

HYBRID TWO STAGE FLOWSHOP SCHEDULING WITH SECONDARY

RESOURCES BASED ON TIME BUCKETS

Alex J. Ruiz-Torres
Departamento de Gerencia, Universidad de Puerto Rico, USA

alex.ruiztorres@upr.edu
https://orcid.org/0000-0002-7528-236X

Giuseppe Paletta

Dipartimento di Economia, Universita` della Calabria, Italy
giuseppe.paletta@unical.it

https://orcid.org/0000-0001-8446-781X

Belarmino Adenso-Díaz
Departmento de Ingenieria Industrial, Universidad de Oviedo, Spain,

adenso@uniovi.es
https://orcid.org/0000-0002-6519-9810

Publicado en INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, Vol. 60, No. 6, pp: 1954-1972, 2022
Doi: 10.1080/00207543.2021.1880656

HYBRID TWO STAGE FLOWSHOP SCHEDULING WITH SECONDARY
RESOURCES BASED ON TIME BUCKETS

Abstract
This work studies a two-stage hybrid flowshop problem with secondary resources (workers). The goal is
to minimize the average tardiness. The workers are assigned to the workstations by time buckets (work
shifts), and the assignment changes during the planning horizon. Two versions of the problem are studied:
(i) the case where the average efficiency of the workers determines the time to process jobs; (ii) the case
where the efficiency of the slowest worker assigned to a workstation determines the time to process jobs.
The problem is NP hard and a set of heuristics are proposed to generate job sequences and worker
assignments. Computational experiments are performed on randomly generated test problems. The
experiments revealed that the proposed heuristics are able to find a large percentage of the optimal
solutions for small sized instances, while on large sized instances the heuristic performance depended on
experimental factors.

1. INTRODUCTION
Scheduling jobs and assigning workers to the production equipment is a relevant problem in production
environments. The relevance of this problem increases when workers have diverse skills and efficiency
levels related to the production equipment and the jobs being manufactured. In many production
environments the effective allocation of workers to the tasks at hand is fundamental in meeting the
organizations financial and customer service goals.

The motivation of this paper is based on a manufacturer of make to order industrial electrical
devices where workers with diverse skill and efficiency levels must be assigned to a set of jobs. In this
environment, the process to manufacture/ assemble these devices consist of two stages: the (i)
construction/preparation of components and (ii) the assembly of the module(s). These devices (products)
are custom-made and belong to product families. Based on customer specifications, work is to be
performed in each stage of the process. Orders should be delivered by a due date. There are parallel
workstations at each stage. The facility has a set of highly experienced workers that can work in any of
the two stages and for any of the product families. The efficiency of each worker is related to the stage in
production and to the family of the job processed. The nature of the observed system is one of frequent
reconfiguration of their equipment, workspaces, and workforce to meet the ever-changing market needs
that come as customer orders. Workforce reconfiguration is an element of many types of production
systems (Hashemi-Petroodi et al., 2020).

In the observed environment, workers are assigned to the different workstations per shift. There is
a limit of employees working simultaneously in a workstation due to space and tool constraints. For
workstations to function properly, they need a minimum number of workers. For example, a workstation
can require a minimum of two workers to be able to allow handling of large modules or to administer

certain tests. Figure 1 illustrates the observed environment where the four squares to the left represent the
workstations for the first stage of the process, and the three workstations to the right (rectangles) represent
the second stage workstations. Eleven workers (A to J), represented by circles, are assigned to the
workstations on a daily basis (single shift per day). For Monday’s work shift (top section of the figure),
three of the first stage workstations are operational with a total of seven workers, and two of the second
stage workstations are operational, with four workers. For Tuesday’s work shift, the number of
operational workstations for stage 1 is reduced by one and the number of workers is also reduced.
Furthermore, workstation W1-2 has a different set of workers based on the jobs to be processed that day.
For stage 2 the number of operational workstations does not change, however each gets assigned one
more worker. Finally, for Wednesday’s shift there are no operational workstations in stage 1, and all
available workstations in stage 2 are operational. Two of the workstations have four workers, while
workstation W2-1 has three, noting that while the number of workers assigned to W2-1 did not change
from Tuesday to Wednesday, the set of workers did change. This related to the specific jobs to be
processed each day and the ability/efficiency of the workers to these jobs.

Figure 1 here

The effect workers may have on each other when working together in a workstation, may be

another relevant element of this environment. When a team is made of workers with significantly
different aptitudes/speeds/efficiencies, the overall work tends to be done at the pace of the slowest
worker. This may be due to the complexity of the processes and/or dependencies between employees
within the workstation. This can be consistent with the concept of bottleneck scheduling (the slowest link
controls the speed of the chain!).

Following the observed production environment, this paper addresses a hybrid flowshop (HFS)
with secondary resources problem. There are two stages and at each stage there is a predefined number of
identical workstations. The set of secondary resources (workers) are assigned to the workstations on a
time bucket basis across the planning horizon. In practice, workers were assigned to different
workstations every few days as orders were completed and or priorities changed. The process focuses on
meeting customer due dates; accordingly, this paper addresses the minimization of average tardiness.

 There is an extensive body of work related to the flowshop problem and recent literature reviews
have been performed by Neufeld et al. (2016) and Rossit et al. (2018). Many articles published are
specific to the hybrid flowshop (HFS) version of the problem since the seminal work of Arthanary and
Ramamurthy (1971). Literature reviews that describe the work related to HFS were performed by Linn
and Zhang (1999), Ruiz and Vázquez-Rodríguez (2010), Ribas et al. (2010), and Pena-Tibaduiza et al.
(2017). The makespan is the most commonly addressed criteria for the HFS and recent articles include
Ying and Lin (2018), Fernandez-Viagas et al. (2018) and Öztop et al. (2019). By contrasts, research that
addresses problems that considers tardiness criteria (as in this paper) is relatively limited. The article by
Guinet and Solomon (1996) address the HFS problem of minimizing the maximum tardiness. The authors
propose a set of heuristics and they evaluate their performance against a lower bound on the optimal
solution. Lee and Kim (2004), develop dominance properties and lower bound for the total tardiness two
stage HFS problem. They consider the case where there is one machine in the first stage, and multiple

machines in the second stage. They develop a branch and bound algorithm to find close to optimal
solutions.

Choi et al. (2005) takes on the minimization of total tardiness on the HFS when jobs can return to
a previously visited stage. In Khalouli et al. (2010) the goal is to minimize both the tardiness and the
earliness of the jobs in a HFS problem. Several heuristics are proposed and evaluated. Yu et al. (2017)
develop algorithms for the case of a HFS with batching (and setups). The authors develop a mixed integer
programming model for the case where the number of batches is given and then use iterative algorithms
to find solutions. The articles by Khare and Agrawal (2019) and Schaller and Valente (2019) consider the
combination of earliness and tardiness in the HFS. Khare and Agrawal (2019) develop and evaluate
several metaheuristics for the sequence dependent setups case and evaluate their performance versus other
well-known metaheuristics. Schaller and Valente (2019) develop heuristics for the case where unforced
idle time is allowed as to delay jobs that otherwise would be early. Recently, Yang and Xu (2020)
addressed the minimization of delivery and tardiness costs in the distributed permutation flowshop.
 Research that considers dual or secondary resources is considerable in the scheduling literature
(Wörbelauer et al. 2019), although the work in the flowshop setting is not extensive. Examples include
Ruiz-Torres and Centeno (2008), Mehravaran and Logendran (2013), and Figielska (2018). In Ruiz-
Torres and Centeno (2008), there are secondary resources that must be allocated across the stages in order
to minimize the number of jobs that are late. The paper presents a lower bound process and evaluates
several heuristics against this lower bound. Mahravaran and Logendran (2013) consider the assignment of
labor to the machines in order to minimize work in process inventory while maximizing the service level.
They propose three search algorithms and evaluate their efficiency and effectiveness. Figielska (2018),
addresses the two stage flowshop problem as to minimize the maximum completion time where
renewable resources are shared among the stages. Heuristics are proposed and computational experiments
demonstrate they are of good quality even with strong resource constraints.

The only two articles found in the literature that consider secondary resources in the HFS setting
are Figielska (2009) and Figielska (2018), and in both the objective is to minimize the makespan. In
Figielska (2009), the problem involves renewable resources in the first stage where multiple machines are
available, while the second stage has a single machine and does not require the secondary resource. The
problem described in Figielska (2018) involves renewable resources that are shared across the two stages,
and there are multiple parallel machines in each stage. In both papers, heuristics based on column
generation techniques are proposed and evaluated versus a lower bound.
 The research considered in this paper builds on the existing literature related to the HFS problem,
in particular, and to reconfigurable production systems in general with many novel elements. This paper
considers secondary resources with different, family specific efficiencies, a possibility in many real-world
systems with labor intensive operations. As the efficiency of the resource varies, the time to process jobs
depends on the specific set of resources assigned to its processing. A unique consideration of this work is
modelling the set’s efficiency by the worst resource in the group. This consideration has not previously
accounted for on the flowshop literature. Furthermore, the assignment of secondary resources is
performed by time buckers (worker shifts); an element commonly found in real world production systems
and highly relevant in flexible production systems. Managers can reassign workers during the week to
different areas to balance work and meet customer needs.

Previous research in the flowshop problem that includes the time buckets characterization was not
found in the literature. The next contribution of this research is the modeling of workstation overall
efficiency, which determines the jobs process times, based on two relevant cases; aggregate efficiency of
the worker set, and slowest efficiency of the worker set. While the second case can represent a significant
issue in some industrial settings, it is not considered in previous flowshop literature. This article provides
multiple contributions to the HFS body of knowledge of practical relevance as the problem is based on a
complex real-world setting.
 The remaining of the paper is organized as follows. Section 2 provides the problem description,
Section 3 describes a pertinent example, Section 4 presents a set of algorithms aimed to generate feasible
schedules, Section 5 describes a set of experiments to evaluate the schedule generation methods, and
finally, Section 6 describes the conclusions and provides directions for future research.

