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Abstract: Around 40% of the population will suffer at some point in their life a disease involving
tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with
current therapies. An alternative for these processes is represented by stem cells and, especially,
mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic
effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC
appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory,
regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or
anti-microbial type. This concept forces us to return to the origin of natural physiological processes
as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine.
These biological effects, demonstrated in countless preclinical studies, justify their first clinical
applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC
as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes,
and high economic cost. For these reasons, there is an ongoing tendency to consider the use of
MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent
cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC
according to their origin for each therapeutic indication and the implementation of new standardized
production strategies. Therefore, stem cell science based on an intelligently designed production
of MSC and or their derivative products will be able to advance towards an innovative and more
personalized medical biotechnology.

Keywords: secretome; extracellular vesicles; exosomes; MSC in vitro production; MSC large-scale
expansion; ex vivo MSC modifications; bioreactor

1. Introduction

Despite advances in medicine, there are still shortcomings in the treatment of many
inflammatory, degenerative, or cancerous diseases, for which there is no curative treatment
option. Among this wide range of pathologies, which will affect 40% of the population at
some point in their life, those of immunological, degenerative, ischemic, or cancerous origin
stand out. To this we must add that, at present, the social demand to find treatments for a
gradually wide spectrum of rare diseases is increasing. However, to this cocktail of urgent
needs, we must also add the problem of infections (especially due to the looming crisis
of resistance of many bacterial strains to antibiotics), the emergence of new pandemics
(such as that caused by the coronavirus), and the dramatic and progressive increase in
average life expectancy throughout the world population. All this aggravates and extends
the dilemma of effective therapeutic possibilities.
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Faced with these realities, there is a growing exigency for new therapeutic alternatives
that assume the real challenges presented by most of these “orphan diseases”—the control
of the inflammatory process and tissue regeneration. For this, we count on the novel
paradigms of science and medicine, which will contribute to glimpsing new solutions for
old problems and for emerging challenges that will arise in the future. In this context,
the development of studies around the archetype of stem cells and regenerative medicine
represents one of the greatest endeavors in the history of medical science. Technological-
biological advances have allowed us to raise great expectations on the basis of the different
types of stem cells (embryonic stem cells, induced pluripotent stem cells (iPS) and adult
stem cells, including hematopoietic stem cells, neural stem cells and mesenchymal stem
cells (MSC)). Hope is particularly focused on MSC, observing an exponential increase in
research based on them [1].

This is due to their influence in many basic aspects of cell biology, making a multi-
faceted therapeutic approach possible and breaking the classic concept of the pharmaceuti-
cal industry of “one disease: a single therapeutic target” [2].

Under this broad angle, Caplan recently named these cells as “medicinal signaling
cells” [3]. However, a perspective vision on the evolution of the investigations and potential
applications of MSC in the last two decades can be noticed: (i) from their regenerative
interest to their anti-inflammatory potential, and (ii) from cell therapy to the possibility of
a cell-free therapy based on the products derived from its secretome. Moving on, we can
also guess the need for future orientations of the paradigm: recognition of heterogeneity of
MSC according to their tissue origin and donors, feasible and standardized production,
and application of functional tests prior to therapeutic applications. Further, the possibility
of influencing the achievement of biological products of MSC, suitable for the treatment of
each specific pathological process, opens the doors to a pioneering way to address these
critical health issues by improving the quality of life of patients.

2. MSC: Nomenclature, Properties, Heterogeneity, and Reality

From the mid-1960s, the soviet scientist Alexander Friedenstein demonstrated that
mouse bone marrow and other blood-forming organs contained clonogenic progenitor
cells that could give rise in culture to fibroblasts, as well as other mesodermal cells [4]. He
observed that these precursor cells did not belong to the hematopoietic cell lineage and had
the ability to generate bone and cartilage-forming cells. Nowadays, it is known that MSC
appear, from the fetal/neonatal period to the stage of stromal tissue formation in the adult,
in one seemingly ubiquitous localization in most vascularized tissues. They are fibroblast-
like populations that are also known on different terms as “mesenchymal progenitor cells”,
“mesenchymal adult stem cells”, “mesenchymal stromal cells”, “multipotential stromal
cells”, “interstitial stem cells”, “marrow stromal cells”, or “medicinal signaling cells” [3].
The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular
Therapy established in 2006 the minimal identifying characteristics for human MSC: (a)
plastic-adherent cells when maintained in standard culture conditions; (b) expression of
CD105, CD73, and CD90, and lack expression of CD45, CD34, CD14, or CD11b, CD79a, or
CD19 and HLA-DR surface molecules; and (c) capacity to differentiate into osteoblasts,
adipocytes, and chondroblasts in vitro [5]. In addition, MSC are considered as immune-
privileged cells since they do not express neither the major histocompatibility complex
(MHC) II nor costimulatory molecules, such as CD86, CD40, or CD80, and also express a
low level of MHC [6].

Bone marrow, subcutaneous fat, Wharton’s jelly, and umbilical cords are the more
used sources of MSC [7] named BM-MSC, SF-MSC, WJ-MSC, and UC-MSC, respectively.
However, others such as fetal/neonatal tissues [8–11], dental pulp [12], or placenta [8] are
becoming of increased interest.
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2.1. Biological Implication of the Mesodermical Origin from MSC

MSC seem to present a certain embryological imprint due to their mesodermal ori-
gin, which is translated, for example, in their plastic capacity to transform into adipose,
osteoblastic, and chondroblastic cells. MSC are recognized for their fundamental role in
the structural support of different tissue and organs. Notably, those of greater functional
capacity, such as the immune system and the circulatory system, also derive from this
embryological layer. Examples of specialized interstitial cells are the myofibroblasts, which
regulate blood flow; interstitial cells of Cajal, which act as pacemakers to regulate smooth
muscle cell contractility; or the synovial fibroblasts, which regulate the quality of synovial
fluid [13,14]. The bone marrow (BM) and lymph nodes (LNs), intestinal Peyer’s patches,
and the spleen are also examples of biological niches in which MSC play an essential role in
regulating haematopoietic stem cell (HSC) activity through the expression of chemokines,
cytokines, and lipid gradients, among others [15]. Furthermore, the evidence indicates that
the biology of the mesoderm progresses through an expansive evolution in such a way that
a part of the mesoderm evolves towards the constitution of a stroma intimately intercon-
nected with the tissues that derive from the ectoderm or endoderm. In this context, MSC,
whose functional heterogeneity seems to reflect the microenvironment derived from inter-
actions with nearby cells, are in turn adapted to perform organ-specific functions [16,17].
Therefore, although MSC show a perivascular location in different anatomical locations,
they differ in their functional capacity to generate paracrine signals. In fact, differences in
the bioactive factors secreted by MSC depending on their location in the different organs
and tissues have been described [18]. This idea breaks the hitherto widespread concept
attributed to MSC of “one-cell-does-it-all”. In addition, the MSC heterogeneity must be
taken into account when choosing the most appropriate type of MSC for each specific
therapeutic application [2].

Thus, MSC participate in a “galaxy” of intercellular interactions as temporal–spatial
regulators of tissue homeostasis. In fact, it is progressively being demonstrated that in many
diseases with an inflammatory and degenerative base, there is a depletion or dysfunction of
MSC, such as systemic lupus erythematosus (SLE), diabetes mellitus (DM), and rheumatoid
arthritis (RA) [2].

2.2. MSC in the Context of a “Galaxy” of Intercellular Signals

Among the “galaxy” of intercellular signals in which MSC participate, those of an
immunomodulatory, regenerative, anti-oxidative stress, angiogenic, anti-fibrotic, anti-
tumoral, and anti-microbial nature draw attention (Figure 1).

2.2.1. Anti-Inflammatory Effect

Inflammation is a protective response to harmful external stimuli and helps repair and
remodel tissues, but when it is deregulated it can have detrimental effects [19]. MSC can
exert pro-inflammatory and anti-inflammatory effects depending on the immune status of
the microenvironment. The pro-inflammatory effect of MSC is beneficial throughout the
early phases of inflammation, but its anti-inflammatory effects are useful during the later
phases, when excessive immune activation would cause tissue damage or acute injury [20].

