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Abstract

Random sets arises as distinguished models to study probability under imprecision.

This work aims to determine the connectedness of a random set in terms of its capacity

functional (the probability of hitting a set). This problem is linked to the celebrated

Choquet-Kendall-Matheron theorem, which states that a random closed set is charac-

terized by its capacity functional. Hence, such functional must also characterize any

topological property of a random set, as its connectedness. The main disadvantage of

the capacity functional is that it is evaluated over a large collection of sets (the family

of compact sets). Naturally, we require that the determination of the connectedness

must be made using a simple family of sets. We achieve a characterization adapted to

these purposes.
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1 Introduction

There exist common situations where uncertainty about the probability distribution arises.

The theory of Imprecise Probabilities [23] provides a natural scenario to study this kind of

problems. In this context, the random sets appears as a model to deal with this imprecision.

On a theoretical viewpoint, the random sets have been linked to belief functions [12, 18, 19],

p-boxes [3] and fuzzy intervals [5, 6] (see also the classical references [1, 2]). For other

approaches to imprecise probabilities, we can refer to [13].

The random intervals (i.e., random sets of R) deserve their own place within random sets

[2, 4, 10, 20]. These objects admit a nice interpretation: they can model the imprecision

arising in the observation of a random variable [16].
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In practice, the random intervals have been used in different clinical trials (for instance,

in nausea [22]), in reforcement schedules [15], engineering [7], etc.

This work aims to study the connectedness of a closed random set of R in terms of

simple evaluations of its capacity functional. Recall the seminal Choquet-Kendall-Matheron

theorem, that states that the distribution of a random closed set is determined by its capacity

functional (see [17] for instance). This fact encourages us to extend that philosophy to the

topological properties of a random set; we focus here on the connectedness. It is worth to

point out that this problem appears explicitly mentioned in [17, Open Problem 4.37], where

applications to percolation theory can arise (see also [14] and [21]).

In broad terms, given a random setX, its capacity functional TX is a map which associates

a compact set with the probability that X intersects with that compact set [17]. Note that

the capacity functional is valued over a very large family, the family of compact sets. This is

a significant disadvantage in practice and also the main problem to solve in our framework.

Then, we claim for a simple family of compact sets which allows us to determine whether

X is connected. That claim is also motivated by practical reasons. In fact, the capacity

functional is usually restricted to distinguished one-parametric families of compact sets (e.g.

circles or segments in R2, [11]).

The closeness assumption on the random set is necessary. In fact, the capacity functional

of a (non-closed) random set cannot determine whether the random set is connected. To

prove it, we show two random sets of [0, 1], one of them is connected but the other one is

not, and sharing the same capacity functional: Let U be a random variable with uniform

distribution on [0, 1]. Take X1 to be the non-connected random set X1 = [0, 1]\ {U}. Take

X2 to be the deterministic set [0, 1]. It is easy to see that X1 and X2 have the same capacity

functional, which takes always the value 1 when it is valued on any compact set of [0, 1].

The next section is aimed to show and prove our main result, which answers positively

to our requirements.

2 Main results

We begin recalling several notions of a random set that appear throughout this work. Fix a

complete probability space (Ω,A, P ), and denote by F the collection of the closed sets of R.

A random closed set X of R is a map defined over the probability space and with values on

F such that for any compact set K ⊂ R it holds

{ω : X(ω) ∩K 6= ∅} ∈ A

(see [17]). This condition is interpreted as a measurability hypothesis of X as a map;

moreover, this axiom is also linked to the capacity functional (see [9, 17] for a detailed
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discussion of these topics). We also assume that any random set X satisfies X(ω) 6= ∅ for

any ω ∈ Ω.

Now, we focus on the connectedness of a random closed set. We say that a random closed

set X is connected if P ({ω : X(ω) is connected}) = 1. We start with a technical result.

Proposition 2.1. A random closed set X is connected if and only if for any a, b ∈ R, a < b,

the following equation holds

P ({ω : X(ω) ∩ (−∞, a] 6= ∅, X(ω) ∩ [a, b] = ∅, X(ω) ∩ [b,∞) 6= ∅}) = 0 . (1)

Proof. Fix a, b ∈ R with a < b. A ω ∈ Ω satisfying

X(ω) ∩ (−∞, a] 6= ∅, X(ω) ∩ [a, b] = ∅, X(ω) ∩ [b,∞) 6= ∅

means that X(ω) is not connected. Hence,

P ({ω : X(ω) ∩ (−∞, a] 6= ∅, X(ω) ∩ [a, b] = ∅, X(ω) ∩ [b,∞) 6= ∅})
≤ P ({ω : X(ω) is not connected}) .

Therefore, if X is connected, then the equation (1) must hold. To prove the converse, we

will assume that X is not connected and the equation (1) holds to find a contradiction.