2. PROBLEM DESCRIPTION

2.1 Problem Structure
This research considers a two-stage hybrid flowshop with secondary resources where a set of independent
jobs must be processed in both stages. The characteristics of the problem to be studied are the following:

• There is a set 𝑁𝑁 of jobs to be scheduled.
• There are two stages and all jobs must be processed in each stage.
• Only one job can be processed at a time in a workstation and no preemption or division of jobs is

allowed.
• There is a set 𝑈𝑈 of product families.
• Jobs belong to a product family; let 𝑦𝑦𝑗𝑗 be the family of job 𝑗𝑗.
• Jobs have a due date; let 𝑑𝑑𝑗𝑗 be the due date of job 𝑗𝑗.
• Jobs have work content in time units (work volume) for each stage which includes setup and

movement time between workstations; let 𝑣𝑣𝑗𝑗,𝑖𝑖 be the work content of job 𝑗𝑗 in stage 𝑖𝑖.
• The planning horizon is divided into time buckets of equal duration 𝑏𝑏.
• There are 𝑚𝑚𝑖𝑖 identical parallel workstations available in stage 𝑖𝑖.
• There is a set 𝐺𝐺 of secondary resources (workers) to be assigned to the workstations.
• A workstation in stage 𝑖𝑖 must be assigned a minimum number of workers 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 to be operational.
• A workstation in stage 𝑖𝑖 can have a maximum of 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚workers.
• Workers are fully cross trained; thus, workers can be assigned to any of the two stages to process

any job.
• The assignment of workers to workstations is per time bucket in the planning horizon and let 𝑍𝑍𝑠𝑠,𝑡𝑡

represent the set of workers assigned to workstation s during time bucket 𝑡𝑡.
• Workers can be left unassigned during a time bucket if for example all workstations processing

jobs at that time have their maximum possible number of assigned workers. It is assumed that
unassigned workers will be performing work in other operations and/or training.

• Workers have different aptitude/speed/efficiency which depend on the stage and the product
family; let 𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖 be efficiency of a worker 𝑤𝑤 to perform a job of family 𝑓𝑓 in stage 𝑖𝑖.

• Worker efficiencies (the 𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖) are positive real numbers with a maximum value of 1.
• Workstation efficiency during a time bucket is a function of the workers assigned to it.

The efficiency of a workstation determines the amount of work that is performed during a time

bucket 𝑡𝑡. A workstation’s overall efficiency is defined by two different cases: a) aggregate efficiencies
(AE case) and b) slowest efficiency (SE case). The first represents the case where there is no negative
interaction between the workers conducting the work in a workstation, while the second represents the
case where the slowest worker limits the work of all the workers on a workstation. This second case is
based on observations made on the industrial case that serves as the basis of this research. Let Ξ(𝑠𝑠) be
equal to the stage of station 𝑠𝑠 (thus Ξ(𝑠𝑠) = 1 or 2). When the AE case is assumed, the overall efficiency
in workstation 𝑠𝑠 at stage 𝑖𝑖 for family 𝑓𝑓 during time bucket 𝑡𝑡 is defined by ∑ 𝑒𝑒𝑔𝑔,𝑓𝑓,Ξ(𝑠𝑠) 𝑔𝑔∈𝑍𝑍𝑠𝑠,𝑡𝑡 . When the SE

case is assumed, the overall efficiency is defined by �𝑍𝑍𝑠𝑠,𝑡𝑡� × 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔∈𝑍𝑍𝑠𝑠,𝑡𝑡𝑒𝑒𝑔𝑔,𝑓𝑓,Ξ(𝑠𝑠), where |𝑠𝑠𝑠𝑠𝑠𝑠| is used to
indicate the cardinality of the set. The time required to complete work (duration of work) is based on the
following relationship:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

For example, at the start of a schedule a workstation in stage 1 has been assigned two workers

and it will start to process a job from family 𝑓𝑓. These workers have an efficiency of eight tenths (0.8) and
an efficiency of one (1) respectively for family 𝑓𝑓. The work content for this job is ten (10) hours (𝑣𝑣𝑗𝑗,1 =
10). Consequently, the duration of this job (clock hours) is of five hours and fifty-five minutes [10 / (0.8
+1) = 5.55 hours]. In the discussion of the problem and the example section, the term 𝛿𝛿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 will be
used to define clock hours (durations) and 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 will be used to define work content hours. Thus, the
efficiency variable is a ratio: 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜/𝛿𝛿ℎ𝑜𝑜𝑜𝑜𝑜𝑜.

The schedule (a solution to the problem) consists of two components: (i) the allocation of the
workers to workstations on a time bucket basis and (ii) the sequence of jobs in each workstation. Let 𝐾𝐾𝑠𝑠
be the ordered set of jobs (a sequence) in workstation 𝑠𝑠. The schedule results in completion time for each
job in stage 2 where 𝑐𝑐𝑗𝑗 is the completion time (at stage 2) of job 𝑗𝑗 and its tardiness is 𝑚𝑚𝑚𝑚𝑚𝑚 [0, 𝑐𝑐𝑗𝑗 − 𝑑𝑑𝑗𝑗].
Let Θ represent the average tardiness. Accordingly, the results of this schedule are contemplated as: Θ =
 ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 [0, 𝑐𝑐𝑗𝑗 − 𝑑𝑑𝑗𝑗]𝑗𝑗∈𝑁𝑁 𝑛𝑛⁄ . The goal and intent of the scheduling process is to minimize the average
tardiness.

2.2 Problem Structure Limitations
The problem studied does not consider the utilization of the workers, thus worker’s idle time is not
measured, although relevant in practice. Workers that are not assigned to a workstation in a complete time
bucket or through some segment of a time bucket are assumed to be performing other relevant activities
as minor maintenance and training.

2.3 Problem Complexity
As mentioned in Pinedo (2016), the flowshop problem with two machines for the total completion time
objective (𝐹𝐹2||∑𝑐𝑐𝑗𝑗) is NP-Hard, therefore, based on complexity hierarchy, the two machine flowshop
problem with total tardiness objective is NP Hard. Similarly, based on complexity hierarchy, the hybrid
flowshop problem is more complex than the “base” flowshop problem. Hence, it is concluded that the
problem addressed in this research is NP-Hard. We also note that our problem characterization includes
secondary resources and time buckets, which increase the problem’s complexity. This complexity serves
as a way to characterize many elements of a real-world setting.

2.4 Summary of Notation

Indexes
i stages
w workers
s workstations
f families
j jobs
t time buckets

Parameters
𝑚𝑚𝑖𝑖 Number of available parallel workstations on stage i
𝑋𝑋𝑖𝑖 Set of available parallel workstations in stage i
G Overall set of workers
𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 Maximum number of workers that can be assigned to a workstation on stage i
𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 Minimum number of workers that can be assigned to a workstation on stage i
b Duration of a time bucket in hours
N Set of all jobs to be scheduled
𝑈𝑈 Set of all product families
𝑑𝑑𝑗𝑗 Due date for job j
𝑦𝑦𝑗𝑗 Product family of job j
𝑣𝑣𝑗𝑗,𝑖𝑖 Work content for job j on stage i in hours
𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖 Efficiency of the worker w while performs a job of family f on stage i
 (∈(0,1])
Ξ(𝑠𝑠) Stage of station 𝑠𝑠 (thus Ξ(𝑠𝑠) = 1 or 2)
𝑐𝑐𝑗𝑗 Completion time of job j on stage 2
ΘΨ Average tardiness of a schedule Ψ

Decision Variables
𝑍𝑍𝑠𝑠,𝑡𝑡 Set of workers assigned to workstation s during time bucket t
𝐾𝐾𝑠𝑠 Ordered set (sequence) of jobs on workstation s

3. ILLUSTRATION CASE
An example is provided to illustrate the problem. There are 6 jobs to be scheduled and the jobs belong to
one of two families. There are 3 parallel workstations available at each stage, 7 workers, and the duration
of each bucket is 8 hours (𝑚𝑚1 = 𝑚𝑚2 = 3, 𝐺𝐺 = {w1, w2, w3, w4, w5, w6, w7}, 𝑏𝑏 = 8 𝛿𝛿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜). Let 𝑋𝑋1 =
{s1-1, s1-2, s1-3} and 𝑋𝑋2 = {s2-1, s2-2, s2-3}. The minimum and maximum workers per workstation in
stage 1 is 1 and 4 respectively, while for stage 2 is 1 and 3 (𝑔𝑔1𝑚𝑚𝑚𝑚𝑚𝑚 = 1,𝑔𝑔1𝑚𝑚𝑚𝑚𝑚𝑚 = 4,𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚 = 1,𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚 = 3).
The information regarding the jobs and the workers is presented in Tables 1 and 2 respectively.

Tables 1 and 2 here

3.1 Example Schedule and Worker Assignments

The production planner has developed job sequences and worker assignments based on personal logic and
experience. The planner has determined that for this planning horizon two workstations are to be
operational for each of the two stages. Furthermore, the planner has decided on the following job
sequences in the workstations: 𝐾𝐾𝑠𝑠1−1 = 𝑗𝑗1 − 𝑗𝑗3 − 𝑗𝑗5; 𝐾𝐾𝑠𝑠1−2 = 𝑗𝑗2 − 𝑗𝑗4 − 𝑗𝑗6; 𝐾𝐾𝑠𝑠2−1 = 𝑗𝑗1 − 𝑗𝑗3 − 𝑗𝑗6; and
𝐾𝐾𝑠𝑠2−2 = 𝑗𝑗2 − 𝑗𝑗4 − 𝑗𝑗5.
This set of sequences is called S1. The planner has decided in the following worker assignments: workers
w1 and w7 will start at workstation s1-1 and change to workstation s2-2 at 𝑡𝑡 = 6; workers w2 and w5 are
assigned to workstation s1-2 for 𝑡𝑡 = 1. . . .4; then worker w2 is assigned to s2-1 for all future time
buckets, while w5 is left with the same assignment; workers w4 and w6 are assigned to workstation 1-2
for 𝑡𝑡 = 1 … 2; and then to station s2-1 for all future time buckets; and worker w3 is assigned to
workstation s1-1 for 𝑡𝑡 = 1 and then assigned to workstation s2-2 for all future time buckets.

