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Abstract—One of the biggest problems in EEG recordings is
the contamination of the signal caused by artifacts because these
interferences hinder the analysis of real neural information. Thus,
their elimination while preserving as much brain data as possible
is a key procedure before the study of the EEG. To address the
automatic removal of craniofacial artifacts, this paper proposes
a two-stages procedure: the former one is the detection stage
-where both a MLP neural network and a dynamic threshold
method are applied to detect the contaminated areas of the
EEG-, while the latter is the removal stage -combining CCA and
EEMD algorithms to remove the artifact data only. Experimental
results show that both detection methods are comparable, but
with the dynamic threshold detection slightly outperforming the
MLP. Also, the combined technique can completely remove those
artifacts scattered in all the EEG channels. This study will be
extended to ocular artifacts, where more complex models would
be required.

Index Terms—Epilepsy, EEG, artifact detection, artifact re-
moval

I. INTRODUCTION

This study presents a research included in a project to
train photo-sensitivity epilepsy patients to identify scenarios
for which real onset risk exists, so they can transfer this
knowledge to everyday life. To do so, Augmented Reality is
proposed to generate scenarios of everyday life including some
of them where the risk of suffering an onset gets increased. A
passive Electroencephalogram (EEG) recording will provide
information to the system to modulate the intensity of the
experience to avoid risks and also to extract some relevant
information concerning with the patient’s file. On-line analysis
the EEG signal is, then, crucial and, to do so, the channels
should be cleaned from artefacts. This study focuses on
automatically identifying artefacts by means of auto-fixed
thresholds or by means of neural networks classifiers.

* This research has been funded by the Spanish Ministry of Science and
Innovation under project MINECO-TIN2017-84804-R and by the Grant FC-
GRUPIN-IDI/2018/000226 project from the Asturias Regional Government.

EEG recordings are usually contaminated with artifacts,
from muscle contraction of muscles of the head and face -
Electrocardiogram (EMG) artifacts-, eyelid closing and ocular
movements, EKG signal and body muscles. This interferences
obscure the EEG recordings and difficult the electroencephalo-
graphers task of identifying and put in contexts the findings
observed [1].

This preliminary work shows a methodology for the re-
moval of craniofacial myogenic artifact detection (AD). A
two stages procedure is proposed, firstly by detecting the
AD and then by effectively removing them. For the former
stage two techniques are compared -using thresholds and Multi
Layer Perceptron (MLP)-. The method using thresholds have
been provided with a heuristic to automatically calculate the
threshold for each case. The latter stage combines Canonical
Correlation Analysis (CCA) and Ensembled Empirical Mode
Decompositivon (EEMD) algorithms to remove the artifact
data only.

The structure of this work is as follows. Firstly, the next
section focuses on the related work on craniofacial myogenic
artefacts detection and elimination. Section III deals with the
methods for the automatic identification of these artefacts,
while Section IV details the experimentation and results,
followed by a discussion on the obtained results. Finally, the
conclusions are drawn.

II. RELATED WORK

Due to the presence of artifacts contaminating EEG signals
and making it difficult to analyze them, it’s necessary to
apply methods that are capable of detecting these artifacts,
eliminating them and preserving as much brain information
as possible. The simplest method includes detecting the areas
of the raw EEG signal where an artifact appears by visual
inspection and directly removing those samples [2] or even
the complete trial [3].



However, a different strategy is needed whenever an online
evaluation of the EEG signal is required: techniques to reduce
the effect of artifacts without eliminating the neural informa-
tion hidden within them. Recently, [4] made a compilation of
the most widely applied methods for removing the artifacts
in EEG signals literature, the signal decomposition method
among them. These methods simplify the original signal into a
set of components representing the EEG signal plus a residual
that, ideally, represents the non-relevant information.

On the one hand, there are those procedures that decompose
the signal into a set of frequency components. The Discrete
Wavelet Transform (DTW) algorithm applies pairs of high-
pass and band-pass filters successively and separates different
frequency bands [3], [5]. The Empirical Mode Decomposition
(EMD) divides the initial signal into components known as
Intrinsic Mode Functions (IMFs) using the upper and lower
envelopes. There is a variation of this method that is more
robust to noise called EEMD and it’s capable of computing
the IMFs more precisely.

