for a thick specimen 

In the case of a Poisson’s ratio  = 0, all the referred methods render practically the same stress values these 
being constant throughout the specimen thickness. For  = 0.49, a rapid decrease of all stresses is noticed as a result 
of the deformation induced by the free surface while for  = 0.3 the stresses are more or less similar to those 
resulting for  = 0.49. In the following, the results obtained from standard finite element method simulations are 
compared with those calculated using the above mentioned approaches. All the methods provide very accurate 
results for the opening stress yy for all the three Poisson’s ratios considered. However, the values of the stresses xx
and zz differ substantially. The differences seem to be due to the presence of the T-stress, which in the case of MT 
specimen influences significantly the values of the xx and zz stress components. While the stress zz in the case of 
the one-parameter approach differs significantly from the FEM solution, both the approach proposed in [13] and the 
generalized stress intensity approach are in good agreement even for higher values of Poisson’s ratio until the 
position z/B  0.95 where they fall to, apparently, unrealistic negative values. When analyzing the xx stresses we 
observe that only the approach proposed in [13] is almost identical with the FEM solution. Note that for  = 0° both 
stresses xx and yy coincides in the one-parameter approach because the known function is fij( ) = 1. 
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Fig. 6 Stress distribution along the crack tip for various Poisson’s ratios  and thin specimen 

4.3 Stress distribution near the crack tip under loading mode I  for a thin specimen 

For a comparison to Subsection 4.2, where the stress distribution for a thick specimen of thickness 2B = 20 mm 
was analyzed, new simulations were performed for a specimen of thickness 2B = 2 mm with the aim of determining 
how precisely the stress distribution are described by equations (3), (4) and (5) in the case of thin specimens. The 
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effect of the Poisson’s ratio on the stress distribution in front of the crack tip for thin specimens is presented  
in Fig. 6. 

Both xx and yy distributions are well described for both values of Poisson ratio using the approach proposed in 
[13], which loose accuracy when approaching to the free surface, represents the best one of studied methods. When 
calculating zz , the latter approach supplies good solutions only in the middle of the specimen, i.e., for z/B  0.5. 
The one-parameter approach provides only a reliable calculation of yy. The distribution of the other stress 
components is inaccurate. The generalized stress intensity factor approach gives similar results to those provide by 
[13] but it is less precise.  

5. Conclusions 

The goal of the presented work was to compare three basic approaches for calculating the stress distribution in 
front of the crack tip in both thick and thin specimens. To this aim MT specimens with two different thickness, 2 
mm and 20 mm, were considered. The applied methods consisted of: (i) the classical one-parameter approach based 
only on stress intensity factor; (ii) a three-parameter approach based on both the in-plane T-stress Txx and the out-of-
plane stress Tzz; and (iii) the approach based on generalized stress intensity factor HI.

Using FEM simulations, the stress intensity factor, the T-stress and the exponent of the vertex singularity were 
estimated and used as an input for the semi-analytical expressions described in Section 3. The stresses xx, yy and zz
were then calculated along the crack front and compared each other. It can be concluded that the approach suggested 
in [13] taking Txx and Tzz into account was found to be the most proper for both thick and thin specimens. In spite of 
the fact that for positions of the crack front closer to the free surface this approach supplies results which are not 
generally accurate, it seems to be the most recommendable. Though the methodology based on the generalized stress 
intensity factor can be used, especially in the case of thin specimens, a description of the behavior of the fatigue 
crack requires finding out the relation between KI, Txx, Tzz or HI and the fatigue crack propagation in the form of the 
modified Paris’ law. This relation, based on Sih’s strain energy density concept, can be found, for example, in [10]. 
The proposal discussed and the results found can explain the effect of the free surface on the fatigue crack behavior 
in the framework of the linear elastic fracture mechanics allowing us to assess the influence of the 3D stress field 
character on fatigue crack shape and propagation, thus contributing towards a more reliable estimation of the 
residual fatigue lifetime for thin-walled structures.  
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