Figure 2 presents (i) the workstation sequences and (ii) the worker assignments previously described. The
shaded areas represent stage two (2) workstations. Part (iii) of Figure 2 presents the schedule that
“combines” the job sequences (S1) with the worker assignments (A1) and assumes the AE workstation
overall efficiency case. Table 3 provides the start, the duration, and the end times of each job in each
stage for this schedule. All values in the table are in 𝛿𝛿hours.

Figure 2 here

Table 3 here

The process and calculations to determine the start and end times for the first two jobs assigned to
workstation s1-2 are described next.

Job j2 starts on workstation s1-2 at clock time 0 in time bucket 1 (𝑡𝑡 = 1). Job j2 has a work
content of 26 𝜇𝜇hours and belongs to family 2 (see Table 1: 𝑣𝑣𝑗𝑗,1 = 26 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑓𝑓𝑗𝑗 = 2). During 𝑡𝑡 =
 1, workers w2, w4, w5 and w6 are assigned to workstation s1-2.

worker 𝑒𝑒𝑔𝑔,𝑓𝑓2,1
w2 0.65
w4 0.9
w5 0.8
w6 1.0

Sum 3.35

The sum of the efficiencies for this set of workers for family 2 is 3.35, therefore the overall
efficiency of the workstation is 3.35 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜 / 𝛿𝛿ℎ𝑜𝑜𝑜𝑜𝑜𝑜. The amount of work this set of workers
performs on job j2 during 𝑡𝑡 = 1 is 26.8 𝜇𝜇hours (3.35 × 𝑏𝑏). As the work content of j2 (26) is
less than or equal to the work that can be completed by the workers (26.8), j2 will be completed
during 𝑡𝑡 = 1. The time to complete the work (duration) is determined by:

=
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
=

26 𝜇𝜇hours
3.35 𝜇𝜇hour / 𝛿𝛿hour

= 7.761 𝛿𝛿hours

The end clock time for j2 in stage 1 is 7.761 (𝑐𝑐𝑗𝑗2,1 = 7.761). It is important to note that this job
will not immediately start on stage 2 as there are no workers in any of the workstation of that
stage at 𝑡𝑡 = 1.

Job j4 (𝑣𝑣𝑗𝑗,1 = 15 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑓𝑓𝑗𝑗 = 2) starts immediately after j2 is finished in s1-2 and there are 0.239
𝛿𝛿hours still available in this time bucket (8 – 7.761). As job j4 is from family 2, the overall
efficiency is 3.35 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜 / 𝛿𝛿ℎ𝑜𝑜𝑜𝑜𝑜𝑜. Therefore, 0.8 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of work content are completed for j4
(3.35 × 0.239) during 𝑡𝑡 = 1. Given j4 has 15 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of work content, j4 is not finished during
t = 1, and there are 14.2 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 still to be completed after the end of this bucket.

At 𝑡𝑡 = 2, the same set of workers is assigned to s2-1, thus the overall efficiency does not
change. The amount of work content that can be completed at 𝑡𝑡 = 2 is 26.8 𝜇𝜇hours and given
26.8 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 14.2 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (the work left from 𝑡𝑡 = 1), j4 will be completed during 𝑡𝑡 = 2.

The time to complete the work (duration) at 𝑡𝑡 = 2 is determined by:

=
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
=

14.2 𝜇𝜇hours
3.35 𝜇𝜇hour / 𝛿𝛿hour

= 4.239 𝛿𝛿hours

The end time for j4 in stage 1 is 12.239 (𝑐𝑐𝑗𝑗4,1 = 12.239). The sum of 8 from (𝑡𝑡 = 1) and 4.239
(duration during 𝑡𝑡 = 2). Therefore j4 is completed in this station during time bucket 2.

Appendix 1 provides additional examples of the calculations of the start and end time of the

schedule in station 1-2. Table 4 provides the job-related measures. The average tardiness is 3.632. Finally,

it is noted that this schedule is not an optimal solution to this problem and none of the algorithms under
consideration are guaranteed to find the optimal solution.

Table 4 here

3.2 Schedule under SE case assumption
This section describes the resulting schedule under the assumption of the SE case. Therefore, it is now
assumed that the slowest worker dictates the amount of work that is performed in a workstation during a
time bucket. Figure 3 presents two schedules. The top schedule is the same as that shown in Figure 2
(resulting from combining S1 and A1 under the AE case) while the bottom schedule is the result of
combining S1 and A1 under the SE case. The schedule under the AE is presented again in Figure 3 to
provide a clear examination of the schedule differences due to the two assumption regarding the overall
efficiencies of the workstations.

Figure 3 here

Table 5 presents the start, duration, and end times for all the jobs in both stages under the SE
case. The majority of the durations are, as expected, longer under the SE case. The few exceptions relate
to jobs that are processed in different time buckets with different worker sets.

Table 5 here

To demonstrate the differences between the AE and SE assumptions, the determination of the
completion time of job j2 in workstation s1-2 is described next.

At 𝑡𝑡 = 1 job j2 (𝑣𝑣𝑗𝑗,1 = 26 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑓𝑓𝑗𝑗 = 2) starts on workstation s1-2 at clock time 0. During 𝑡𝑡 =
 1, workers w2, w4, w5, w6 are assigned to workstation s1-2.

worker 𝑒𝑒𝑔𝑔,𝑓𝑓2,1
w2 0.65
w4 0.9
w5 0.8
w6 1.0

Minimum 0.65

The minimum efficiency for this set of workers for family 1 is 0.65 and given there are 4 workers,
the overall efficiency of the workstation is 2.6 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜 / 𝛿𝛿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (0.65 × 4). Note: in this situation
it would make sense to remove w2 from the workstation altogether; it is clearly not a good set of
workers to put together. The amount of work this set of workers performs on job j2 during 𝑡𝑡 = 1
is 20.8 𝜇𝜇hours (2.6 × 𝑏𝑏). Given j2 has 26 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of work content, j2 is not finished during 𝑡𝑡 =
 1, and there are 5.2 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 still to be completed after the end of this bucket.

At 𝑡𝑡 = 2, the worker assignment is not changed and based on the previous calculations j2 can be
completed during 𝑡𝑡 = 2. The time to complete the work (duration) at 𝑡𝑡 = 2 is determined by
(5.2 𝜇𝜇hours)/(2.6 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜 / 𝛿𝛿ℎ𝑜𝑜𝑜𝑜𝑜𝑜) = 2𝛿𝛿hours. The end time for j2 in stage 1 is at clock time
10. By comparison, under the AE case, j2 was completed at clock time 7.76, 2.24 hours earlier.

Table 6 provides the completion time and tardiness for each job. The average tardiness is 5.888. As in the
schedule presented for the AE case, this schedule is not an optimal solution to this problem.

Table 6 here

4. SOLUTION METHODS

The problem as described requires decisions regarding the number of workstations to have operational for
each stage, the sequence of orders to the workstations, and the assignment of the workers. The assignment
of workers to the workstations is performed in a per time bucket basis (for example a shift). This section
presents a set of sequencing and resource allocation rules aimed at generating feasible and effective
solutions. It is noted that the authors know of no previously proposed solution methods for this particular
version of the hybrid flowshop problem that can be used as a comparison point.

The section is divided into two subsections, the first detailing how initial schedules are developed, and the
second describing approaches to improving the schedules through worker reallocation.

4.1 Initial Schedule Development
The initial schedule building process is divided into three phases. The first phase involves determining the
number of workers that will be initially allocated to each stage and determining the number of
workstations that will be operational. The second phase performs an initial assignment of workers to
operational workstations. The third phase of the initial schedule involves assigning workers to each
workstation and developing job sequences in each operational workstation.

Phase 1. Initial number operational workstations per stage.
Step 1. Determine the target number of workers per stage based on the proportion of total workload
volume and modify such that at least one workstation is operational for each stage, and so all workers can
be allocated to a workstation. Let 𝑉𝑉1 and 𝑉𝑉2 be total workload volume for stages 1 and 2 respectively
and 𝜌𝜌𝑖𝑖be the number of workers initially assigned to stage i.

1.1. Calculate the total workload per stage: 𝑉𝑉1 = ∑ [𝑣𝑣𝑗𝑗,1]𝑗𝑗∈𝑁𝑁 ,𝑉𝑉2 = ∑ [𝑣𝑣𝑗𝑗,2]𝑗𝑗∈𝑁𝑁 .
1.2 Calculate the proportional number of workers per stage: 𝜌𝜌1 = ⌈(|𝐺𝐺| × 𝑉𝑉1)/(𝑉𝑉1 + 𝑉𝑉2)⌉ and

𝜌𝜌2 = ⌊(|𝐺𝐺| × 𝑉𝑉2)/(𝑉𝑉1 + 𝑉𝑉2)⌋.
1.3 Calculate the number of workers needed to have one operational workstation per stage: 𝛼𝛼𝑖𝑖 =

𝑚𝑚𝑚𝑚𝑚𝑚 [0,𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑖𝑖] for 𝑖𝑖 = 1, 2.
1.4 Let 𝜌𝜌1 = 𝜌𝜌1 + 𝛼𝛼1 − 𝛼𝛼2 and 𝜌𝜌2 = 𝜌𝜌2 + 𝛼𝛼2 − 𝛼𝛼1.
1.5 Calculate the extra workers based on the maximum possible number of workstations per stage:

𝜀𝜀𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 [0,𝜌𝜌𝑖𝑖 − 𝑥𝑥𝑖𝑖 × 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚] for 𝑖𝑖 = 1, 2.

1.6. Let 𝜌𝜌1 = 𝜌𝜌1 + 𝜀𝜀2 − 𝜀𝜀1; and 𝜌𝜌2 = 𝜌𝜌2 + 𝜀𝜀1 − 𝜀𝜀2.

Determine the number of operational workstations for each stage, where 𝛾𝛾𝑖𝑖 is the number of
operational parallel workstations in stage i. This is done by one of three rules: the first determines the
largest number possible for both stages; the second rule determines the smallest number possible for both
stages, the third determines the largest and smallest number of workstations for stages 1 and 2
respectively. Note that a rule where the smallest and largest number of workstations for stages 1 and 2
respectively was examined, but pilot experiments demonstrated it generated poor results thus not
considered further.