On the other hand, Blind Source Separation (BSS) tech-
niques estimate the set of source signals whose linear combina-
tion sums the original signal [6]. The simplest BSS algorithm
is Principal Component Analysis (PCA), though the most cited
one in Time Series decomposition is Independent Analysis
Component (ICA). This algorithm computes the source signals
in a way that they are statistically independent. In [7] ICA is
employed to improve the results of their experiment. Another
method of this group is the CCA. Unlike ICA, CCA calculates
the components from uncorrelated sources with the advantage
of a lower computational cost [8].

In recent years mixed methods have become very pop-
ular. These methods apply BSS algorithms together with
frequency decomposition methods in order to separate the
sources and reduce the amount of brain information eliminated
removing only the artifact data. Different combinations of
these algorithms have been proposed, e.g., DWT+ICA in [9],
EEMD+CCA in [10], [11] or generic combinations of BSS
and EMD variations in [12].

In addition to the previous algorithms, filtering methods
make up another large group used for artifact removal tasks.
Among them is the Wiener filter: a linear filter that estimates
the clean signal from a noisy measure [13]–[15]. In [16],
a combination of filtering and ICA is used for craniofacial
myogenic artifact removal.

Artifacts removal techniques have been mentioned above,
but before using them it’s necessary to detect the artifacts
within the signal. The artifacts can be defined as data with
strange behavior, i.e., patterns in data different from those
expected under normal conditions. Using this definition, it can
be stated that an artifact is an anomaly and the same detection
techniques can be used.

The anomaly detection systems use the concept of similar-
ity: given two signals, a similarity metric is used to represent
how similar they are. The most commonly used similarity
metric is a distance metric: the higher is the distance between
two signals, the lower is their similarity.
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Fig. 1: Stages of the applied method.

An anomaly detection procedure based on thresholding was
proposed in [17]. Firstly, a template of what they considered
normal signals is created. All these windows are of the same
size. Then, a window, also of the same size, is extracted from
the measured signal and is used to calculate the distances
between it and every normal signal. The similarity measure
between the signal window and the normal template is the
lowest one, which is the higher distance obtained. If this
similarity value is higher than the threshold, the signal window
is classified as normal. Otherwise is an anomaly.

However, the aim of that study is to compare different
distance metrics and calculate the optimal threshold for each
one of them and their data. The method proposed in this paper
only uses the Bhattacharyya distance (the one that obtained
the best results in their study) as the similarity metric, the
normal template is composed of windows without artifacts, the
windows with the craniofacial myogenic artifacts are labeled
as ”abnormal” and, as the classification rule, an automatic
threshold computed from the normal template is proposed.

In addition to the anomaly detection method, Machine
Learning algorithms are also used for this purpose. The Super-
vised Machine Learning algorithms has the goal of learning
and distinguish data patterns associated with a particular class.
Then, when they receive a new input from an unknown class,
the learner makes a prediction and classifies it into one of the
target classes. The most commonly used learning algorithm
for artifact detection is the Support Vector Machine (SVM)
[3], [5], [9].

III. AUTOMATIC EXTRACTION OF CRANIOFACIAL
MYOGENIC ARTEFACTS

The structure of the automated removal of the craniofacial
myogenic artifacts method proposed in this paper is as follows,
as shown in Fig. 1. The method requires a set of templates
representing windows that include normal or abnormal be-
haviour; in this study, we have use windows with 1 second
length. This templates are pre-processed as explained later in
this section.The raw EEG signal is windowed pre-processed
and the features are extracted. Two more stages follow: i) the
craniofacial myogenic artifacts detection and ii) their removal
and reconstruction of cleaning EEG signal.

In the pre-processing stage, an EEG signal window is
normalized and Notch and Butterworth filters are applied to
remove undesired frequency components. Finally, the Power
Spectrum Density (PSD) is computed, extracting the features
that represent the current EEG window.



