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Abstract In this paper we present a multichannel non-negative matrix fac-
torization (MNMF) system for the task of source separation. We propose a
novel signal model using spatial covariance matrices (SCM) where the mixing
filter encodes the spatial information and the source variances are modeled
using a NMF structure. Moreover, the proposed model is initialized with the
estimated source direction of arrival (DoA) in order to mitigate the strong sen-
sitivity to parameter initialization. The proposed system has been evaluated
for the task of music source separation using a multichannel classical chamber
music dataset showing that it is possible to reach real time in the tested scenar-
ios by combining multi-core architectures with parallel and high-performance
techniques.
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1 Introduction

Source separation is a challenging task in the context of audio signal process-
ing. Separating the sound sources of an audio mixture captured with one or
multiple microphones can be useful for a great variety of subsequent audio
processing tasks. Some examples of these tasks include spatial audio coding
(SAC) [25/8], music applications [9[1IL[6], 3D sound analysis and synthesis [18],
localization [12] and signal enhancement for various purposes, such as auto-
matic speech recognition (ASR) [2917].

Over the last two decades, the scientific community has dedicated many
efforts to develop approaches that achieve this separation. Typical approaches
rely on decomposing a time-frequency representation of the mixture signal
using methods such as non-negative matrix factorization (NMF), indepen-
dent component analysis (ICA), or probabilistic latent component analysis
(PLCA). Among these factorization techniques, NMF has been widely used
for speech and music audio signals, as it allows to describe the signal as a
non-substractive combination of sound objects (or “atoms”) over time. How-
ever, without any prior information, the quality of the separation using the
aforementioned statistical methods is limited. In fact, source separation meth-
ods can be classified based on the availability of prior information about the
sources. Blind source separation (BSS) refers to the situation in which informa-
tion about the specific sources of the mixture are unknown. On the contrary,
informed source separation (ISS) refers to such methods in which information
about the specific sources is used to improve the separation [I5]. Many ISS
approaches exploit the spectro-temporal properties of the sources. For exam-
ple, spectral harmonicity and temporal continuity can be assumed for several
musical instruments while percussive instruments are characterized by short
bursts of broadband energy [2]. Speech source spectrogram can be modeled
using a source-filter model [5]. Other approaches also used spatial localization
of the sources [32l[19]. Recently, the deep neural networks (DNN) have been
extensively used for this purpose. The existing methods mostly use DNN with
either the spectrogram as the input signal representation [24] or directly the
time-domain representation [4] to train such a system.

The aforementioned approaches are developed for single channel signals.
In the case of multichannel mixtures, separation can be improved by taking
into account the spatial locations of sources or the mixing process. Recent
methods have extended NMF to the multichannel case by modeling the la-
tent source magnitude- or power-spectrograms with NMF and estimating the
mixing system without the non-negativity constraint [26,22]. This strategy is
often referred to as MNMF in the literature. For modeling the spatial proper-
ties of the sources, many of these approaches use a spatial covariance matrix
(SCM) which accounts to the relative inter-microphone phase and amplitude
information of the recorded channels. Authors in [26] proposed to estimate
unconstrained SCM mixing filters together with a NMF magnitude model to
identify and separate repetitive frequency patterns corresponding to a single
spatial location. To mitigate the effect of the spatial aliasing, Nikunen and
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Virtanen [22] proposed a SCM model based on DoA kernels to estimate the
inter-microphone time delay given a looking direction. Carabias et al. [3] pro-
posed a SCM kernel based model where the mixing filter is decomposed into
two direction dependent SCMs to represent and estimate disjointly both time
and level differences between array channels. Alternatively, recent works have
tried to exploit multichannel audio with deep neural network (DNN) based
approaches. Several works [241282T] combine DNN-based source spectrogram
estimation with multichannel NMF-inspired spatial models.