(Rule 1).
1.7. Let 𝛾𝛾𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 [𝑥𝑥𝑖𝑖 , �𝜌𝜌𝑖𝑖 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚⁄ �] for 𝑖𝑖 = 1, 2.
(Rule 2).
1.7. Let 𝛾𝛾𝑖𝑖 = ⌈𝜌𝜌𝑖𝑖 𝑔𝑔𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚⁄ ⌉ for 𝑖𝑖 = 1, 2.
(Rule 3).
1.7. Let 𝛾𝛾1 = 𝑚𝑚𝑚𝑚𝑚𝑚 [𝑥𝑥1, �𝜌𝜌1 𝑔𝑔1𝑚𝑚𝑚𝑚𝑚𝑚⁄ �] and 𝛾𝛾2 = 𝑚𝑚𝑚𝑚𝑚𝑚 [𝑥𝑥2, ⌈𝜌𝜌2 𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚⁄ ⌉]

Phase 2. Initial worker assignment
Step 2. Initialize the sets for workers and workstations. Calculate the average efficiency for each worker
and the control ratio, a variable used to determine the stage that will be assigned the next worker. Let 𝛤𝛤𝑖𝑖
be the set of operational parallel workstations in stage i.

2.1 Let 𝐺𝐺’ = 𝐺𝐺 and 𝑍𝑍𝑠𝑠,1 = ∅ ∀𝑠𝑠 ∈ 𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1, 2.
2.2 Select any 𝛾𝛾𝑖𝑖 worstations from 𝑋𝑋𝑖𝑖 and assign to set 𝛤𝛤𝑖𝑖 for 𝑖𝑖 = 1, 2.
2.3 Let 𝑒𝑒𝑤𝑤,𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎 = [∑ 𝑒𝑒𝑤𝑤,𝑓𝑓,𝑖𝑖]𝑓𝑓∈𝑈𝑈 /𝑓𝑓 ∀𝑤𝑤 ∈ 𝑊𝑊,∀𝑖𝑖 = 1, 2.
2.4 Let 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜌𝜌1 (𝜌𝜌1 + 𝜌𝜌2).⁄

Step 3. Select the stage to assign the next worker based on smallest absolute difference to the control
ratio. Assign the selected worker to the workstation on that stage with the minimum number of workers.
End this phase when all workers have been assigned. Note that 𝑎𝑎𝑎𝑎𝑎𝑎[𝑥𝑥] is used to indicate absolute value.

3.1 Let 𝜎𝜎1 = (𝜌𝜌1 − 1) (𝜌𝜌1 + 𝜌𝜌2 − 1),⁄ 𝜎𝜎2 = 𝜌𝜌1 (𝜌𝜌1 + 𝜌𝜌2 − 1).⁄
3.2 If 𝑎𝑎𝑎𝑎𝑎𝑎[𝜎𝜎1 − 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] > 𝑎𝑎𝑎𝑎𝑎𝑎[𝜎𝜎2 − 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] and 𝜌𝜌′1 > 0 then 𝑖𝑖′ = 1, else 𝑖𝑖′ = 2.
3.3 Let 𝑤𝑤′ = {𝑤𝑤 |𝑤𝑤 ∈ 𝐺𝐺’,𝑚𝑚𝑚𝑚𝑚𝑚 �𝑒𝑒𝑤𝑤,𝑖𝑖′

𝑎𝑎𝑎𝑎𝑎𝑎�}, 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ 𝛤𝛤𝑖𝑖′,𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑍𝑍𝑠𝑠,1��} and 𝜌𝜌𝑖𝑖′ = 𝜌𝜌𝑖𝑖′ − 1.
3.4 Let 𝑍𝑍𝑠𝑠′,1 = 𝑍𝑍𝑠𝑠′,1 ∪ 𝑤𝑤′ and 𝐺𝐺′ = 𝐺𝐺′ − 𝑤𝑤′.
3.5 If |𝐺𝐺′| > 1 then return to 3.1.
3.6 Let 𝑤𝑤′ = {𝑤𝑤 |𝑤𝑤 ∈ 𝐺𝐺’}.
3.7 If 𝜌𝜌1 = 1 then 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ 𝛤𝛤1′,𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑍𝑍𝑠𝑠,1��} else 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ 𝛤𝛤2′,𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑍𝑍𝑠𝑠,1��}
3.8 Let 𝑍𝑍𝑠𝑠′,1 = 𝑍𝑍𝑠𝑠′,1 ∪ 𝑤𝑤′
3.6 Let 𝑍𝑍𝑠𝑠,𝑡𝑡 = 𝑍𝑍𝑠𝑠,1 ∀𝑠𝑠 ∈ 𝛤𝛤𝑖𝑖 , 𝑡𝑡 = 2 … ∞, 𝑖𝑖 = 1, 2.

Phase 3. Job assignment to workstations

Step 4. Initialize the set for unassigned jobs and the ordered set of jobs for the workstations in stage 1.
Assign jobs from the set of unassigned jobs by minimum due date (ties solved arbitrarily) to the
workstations, selecting the workstation where the job will be completed first. The function 𝐶𝐶𝐶𝐶(𝑠𝑠)
determines the clock time of the ordered set of jobs assigned to workstation 𝑠𝑠.

4.1 Let 𝑁𝑁’ = 𝑁𝑁 and 𝐾𝐾𝑠𝑠 = ∅ ∀𝑠𝑠 ∈ 𝛤𝛤1.
4.2 Let 𝑗𝑗′ = {𝑗𝑗 |𝑗𝑗 ∈ 𝑁𝑁′,𝑚𝑚𝑚𝑚𝑚𝑚 �𝑑𝑑𝑗𝑗�}.
4.3 Let 𝑁𝑁′ = 𝑁𝑁′ − 𝑗𝑗′.
4.4 Add 𝑗𝑗’ to the next position of 𝐾𝐾𝑠𝑠∀𝑠𝑠 ∈ 𝛤𝛤1.
4.5 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ 𝛤𝛤1,𝑚𝑚𝑚𝑚𝑚𝑚 [𝐶𝐶𝐶𝐶(𝑠𝑠)]}.
4.6 Let 𝐾𝐾𝑠𝑠 = 𝐾𝐾𝑠𝑠 − 𝑗𝑗′∀𝑠𝑠 ∈ 𝛤𝛤1 and add 𝑗𝑗’ to the end of 𝐾𝐾𝑠𝑠′.
4.7 If 𝑁𝑁’ ≠ ∅ return to 4.2.

Step 5. Initialize the set for unassigned jobs and the ordered set of jobs for the workstations in stage 2.
Assign jobs from the set of unassigned jobs by completion time in stage 1 (ties solved arbitrarily),
selecting the workstation based on one of two rules. The first rule selects the workstation that is available
first, the second rule selects the workstation where the job will be completed first.

5.1 Let 𝑁𝑁’ = 𝑁𝑁. Let 𝐾𝐾𝑠𝑠 = ∅ ∀𝑠𝑠 ∈ 𝛤𝛤2.
5.2 Let 𝑗𝑗′ = {𝑗𝑗 |𝑗𝑗 ∈ 𝑁𝑁′,𝑚𝑚𝑚𝑚𝑚𝑚 �𝑐𝑐𝑗𝑗,1�}.
5.3 Let 𝑁𝑁′ = 𝑁𝑁′ − 𝑗𝑗′.

(Rule 1)
5.4 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ 𝛤𝛤2,𝑚𝑚𝑚𝑚𝑚𝑚 [𝐶𝐶𝐶𝐶(𝑠𝑠)]}. Add 𝑗𝑗’ to the next position of 𝑠𝑠′.
5.5 If 𝑁𝑁’ ≠ ∅ return to 5.2.

(Rule 2)
5.4 Add 𝑗𝑗’ to the next position of 𝐾𝐾𝑠𝑠∀𝑠𝑠 ∈ 𝛤𝛤2.
5.5 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ 𝛤𝛤2,𝑚𝑚𝑚𝑚𝑚𝑚 [𝐶𝐶𝐶𝐶(𝑠𝑠)]}.
5.6 Let 𝐾𝐾𝑠𝑠 = 𝐾𝐾𝑠𝑠 − 𝑗𝑗′∀𝑠𝑠 ∈ 𝛤𝛤1 and add 𝑗𝑗’ to the end of 𝐾𝐾𝑠𝑠′.
5.7 If 𝑁𝑁’ ≠ ∅ return to 5.2.

4.2 Improvement Strategies
Two worker reassignment procedures based on neighborhood search methods are presented in this
section. They are based on two algorithms described separately, the first searches using single job
reinsertions and the second uses pairwise exchanges. Let Ψ represent the current schedule (sequence of
jobs assigned to each workstation and worker assignment to each workstation per time bucket). This
schedule has an average tardiness of ΘΨ and all jobs are completed by time bucket 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ).

Algorithm 1. Insert(𝝉𝝉)
This algorithm determines the workstation that has assigned the jobs with the highest total tardiness that
are finished after time bucket 𝜏𝜏. The process considers adding workers to that workstation and the process
continues until it cannot find improvements for insertions based on time bucket 𝜏𝜏. Let 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 be the
maximum number of workers allowed for workstation 𝑠𝑠, where 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔1𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤1 and 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤2. Let 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 be the minimum number of workers allowed for workstation 𝑠𝑠, where 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔1𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤1 and 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔2𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤2.