When tissue levels of inflammatory cytokines, such as IFN-γ and TNF-α, are low, MSC
can accomplish pro-inflammatory actions. However, MSC are activated in the presence
of elevated levels of these inflammatory cytokines and/or LPS. These latter conditions
result in the upregulation of soluble anti-inflammatory factors, such as cyclooxygenase 2
(COX2), IDO, nitric oxide (NO), TGF-β1, PGE2, and HLA-G5 [21,22]. Consequently, and
although the molecular mechanisms responsible have not been fully understood, MSC
result in immunoregulatory effects on all of the immune cell types: (i) execute a suppressive
effect on the proliferation of T cells (caused by cell cycle arrest in the G0/G1 phase rather
than by the induction of T cell apoptosis) [23] and attenuate their functionality [24,25]; (ii)
interact directly with B cells and can reduce plasmablast formation as well as to promote
the induction of regulatory B cells (Bregs) [26]; (iii) polarize monocytes (M0) toward IL-
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10 producing anti-inflammatory M2 phenotype [27] and reprogram M1 macrophages to
the M2 phenotype [28]; (iv) suppress natural killer (NK) cell proliferation, cytotoxicity,
and cytokine secretion; and (v) inhibit the maturation, differentiation, and migration of
dendritic cells (DCs), and reduce the cell-surface expressions of MHC-II molecules, CD11c,
and CD83 [29].
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2.2.2. Regenerative Effect

Numerous studies indicate that the rate of MSC survival engraftment and the number
of newly generated cells after MSC transplantation seems to be too low to explain the
beneficial effects induced by MSC [30,31]. However, it is known that MSC secrete a wide
range of biologically active factors such as growth factors, cytokines, active lipids, or
extracellular microvesicles, which contribute decisively to tissue regeneration [32]. Thus,
paracrine signaling of MSC has been suggested as the main mechanism of their regener-
ative action on the different cell types of both parenchymal and mesenchymal cells [33].
These mechanisms include the sequential process involving in tissue regeneration, such
as migration, anti-inflammatory/immunomodulatory effect, accelerated re-epithelization,
improved ECM production, and remodeling. Among the factors responsible for these
mechanisms are inflammatory proteins (IL-1, -6, -8–11, -13; PGE2, MCP-1), growth factors
(EGF, KGF, TGF-β, HGF, FGF, VEGF, GF-1, PDGF, BNDF, NGF-3, I G-CSF, GM-CSF, and
PGE2), and ECM proteins (MMP-1, -2, -3, -7; TIPM-1 y 2, ICAM, collagens, laminin, elastin,
and decorin). In addition, increased angiogenesis has been proposed as another one of the
main mechanisms of regenerative effect from MSC by their paracrine action. An appro-
priate revitalization requires the formation of new blood vessels, which is a fundamental
process for the delivery of oxygen, nutrients, and growth factors to the damaged tissues.
MSC secrete molecular factors enhancing the proliferation and migration of endothelial
cells, such as VEGF, PDGF, ANG-1 y 2, EGF, FGF, TGF-β1, TGF-α, MCP-1, CXCL5, and
MMPs [34,35].
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2.2.3. Anti-Fibrotic Effect

A pro-fibrotic environment orchestrated by subjacent factors such those derived from
oxidative stress, inflammation, and aging is present in many progressive and terminal mal-
adies. This scenario implies the excessive deposition of ECM proteins, such as fibronectin,
collagen I, and collagen III. As a result, biological functions are impaired, and the regen-
eration ability of tissues is diminished [36]. In vivo studies demonstrate an anti-fibrotic
effect of MSC. Thus, for example, it was reported that WJ-MSC exert anti-fibrotic actions
against skeletal muscle fibrosis, primarily via MMP-1 [37]. MSC also prevent renal or hep-
atic fibrosis via VEGF and HGF secretion, and further suppress TGF-β1-induced fibrotic
changes [38,39], with TGF-β1/Smad pathway being an important pathogenic mechanism
in tissue fibrosis [40,41]. The use of MSC secretome has been also shown to have anti-
fibrotic effects by secretion of some growth factors and cytokines, such as HGF, TGF-β3,
TNF-α, and IL-10 [17,42,43]. On the other hand, it has been indicated that BM-MSC-derived
exosomes and other stem cell-derived secretomes can reduce liver fibrosis [17,44]. Recent
data have also suggested that human umbilical cord mesenchymal stem cells (hUC-MSC)-
derived exosomes could inhibit dermal fibroblast–myofibroblast transition by inhibiting
the TGF-β1/Smad2/3 signaling pathway [45].

2.2.4. Anti-Oxidative Stress Effect

Oxidative stress is concomitant with cell injury, inflammation, and dysregulated
metabolism and, therefore, is a key pathophysiological mechanism of many diseases [46].
Oxidative stress refers to a deviation from the physiological redox state and an increase
in pro-oxidants, or free radicals, that structurally change lipids, proteins, and DNA in a
way that causes pathology or damage to a cell or tissue [47]. The most widely studied
free radicals are reactive oxygen species (ROS), which can also include reactive molecules
that have a stable charge. The three major endogenous ROS include the superoxide anion
(O2 (−)), hydroxyl radical ((.)OH), and hydrogen peroxide (H2O2) [48,49]. The dynamic
equilibrium of ROS production and metabolism is capital for the maintenance of the
normal function of cells and tissues. If this balance is disrupted, it can lead to oxidative
stress and a chain of tissue breakdown [50]. What is more, although the interactions
between the immune system and oxidative stress are not fully understood, leukocytes
and pro-inflammatory mediators intensify the formation of free radicals and perturb the
redox environment creating a positive feedback cycle [51]. Neutrophils appear to be key
mediators of oxidative stress in inflammation. These cells harbor an abundance activity of
myeloperoxidase (MPO), a potent oxidant that plays an important role in oxidative stress
by catalyzing H2O2 to hypochlorite [52,53].

Several studies have demonstrated that MSC are highly resistant to oxidative insult,
which is associated with constitutively expressed antioxidant enzymes (SOD1, SOD2, cata-
lase (CAT), glutathione peroxidase (Gpx) and high levels of the antioxidant glutathione
(GSH)) [54]. In addition, MSC express heat-shock protein 70 (HSP70) and sirtuin (SIRT),
which may also play a role in the resistance to oxidative stress [55]. Antioxidant effects
of MSC therapy have been observed in vitro in a wide range of cell types (immune cells,
endothelial cells, fibroblasts, cardiomyocytes, hepatocytes, renal cells, glial cells, neurons,
pancreatic islet cells, and skeletal muscle cells) and in vivo on many disease models (aging,
gastrointestinal inflammation, cognitive disorders, ischemic injuries, diabetic damages, sep-
tic insults, and chemotherapy- or radiation-induced harm to several organs). These studies
revealed several mechanisms by which MSC have antioxidant effects, including direct
scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodu-
lation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and
donating functional mitochondria to damaged cells [46]. On the other hand, MSC can also
directly decrease ROS and MPO activity in stimulated monocytes and macrophages, which
suppress their pro-inflammatory phenotype [56,57]. These data suggest that MSC not only
suppress the immune system to prevent oxidative injury, but also that their mechanism of
immunosuppression is reliant on their antioxidant properties.
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2.2.5. Anti-Apoptotic Effect

Apoptosis is a complex process that tightly regulates the rate of cell division and
death and triggers a suicide program with DNA fragmentation enhancing, membrane of
nucleus swelling, cytoplasm shrinking, and finally cell death [58]. Multiple studies have
investigated the underlying antiapoptotic mechanisms from MSC in various organ injury
models. Thus, for example, it was shown that human adipose-derived MSC (AD-MSC)
are required for resisting apoptosis by upregulating the proliferation marker Ki67 and the
antiapoptotic markers BCL2 and SURVIVIN, and by downregulating markers of apoptosis,
TUNEL, annexin V, CASPASE3, and CASPASE9 [59]. It was also recently demonstrated
that miR-146a-5p-riched BM-MSC exosomes reduce neuronal apoptosis and inflamma-
tion associated with the inhibition of microglial M1 polarization by downregulating the
expression of IRAK1 and NFAT5 [60].

2.2.6. Anti-Tumor Effect

The interactions between tumor cells and the non-malignant stromal cells exert a
primary contribution in the pathophysiology of cancer. Emerging data indicate that one
of the most heterogeneous effects from MSC according to their origins are these ones on
tumors [61,62]. It is assumed that the pro- or anti-tumorigenic effect of MSC will depend
on the origin of the MSC and the type of tumor. In this sense, the existing data seem
to converge on the fact that MSC originated in the uterus and that pregnancy-related
tissues have a broader antitumor effect, thus they could be good candidates for oncological
therapies [63].

It has been shown that MSC secrete high amounts of cytokines, which induce inhibition
of tumor growth in vivo in breast cancer cells, such as IFN-α, DKK-1/3, IL12, TRAIL,
TNFSF14 (also known as LIGHT), FLT-3 ligand, CXCL10, and LAP [64–67]. It has also
been reported that the anti-tumor effect of MSC may be partly related to the activity of
the tissular inhibitors of matrix metalloproteinase TIMP-1 and TIMP-2, present in their
secretome [64,68], with the inhibition of MMPs being associated with the suppression of
migration and invasion of cancer cells.