The main drawback of these strategies is the large number of parame-
ters which have to be estimated and thus, without any prior information,
these methods are prone to converge to local minima, especially in reverber-
ant environments. Moreover, the computational burden of the MNMF-based
approaches is heavy and current implementations do not allow a real-time per-
formance. This is because many operations related to matrix inversions and
eigenvalue decompositions are involved in the NMF updates. Under moder-
ate echoic conditions, SCMs can be restricted to be rank-1 in a determined
scenario, merging independent vector analysis (IVA) and NMF within a frame-
work called independent low-rank matrix analysis (ILRMA) [13]. Several stud-
ies have recently proposed restricting the SCMs of sources to jointly diagonalize
the full-rank matrices for multichannel blind source separation [I0,27]. While
FastMNMF [27] projects the signals with an optimizable transform matrix,
the authors in [20] adopt a fixed projection, namely, a discrete Fourier trans-
form (DFT) matrix. In this work, we propose a projection-based multichannel
source separation method using SCM and the MNMF algorithm. In particu-
lar, we propose a novel MNMF scheme that allows to perform the separation
frame-by-frame. Similar to [23], we propose to initialize the model parameters
using prior information from the sources DoA obtained with the Steered Re-
sponse Power (SRP) with phase transform (PHAT) [30] algorithm in order to
reduce the computational complexity and increase the robustness.

In this paper, we make the following technical contributions: (i) a projection-
based SCM signal model for the task of multichannel source separation, (ii) an
online system that outperforms the state-of-the-art system, and (iii) a novel
prototype using a mixed parallelism scheme that allow to perform the separa-
tion in real time.

According to the best of our knowledge, there has not yet been presented
a holistic, flexible and free system that addresses this problem on parallel
shared-memory systems. As a proof of concept, several experiments have been
performed using a multichannel dataset of classical chamber music with dif-
ferent polyphony level. The proposed approach has been compared with other
online state-of-the-art method showing reliable results in terms of of sound
quality.

The paper is organized as follows. The introduction is presented in Sec.
Sec. [2] presents the problem formulation of MNMF. The proposed MNMF
framework is described in Sec. [3] Section [4] presents the experimental results
of the proposal. Finally, the conclusions are outlined in Sec.



4 A.J. Munoz-Montoro et al.

2 Problem formulation

The problem considered in this work is to separate each source signal from a
set of audio mixtures recorded from a microphone array. The observed signal
can be expressed as

S
Ty (n) = Z Z P (T)ys(n — 7) (1)

s=1 T

where the mixture x,,,(n) consists of s € [1, S] sources captured by microphones
m € [1, M], and the time-domain sample index is denoted by n. The spatial
response from source s to microphone m is represented by a mixing filter
hms(7) and the single-channel source signals are denoted by ys(n).

Considering the convolutive mixing problem in Eq.[1} the short-time Fourier
transform (STFT) of z,,(n) can be written as

S
xp(t) = S hyaypa(t) (2)

where x¢(t) = [z1(t),...,2rm(t)]T is the time-frequency spectrograms of
Tm(n), hps = [hys,.. .,hfsM}T denotes the frequency-domain mixing filter
and yys(t) represents the time-frequency spectrograms of source signals. Here,
f €[1,F] and t € [1,T]. As signal representation, the proposed method uses
the spatial covariance matrix (SCM) domain [3l[22/26]. This representation
computes the phase and the amplitude difference between every pair of micro-
phones in the multichannel mixture avoiding using the absolute phase of the
observed signal.

To obtain the SCM, the magnitude square-rooted matrix X¢(t) for a time-
frequency point (f,t) of the captured signal at each microphone x¢(t) =
[2p1(t), ..., zpar(t)]T is firstly computed as

%7 () = (|21 (0)]*sgn(@ 1(8)), ooy [0 (O] ?sg0(E p00 (1))] 3)

where sgn(z) = z/|z| is the signum function for complex numbers. Then, the
SCM for each single time-frequency point is defined from the multichannel
captured vector Xf(t) as the following outer product

lzp @ - zp @)y ()
X (t) = ap(t)af (1) = : : : (4)

O NI

where # stands for Hermitian transpose. Matrices X(t) € CM*M for

each time-frequency point (f,t) encode the magnitude spectrum |x¢(t)| =
[z (t)],. .., Jzear(t)]]T in the main diagonal and the magnitude correlation
and phase difference |acfn(t)acfm(t)Wzsgn(xfn(t)x}m(t)) between each micro-
phone pair (n,m) in the off-diagonal values.
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Fig. 1 Block diagram of the proposed system.

The convolutive mixing model in Eq. 2] can be expressed in terms of the
SCM domain as

S
Xp(t) = Xp(t) =Y Hygps(t) (5)

where §,(t) denotes the magnitude spectrogram for each source s and Hy, €
CM*M i the SCM representation of the spatial frequency response h,.