Inputs 𝜏𝜏,Ψ

A1.1 Let Ω = 𝛤𝛤1 ∪ 𝛤𝛤2.
A1.2 Let 𝜑𝜑𝑠𝑠 = ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,1 ≥ 𝑚𝑚 ∀𝑠𝑠 ∈ 𝛤𝛤1 𝑗𝑗∈𝐾𝐾𝑠𝑠 and 𝜑𝜑𝑠𝑠 = ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,2 ≥ 𝑏𝑏 × 𝜏𝜏. ∀𝑠𝑠 ∈ 𝛤𝛤2 𝑗𝑗∈𝐾𝐾𝑠𝑠 .
A1.3 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ Ω,𝑚𝑚𝑚𝑚𝑚𝑚 [𝜑𝜑𝑠𝑠], �𝑍𝑍𝑠𝑠,𝜏𝜏� < 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚}.
A1.4 If 𝜑𝜑𝑠𝑠′ = 0 or 𝑠𝑠′ = ∅ then End else Ω = Ω − 𝑠𝑠′.
A1.5 Let 𝐺𝐺’ = 𝐺𝐺 – 𝑍𝑍𝑠𝑠′,𝜏𝜏.
A1.6 Let 𝐺𝐺’ = { 𝐺𝐺′ –⋃ 𝑍𝑍𝑠𝑠,𝜏𝜏𝑠𝑠∈Ω |�𝑍𝑍𝑠𝑠,𝜏𝜏� = 𝑔𝑔𝑠𝑠∗𝑚𝑚𝑚𝑚𝑚𝑚}.
A1.7 Generate the set Ξ of |𝐺𝐺’| temporary schedules by adding each worker in 𝐺𝐺’ to workstation 𝑠𝑠’

during time bucket 𝜏𝜏.
A1.8 Let θ′ = {θ |θ ∈ Ξ,𝑚𝑚𝑚𝑚𝑚𝑚 [Θθ]}.
A1.9 If ΘΨ > Θθ′ then let Ψ = θ′ and go to Step A1.1.
A1.10 If Ω = ∅ then End, else go to step A1.3.

Algorithm 2. Exchange(𝝉𝝉)
This algorithm determines the workstation that has assigned the jobs with the highest total tardiness that
are finished after time bucket 𝜏𝜏. The process considers exchanges between workers in that workstation
and all others until it cannot find improvements for exchanges based on time bucket 𝜏𝜏.

Inputs 𝜏𝜏,Ψ

A2.1 Let Ω = 𝛤𝛤1 ∪ 𝛤𝛤2.
A2.2 Let 𝜑𝜑𝑠𝑠 = ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,1 ≥ 𝑏𝑏 × 𝜏𝜏 ∀𝑠𝑠 ∈ 𝛤𝛤1 𝑗𝑗∈𝐾𝐾𝑠𝑠 and 𝜑𝜑𝑠𝑠 = ∑ 𝜃𝜃𝑗𝑗|𝑐𝑐𝑗𝑗,2 ≥ 𝑏𝑏 × 𝜏𝜏 ∀𝑠𝑠 ∈ 𝛤𝛤2 𝑗𝑗∈𝐾𝐾𝑠𝑠 .
A2.3 Let 𝑠𝑠′ = {𝑠𝑠 |𝑠𝑠 ∈ Ω,𝑚𝑚𝑚𝑚𝑚𝑚 [𝜑𝜑𝑠𝑠]}.
A2.4 If 𝜑𝜑𝑠𝑠′ = 0 then End else Ω = Ω − 𝑠𝑠′.
A2.5 Let 𝐺𝐺’ = 𝐺𝐺 – 𝑍𝑍𝑠𝑠′,𝜏𝜏.
A2.6 Generate the set Ξ of �𝑍𝑍𝑠𝑠′,𝜏𝜏� × |𝐺𝐺′| temporary schedules by exchanging each worker in 𝑍𝑍𝑠𝑠′,𝜏𝜏

with each worker in 𝐺𝐺′ during time bucket 𝜏𝜏.
A2.7 Let θ′ = {θ |θ ∈ Ξ,𝑚𝑚𝑚𝑚𝑚𝑚 [Θθ]}.
A2.9 If ΘΨ > Θθ′ then let Ψ = θ′ and go to Step A2.1.
A2.9 If Ω = ∅ then End, else go to step A2.3.

Phase 4. Search for improved schedules
Step 6. Given an input schedule Ψ generate new schedules by changing the worker assignments. This is
done by one of two rules: the first rule implements Insert(𝜏𝜏) one bucket at a time for all time buckets, and
then implements Exchange(𝜏𝜏) one bucket at a time for all time buckets; the second rule implements
Insert(𝜏𝜏) and then implements Exchange(𝜏𝜏) one bucket at a time for all time buckets

Input: Ψ
Step 6. (Rule 1)

6.1 For 𝜏𝜏 = 1 to 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ)
Perform Insert(𝜏𝜏).

Next.
6.2 For 𝜏𝜏 = 1 to 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ)

Perform Exchange(𝜏𝜏).
Next.

Step 6. (Rule 2)

6.1 For 𝜏𝜏 = 1 to 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ).
Perform Insert(𝜏𝜏).
Perform Exchange(𝜏𝜏).

Next

It is noted that during the execution of both Insert(𝜏𝜏) or Exchange(𝜏𝜏), the current schedule Ψ may
change, and therefore the value of 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ); the end point of the For-Next loop. Given the current
formulation, there is no possibility of a situation in the execution of the algorithms where a new schedule
has a 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(Ψ) that is smaller than the current bucket 𝜏𝜏, therefore no backtracking is necessary.

4.3 Algorithms
The solution method consists of the four phases described in sections 4.1 and 4.2 and summarized by the
diagram in Figure 4. There are a total 6 steps where Step 1 has three possible rules to determine the
number of operational workstations per stage, Step 5 has two possible rules to assign jobs to workstations
in stage 2, and Step 6 has two possible rules to search for improved worker assignments. This results in
12 possible combinations of rules, and the description of each combination is provided in Table 7.

Figure 4 here
Table 7 here

4.4 Examples
The implementation of three of the algorithms for the example described in section 3 are presented in this
subsection. Figure 5 presents the schedule resulting from G1, G6, and G12 under the SE case. The
schedules are significantly different (from each other) as they are based on a different number of
operational workstations. Job sequences are also different across the three schedules except in the case of

G1 and G12 where the sequences are similar for stage 1. However, the completion times at each stage for
each of the jobs is different based on the particular worker assignments. Tables 8 to 10 present the worker
assignments for G1, G6, and G12 respectively, noting that “--" indicates the worker was fully idle during
that time bucket. The assignments are significantly different across the three schedules and the workers
allocated across multiple workstations during the 8 time periods. Only G6 has a case where a worker
stayed in the same workstation for the duration of the schedule (worker w7). The average tardiness for
G1, G6, and G12 are 4.1, 3.16, and 5.08 respectively, where G6 generates the best solution out of the 12
algorithms.

Figure 5 here

Tables 8-10 here

5. COMPUTATIONAL EXPERIMENTS
This section describes the results of two experiment sets designed to evaluate the performance of the
proposed rules. Similar to the approach used in Yu et al. (2017), the completed analysis evaluates
algorithm performance for small instances versus an optimal solution, while for large instances it
evaluates the algorithm’s relative performance. The algorithms were coded in Visual Basic for
Applications running in Excel. The experiments were conducted on a personal computer with a 2.9GHz
processor and 12GB of RAM memory using the Windows 10 operating system. All instances are based
on randomly generated numbers. As in Wang et al. (2016) and Neufeld et al. (2020), this problem is novel
(includes characteristics not previously addressed in the literature) thus there are no existing methods that
can be used as benchmark/comparison points, and the experiments focus on characterizing relative
performance among the proposed versions of the solution approach.

5.1 Performance versus the optimal
This experimental framework is designed to test the ability of the proposed algorithms to find an optimal
solution. Given the complexity of the problem, these experimental instances were created by inverse
construction, starting with an optimal solution with a known tardiness of 0 and based on randomly
generated efficiencies and other characteristics of the instances. The due dates were set equal to each of
the job’s completion times on stage 2 and the instance’s data (efficiencies, work volumes, due dates) is
then an input to the algorithms. Since the optimal tardiness value for the instance is known (it is 0), this
approach is able to determine if the algorithms are able to generate a schedule with the optimal tardiness
measure. For these experiments, the aggregate efficiency case (AE) is assumed, the duration of the time
bucket is 8 hours (𝑖𝑖𝑖𝑖. 𝑏𝑏 = 8), the minimum number of workers per station is always 1, (𝑖𝑖𝑖𝑖.𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 = 1), the efficiency of a worker 𝑔𝑔 for jobs of family ℎ for a stage 𝑖𝑖 is defined by a randomly
generated value from a uniform distribution; 𝑒𝑒𝑔𝑔,ℎ,𝑖𝑖 = 𝑈𝑈(0.5,1), and there are 2 families (𝑖𝑖𝑖𝑖. 𝑓𝑓 = 2).
 Three experimental factors are considered at two levels to examine how the characteristics of the
instances influence the algorithms performance. These are presented in Table 11. The first two factors
refer to the complexity defined by problem size. The first factor (F1), relates to the number of jobs (𝑛𝑛 =

|𝑁𝑁|). The second factor (F2), relates to the number of workers, the maximum number of workers per
workstation, and the number of parallel stations per stage (Level 1 being a small shop and Level 2, a
medium shop). Factor F3, relates to the work-content of the jobs and their possible complexity, modeled
by the divergence of the processing times in the resulting schedule. This is modeled by the range of the
processing times in the stations. The values of the process time in the stations (in hours) were generated
using a random uniform distribution, where level 1 indicates that the process times are relatively
homogeneous, and in level 2, where they are relatively heterogeneous.

Table 11 here

The number of times an optimum solution (with tardiness of 0) is found by all the algorithms and
by at least one of them is presented in Table 12, for each experimental point. A summary of the results by
experimental variable is presented in Table 13. All the algorithms found the optimal solution in 13 out of
the 40 instances, while in 30 out of the 40 instances at least one algorithm found the optimal solution. It is
noted that the tardiness values are less than an hour for the instances where the optimal solution is not
found by any of the algorithms. It is argued that as a set, finding the optimal solution in 75% of the cases
in combination with low tardiness values when the optimal is not found indicate they perform well in
terms of generating close to optimal solutions under the scope of this set of experiments. Reviewing the
results from Table 13, and focusing on the number of times at least one of the algorithms finds an optimal
solution, it is noted that fewer optimal solutions were found at Level 1 of F2 (smaller shop) and Level 2
of F3 (heterogeneous process times).