Other anti-tumor mechanism of MSC may be via extracellular vesicles (EVs). Cancer
cells have been shown to internalize a greater percentage of exosomes when compared to
normal cells [69,70]. These EVs produced by MSC are potentially responsible for many
of their antitumor effects. Thus, for example, EVs from human UC-MSC reverse the
development of bladder carcinoma cells, possibly by downregulating the phosphorylation
of Akt protein kinase and upregulating cleaved caspase-3 [71], with exosomal miRNA from
AD-MSC suppressing the proliferation of ovarian cancer cells [72].

2.2.7. Anti-Microbial Effect

It is relevant to consider that MSC are usually resistant to viral infection due to their
expression of interferon (IFN), and, subsequently, IFN-stimulated genes (ISGs) (such as IFI6,
ISG15, SAT1, PMAIP1, p21/CDKN1A, and CCL2) [73]. It has been reported that members
of the ISG protein family prevent infection before viruses can traverse the lipid bilayer of
cultured cell, such as has been proven for influenza A virus and SARS coronavirus [74].
On the other hand, MSC display both direct and indirect anti-microbial mechanisms of
action, which are complementary. Thus, they might act directly through the secretion
of antimicrobial peptides, which are evolutionarily conserved small effector molecules
(10–150 amino acids) found in organisms ranging from prokaryotes to humans [75]. These
peptides include cathelicidin, defensins, cystatin C, elafin, and lipocalin 2 [76]. They medi-
ate antimicrobial cell killing, which occurs by disrupting membrane integrity; inhibiting
protein, DNA, or RNA synthesis; and interacting with certain intracellular targets [77].
In addition, these antimicrobial peptides can be active against certain pathogens that are
resistant to conventional antibiotics, such as multidrug-resistant bacteria [78]. Specifically,
cathelicidin is one of the factors produced by systemic MSC that significantly contributes
to Staphylococcus killing [79]. However, the main mechanism of action is reported to be
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indirect via LL-37, a cleavage product of the cathelicidin, hCAP-18, originally found in the
peroxidase-negative granules of neutrophils [80]. LL-37 has a broad range of antibacterial
activity against both Gram-negative and Gram-positive bacteria [81–83]. In addition, LL-37
has antifungal [84] and antiviral activities [85]. LL-37 is also functionally linked to the
modulation of Toll-like receptors (TLRs), which trigger the immunomodulatory activity of
MSC [86]. Activation of TLR receptor in MSC is also by pathogen-associated molecules
such as LPS or double-stranded RNA from viruses. TLR4-primed MSC after microbial
molecule recognition secrete chemokines such as MIP-1α and MIP-1β, RANTES, CXCL9,
CXCL10, and CXCL11, as well as IL-6, IL-8, MIF, and granulocyte-stimulating factor (GM-
CSF), which promote the recruitment of neutrophils and monocytes [87–89]. Other soluble
proteins from MSC that have a defensive effect against microbial are interleukin-10 (IL-10),
prostaglandin E2 (PGE2), tumor necrosis and factor-alpha (TNF-α) [90], IDO [91], and
interleukin-17 [92].

Recent in vitro and in vivo studies also reported that secreted products found in MSC-
conditioned medium have a wide range of anti-microbial activity, including against E. coli
and S. aureus [76,93], E. epidemidis [93], Vibrio cholerae [17,94], P. aeruginosa [95], Mycobac-
terium tuberculosis [96], Acinetobacter baumannii [97], and several Candida species [98,99],
including effects against biofilm formation [100,101].

2.2.8. Homing Effect

Stem cell homing refers to the characteristic that these ones can spontaneously migrate
to the injured region when the body is wounded [102]. Although MSC reside in their
biological niche of origin in physiological conditions, they seem to have the capacity to
be mobilized in response to signals produced by injured tissues [103]. In fact, MSC have
been proven to have the ability to home to traumatized areas after transplantation in
in vivo studies. In vitro studies demonstrated that expression of chemotactic signals from
hurting tissues, such as TNF-α [104], PDGFA [105], IGF-1 [106], HGF, and EGF [107], as
well as the expression of chemokines for which MSC have receptors, such as adhesion
molecules and, especially, several receptors, such as CC1, 4, 7, 9, and 10; CXC4 and 6; and
CXCL12 [107–109], which stimulate the MSC attraction. With regard to this latter aspect, it
is of note to say that MSC show variably to express multiple other chemokine receptors,
which determine to which tissues MSC will migrate [102]. It is also key that MSC secrete
MMPs, in particular MMP1, which has a role in tissue invasion in order to permit that MSC
can traverse the endothelial basement membrane [110].

Further studies to enhance MSC homing effect could offer the advantage to reduce the
number of required MSC for achieve therapeutic effects. In this sense, different methods
have been proposed, such as genetic modifications, direct administration of MSC into the
target tissue, cell surface modifications, in vitro priming, or pre-treatment of MSC [102]. On
the other hand, MSC, by their inherent homing/targeting capacity, also offer the possibility
to use these stem cells as carriers for certain drugs. For example, this strategy could
resolve the non-selective cytotoxicity of chemotherapeutic agents. In this sense, a “trojan
horse” biomimetic delivery strategy has recently been reported on, which uses MSC for
photodynamic therapy and photothermal therapy against lung melanoma metastasis [111].

2.3. First Clinical Applications of the MSC

In addition to classic investigative applications of MSC, such as imperfect osteo-
genesis [112], graft-versus-host disease (GvHD) [113], Crohn’s disease, stroke [114], os-
teoarthritis (OA) [115], multiple sclerosis (MS) [116], liver fibrosis [117], or cardiovascular
disease [118], the wide range of possible applications of MSC and/or their secretome is con-
stantly expanding. These, on the basis of the positive results of preclinical studies, include
the use of MSC in around of 1000 clinical trials over 10,000 patients (see ClinicalTrials.gov)
in multiple indications as diverse as musculoskeletal defects; disorders of the immune
system including auto-immune diseases, bone, heart, liver, lung, and kidney; or neurode-
generative disorders [1,119]. Besides this, it has been reported that MSC therapy does

ClinicalTrials.gov
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not have any unfavorable side effects on the patient. Safety of MSC therapy has been
reported in a systematic review of several clinical trials involving over 1000 participants
with intravascular MSC transplantation for different diseases, with follow-up of about
2 weeks to 30 months [120].

On the other hand, this increases in the clinical implementations of MSC being parallel
to the growing evidence indicating a MSC dysfunction or depletion in systemic diseases,
such as systemic lupus erythematosus (SLE), diabetes mellitus (DM), rheumatoid arthritis
(RA), MS, idiopathic pulmonary fibrosis, Parkinson disease (PD), amyotrophic lateral
sclerosis (ALS), psoriasis, myelodysplastic syndromes, and aging [2]. These data seem to
indicate the importance of MSC in the tissular homeostasis.

Thus far, MSC therapy has been approved in different countries. Potential clinical
applications of adult human mesenchymal stem cell therapy (Prochymal) were approved in
Canada to treat acute GvHD in children. In Japan, the use of MSC was approved after the
Act on the Safety of Regenerative Medicine and the Pharmaceuticals, Medical Devices and
Other Therapeutic Products Act were introduced [121]. In 2018, the European Medicines
Agency (EMA) recommended the approved of Alofisel to treat Crohn’s disease [122].
Overall, it appears that the use of MSC for cell therapy is becoming a reality. Nonetheless,
MSC therapy in the United States has been approved by the Food and Drug Administration
(FDA) in only very rare instances.

2.4. Limitations in the Era of Cellular Therapy with MSC

There are some discordant results in clinical trials based on MSC therapy for GvHD.
However, historical clinical trials show positive results concluding that MSC are an ef-
fective therapy for steroid-refractory GvHD [113,123,124]. For example, a recent review
of completed randomized clinical trials that used MSC for the treatment of GvHD found
that MSC might have little or no effect [125]. As another example, early studies suggested
improvement in cardiac function in the treatment of ischemic heart failure by using bone-
marrow derived MSC. However, in subsequent clinical trials, there were no significant
differences between MSC treatment and placebo [126].