3 Proposed MNMF algorithm for multichannel source separation

In this work, we propose a multichannel source separation system based on the
SCM domain and MNMF algorithm. In particular, we propose a practical and
versatile framework that can perform the multichannel separation in real-time.
For this purpose, we have developed a beamforming inspired efficient and fast
implementation that able to estimate the source variances using a projection
based MNMF procedure where the source DoAs is estimated a priori. As a
result, we’ve developed a software solution that satisfies two essential require-
ments: mobility and real-time. Therefore, our design takes the low memory
resources and low computational power of cheap and handheld devices into
account. This has been possible using and deeply exploiting the possibilities
offered by parallel architectures.

The block diagram of the proposed framework is depicted in Fig. [1l As can
be observed, the full system combines different stages: 1) signal representation,
2) signal model parameter estimation, and 3) signal reconstruction. In the
following subsections, we detail and describe the main function of each stage.

3.1 Proposed MNMF signal model

In this section we introduce the signal model that enables to estimate the spec-
trogram of the sources using the MNMF algorithm [26]. Although the SCM
mixing filter Hys in Eq. [5] takes amplitude and phase differences between
channels into consideration, it does not have any explicit relation to spatial
locations. To overcome this, [22] proposed a beamforming-inspired SCM model
based on DoA kernels. The main idea relies on decomposing the mixing fil-
ter Hy, as a linear combination of DoA kernels Wy, € CM*M multiplied
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Fig. 2 Proposed MNMF signal model parameters. Complex values are displayed in red,
positive real values in gray and zero values in white.

by a spatial weights matrix Z € RJSFXO which relates sources S with spatial
directions O.

In this work, we propose a projection-based SCM model that enables to
estimate directly the spectrogram of the sources using their spatial location as
prior information. The proposed signal model for SCM observation is defined
in Eq. [6] and illustrated in Fig.

O
Xy(t) = Xp(t) =D > Wiozso §rs(t) (6)
s=1 o=1 ~

Here, the spatial weights matrix Z is initialized a priori in order to reduce
the number of free parameter. In this way, the SCM DoA kernel matrix W is
computed for the source spatial positions as

(W ol = €202 (7)
where O, (f,0) = 27 fTm(X,) is the phase difference computed from the
TDoA between sensors n and m for the frequency in Hz at bin f and the
spatial position 0. Remember that the number of spatial position O is equal
to the number of sources .S and is known a priori. Each spatial position x, can
be translated to a TDoA (in seconds) for a pair of microphones (n,m) using
the following expression

%0 = Xnll2 = [|X0 — Xm|[2
- 0

Tnm (Xo) =

where || - ||2 denotes the ¢5-norm, x,, is the source spatial position, x,, and x,,
are the microphone m and n locations, all of them expressed in the Cartesian
coordinate system, and c is the speed of sound.

As in [26], after computing W f,, some post-processing is required to make
it Hermitian and positive semidefinite. For the sake of brevity, this processing
has been omitted here, regardless refer to [26] for more details. After that,
Wy, is kept fixed during the factorization.
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3.2 MNMF Parameter Estimation

For the estimation of the source magnitude spectrograms Y we used the
majorization-minimization algorithm proposed in [26L22l[3]. Using this ap-
proach, the cost function can be described using both Euclidean or Itakura
Saito (IS) divergence. In this work, we use the IS divergence, since it is better
suited for audio modeling in comparison to EUC [7].

The IS divergence of the observed and estimated multichannel signal using
the SCM domain can be expressed as

Dis(X,X) = Ztr(Xf(t)Xf(t)*l) —logdet(X; ()X (1)) =M (9)
ft
where tr(X) = Zn]\f{:l Zmm 18 the trace of a square matrix X. Then, the source

spectrogram can be obtained from the projection of the fixed averaged DoA-
kernels over the observed SCM signal mixture using

gfs(t) — yfs(t)\/Zso Zso tT(Xf(t)ilAXf(t)Xf(t)71Wf0) (10)
' D50 Zso tr(X (1) "W o)
and repeating Eq. [0] followed by Eq. until convergence. Further infor-
mation about the derivation of Eq. [10[can be found in [23][26].
Finally, once the source magnitude spectrograms are estimated, the spec-
trogram of each source can be computed using a soft-filter strategy.