Tables 12 and 13 here

5.2 Relative performance
The second experimental framework is designed to evaluate the relative performance of the algorithms for
larger problems and where the optimal solution is not known. In these experiments, there are 5 parallel
workstations for each stage (𝑥𝑥1 = 𝑥𝑥2 = 5). The minimum and maximum number of workers that can be
assigned per workstation is 1 and 5, respectively, and this applies to both stages (𝑖𝑖𝑖𝑖.𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 =
1, 𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 = 5). There are 𝑓𝑓 families, where the value is set to 4. Pilot experiments with values of
𝑓𝑓 = 2, 3, and 6, lead to no changes in average tardiness performance for the algorithms. The efficiency of
a worker 𝑔𝑔 for jobs of family ℎ for a stage 𝑖𝑖 is defined by a randomly generated value from a uniform
distribution: 𝑒𝑒𝑔𝑔,ℎ,𝑖𝑖 = 𝑈𝑈(0.5,1). The duration of the time bucket is 8 hours (𝑖𝑖𝑖𝑖. 𝑏𝑏 = 8).

Three experimental factors are considered: two of them at two levels and one at three levels.
These are presented in Table 15. The first factor (F1) relates to the instance complexity (problem size)
accounting for the number of jobs and workers (Level 1 representing a medium shop, and Level 2 a large
shop). The second factor (F2) considers the effect of the balance in the work-content of the jobs; balanced
across the stages (level 1), unbalanced where there is less work in the first stage of the flowshop (Level
2), and unbalanced where there is less work in the second stage of the flowshop (Level 3). The third
experimental factor (F3) considers the effect of due date tightness on relative performance modeled by a
tightness ratio; low tightness (Level 1) and high tightness (Level 2).

 The implementation of these factors is completed as follows. For each job, the volume of work
content per stage is defined by a randomly generated value from a uniform distribution 𝑣𝑣𝑗𝑗,1 =
𝑈𝑈(𝑣𝑣𝑣𝑣𝑣𝑣1, 2 × 𝑣𝑣𝑣𝑣𝑣𝑣1) and 𝑣𝑣𝑗𝑗,2 = 𝑈𝑈(𝑣𝑣𝑣𝑣𝑣𝑣2, 2 × 𝑣𝑣𝑣𝑣𝑣𝑣2), where 𝑣𝑣𝑣𝑣𝑣𝑣2 and 𝑣𝑣𝑣𝑣𝑣𝑣2 are defined per F2 (see Table 15).
The total work content of the shop is 𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ [𝑣𝑣𝑗𝑗,1 + 𝑣𝑣𝑗𝑗,2]𝑗𝑗∈𝑁𝑁 and the due date of each job is defined
by a randomly generated value from a uniform distribution 𝑑𝑑𝑗𝑗 = 𝑣𝑣𝑣𝑣𝑣𝑣1 + 𝑣𝑣𝑣𝑣𝑣𝑣2 + 𝑈𝑈(0, 𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑇𝑇𝑇𝑇), where
the value of TR (tightness ratio) is defined by experimental factor F3 (see Table 14). The tightness ratio
values were selected based on pilot experiments as to have approximately 15% and 40% jobs late
respectively under the first level of both F1 and F2 and based on the AE case assumption. There is a total
of 12 experimental combinations (2 × 3 × 2), and for each combination 20 problem instances were
generated.

Table 14 here

5.2.1 Experimental Results in the AE case assumption
The results when considering the assumption of aggregate efficiency (AE) are presented in Table 15. The
table presents per experimental level the percentage of instances where each algorithm generated the best
solution, and in parenthesis, the average tardiness. This discussion focuses on characterizing relative
performance by the percentage of times an algorithm finds the best solution. The cells in grey indicate the
best performing algorithm for each level of each experimental factor. The last column of the table
provides the overall results. Algorithm G6 is the best overall performer and in general, it is observed that
algorithms G5 to G8 are the best performers across the experiments, all at least finding 20% of the best
solutions. These four algorithms share as a common element being based on Rule 2 for Step 1, which sets
the number of operational workstations to the minimum possible for both stages. Note that the
percentages in each column add to more than 100% given more than one algorithm can determine the best
solution for an instance (ties). It also noted that algorithms G1 to G4 performed poorly, finding none of
the best solutions in these experiments. The common element in algorithms G1-G4 is that they are all
based on Rule 1 for Step 1 which sets the number of operational workstations to the maximum possible in
both stages. Clearly, this approach does not work well in the AE case.

Table 15 here

The experimental factors play a role in algorithm relative performance. When considering F1
(shop size), at Level 1 (the medium shop) algorithm G6 is the best performer finding 33% of the best
solutions, while G10 is the best performer at L2 (the large shop), finding 23% of the best solutions. This
is the only case where an algorithm outside the G5-G8 group dominates. Algorithm G10 is based on Rule
3 for Step 1, which sets the largest number of operational workstations in stage one and the minimum in
the second stage. When considering F2 (workload balance), at Level 1 (balanced workload) algorithm G8
dominates, at Level 2 (lower workload in stage 1) algorithm G5 dominates, and at Level 3 (lower
workload in stage 2) algorithm G6 dominates. When considering F3 (due date tightness), algorithm G6
dominates al Level 1 (low tightness) and G5 at Level 2 (high tightness). In general, the results
demonstrate that algorithm performance depends on shop characteristics where no single approach

outperforms the rest. However, the difference in relative performance when looking at the tardiness
measure can be small for the top 2-3 algorithms.

5.2.2 Experimental Results in the SE case assumption
Table 16 presents the results when the slowest efficiency (SE) case assumption is considered, and this
table presents the same information as Table 15. Algorithm G2 is the best overall performer generating
31% of the best solutions, followed by G4, which generated 21% of the best solutions. When comparing
these results to those of the AE case, it is noted that no single or group of algorithms was completely
outperformed. In other words, all 12 algorithms were able to generate some of the best solutions (no
algorithm had 0% in the overall column).

Table 16 here

The algorithms’ relative performance is also related to the experimental factors in the SE case. At
Level 1 of F1 (the medium shop) algorithm G6 is, similarly to in the AE case, the best performer finding
26% of the best solutions. Generating 46% of the best solutions, algorithm G2 is the best performer at L2
(the large shop). This is the only factor where one of the algorithms dominates in an experimental level
for both the AE and SE case (Level 1 of F1). Similarly to the AE case experiments, three different rules
dominate across the three levels of F2, but none of the algorithms is the same as those that dominated
previously. Furthermore, those that dominated in the AE case performed poorly in the SE case. At Level 1
(balanced workload) algorithm G4 dominates, at Level 2 (lower workload in stage 1) algorithm G10
dominates, and at Level 3 (lower workload in stage 2) algorithm G2 dominates. The experiments related
to the Level 3 of F2 are noteworthy as they represent the only condition where an algorithm generates
more than 50% of the best solutions. The results associated to F2 are also notable as they include the only
case where the best solution relates to having the maximum number of workstations operational in stage 1
and the minimum in stage 2. The result is logical as it relates to the experiment level where the higher
workload is in stage 2. The results for F3 represent the only condition where one algorithm dominates
across all the experimental levels, moreover by notable differences (the next best performing algorithm is
several percentage points below).

5.3 Discussion and managerial implications
The analysis of the results across the two sets of experiments served two objectives: (1) to estimate the
algorithms’ ability to generate optimal solutions and (2) to determine their relative performance, both
with the macro objective of identifying the value of implementing these algorithm as practical industrial
solutions. The results demonstrated that the algorithms, as a set, can generate a relatively large percentage
of optimal solutions and that the error is small for those where it was not found. However, this conclusion
is only certain within the small/constrained experimental framework described in section 5.1. The results
also demonstrated that none of the algorithms is the “best” approach, and instead, multiple algorithms
should be used in the industrial implementation as their performance is dependent on particular shop
characteristics.
Given computational times for algorithms could be significant, the analysis must consider both, which
algorithms typical perform well and which ones are poor performers in order to determine which

algorithms to run (and those not to run) for problem instances as to maintain reasonable running times. In
the case of the AE assumption, algorithms G5 to G8, which are based on having the minimum number of
workstations per stage, performed very well, while algorithms G1 to G4, which are based on having the
maximum number of workstations per stage, were highly ineffective. This clearly indicates that having
the right number of workstations operational is very relevant in the AE case, and having the workers
spread out is not an effective strategy.
In the case of the SE assumption, algorithms G2 and G4 were highly effective, while algorithms G1, G3,
G5, G7, and G11 were ineffective. A common element in G2 and G4 is that both are based on the
maximum number of workstations per stage. Therefore, contrary to the AE case, having the workers
spread out is an effective strategy in the SE case. The five ineffective algorithms share as a common
component Step 6, where the reassignment is first performed for all buckets and then the exchange of
workers is performed for all buckets.
Given the relevance of the AE versus SE assumption in the efficacy of the algorithms, a key managerial
decision is to determine which of the two assumptions is a more valid representation of their operations.
Management would also need to evaluate the reconfiguration options for equipment/workstations to
control the maximum and minimum level of worker reallocations that are possible. This also has an effect
on performance. Furthermore, management must consider how due dates for jobs are assigned given their
implications to on-time delivery and the level of worker reassignments it may require.