The discrepancies found in the effectiveness of using MSC in clinical studies may
be due to the overall quality of the study design [125], origin of MSC, tissue processing,
donor gender, age, medical history, differences associated with manufacturing MSC in
culture conditions, reductions in cell quality during in vitro expansion, administration
routes, doses and dosing intervals, poor cell survival after in vivo transplantation, or
inefficient homing capacity to targeted sites. All this limits the effectiveness of MSC
therapy. In addition, an excessive inflammatory immune response, oxidative stress, and
hypoxic microenvironments at sites of injury are also factors that restrict MSC survival and
engraftment [20,127].

It is relevant to consider that although the MSC isolated from different tissues are alike,
they differ functionally (proliferation capacity, transdifferentiation, immunophenotype or
by both paracrine or microvesicle mechanisms via secretome-derived products) depending
on the origin of the tissue [63,128,129], and which are maintained in culture conditions [130].
In fact, proteomic comparison of MSC-derived secretome from different tissue sources has
revealed differing profiles and capabilities. For example, MSC-derived secretome from
adipose tissue, bone marrow, dental pulp, and Wharton’s jelly present different protein
compositions [131,132]. It has been also reported that WJ-MSC secrete greater amounts of
proinflammatory proteins and growth factors, while those derived from adipose tissue have
an enhanced angiogenic profile and secrete greater amounts of extracellular matrix proteins
and metalloproteases [133]. Donor age is an important factor affecting MSC efficacy. MSC
grown from neonatal tissues show a longer lifespan and higher proliferation rate and
differentiation potential when compared to adult tissues [134]. Furthermore, MSC derived
from diseased donors may show negative clinical outcomes when used for therapies [135].
With regard to manufacturing, MSC are cultured for long periods of time to obtain clinically
relevant cell numbers, which results in important changes in gene expression and clonal
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selection, thus affecting biologic properties, including those involved in tissue regeneration.
In addition, cell subculture requires the use of proteolytic enzymes, which may damage
the cells [136]. Other important aspects to take into account are the components of culture
media that may affect cell phenotype, such as the damage caused by cryopreservation and
subsequent thawing, as well as oxygen concentration. High oxygen levels may compromise
the therapeutic benefits of MSC. Native MSC tissue environments range between 1 and 7%
O2. During culture, cells sense an oxygen concentration of 20%, which may cause oxidative
stress affecting viability, and eventually senescence [137–139].

On the other hand, there are several issues related to cell therapy, such as several safety
considerations potentially associated with the transplantation of living and proliferative
cell populations, including immune compatibility, tumorigenicity, emboli formation, and
the transmission of infections [35].

No less important drawback is the economic cost of these therapies. It has been
estimated that a mere stem cell therapy can range from USD 4000–8000 in the USA and
the cost for culturally expanded cells ranges from USD 15,000–30,000 [140]. Although
compared to monoclonal antibody therapy, the costs of MSC secretome probably appear to
be lower (Tocilizumab costs USD 355.000 for a single dose) [141], it needs further research
to evaluate the cost-effectiveness of cell-based therapy and to guarantee sustainable access
for patients and the general population [142].

3. Non-Cultured Cell Strategy Alternative

A variation of the uncultured cell strategy relies on the administration of microfrag-
mented adipose tissue, in which the genuine microenvironment of presumptive MSC is
maintained intact [143]. With the tissue undisturbed by enzymatic digestion, cells sustain
higher secretory activity, releasing abundant cytokines and growth factors [144].

In general, transplantation of uncultured cells may be ideal to improve clinical out-
come, although numbers of cells obtained are lower than in culture conditions and may
not be enough for proper treatment in some indications.

Finally, since ubiquitous presumptive MSC have been identified in perivascular spaces
that become recruited and reprogrammed in adverse disease/injury conditions, an ideal
alternative to MSC administration might be the targeted pharmacologic mobilization of
these cells in situ.

4. Beginning of the Era of Therapy Based on Secretome of MSC

The initial concept of MSC therapy was based on the fact that they have the ability
to homing to injury sites and differentiates into different cell types contributing to tissue
regeneration. However, several studies have revealed that the implantation time of MSC
is usually too short to have an effective impact [145,146]. Indeed, it has been reported
that <1% MSC survive for more than one week after systemic administration [147–149],
and their contribution to new tissue formation is generally minimal [150]. Although
several studies indicate that MSC exercise many biological effects by promoting cell-to-cell
interactions and cellular proliferation [151,152], the accumulated experience indicates that
the beneficial effects of MSC are mainly via the secretion of paracrine factors. These soluble
factors include proteins (growth factors and cytokines) and EVs. Due to the regenerative,
anti-inflammatory, and anti-oxidative stress and angiogenic and anti-apoptotic power
from these biological products, MSC secretome may be considered a good candidate for a
new medical biotechnology [153]. This strategy avoids the problems derived from using
the stem cells themselves, among others, for example: (i) the safety problems derived
from the transplantation of proliferating living cells are solved, including immunological
incompatibility, tumorogenicity, the formation of emboli, transmissible infections, and the
potential entry of MSC into senescence; (ii) unlike cell therapies, secretome can be better
evaluated in terms of safety, dose, and potency, in a similar way to conventional therapeutic
agents; (iii) secretome can be stored without the need for the application of potentially
toxic cryopreservative agents; (iv) the use of products derived from the secretome, such
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as the conditioned medium or exosomes, is cheaper and more practical for clinical use,
since the use of the secretome could avoid the time and costs associated with expansion
and maintenance of clonal cell lines. This is owing to the fact that secretome for therapies
could be prepared in advance in large quantities and be available for treatments when
necessary [35,154].

Preliminary studies suggest safety and efficacy of MSC secretome, where dosing
may include topical, intravenous, and oral application [155]. Products of the secretome
could take over from the attempt of therapies based on the administration of growth
factors. Numerous studies have found that growth factor therapies (EGF, PDGF, KGF,
GM-CSF, etc.) have positive results in many animal models of diseases, such as wound
repair. However, its translation into clinical products has been limited due to the amount
necessary of growth factors, the expense of manufacture, and the lack of clinically relevant
benefits [156–159]. Nevertheless, the secretome as a whole may have the limitation of
representing too biologically complex a product, which can make it difficult to identify a
robust mechanistic explanation for its therapeutic effects. Thus, a possible alternative may
be based on the alternative of using a more specific part of its components, such as EVs.

4.1. Extracellular Vesicles from MSC: Tropism, “Trojan Horses”, and “Fire Cars”

EVs of the MSC secretome are generating an extraordinary interest as an encouraging
alternative to exploit MSC properties. EVs can be classified as (i) exosomes (30–120 nm
in diameter), which originate within the cell in endosomal compartments called mul-
tivesicular bodies; (ii) microparticles (150–1000 nm in diameter), caused by blistering
outward from the plasma membrane and subsequent release after proteolytic cleavage of
the cytoskeleton; and (iii) apoptotic bodies (500–2000 nm in diameter), which are released
during the programmed cell death process. Among these EVs, exosomes stick out due to
their functional importance, whose biogenesis process consists of four phases: initiation,
endocytosis, multivesicular bodies, and release [160,161]. EVs are membrane-bound phos-
pholipid particles secreted by cells, containing a wide range of different components, such
as RNA, lipids, proteins, cytokines, chemokines, interleukins, integrins (CD81, CD63, and
CD9), transport proteins (annexins and Rab GTPases), signal transduction factors (kinases),
cytoskeletal proteins, and metabolic enzymes [162]. Through the horizontal transfer of
all these biologically active factors, exosomes represent an intercellular communication
pathway that constitutes a principal part in mammalian cell connection [161,163]. These
mechanisms include binding to surface receptors to activate signal cascades, internalization
of surface-bound exosomes, and fusion with the cell to deliver material directly to the
cytoplasmic membrane and cytosol [164].

It is known that EVs carry intact mRNA that can be transferred horizontally and
translated in the recipient cells [165]. However, several studies also found non-coding RNA
(ncRNA) and components RNA, including both small non-coding (<200 nucleotides) and
long non-coding (≥200 nucleotides) RNA, which operate essential regulatory function in a
number of physiological processes on recipient cells. MicroRNA (miRNA) represents the
most widely studied type of small ncRNA. It has been reported that between 30 and 80%
of protein-coding genes are regulated by miRNA. This is primarily achieved through the
complementary binding of miRNA to a target mRNA sequence, resulting in either mRNA
degradation or translational repression [166]. Circular RNA (circRNA) are closed-loop struc-
tures representing a unique class, highly stable form of non-coding RNA present in EVs [167].
There is increasing evidence pointing out that circRNA act as post-transcriptional regulators in
several biological processes including cellular repair [168] and cancer progression [169].