Given a Lebesgue-measurable set A of R, denote by ψ(A) the collection of all the con-

nected components of A. Thus, we can write: A =
⋃
Bi∈ψ(A) Bi, with each Bi connected and

Bi∩Bj = ∅ if i 6= j. Now, define a map ‖·‖ that associates A with the following non-negative

number:

‖A‖ := supBi∈ψ(A)µ(Bi) ,

where µ is the Lebesgue measure on R. Moreover, ‖∅‖ = 0 by definition.

Let X be a non-connected random closed set. There exists Ω′ ⊆ Ω with P (Ω′) > 0 such

thatX(ω) is not connected for any ω ∈ Ω′. SinceX is measurable, [minX(ω),maxX(ω)] \X(ω)

is so for any ω ∈ Ω. Note an abuse of notation since minX(ω) can be −∞ (analogously

with maxX(ω)). We have:

‖[minX(ω),maxX(ω)] \X(ω)‖ > 0

for any ω ∈ Ω′. Moreover, ‖[minX(ω),maxX(ω)] \X(ω)‖ is measurable as a function on

Ω. With these considerations, we deduce:

E [‖[minX(ω),maxX(ω)] \X(ω)‖] > 0 . (2)

Now, assume that the equation (1) holds. Hence, the following equation holds for any

h > 0:
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∫ x=∞

x=−∞

∫
Ω

I {ω :X(ω) ∩ (−∞, x] 6= ∅,

X(ω) ∩ [x, x+ h] = ∅,
X(ω) ∩ [x+ h,∞) 6= ∅ } dP dx = 0 .

Here, I {ω : . . .} represents the indicator function. Since the integrand is non-negative

and measurable against dP ⊗ dx, we apply the Fubini’s theorem to obtain:

∫
Ω

∫ x=∞

x=−∞
{. . .} dxdP =

∫
Ω

max {‖[minX(ω),maxX(ω)]\X(ω)‖ − h, 0} dP

= E [max {‖[minX,maxX]\X‖ − h, 0}]
≥ E [‖[minX,maxX]\X‖]− h .

This means that h ≥ E [‖[infX,maxX]\X‖] for any h > 0. A contradiction is found with

the equation (2).

The main characteristic related to a random set is its capacity functional. Denote by K
the collection of all compact sets of R. The functional TX : K → [0, 1] defined by

TX(K) = P ({X ∩K 6= ∅})

is said to be the capacity functional of X. Note that the capacity functional is defined over

a very large collection of sets (the collection of compact sets). As aforementioned, this is a

hard disadvantage in practice. Eventually, we are able to obtain a characterization result

for connectedness in terms of simple families of sets (in fact, a finite collection of intervals).

Let us work with the extended real line R = R ∪ {+∞,−∞}. Let

Q := {p0 = −∞, p1, p2, . . . , pn, pn+1 = +∞}

be a finite set of ordered points of R; that is, by definition, pi < pj if i < j, and p1, . . . , pn ∈
R). From that points, we are able to build a collection of sets V = {vi}ni=1 as follows:

vi = [pi−1, pi+1] for 1 ≤ i ≤ n. We call vertices to the elements of V . The terminology comes

from the fact that we will build a finite linear graph GQ. Two vertices, vi and vj, of GQ are

connected by an edge if |i − j| = 1; in such case, the edge models the intersection of both

sets. More precisely, denote by E = {ei}n−1
i=1 the set of edges such that ei = [pi, pi+1] is the

edge whose vertices are vi and vi+1, for i = 1, . . . , n− 1.

Now, we define a map ψ which associates a set A with a subgraph of GQ. Given a

set A, ψ(A) is the subgraph of GQ whose vertices are {vi : vi ∩ A 6= ∅} and whose edges are
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{ei : ei ∩ A 6= ∅}. To show that ψ is well defined, we need to prove that any edge of ψ(A) has

its associated vertices also belonging to ψ(A). In fact, if ei ∈ ψ(A), we have [pi, pi+1]∩A 6= ∅,
and consequently [pi−1, pi+1]∩A 6= ∅ and [pi, pi+2]∩A 6= ∅; that means that vi and vi+1 (the

vertices associated to the edge) also belong to ψ(A).

Observe that if A is connected, then ψ(A) is also connected as a graph. In this case, the

following formula holds (see [8]):

#vertices(ψ(A))−#edges(ψ(A)) = 1 , (3)

where here and so on, # denotes the cardinality.

Remark 2.2. More generally, for a set A and a graph G, we have

#vertices(ψ(A))−#edges(ψ(A)) = #connected components(ψ(A)) .

IfA is not connected but closed, then we can find suitable pointsQ = {p0 = −∞, p1, p2, p3 = +∞}
such that ψ(A) is not a connected subgraph of GQ. In fact, since A is closed, we can find

real numbers p1 and p2 satisfying

A ∩ (−∞, p1] 6= ∅ , A ∩ [p1, p2] = ∅ , A ∩ [p2,∞) 6= ∅ .