6. CONCLUSIONS AND FUTURE WORK
The flowshop problem has been the subject of extensive research in many variants which consider diverse
processing and shop characteristics (Neufeld et al., 2016, Rossit et al., 2018). This research proposes a
new variant based on an industrial setting that includes flexibility in terms of which workstations are
operational per stage, the allocation of the workers to the workstations, and the assignment of the workers
by time buckets to the schedule. All of these characteristics make for a complex problem that requires
solution approaches with multiple stages. This work described in detail multiple algorithms that address
the characteristics of the proposed flowshop problem, which includes determining the number of
workstations to have available and how to reassign workers across the workstations on a time bucket
basis.
 This research has several contributions to the body of knowledge in scheduling. First, it considers
the effect of worker efficiency in the duration of a schedule based on time buckets where the workers can
be allocated to a different workstation each bucket. No research that considers such characteristic is
known to the authors, even when this is a real-world characteristic of some systems. There are many real-
world applications where workforce reconfiguration is/could be performed in a per shift basis and where
the approaches described in this paper could be used. This research is also relevant because it models the
case where the slowest (or bottleneck) worker is the controlling factor on the time to process a job. It is
proposed that in a variety of real-world settings with labor intensive team activities, the described
“slower” worker effect may be relevant and for the most part has been ignored by the scheduling
literature.
 There are many promising directions of future work that builds on the concepts of determining
the operational workstations, assigning flexible workers to workstations per time bucket, and worker

efficiency considering the slowest worker of a group. For example, research into generating robust
schedules based on different levels of efficiency, similar to the scenario model in Wu et al. (2020).
Furthermore, the production environment that serves as a basis for this work is also evolving to include
some automation, thus it would be interesting to consider the effect of additional resources where
efficiency does not change. Another related direction would be to model only one of the stages as a
parallel machine setting and focus on the theoretical setting that could determine the optimal number of
workstations to have operational, based on some limited characterization of the problem. Future research
work on the applied sense would focus on the application of the proposed algorithms to the described
environment.

ACKNOWLEDGEMENTS

The authors wish to thank the associate editor and anonymous reviewers for their insightful comments.
This research was partially carried out with the financial support of the Spanish Ministry of Economy,
Industry and Competitiveness, and the European Regional Development Fund (ERDF), grant DPI2017-
85343-P.

REFERENCES

Arthanary, T. S. .& Ramamurthy, K.G. (1971). An extension of two machine sequencing

problem. Opsearch, 8, 10-22.
Choi, S. W., Kim*, Y. D., & Lee, G. C. (2005). Minimizing total tardiness of orders with

reentrant lots in a hybrid flowshop. International Journal of Production Research, 43(11),
2149-2167.

Fernandez-Viagas, V., Molina-Pariente, J. M., & Framinan, J. M. (2018). New efficient
constructive heuristics for the hybrid flowshop to minimise makespan: A computational
evaluation of heuristics. Expert Systems with Applications, 114, 345-356.

Figielska, E. (2009). A genetic algorithm and a simulated annealing algorithm combined with
column generation technique for solving the problem of scheduling in the hybrid flowshop
with additional resources. Computers & Industrial Engineering, 56(1), 142-151.

Figielska, E. (2014). A heuristic for scheduling in a two-stage hybrid flowshop with renewable
resources shared among the stages. European Journal of Operational Research, 236(2), 433-
444.

Figielska, E. (2018). Scheduling in a two-stage flowshop with parallel unrelated machines at
each stage and shared resources. Computers & Industrial Engineering, 126, 435-450.

Guinet, A. G. P., & Solomon, M. M. (1996). Scheduling hybrid flowshops to minimize
maximum tardiness or maximum completion time. International Journal of Production
Research, 34(6), 1643-1654.

Gupta, J. N. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Operational
Research Society, 39(4), 359-364.

Hashemi-Petroodi, S. E., Dolgui, A., Kovalev, S., Kovalyov, M. Y., & Thevenin, S. (2020).
Workforce reconfiguration strategies in manufacturing systems: a state of the
art. International Journal of Production Research, 1-24.

Khalouli, S., Ghedjati, F., & Hamzaoui, A. (2010). A meta-heuristic approach to solve a JIT
scheduling problem in hybrid flow shop. Engineering Applications of Artificial
Intelligence, 23(5), 765-771.

Khare, A., & Agrawal, S. (2019). Scheduling hybrid flowshop with sequence-dependent setup
times and due windows to minimize total weighted earliness and tardiness. Computers &
Industrial Engineering, 135, 780-792.

Lee, G. C., & Kim, Y. D. (2004). A branch-and-bound algorithm for a two-stage hybrid
flowshop scheduling problem minimizing total tardiness. International Journal of Production
Research, 42(22), 4731-4743.

Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers & industrial
engineering, 37(1-2), 57-61.

Mehravaran, Y., & Logendran, R. (2013). Non-permutation flowshop scheduling with dual
resources. Expert Systems with Applications, 40(13), 5061-5076.

Neufeld, J. S., Gupta, J. N., & Buscher, U. (2016). A comprehensive review of flowshop group
scheduling literature. Computers & Operations Research, 70, 56-74.

Neufeld, J. S., Teucher, F. F., & Buscher, U. (2020). Scheduling flowline manufacturing cells
with inter-cellular moves: non-permutation schedules and material flows in the cell
scheduling problem. International Journal of Production Research, 58(21), 6568-6584.

Öztop, H., Tasgetiren, M. F., Eliiyi, D. T., & Pan, Q. K. (2019). Metaheuristic algorithms for the
hybrid flowshop scheduling problem. Computers & Operations Research, 111, 177-196.

Peña Tibaduiza, E., Garavito Hernández, E. A., Perez Figueredo, L. E., & Moratto Chimenty, E.
(2017). Literature Review on the Hybrid Flow Shop Scheduling Problem with Unrelated
Parallel Machines. Ingeniería, 22(1), 9-22.

Pinedo, M. L. (2016). Scheduling: Theory, Algorithms, and Systems. Fifth Edition. Springer
International Publishing.

Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop
scheduling problems from a production system and a solutions procedure
perspective. Computers & Operations Research, 37(8), 1439-1454.

Rossit, D. A., Tohmé, F., & Frutos, M. (2018). The non-permutation flow-shop scheduling
problem: a literature review. Omega, 77, 143-153.

Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling
problem. European Journal of Operational Research, 205(1), 1-18.

Ruiz-Torres, A. J., & Centeno, G. (2008). Minimizing the number of late jobs for the
permutation flowshop problem with secondary resources. Computers & operations research,
35(4), 1227-1249.

Schaller, J., & Valente, J. M. (2019). Heuristics for scheduling jobs in a permutation flow shop
to minimize total earliness and tardiness with unforced idle time allowed. Expert Systems
with Applications, 119, 376-386.

Wang, K., Ma, W. Q., Luo, H., & Qin, H. (2016). Coordinated scheduling of production and
transportation in a two-stage assembly flowshop. International Journal of Production
Research, 54(22), 6891-6911.

Wörbelauer, M., Meyr, H., & Almada-Lobo, B. (2019). Simultaneous lotsizing and scheduling
considering secondary resources: a general model, literature review and classification. Or
Spectrum, 41(1), 1-43.

Wu, C. C., Gupta, J. N., Cheng, S. R., Lin, B. M., Yip, S. H., & Lin, W. C. (2020). Robust
scheduling for a two-stage assembly shop with scenario-dependent processing
times. International Journal of Production Research, 1-16.

Yang, S., & Xu, Z. (2020). The distributed assembly permutation flowshop scheduling problem
with flexible assembly and batch delivery. International Journal of Production Research, 1-
19.

Ying, K. C., & Lin, S. W. (2018). Minimizing makespan for the distributed hybrid flowshop
scheduling problem with multiprocessor tasks. Expert systems with applications, 92, 132-
141.

Yu, J. M., Huang, R., & Lee, D. H. (2017). Iterative algorithms for batching and scheduling to
minimise the total job tardiness in two-stage hybrid flow shops. International Journal of
Production Research, 55(11), 3266-3282.

Table 1. Job related information.

job 𝑣𝑣𝑗𝑗,1 𝑣𝑣𝑗𝑗,2 𝑦𝑦𝑗𝑗 𝑑𝑑𝑗𝑗
j1 29 16 f1 32
j2 26 18 f2 35
j3 36 35 f1 38
j4 15 18 f2 40
j5 16 28 f1 44
j6 36 25 f1 48

Table 2. Worker related information.

worker 𝑒𝑒𝑤𝑤,𝑓𝑓1,1 𝑒𝑒𝑤𝑤,𝑓𝑓2,1 𝑒𝑒𝑤𝑤,𝑓𝑓1,2 𝑒𝑒𝑤𝑤,𝑓𝑓2,2
w1 1.00 0.70 0.70 0.95
w2 0.70 0.65 0.90 0.85
w3 0.75 0.90 0.80 1.00
w4 0.90 0.90 0.90 0.70
w5 0.80 0.80 0.85 0.80
w6 0.90 1.00 1.00 0.70
w7 1.00 0.90 0.70 0.80

Table 3. The start, duration and end times of each job for schedule S1-A1 in the AE case assumption.

 stage 1 stage 2
job start duration end start duration end
j1 0.000 11.500 11.500 16.000 8.421 24.421
j2 0.000 7.761 7.761 8.000 18.000 26.000
j3 11.500 18.000 29.500 29.500 13.304 42.804
j4 7.761 4.478 12.239 26.000 15.455 41.455
j5 29.500 8.000 37.500 41.455 12.727 54.182
j6 12.239 19.487 31.725 42.804 8.929 51.732

Table 4. The completion time, the due date, and the tardiness of each job for schedule S1-A1 in the AE
case assumption.

job 𝑐𝑐𝑗𝑗 𝑑𝑑𝑗𝑗 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
j1 24.421 32 0
j2 26.000 35 0
j3 42.804 38 4.804
j4 41.455 40 1.455
j5 54.182 44 10.182
j6 51.732 48 3.732

Table 5. The start, duration and end times of each job for schedule S1-A1 in the SE case assumption.

 stage 1 stage 2
job start duration end start duration end
j1 0.000 13.500 13.500 16.000 8.889 24.889
j2 0.000 10.000 10.000 10.000 18.000 28.000
j3 13.500 18.000 31.500 31.500 13.130 44.630
j4 10.000 5.769 15.769 28.000 14.500 42.500
j5 31.500 8.000 39.500 42.500 13.333 55.833
j6 15.769 32.423 48.192 48.192 14.175 62.368

Table 6. The completion time, the due date, and the tardiness of each job for schedule S1-A1 in the SE
case assumption.

job 𝑐𝑐𝑗𝑗 𝑑𝑑𝑗𝑗 𝜃𝜃𝑗𝑗
j1 24.889 32 0
j2 28.000 35 0
j3 44.630 38 6.630
j4 42.500 40 2.500
j5 55.833 44 11.833
j6 62.368 48 14.368

Table 7. Summary of the scheduling rules.