Experimental studies demonstrate the therapeutic benefit of these products in a wide
range of conditions or diseases [5]. In addition, exosomes show important advantages
for their application in therapies: they are smaller, less complex and less immunogenic
than their progenitor cells, since they have a lower content of proteins bound to the mem-
brane [170]. The production and storage of exosomes are easier than for their parent
cells. Furthermore, other advantages of exosomes include a longer half-life in the blood-
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stream [171], ability to cross the blood–brain barrier, and tropism towards inflamed tissues
and tumors [172,173].

On the other hand, it is possible to improve the release and capacity of exosomes
through various strategies, such as prolonged cultivation and maintaining cells at low
pH [174] or a low O2 tension [175–178]. Preclinical studies have demonstrated the safety of
exosomes derived from MSC, given the possibility of their massive scalable production
at clinically relevant levels [151]. Currently, around 210 trials based on the therapeutic
application of exosomes have been launched, of which four are active and cover conditions
as varied as COVID-19 (Coronavirus Disease 2019), lymphoma, and breast cancer. They
are all in phase I or phase II, and no results have come out thus far. This information is
available from www.clinicaltrials.gov (accessed on 29 March 2021).

Interestingly, there is experimental evidence indicating that exosomes can be manipu-
lated with certain ligands or proteins on their surface to improve their targeting capability,
as well as loaded with therapeutic products. In this way, they can be induced to behave
like “trojan horses” and “chariots of fire”. Thus, for example, exosomes encapsulated with
miR-379 have improved migratory capability in vivo to relocate to the tumor site of breast
cancer displaying antitumor effects. In addition, methotrexate-loaded EVs functioning
with a synthetic multifunctional peptide have been shown to facilitate the membrane
receptor-mediated internalization procedure in glioma experimental models [179]. On the
other hand, it has been reported that human MSC treated with sub-lethal concentrations of
paclitaxel have an antitumor effect against several human cancer cells, such as A549 lung
cancer, SK-OV-3 ovarian cancer, and MDA-hyb1 breast cancer cells [180].

4.2. Potential Side Effects and Limitations of Therapies Based on Secretome from MSC

There is limited information on the potential risks of therapy based on secretome
products. These potential risks seem related to the administration of exogenous biological
products, but these appear reduced compared with cell-based therapies.

Apparently, safety concerns could be related to the immunogenicity and immunosup-
pressive properties of the MSC secretome. Although the secretome is known to contain
extracellular vesicles that can be immunogenic, this potential immunogenicity has been
found to be less than that of its parent MSC [181]. On the other hand, considering that the
MSC secretome has immunosuppressive properties, and therefore having been described
as one of the main mechanisms of action of when managing autoimmune diseases [182],
its use might theoretically increase the risk of infection, immunodeficiency, and tumor
growth in treating patients [183]. As discussed above, there are data suggesting that the
immunoregulatory effects of MSC in vitro depend on the status of the inflammatory mi-
croenvironment. Although this condition could also exist in in vivo conditions, it will be
necessary to define, depending on the clinical circumstances and the therapeutic inter-
est, the optimal amount of secretome to achieve the appropriate balance between safety
and efficacy.

With regard to constraints in production, there are two technical aspects, secretome
resources and instability of secretome, which require further solutions. For example, it is
estimated that the number of MSC required to produce sufficient quantities of secretome for
an equivalent effect on acute wounds is about 10–25 times higher than directly administered
live cells [184]. This highly elevated demand in production enhances manufacturing,
quality control, derivation, and validation costs because the function of these cells may
change with repeated passages. In addition, potential issues in secretome therapy may be
the possible instability and lack of potency of the secretome.

However, there are methods to address all these limitations, which are outlined below,
and include more optimal and productive methods for expanding cell cultures and increas-
ing the functional potential of MSC and their derivative products from their secretome.

www.clinicaltrials.gov
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5. New Horizons for Clinical Applications of MSC

Despite of the weaknesses of MSC-based therapies, both the classical research uses of
MSC and the wide range of possible utilities of MSC and/or their secretome are on the rise.
These, on the basis of the positive results of preclinical studies, include some examples of
frequent and varied diseases as the following.

5.1. MSC Applications as Regenerative Therapy
5.1.1. Skin Ulcers

The skin is the largest organ, accounting for 16% of the body weight, protecting
the organisms from external physical (e.g., ultraviolet radiation), organic, or biological
aggressions [185]. There are many diseases and processes such as atopic dermatitis [186];
psoriasis [187]; or, especially, chronic skin wounds [188], which need new therapeutic
approaches, constituting MSC as a possibility.

In addition, around 50% of DM-related foot ulcers are refractory to current therapies [189].
Autologous BM-MSC have been administered to chronic cutaneous ulcerations [190],

not only diabetic foot ulcers [191] but also pressure ulcers [192] or radiation burns [193],
resulting in accelerated wound closure and improved healing properties. All of these
findings from preclinical and clinical studies demonstrate that MSC could be a promising
resource for the highly demanded skin regeneration [194].

5.1.2. Bone Regeneration

Osteoporosis is an extremely common orthopedic condition. For example, it is esti-
mated that approximately 12.3 million individuals in the United States are expected to be
affected by this condition, which favors the development of secondary fractures [195]. In
addition, these fragility fractures have the risk of failure of bone regeneration and conse-
quently non-union, deformities, and chronic pain, which often require an invasive surgery
with associated risks [196,197] and a huge economic spending [198].

BM-MSC have shown a high osteogenic differentiation capability and are the most
common types of MSC that have been used for osteoporosis [199,200]. It was also recently
reported that BM-MSC-derived exosomal miRNA-150-3p promotes osteoblast proliferation
and differentiation in osteoporosis [201]. For all of this, stem cell-based therapy and their
secretome-derived products are considered as a new approach to regenerate the bone
tissue [202].

Dental pulpal disease is also one of the most prevalent illnesses that millions of people
are suffering from all around the world [203]. The current therapy is to remove the pulpal
tissue and replace it with synthetic materials such as resin and gutta-percha. However,
these materials are not capable of replacing biological functions of lost tissue, leading to the
reduced mechanical properties and reduced vitality of the teeth. Therefore, stem cell-based
therapies would be an improving approach to repair or replace the damaged or lost tissues
of teeth in order to recover the morphological and biological functions [204]. Recently, it was
shown that UC-MSC possess the ability to differentiate into odontoblast-like cells under the
microenvironment induced by a liquid extract of human treated dentin matrix in vitro [205].
On the other hand, we consider the possibility that MSC secretome-derived products, such
as conditioned medium and/or exosomes, may be a new strategy to induce dental stem
cells to dent pulp regeneration, which will require further well-designed investigation.

5.1.3. Osteoarthritis

At present, conventional OA therapeutics are often inadequate to alleviate the symp-
toms of the disease. Therefore, it is necessary to formulate new therapies that reduce
inflammation and promote cartilage regeneration. Interestingly, it has been reported that
MSC exhaustion and functional decline may be implicated in the pathogenesis of OA [206].

This is a growing area of research, and several studies have reported on the clinical
efficacy of MSC in OA. In recent years, an increasing number of studies demonstrated the
beneficial effects from EVs, particularly exosomes from BM-MSC, in in vivo studies of OA.



Int. J. Mol. Sci. 2021, 22, 3576 13 of 34

5.1.4. Heart Repair

Cardiovascular diseases are the leading cause of mortality and morbidity globally,
representing approximately one-third of all deaths every year. Despite recent pharmaco-
logical and mechanical advances having significantly contributed to the sharp decline in
death rates [207], myocardial infarction (MI) continues to be a major cause of mortality
and morbidity worldwide. In a global report on the incidence of disease and injury, it
was estimated that around 10.6 million cases of MI caused by ischemic heart disease had
occurred in 2019 alone [208]. It is calculated that after myocardial infarction, up to 1 billion
cardiac cells die in response to ischemic injury, leading to reduced cardiac function, scar
formation, and heart failure [209]. This is due to the fact that, compared to other organs, the
heart has a low regenerative capacity [210]. Cardiac transplantation remains the only true
cure for failing hearts [211], but the limited number of available donors limits therapeutic
solutions. Thus, the possibility of myocardial regeneration by using cell-based therapy
represents a promising field of research [212].

Despite the highly promising results in animal models, there is modest benefit ob-
served in human clinical trials of acute MI [213,214] or chronic ischemic cardiomyopa-
thy [215]. There is some aspect to explicate these conflicting results. The lack of benefits
has been attributed to the differences in type, dose of injection, route of administration (for
example, via intracoronary, epimyocardial, intravenous, intraperitoneal, or intramuscular
injection), or administration time of MSC [216].