Then ψ(A) is a graph with two vertices and no edge.

Now, let X be a random closed set. From the remark above,

E [#vertices(ψ(X))]− E [#edges(ψ(X))] ≥ 1 .

If X is connected, ψ(X) is also connected (as a graph). Therefore, equation (3) implies:

E [#vertices(ψ(X))]− E [#edges(ψ(X))] = 1 . (4)

Next, we have to compute the previous expectations. To do that, we need the following

technical result,

Lemma 2.3 (Robbin’s theorem). Let Y be a random set of a finite space C = {ci}i∈N⊂N.

It holds

E [#Y ] =
∑
i∈N

P (ci ∈ Y ) .

From the previous result, we compute:

E [#vertices(ψ(A))] =
n∑
i=1

P ({[pi−1, pi+1] ∩X 6= ∅})

=
n∑
i=1

TX ([pi−1, pi+1]) .
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Following a similar reasoning,

E [#edges(ψ(X))] =
n−1∑
i=1

TX ([pi, pi+1]) .

At this point, we have proved one implication of our main result:

Theorem 2.4. A random closed set X of R is connected if and only if any finite set of

ordered points {p0 = −∞, p1, p2, . . . , pn, pn+1 = +∞} satisfy

n∑
i=1

TX ([pi−1, pi+1])−
n−1∑
i=1

TX ([pi, pi+1]) = 1 . (5)

To prove the converse of that result, we prove that there exists a finite set of ordered

points that does not satisfy the equation (5) when X is not connected.

If X is a non-connected random closed set, then the Proposition 2.1 allows us to find p1

and p2 (p1 < p2) satisfying

Ω′ := {ω : X(ω) ∩ (−∞, p1] 6= ∅, X(ω) ∩ [p1, p2] = ∅, X(ω) ∩ [p2,∞) 6= ∅}

P (Ω′) > 0 .

For these points, the left part of the equation (5) reads as follows:∫
Ω

[ I {ω : X(ω) ∩ (−∞, p2] 6= ∅}

+I {ω : X(ω) ∩ [p1,∞) 6= ∅}
−I {ω : X(ω) ∩ [p1, p2] 6= ∅} ] dP .

To compute this integral, we split Ω into the following pairwise disjoint sets:

Ω1 := {ω : X(ω) ∩ (−∞, p2] 6= ∅ , X(ω) ∩ [p1,∞) = ∅ , X(ω) ∩ [p1, p2] = ∅}
Ω2 := {ω : X(ω) ∩ (−∞, p2] = ∅ , X(ω) ∩ [p1,∞) 6= ∅ , X(ω) ∩ [p1, p2] = ∅}
Ω3 := Ω′

Ω4 := {ω : X(ω) ∩ (−∞, p2] 6= ∅ , X(ω) ∩ [p1,∞) 6= ∅ , X(ω) ∩ [p1, p2] 6= ∅}

It can be checked that∫
Ωi

[ I {ω : X(ω) ∩ (−∞, p2] 6= ∅}

+I {ω : X(ω) ∩ [p1,∞) 6= ∅}
−I {ω : X(ω) ∩ [p1, p2] 6= ∅} ] dP = P (Ωi)
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for i = 1, 2, 4. However, we have∫
Ω3=Ω′

[. . .] dP = 2P (Ω′)

This means that the left side of the equation (5) equals 1 + P (Ω′). Since we have assumed

that P (Ω′) > 0, the equation of our main result does not hold.

3 Conclusions

We have obtained a characterization of the connectedness of a random closed of R set

in terms of its capacity functional. The main advantage of this formula is that we only

need evaluations of the capacity functional over a finite collection of intervals. This fact

implies that it can be easily implemented in practice. More precisely, a finite family of

evaluations of the capacity over suitable intervals can yield to state that the random set is

not connected. In fact, observe that the distances between the finite set of ordered points

are key to detect the non-connectedness. To illustrate this idea, assume that a random set

X is contained in an interval, let us say [a, b]. Consider finite sets of ordered points of the

form: In =
{
p0 = −∞, p1 = a, p2 = a+ b−a

n
, . . . , pj = a+ j b−a

n
, . . . , pn = b, pn+1 =∞

}
. It is

straightforward to see that X is connected if and only if the equation (5) holds over In for

any n ∈ N. Clearly, bigger n, easier to detect the non-connectedness. However, at the same

time, more complexity in computability and in recollecting the data. It depends on each

case where to fix an appropriate n in view of this reasoning.

As a future work, we would consider topological manifolds as the spaces over which the

random set is defined. In this case, the topological complexity increases significantly (even

in R2). This is a challenge that would be worth addressing.
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