Algorithm Step 1 Step 5 Step 6
G1 Rule 1 Rule 1 Rule 1
G2 Rule 2
G3 Rule 2 Rule 1
G4 Rule 2
G5 Rule 2 Rule 1 Rule 1
G6 Rule 2
G7 Rule 2 Rule 1
G8 Rule 2
G9 Rule 3 Rule 1 Rule 1
G10 Rule 2
G11 Rule 2 Rule 1
G12 Rule 2

Table 8. Worker to workstation assignment per time bucket for G1.

t 1 2 3 4 5 6 7 8
time scale 0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64

worker w1 s1-2 s1-2 s1-1 s1-1 s1-1 s2-3 s1-1 --
 w2 s1-1 s1-1 s2-2 s2-2 s2-3 s2-2 -- s2-1
 w3 s1-3 s2-1 s2-1 s2-1 s2-1 s1-1 s2-1 --
 w4 s1-3 s1-3 s1-1 s1-1 s2-3 s2-2 s1-1 s2-1
 w5 s1-3 s1-1 s1-3 s1-3 s2-2 s2-3 -- --
 w6 s1-3 s1-1 s2-3 s2-3 s2-3 s2-2 s1-1 s2-1
 w7 s1-2 s1-2 s1-2 s1-2 s2-1 s1-1 s1-1 --

Table 9. Worker to workstation assignment per time bucket for G6.

t 1 2 3 4 5 6 7 8
time scale 0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64

worker w1 s1-2 s1-2 s2-1 s1-2 s1-2 s1-2 s2-1 --
 w2 s1-2 s2-2 s2-2 s2-1 s2-2 s2-1 s2-2 s2-2
 w3 s1-1 s2-1 s2-1 s2-1 s2-1 s2-2 s2-1 --
 w4 s1-1 s1-1 s1-1 s1-1 s2-2 s2-1 s2-2 s2-2
 w5 s1-2 s2-1 s1-2 s1-1 s2-1 s2-1 s2-1 --
 w6 s1-1 s1-1 s1-1 s2-2 s2-2 s1-2 s2-2 s2-2
 w7 s1-2 s1-2 s1-2 s1-2 s1-2 s1-2 -- --

Table 10. Worker to workstation assignment per time bucket for G12.

t 1 2 3 4 5 6 7 8
time scale 0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64

worker w1 s1-1 s1-3 s2-1 s1-3 s2-2 s2-1 s1-3 --
 w2 s1-3 s1-2 s1-1 s2-1 s2-2 s2-2 s2-1 s2-1
 w3 s1-2 s1-2 s2-1 s1-1 s2-2 s2-1 s2-2 --
 w4 s1-3 s1-1 s1-2 s1-1 s1-2 s2-2 s2-1 s2-1
 w5 s1-3 s1-1 s1-1 s2-1 s1-3 s2-1 s2-2 --
 w6 s1-3 s1-1 s2-2 s2-2 s2-1 s2-2 s2-1 s2-1
 w7 s1-2 s1-3 s1-3 s1-2 s1-2 s1-3 s1-3 --

Table 11. Experimental factors for the optimal solution experiments.

Factor Level 1 Level 2
F1 𝑛𝑛 = 10 𝑛𝑛 = 20
F2 𝑤𝑤 = 5

 𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 = 2
𝑥𝑥1 = 𝑥𝑥2 = 2

𝑤𝑤 = 10
 𝑤𝑤1𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤2𝑚𝑚𝑚𝑚𝑚𝑚 = 3

𝑥𝑥1 = 𝑥𝑥2 = 3
F3 𝑈𝑈(5, 6) 𝑈𝑈(0.5, 7)

Table 12. Results per experimental point for the optimal solution experiments.

F1 F2 F3

Number instances
were all algorithms
found the optimum

(out of 5)

Number instances
were the optimal

solution was found
by at least one

algorithm (out of 5)

Average best
tardiness for
unsuccessful

instances

L1
L1 L1 4 5 -

L2 1 4 0.206

L2 L1 3 5 -
L2 1 1 0.075

L2
L1 L1 2 3 0.017

L2 1 2 0.051

L2 L1 1 5 -
L2 0 5 -

Overall 13/40 (32.5%) 30/40 (75%)

Table 13. Summary of results for the optimal solution experiments.

Factor F1 F2 F3
Level L1 L2 L1 L2 L1 L2 Overall

% instances where all the
rules found the optimum 45% 20% 40% 25% 50% 15% 32.5%

% instances where the
optimal solution was found

by at least one rule
75% 75% 70% 80% 90% 60% 75%

Table 14. Experimental factors for relative performance experiments.

Factor Level 1 Level 2 Level 3
F1 𝑛𝑛 = 30,𝑤𝑤 = 12 𝑛𝑛 = 50,𝑤𝑤 = 20 -
F2 𝑣𝑣𝑣𝑣𝑣𝑣1 = 𝑣𝑣𝑣𝑣𝑣𝑣2 = 15 𝑣𝑣𝑣𝑣𝑣𝑣1 = 10; 𝑣𝑣𝑣𝑣𝑣𝑣2 = 20 𝑣𝑣𝑣𝑣𝑣𝑣1 = 20; 𝑣𝑣𝑣𝑣𝑣𝑣2 = 10
F3 𝑇𝑇𝑇𝑇 = 1 𝑇𝑇𝑇𝑇 = 2.5 -

Table 15. Results by experimental variable in the AE case assumption.

 F1 F2 F3
Overall

 L1 L2 L1 L2 L3 L1 L2
G1 0% (14.31) 0% (10.76) 0% (12.18) 0% (12.04) 0% (13.40) 0% (6.75) 0% (18.33) 0% (12.54)

G2 0% (13.71) 0% (10.41) 0% (11.83) 0% (11.78) 0% (12.56) 0% (6.35) 0% (17.77) 0% (12.06)

G3 0% (14.99) 0% (11.01) 0% (12.64) 0% (12.24) 0% (14.12) 0% (7.24) 0% (18.76) 0% (13.00)

G4 0% (14.19) 0% (10.57) 0% (12.00) 0% (11.93) 0% (13.21) 0% (6.64) 0% (18.13) 0% (12.38)

G5 30% (11.03) 15% (10.05) 18% (10.08) 24% (10.92) 26% (10.62) 18% (5.33) 27% (15.75) 23% (10.54)

G6 33% (11.04) 15% (10.04) 23% (10.01) 16% (10.93) 34% (10.68) 23% (5.31) 26% (15.77) 24% (10.54)

G7 25% (11.15) 15% (10.16) 21% (10.10) 23% (10.92) 16% (10.94) 18% (5.29) 22% (16.02) 20% (10.65)

G8 30% (11.15) 17% (10.1) 31% (10.03) 16% (10.93) 23% (10.91) 22% (5.25) 25% (15.99) 23% (10.62)

G9 9% (11.99) 11% (9.78) 11% (10.28) 11% (11.2) 8% (11.18) 7% (5.65) 13% (16.12) 10% (10.89)

G10 12% (11.96) 23% (9.77) 14% (10.25) 20% (11.2) 18% (11.15) 19% (5.61) 15% (16.12) 17% (10.86)

G11 5% (12.57) 15% (9.99) 8% (10.61) 13% (11.22) 10% (12.00) 8% (6.01) 12% (16.55) 10% (11.28)

G12 11% (12.33) 20% (9.93) 14% (10.49) 21% (11.07) 9% (11.84) 12% (5.9) 19% (16.36) 15% (11.13)

Table 16. Results by experimental variable in the SE case assumption.

 F1 F2 F3
Overall

 L1 L2 L1 L2 L3 L1 L2

G1 3% (18.23) 8% (15.07) 4% (14.95) 3% (17.61) 9% (17.39) 3% (10.46) 7% (22.84) 5% (16.65)

G2 17% (17.37) 46% (14.08) 21% (14.35) 14% (16.69) 59% (16.13) 35% (9.61) 28% (21.84) 31% (15.72)

G3 0% (19.02) 5% (15.55) 4% (15.41) 3% (17.69) 1% (18.76) 1% (11.10) 4% (23.48) 3% (17.29)

G4 5% (17.85) 38% (14.79) 34% (14.53) 15% (16.84) 15% (17.59) 22% (10.22) 21% (22.42) 21% (16.32)

G5 14% (16.95) 3% (17.41) 9% (15.21) 5% (17.23) 11% (19.1) 6% (11.47) 11% (22.89) 8% (17.18)

G6 26% (16.93) 4% (17.11) 25% (14.96) 8% (17.22) 13% (18.87) 12% (11.29) 18% (22.74) 15% (17.02)

G7 14% (16.94) 7% (17.2) 10% (15.27) 8% (17.04) 14% (18.89) 10% (11.25) 11% (22.88) 10% (17.07)

G8 23% (16.87) 9% (16.84) 23% (15.02) 10% (16.97) 16% (18.58) 15% (11.1) 18% (22.61) 16% (16.85)

G9 11% (19.29) 7% (16.4) 4% (14.79) 19% (16.21) 4% (22.53) 7% (11.96) 11% (23.74) 9% (17.85)

G10 13% (18.69) 5% (15.74) 1% (14.51) 23% (15.83) 3% (21.31) 9% (11.32) 8% (23.11) 9% (17.22)

G11 13% (19.43) 1% (16.9) 3% (15.27) 18% (16.29) 1% (22.93) 8% (12.21) 7% (24.12) 7% (18.17)

G12 12% (18.96) 3% (16.29) 4% (14.8) 19% (16.09) 0% (21.98) 7% (11.72) 8% (23.54) 8% (17.63)

Figure 1. An illustration of the problem environment.

Figure 2. Schedule based on job sequences S1 and worker assignments A1 in the AE case assumption.

Figure 3. Schedules based on job sequences S1 and worker assignments A1 in the AE and SE case

assumptions.

Figure 4. Flowchart of the solution approach.

Figure 5. Schedules resulting in the implementation of algorithms G1, G6, and G12 in the SE case.