Experimental studies demonstrated that MSC-conditioned medium enhances cardiac
progenitor cell survival after hypoxia-induced injury [217–219]. In addition, although their
exact components of the cargo that provide cardioprotection are yet to be discovered and
characterized, several experimental studies have outlined that exosomes from MSC reduce
the infarct size and improve post-myocardial infarct cardiac function [220].

5.2. MSC Applications as Anti-Inflammatory Therapy
5.2.1. Neurodegenerative Disorders

The traditional treatment of neurodegenerative diseases has not yet achieved ideal
results, and early diagnosis is hindered due to the lack of effective biomarkers [221]. Conse-
quently, these diseases, such as Alzheimer’s disease (AD), PD, MS, brain cancer, ischemia,
traumatic brain and spinal cord injury, and viral infections of the CNS represent the leading
causes of death and disability worldwide. In addition, as the incidence of neurodegenera-
tive diseases rises in aging populations, this burden is expected to substantially increase
due to the associated augment in life expectancy [222–225].

Among the different studies under investigation, those in MS are distinguished, where
the administration of human UC-MSC or human BM-MSC have revealed an immunomod-
ulatory effect able to provide clinical stabilization, an improvement of the symptoms, and
a reduction of the onset of relapse [226–229]. With regard to amyotrophic lateral sclerosis,
several studies have reported that the injection of autologous human BM-MSC into the
spinal cord causes an upgrade of functional assessment scale scores and a slowing of
disease progression [230–232].

Current studies have also proved that the administration of MSC promotes recovery
from traumatic brain injury due to oxidative stress reduction [233,234], reduced mortality
rates [235], and the size of the infarct area [236] after ischaemic stroke. In addition, MSC-
based therapies represent an exciting neuroprotective and neuroregenerative strategy for
spinal cord injuries [237], which are associated with tremendous physical, social, and
financial costs for millions of individuals worldwide.

It is also of note to mention prevailing studies pointing to a potential therapeutic effect
of secretome from MSC in brain diseases. Thus, for example, it has been recently published
that the secretome derived from MSC pre-conditioned in vitro in an AD environment
(MSC-CS), also intranasally, in APP/PS1 mice, completely re-established mouse memory
and remarkably changed neuropathology at multiple crucial levels in very advanced AD
stages [238].
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Ophthalmologic Diseases

Summing up, results obtained in a large number of experimental studies revealed that
beneficial effects of MSC and their secretome in glaucoma therapy relied on their capacity
for neuroprotection and RGCs regeneration [239].

In recent years, there have been various studies in the literature on the therapeutic
effects of MSC on the damage in retinal cells [240,241].

5.2.2. Lung Diseases

It has been reported that 3.2 million people died from chronic obstructive pulmonary
disease in 2017 [242], and it is estimated that this disease will be the third most important
cause of death worldwide by 2030 [243].

Morphological and functional alterations of the lung MSC have been described asso-
ciated with processes related to aging, acute lung injury, chronic obstructive pulmonary
disease, or bronchopulmonary dysplasia [244–246]. In addition, it is known that MSC
secrete plenty of molecules with paracrine effects that promote regeneration of pulmonary
alveoli (angiopoietin 1 (ANGPT1), HGF, EGF, KGF, and VEGF [247]), regulate immune cells
toward an anti-inflammatory phenotype (TGF-β, IL-1RA, IL-10, NO and IDO [248,249]),
prevent epithelial–mesenchymal transition of alveolar epithelial cells in the context of
lung injury [250], and improve bacterial clearance stimulating phagocytosis activity of
macrophages through the secretion of antimicrobial factors such as peptide LL-37 and
lipocalin-2 [87]. Accordingly, experimental lung disease models, such as chronic obstruc-
tive pulmonary disease, asthma, bronchopulmonary dysplasia, idiopathic pulmonary
fibrosis, and acute lung injury, illustrate the therapeutic efficacy of MSC [251] or their exo-
somes [252]. On the other hand, clinical phase I and II studies based on MSC administration
also demonstrate preliminary safety results in patients suffering these processes [253–257].
Recently, urgent clinical trials demonstrated the certainty and therapeutic efficacy of MSC in
COVID-19 patients. This beneficial effect of MSC was attributed to their anti-inflammatory
mechanism against the cytokine storm associated to COVID-19 [258]. In this day and age,
new clinical trials are on by using MSC from several origins and with different administra-
tion routes [259], and given the extremely serious and urgent situation of the coronavirus
pandemic (SARS-CoV-2), MSC as an alternative for the treatment of critically ill patients is
considered under compassionate use protocols.

5.2.3. Infectious Diseases

Another important problematic perspective in medicine is the treatment from infec-
tions. This is mainly due to the excessive exposure of bacteria to antibiotics, which has
altered bacterial genomes and has led to the development of multidrug resistance in bacte-
ria [260], the reduced susceptibility to common antifungal drugs used for treating these
diseases [261], or the emergence of new and dramatic virus pandemics such as SARS-CoV-
2 [259,262]. MSC and/or their derived product may be one possible alternative. In addition,
recent studies highlight the interest in improving antimicrobial effect by combining of
MSC secretome-derived products with nanoparticles. Thus, for example, research has
shown the synergic effect of MSC-conditioned media coupled with chitosan nanoparticles
against multidrug-resistant Vibrio cholerae [94]. On the other hand, MSC can produce a
direct antiviral effect by secreting antibacterial peptides and proteins (IDO, IL-17, etc.) and
activate a large number of antivirus genes that can encode protein structures that prevent
viruses from invading cells [263]. Additionally, MSC can also exert an indirect antiviral
effect by regulating the dynamic coordination of pro-inflammatory and anti-inflammatory
elements of the patient’s immune system and promoting the activity of phagocytes [78].

Interestingly, MSC are usually resistant to viral infection due to their expression of
ISGs such as IFITM, IFI6, ISG15, SAT1, PMAIP1, p21/CDKN1A, and CCL2 that preempt
viral infection [73].
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5.3. Cancer

The worldwide number of cancer patients is expected to increase from 14 million in
2012 to more than 19 million in 2025 [264]. In addition, cancer will be an important cause
of morbidity and mortality, including the adverse effects derived from their treatments
(chemotherapy, radiotherapy, hormonal therapy, and immunotherapy). Therefore, new
therapeutic alternatives are necessary today.

There are specific types of MSC that show genuine antitumor properties such as
those from uterine origin (endometrial tissue, uterine cervical tissues) as well as other
reproductive tissues (amniotic fluid, placental chorionic villi, and umbilical cord). In the
same context, in the human uterine cervix, which is permanently in contact with a mildly
aggressive environment, including bacteria and oncogenic variants of the papillomavirus
family, a process known as “squamous metaplasia” takes place. Our hypothesis is that
human uterine cervical stem cells (hUCESC), embedded in the uterine cervical stroma, have
a unique ability to hold all these extreme biological hazards under control through the reg-
ulation of proliferation and oncogenic transformation. In support of this hypothesis [265],
a potent anti-tumor effect of this MSC type has been shown [67].

On the other hand, the tropism for tumors that characterizes MSC makes them poten-
tial candidates to be applied in future clinical trials as selective vehicles for drug delivery.
This homing condition from MSC toward tumors, together the fact of that MSC are rela-
tively resistant to cytostatic chemotherapeutic agents, motivated the use of drug-loaded
MSC to target cancer [266–269]. Moreover, research has investigated the strategy of produc-
ing MSC genetically manipulated to express specific enzymes, such as cytosine deaminase
or herpes simplex virus thymidine kinase, which converts inactive systemically adminis-
trated prodrugs, such as fluorouracil and ganciclovir, into active cytotoxic agents, which
increase tumor-directed chemotherapy activity minimizing systemic toxicity [270,271].
Other possibilities are to use MSC as carriers of oncolytic viruses that destroy cancer
cells [272,273], or to carry out genetic modifications of MSC to express anticancer bioactive
molecules [274].

On the other hand, the use of secretome-derived products from MSC, such as ex-
osomes, is also a further possibility. Exosomes maintain tumor-homing ability of their
parental cells [275] and have longer circulating half-time [171], while cancer cells internal-
ize higher percentage of exosomes compared to normal cells, better crossing through the
blood–brain barriers [173], and they can be easily manipulated and modified with certain
ligands or proteins on their surface in order to improve their targeting capability [276].
In addition, exosomes have been loaded with cytotoxic chemotherapy agents (paclitaxel,
doxorubicin, or gemcitabine) [269] or miRNA (miRNA-133b [277], miRNA-148-3p, miRNA-
205 [278], or miRNA-1231 [279]), which inhibit the activity and progression of several
human carcinomas.