3.3 Source Reconstruction

The reconstruction of the source signals is performed using a generalized
Wiener filtering strategy. Firstly, the estimated MNMF magnitude spectro-
gram for each sound source s and microphone m can be defined from our
proposed model in Eq. [0] as

Grsm(t) = Y tr(W o) mzsoliss (t) (11)

Then, we apply the generalized Wiener mask to reconstitute the different
sources of the mixture based on the power spectrum ratio between the reference
signals as

0s tr(wfo)mzsoyfs (t)

where z £, (t) € C is the time-frequency spectrogram of the input multichannel
mixture (see Sec. . Finally, the multichannel time-domain signals are ob-
tained by the inverse STFT of ¢4 (t) and frames are combined by weighted
overlap-add.

The procedure of the whole system is summarized in Algorithm [T}

Grsm(t) = 5 & fm(t) (12)
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Algorithm 1 Pseudo Code of the Proposed MNMF system algorithm

: Initialize Z with the position of the sources.
: Initialize W using Eq. [7]
Apply post-processing to enforce W to be hermitian and semipositive definite.
while audio stream do
Read an audio frame.
Compute the input signal phase SCM using Eq. El
Compute the signal model using [6]
for iter = 1 to Njter do
9: Update Y according to Eq.
10: Recompute the signal model using Eq. @
11: end for
12: for S=1to S do

SIS R e

13: for m =1to M do

14: Compute ¥ 7y (t) using the Eq. |1

15: Compute the time-frequency spectrogram estimation of ¢4, () using Eq.[12] .
16: Reconstruct the source signal using the inverse STFT of §fpm (t).

17: end for

18: end for
19: end while

4 Evaluation and experimental results

This section presents the experimentation carried out in the evaluation of the
proposed system in Sec. [3] In this evaluation, we have exploited a subset of
the University of Rochester Multimodal Music Performance (URMP) dataset
presented in [14]. We have selected some classical chamber music pieces rang-
ing from duets to quartets and played by 9 different common instruments in
orchestra. Note that the musical score, the audio recordings of the individ-
ual tracks, the audio recordings of the assembled mixture and ground-truth
annotation files are available for each piece. The multichannel mixtures were
generated by simulating the spatial position of the sources. In this regard,
mixing filters were simulated with the Roomsim Toolbox [I] for a rectangular
room and a linear array of eight omnidirectional microphones. The reverber-
ation time RTT] of the room was set to either 10 ms or 400 ms.

Regarding the used testbed, we have focused our interest on two different
systems. Firstly, we have used a server with an Intel® Xeon® Silver 4110
processor with 8 cores. It operates at 2.1 GHz and HyperThreading and Turbo
Boost are both deactivated. Secondly, the experiments were conducted on a
NVIDIA Jetson AGX Xavier development kit, which is an embedded system-
on-chip (SoC) with an ARM v8.2 64-bit CPU. Xavier supports different kinds
of running modes (configurable with the NVPModel command tool). This
setup allows to simulate a wide range of mobile devices such as smartphones,
laptops, tablets and other embedded systems under controlled conditions.

1 RTgp is the time required for reflections of a direct sound to decay by 60 dB below the
level of the direct sound.
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Concerning the used software, Xavier runs Ubuntu Linux 18.04.1 LTS and
the server runs CentOS Linux 7. Both systems use the OpenBlasH library
(release 0.3.9, March 2020), the FFTWE| library (release 3.3.8, May 2018) and
the GNU C Compiler 7 with the specification 4.5 of OpenMP. OpenBLAS is
an optimized BLAS library based on GotoBLAS2 1.13 BSD. Note that both
packages have been built in our system from source codes. Finally, it should be
remarked that the used data type is “double” (i.e. IEEE 754 double-precision
binary floating-point format).

4.1 Results

Firstly, we have tested the reliability of our separation system in terms of sound
quality by using the BSS_Eval toolbox [3I]. These metrics are commonly ac-
cepted and represent a standard approach in the specialized scientific commu-
nity for testing the quality of separated signals, allowing a fair comparison with
other methods. In this paper, we compare the separation performance of our
beamforming-inspired proposal with a well-known spatial beamforming [30]
method from the literature. In particular, we have implemented a Delay and
Sum Beamforming (DSB) design which consists of time aligning and summing
the microphone signals. This technique uses the geometrical information of
the microphone array to filter and enhance the sources coming form a spe-
cific direction. To allow a fair comparison with our NMF-based approach, a
postprocessing Wiener filtering stage is applied to the output of DSB [I6] as
well.