6. Need of New Strategies of MSC Production

On the basis of all the above information on the potential new demands for MSC-based
therapies and the existing limitations on their in vitro production, we cope with the need
to achieve unprecedented tactics that increase and improve their in vitro expansion and
the production of derivatives of their secretome.

These actions have to include the optimal selection of the ideal MSC, in terms of
the donor and tissue origin for each application, the establishment of adequate in vitro
expansion standards for the MSC, as well as the implementation of functional potency tests
of the obtained products (Figure 2).
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6.1. The Ideal Cell for Every Application

Considering the functional heterogeneity of MSC and the factors that influence it,
not only related to the donor, but also to their origin in different biological niches, we
understand that selecting the most appropriate MSC for each indication will be necessary
in the future.

It is known that patients affected by systemic diseases such as DM, obesity, SLE, and
RA can have functional alterations in their MSC, which must be taken into account so as
not to consider them as ideal donors. In addition, the aging of MSC during expansion
is a key limiting factor due older cells losing competence to behave as stem cells and
having a tendency to enter senescence or even to undergo transformation. Aging MSC
are more likely to activate a senescence-associated secretory phenotype and produce
pro-inflammatory cytokines such as IL-1, IL-6, and IL-8, which inhibit the regenerative
process [280]. It is also known that culture-expanded MSC, in general, lose their self-
renewal capacity and multipotency progressively [281,282], which is a major limitation
for research and potential treatments [1,283]. It has also been shown that MSC are not
able to carry out more than 30–40 population doublings, while immortalized MSC are able
to reach more than 200 population doublings [284,285]. Immortalization, which requires
repression of p53- and Rb-mediated pathways and telomere maintenance, allows these cells
to increase their proliferation rate and to avoid senescence, while maintaining mesenchymal
phenotype and multipotency. MSC immortalization can be achieved by the combination
of transduction of immortalizing genes such as simian virus 40 large T antigen (SV40LT),
which promote cell cycle progression and human telomerase reverse transcriptase (hTERT)
and prevent telomeres shortening [286]. In addition, both morphology and functionality of
MSC were found to not change after transduction of immortalization genes [285,287].

On the other hand, it is known that functionally from MSC differs with regard their tis-
sular origin. Thus, for example, differences were reported between AD-MSC and BM-MSC
in terms of proliferation, differentiation, or paracrine mechanisms, such as the secretion of
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pro-angiogenic molecules and extracellular components of MMPs [63]. In addition, there
are new known supplier of MSC that may be attractive for specific indications, such as
MSC from reproductive tissues by their anti-tumor activity [67,265], hUCESC for their
antifungal activity [98], or MSC from dental pulp by neurological disorders [288].

Genetic manipulation of MSC using application of replication-defective viral vectors,
such as lenti- and adenoviruses, provide a possibility of improving some of their capabil-
ities. Thus, there are data arguing that the incorporation of anti-inflammatory genes to
MSC (for example, IL-10, HGF, IDO, or Foxp3) could improve their therapeutic potential.
Similarly, it has been reported that induced overexpression of several factors leads to better
apoptotic tolerance and cell survival, as well as more angiogenic, neuroprotective, osteoge-
nesis, or anti-cancer activities [63]. Nevertheless, despite all these positive data on genetic
manipulation of MSC, there are several barriers to their clinical application. The introduc-
tion of replication-defective viral vectors, such as lenti- and adenoviruses, is associated
with toxicity, immunogenicity, and potential tumorigenicity [289]. More recently, several
studies have demonstrated that the clustered regularly interspaced short palindromic
repeats (CRISPR)-Cas system may improve the therapeutic potential of MSC [290]. Thus,
for example, research has reported the use of engineered BM-MSC overexpressing IL-10
using CRISPR activation to treat myocardial infarction in an experimental model [291].

6.2. MSC In Vitro Production

Although MSC are widespread in practically all organs and tissues, they are found
in minute quantities. Thus, as an example, MSC isolated from bone marrow only occupy
approximately 0.001–0.01% of mononuclear cells for healthy adults [292], 0.3% from um-
bilical cords [293], or 1.2% from human adipose tissue [294] for healthy adults. These
amounts of MSC are very far from those required in clinical applications, which are around
2 × 106 cells/kg of body weight per dose [295,296]. Furthermore, for certain patients and
diseases, multiple administrations of up to several hundred million MSC are needed to
achieve the effective therapeutic outcome [296]. Therefore, the in vitro expansion of MSC
is necessary about many weeks before to achieve sufficient cells for cell-based therapies.

6.2.1. Flask Production

Most of the centers use the classic production system in T-flasks. Nonetheless, this
type of method is only suitable for treating a small number of patients. For example, it
was estimated that a production of 30 T-flasks each with a growth surface of 175 cm2

would be required per patient, assuming each patient is dosed with 416 million cells and
the harvesting efficiency is 8 × 104 cells/cm2 [297]. However, for larger clinical trials
with >100 patients, the resources required for cell culture would become insupportable
(assuming the conditions stated above, a trial with 140 patients would require 4200 T-flasks
filling 32 standard 160-L incubators and 9 full-time personnel to handle the cells) [280].
In addition, previous studies also reported that MSC proliferation and differentiation
potential decreased when they reached a higher passage number [298]. Thus, identification
of an effective large-scale expansion technique is critical to obtain the huge number of
cells in a short period of time and in a cost-effective manner without compromising the
cell quality. All of them are requirements for the demand of thousands of in vitro and
in vivo studies, late-phase clinical trials, and future commercialization, which is increasing
exponentially [297].

6.2.2. Large-Scale Expansion of MSC

There are several bioprocessing strategies for large-scale production, such as multilay-
ered flask, spinner flask, roller bottle, or bioreactor, which are used for expansion of MSC
from different sources (AT-MSC, UC-MSC, WJ-MSC, BM-MSC, periosteum-derived MSC
(PD- MSC), VC-MSC), dental pulp-derived MSC (DP-MSC), and fetal MSC (F-MSC) [296].

Considering that the production of adherent MSC depend on the surface area, it is
key to achieve a maximum surface area in which the original biological characteristics of
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phenotype and potency of the MSC will be preserved. A multilayered flask is a specially
designed culture flask that consists of multiple layers with a large surface for cell culture. It
has been described that multi-layer vessels can produce MSC in an amount more than 100
times more than simple T-flasks [299]. For example, CellSTACK has a surface area ranging
from 1272 cm2 for two-chamber to 3180 cm2 for five-chamber. Nevertheless, this system
has drawbacks, such as the fact that real-time observation of cell morphological changes
may not be applicable under a regular microscope, which is a static cell culture system.
Spinner flask and roller bottle are dynamic culture systems that create shear stress to cells
as it involves the mechanical agitation of the culture medium or culture vessel to allow for
more efficient nutrient transfer. However, all of these systems are manual bioprocessing
strategies with lower efficiency [300].

Alternatively, automated well-controlled bioreactors provide efficient mixing in a
closed system for large-scale expansion in lot size at reduced labor and time [297,300]. The
expansion of MSC in bioreactors permits us to advance in the quality of the product in
several aspects, such as commercial manufacturing; greater traceability due to control and
monitoring; possibility of elimination of errors and operator-related contamination; avoid-
ing batch-to-batch variability; and, finally, abrupt fluctuations in pH, oxygen concentration,
or nutrient gradients caused by manual medium exchange. Many types of bioreactors,
including hollow fiber bioreactor, stirred tank bioreactor, vertical wheel bioreactor, and mul-
tiplate bioreactor have been tested for large-scale expansion of MSC. Stirred tank reactors
are the most widely used devices for large-scale MSC expansion [301]. There are some key
technological aspects to consider in these more advanced types of cell culture expansion
systems, such as the use of microcarriers, hydrodynamic parameters, and agitation. Micro-
carriers provide a high surface-to-volume ratio for high-density cell culture with a cost of
goods reduction. Microcarriers are small beads that increase the surface area available for
cell attachment per unit volume. These structures, with size ranging from 100 to 300 µm in
diameter, are made of diverse materials, such as polystyrene, dextran, cellulose, gelatin,
glass, or decellularized tissue, with different surface properties [302,303]. Thus, these
systems allow for the growth of cultures in 3D, which brings many advantages, especially
inducing 3D spheroid of MSC in suspension. This microcarrier suspension culture includes
advantages such as the scalable design, homogeneous culture environment, real-time
monitoring of cells and medium, and the feasibility of maintaining a long-term culture via
bead-to-bead transfer without enzymatic treatment/passaging [304,305]. Moreover, due to
the high surface to volume ratio, less culture medium (a main cost driver) is used in MSC
microcarrier bioprocessing.

Compared to those from planar culture, many groups have reported that a micro-
carrier culture of MSC improves their osteogenic and chondrogenic differentiation po-
tential [306,307] and facilitates neuroregulatory function. Additionally, differentiation of
neural progenitor cells [308] showed strong antioxidant effects and protected cell viability
during oxidative stress, as well as enhancing their anti-inflammatory and immunomod-
ulatory properties [309]. At the same time, stem cell spheroids have higher engraftment
efficiency and survival at transplantation sites, exhibit elevated Bcl-2 levels (anti-apoptotic)
and diminished Bax levels (pro-apoptotic) [310], and show higher levels of angiogenic growth
factors (VEGF, FGF, angiogenin, and HGF [311]) compared to monolayer-cultured cells.

The parameters grouped under the term hydrodynamics refer to the potential impact
of aeration and agitation. Aeration is required to supply oxygen to the MSC, which, in
addition to affecting oxygen saturation, also generates forces that cause physical stress.
In T-flasks, aeration is achieved by the diffusion of oxygen through the surface of the
medium, whereas bioreactors must be actively aerated by, e.g., bubbling the gas into
the liquid. The bursting gas bubbles generate strong forces that can damage cells [312].
Agitation in bioreactors is generally achieved with impellers, which help to disperse gas,
but also maintain a homogenous suspension of cells and nutrients. The creation of a
homogenous environment is advantageous because it avoids gradients of pH, nutrients, or
waste products.
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Large scale of biomanufacturing represents a great advantage over classical 2D cell
culture systems. However, they can still represent handicaps, such as non-homogeneity of
the culture systems, nutrition depletion, and residue accumulation due to high cell density
and when the interstitial flow is insufficient [313]. Furthermore, we have to consider
that microcarrier-expanded MSC show differences with planar culture-expanded cells in
size, morphology, proliferation, viability, surface marker, gene expression, differentiation
capacity, and secretion of cytokines. Thus, a better understanding of the bioprocessing
parameters that influence MSC therapeutic efficacy is yet essential. With regard to this,
there are many ex vivo possible MSC modifications to optimize bioreactor conditions to
maximize MSC quantity without sacrificing quality and therapeutic potency [314].

6.2.3. Ex Vivo MSC Modifications: Toward More Specific Therapeutic Applications

Ex vivo modifications to enhance the therapeutic interest of MSC in cultures include
oxygen and pH, or pre-conditioning with inflammatory cytokines.

MSC are aerobic cells, and any culture vessel must therefore ensure an adequate
supply of oxygen. However, the oxygen saturation in standard T-flasks (21% O2) is far
removed from nature (5–7% O2) [315,316]. MSC therefore tend to be over saturated with
oxygen, which can increase the concentration of damaging reactive oxygen species (ROS).
Several studies have confirmed that hypoxia enhances MSC proliferation, stabilizes their
cell fate, and prevents apoptosis by reducing the levels of caspase-3 [317]. However, rather
than imposing hypoxia by preconditioning the cells, it may be better to impose hypoxia
during the entire expansion phase, because this mimics their natural niche [318].

Several pieces of evidence show that MSC cultivated at low oxygen concentrations
improves several therapeutic effects, such as expression of higher levels of pluripotent and
proliferation markers [319,320], increase in the secretion of cytokines and growth factors in
transplanted stem cells [321], improvement of angiogenesis [322], migration to the site of
injury [323], and anticancer effects [177].

Typically, in vitro expansion is carried out at 37 ◦C and neutral pH (7.2–7.4). Although
the expansion of MSC has been achieved in the pH range 7.5–8.3 [324], it is unclear how
significant variations in pH influence MSC metabolism and whether this affects their
secretome. The optimum temperature and pH must be evaluated for each MSC product.

Another pre-conditioning tactic to improve MSC therapeutic benefits includes expo-
sure to an inflammatory environment in the presence of inflammatory cytokines, such
as IFN-γ [325] and TNF-α [326]. Treating MSC with these inflammatory cytokines or
their combination, their secretion of anti-inflammatory biomolecules increases, and their
immunosuppressive function improves [63].

These data indicate the possibility of modulating the capacity of MSC and their
secretome, according to different chemical or molecular stimuli. In such a way, we could
conceive the possibility in the future of adapting the potentiality of the secretome of MSC
to the optimal therapeutic applications that each specific pathology demands.

6.2.4. Standardization and Functional Tests Research for Specific Applications

Recently, Stroncek et al. described functional and molecular differences between
the MSC of three patients produced in five different laboratories, despite the fact that
the origin of these cells was the same [327]. These situations occur because, today, there
is no standardized protocol for each one of four key steps of the MSC manufacturing
process: donor MSC selection and collection, maintenance and transport of the MSC from
the collection site to the processing site, culture strategy (i.e., plating cells, passaging
the adherent cells, and harvesting the MSC), and cryopreservation and storage of the
manufactured MSC. In many cases, equivalent variables are used for different applications.

In the current situation of allogeneic therapies, MSC manufactured from one or
several selective donors are used as a universal drug for multiple patients. However, many
studies have reported about both donor-to-donor and tissue source variations [328–330].
In addition, MSC are isolated from a number of different tissue source materials and, as it



Int. J. Mol. Sci. 2021, 22, 3576 20 of 34

was mentioned above, there is functional heterogeneity with regard to their origin. On the
other hand, MSC are generated with different culture or preconditioning strategies [331].
Although only a few studies explored the impact of bioprocessing parameters on MSC
therapeutic potency [308,332,333], it was reported that, for example, variable in vitro
expansion strategies have a stronger impact on MSC molecular phenotype than donor
age [334]. Therefore, to minimize donor-to-donor variations and reduce bioprocessing
variability are urgently needed for the production of MSC in large-scale expansion for
allogeneic therapies. This undoubtedly emphasizes the importance of harmonizing inter-
laboratory practices for manufacturing MSC and products derived from their secretome
in order to achieve excellence in the biomedical application of therapy on the basis of
these cells.

Conversely, the clinical applications of MSC are attributed to unique stem cell prop-
erties, including the secretion of trophic factors involucred in regeneration, as well as
pro-angiogenic, anti-inflammatory, immunodulatory or anti-oxidative stress activities.
However, there are no acceptable potency assays for the release of MSC for clinical thera-
pies that predict their in vivo efficacy [335]. Thus, the optimal functional characterization
of crafted MSC and their secretome should be also necessary, particularly for each specific
therapeutic indication.

7. Conclusions and Future Perspectives

Stem cell science is a relatively new expertise. Although MSC have long suffered from
a relative lack of basic biologic investigations, their conceptualization as a cell-based therapy
has evolved from the field of regenerative medicine toward the natural physiological
processes. Different paradigms have been constructed to explain their mechanism of action,
including tissue regeneration, anti-inflammatory and immunomodulator effects, and anti-
cancer and anti-microbial activities. These functions, attributed mainly by the secretion
of molecular factors and EVs, have been observed in multiple xenogeneic experimental
models, suggesting that their involved mechanisms are conserved between species. These
results motivated the empirical clinical use of MSC in multiple clinical trials and recent
approved therapies. Nevertheless, it is necessary a better understanding of mechanisms
of action and acute and long-term safety profiles, for both the cells and their secretome-
derived products.

Heterogeneity of MSC, according their origin, donor characteristics, and in vitro cul-
ture conditions, are limitations for clinical applications, but also opportunities for achieving
a new efficiently adapted personalized medicine. The most adequate strategies for MSC
introduction should be achieved by choosing (i) the most satisfactory MSC type for each
therapeutic application, (ii) the most adequate culture conditions for enhancing their spe-
cific therapeutic effects, (iii) the most suitable and effective mass production of these cells or
derived products by using bioreactors provides of the most highly control parameters, and
(iv) the most appropriate functional test for these biological products in each therapeutic
indication. For all of these proposes, we need to integrate new technologies, such as related
to biotechnology, engineering, and artificial intelligence.

State-of-the-art development in the world of MSC is leading us to the conception of
organoid machines that generate signals with medicinal effect. MSC or their derivative
products in these systems can contribute to counteract the physiological tissue imbalance
after the restoration of truncated homeostasis. In this context, one might consider a different
medicine with a certain component of ethical uncertainty. However, we can also conceive
of this orientation in the context of an evolution. Humankind has always sought progress
in all areas. Our techniques have evolved from warfare to the most advanced military
weapons. Yet we can also believe in the therapeutic use of the secretome of MSC in the
evolution of medicine towards a sophisticated perception of the molecular balance of life.
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