Figure |3| depicts the median values of SDR and SIR obtained in the evalu-
ation of the proposed database for each approach. We start by analyzing the
values obtained in the semianechoic room. As can be seen, the proposed frame-
work provides superior results in terms of SDR and SIR compared with the
DSB+Wiener method for all cases. As expected, the separation performance
decreases as the number of sources increases. On the other hand, better results
are obtained when the number of channels increase, since the DoA estimation
performed by SRP-PHAT algorithm is more accurate and, therefore, the ini-
tialization of the source location is more reliable.

Concerning the reverberant room, a similar performance can be observed.
The proposed framework slightly outperforms the DSB+Wiener method for
most of the cases. However, under higher reverberant conditions, the results
dramatically decrease due to localization errors. Note that despite the sim-
plicity of the DSB+Wiener algorithm (which allows its implementation in real
time), the method suffers from the leakage of other sources into the extracted
source resulting in a poor interference-related metrics (SIR) with respect to
the proposed method.

Secondly, we have explored the limits of our proposed system. In this sec-
ond experiment, we have measured the complexity per frame and the efficiency

2 https://www.openblas.net
3 http://www.fftw.org
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Fig. 3 Objective results using the BSS_EVAL metrics [31] for the proposed dataset. Results
for two channels are displayed in the upper row, for three channels in the middle row and
for four channels in the lower row. Each bar indicates the median values of the obtained
results.
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Fig. 4 Execution times measured in milliseconds per frame and efficiency on the Intel®
Xeon® Silver 4110. Results for two channels are displayed in the upper row, for three
channels in the middle row and for four channels in the lower row.
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Fig. 5 Execution times measured in milliseconds per frame and efficiency on the NVIDIA
Jetson AGX Xavier. Results for two channels are displayed in the upper row, for three
channels in the middle row and for four channels in the lower row.

of the algorithm as a function of the number of computing cores used simul-
taneously, the number of sources of the mixture and the number of channels
of the input signal. The results obtained using an Intel® Xeon® Silver 4110
are depicted in Fig. [4

As can be observed, the computational complexity of the algorithm in-
creases as the number of channels and sources increases. For two-channels
mixtures, real time is achieved regardless of the number of simultaneous com-
puting cores used, including the sequential version. Note that real time is guar-
anteed when the execution time per frame is lower than 23.2 ms (displayed
as a dashed red line). However, as can be observed in Fig. [3] the separation
results increase considerably as a function of the number of channels. In the
cases of three and four channels, the sequential version of the algorithm does
not run in real time. In the three-channels case, parallel computing allows ex-
ecution times in real time regardless of the number of sources and computing
cores. Finally, real time is only achieved in four-channel mixtures for six and
eight cores.

Regarding the efficiency, again better results are obtained when the num-
ber of channels increases. Note that some memory-bound operations of the
system are performed as matrix—vector, such as the Wiener filter. Therefore,
the sequential approach maximizes the performance, taking advantage of the
whole memory bandwidth, while a parallel approach is limited by this fact.

As for the NVIDIA Jetson AGX Xavier, the experimental results obtained
in the evaluation are provided in Fig. [5] In this case, real time is not reached for
four-channels mixtures in any case. For the three-channels case, the separation
is performed in less than 23.2 ms when four and six cores are used. Finally,
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note that the results obtained for the efficiency are always above 75% for three
and four channels.

5 Conclusion

In this paper we proposed a projection-based multichannel source separation
method using SCM and the MNMF algorithm. In particular, we proposed
a novel MNMF prototype using a mixed parallelism scheme that allow to
perform the separation frame-by-frame in real time. The proposed signal model
uses SCM to encodes the spatial information and the source variances are
modeled using a NMF structure. Moreover, the signal model is initialized
with the estimated source DoA in order to mitigate the strong sensitivity
to parameter initialization.

The proposed framework has been implemented for multi-core architec-
tures allowing that the application can be executed in a wide range of devices.
Furthermore, we have shown the robustness of the proposed algorithm in com-
parison with other state-of-the-art method using various types of microphone
array setups. Results showed that real time is reached in most of the cases. To
our best knowledge, our proposal is the first MNMF implementation in real
time that obtains reliable results in terms of sound quality.
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