In order to develop an automated artifact detection and
removal application, this paper proposes two different ap-
proaches for the AD stage: a dynamic threshold, based on [17],
and a Multilayer Perceptron Neural Network (MLP). These
techniques analyze the PSD of the windows of the EEG signal
to be studied in order to classify them as normal or artifact
windows. Both of them will be explained below.

Once a detection method classifies a window as abnormal, it
means it detected a craniofacial artifact and the removal tech-
nique is applied to clean the current window. For the removal
stage, the mixed method proposed by [10], a combination of
CCA and EEMD algorithms is employed.

A. Automatic threshold for AD

The method proposed in this section is based on the
thresholding detection method proposed in [17]. The idea is
to compare an EEG window to each of teh normal templates
in a dictionary; when the distance is higher than a given
threshold, the EEG window is labelled as abnormal -that is,
includes an artifact-. The distances are not calculated between
two EEG raw windows; instead, the PSD is calculated and
used for the distance measurement calculation by means of
the Bhattacharyya Distance.

Given an EEG window (Xi), its 0-50 Hz PSD (p) is com-
puted. Then it is compared using the Bhattacharyya Distance
with the PSD (q) from each of the available templates. The
distance is computed using Eq. 1 and 2, where p(k) and q(k)
are the kth sample of the p and q window of K size and sBD is
the similarity value, which inverse dBD is the distance value.
Therefore, we compare the current EEG window to each of
those included in the template set.

sBD = −ln(
K∑

k=1

(
√
p(k) ∗ q(k))) (1)

dBD =
1

sBD
(2)

Once the threshold values are obtained, the current EEG
window is compared with each of the normal windows of the
template computing the distance between them. The highest
distance is extracted: this value represents the lowest similarity
between the EEG window and the signals considered normal.

However, determining thresholds represents a challenge
itself as they suffer variability from one participant to other
and also the amount of signal might vary for the same
participant along the test. To minimize these drawbacks, this
paper proposes to use the Empirical Rule -a.k.a. 68–95–99.7
rule- to determine whether a point represents an outlier.

Let µ and σ be the mean and the standard derivation of
the distances between all the normal template signals. These
values are calculated once at the beginning and are constant
throughout the process.

In this study, whenever the maximum distance among
the current EEG window and a normal template holds the
condition in Eq. 3, the window is labelled as abnormal -
including an artifact-. In Eq. 3, µ and σ are the mean and the

standard derivation of the distances between normal templates,
respectively, while dmax(Xi) is the highest distance between
the current EEG window Xi and a normal template.

dmax(Xi)− µ > 3 ∗ σ (3)

B. AD by means of MLP

As opposed to the previous method, MultiLayer Perceptron
(MLP) neural network classifiers are also used to detect if an
input window from the EEG signal has an artifact and compare
the detection performance results. This network receives the
PSD of the EEG windows as the input pattern and make a
binary classification: the outputs are 0 for the normal windows
or 1 for the abnormal windows with the craniofacial myogenic
artifacts.

The MLP is trained with the PSD of the windows from both
normal and abnormal templates and the windows extracted
from a continuous EEG segment. All the training data are
manually labeled as normal or artifact windows.

Different parameters, functions and number of neurons in
the hidden layer need to be tested.

C. Removal of Artefacts from EEG channels

If the current window is labeled as anomaly, it means that
it includes an artifact and the removal technique presented in
[10] is applied to this window. CCA is applied to separate
the uncorrelated source signals and ordered according to their
kurtosis value. The artifact component is identified as the
source with the highest kurtosis. Then, EEMD is applied
only to that component to compute its IMFs and the artifact
components are identified again by the same method: IMFs
are sorted by kurtosis value. The higher ones corresponded
to artifacts components. These artifact signals are removed
and the rest of the IMFs are preserved to rebuild the CCA
component and then all the sources are combined again to
reconstruct the EEG signal, now clean and free of artifacts.
The algorithm is outlined as follows:

1) if the current window is labelled as artifact
a) CCA algorithm is applied to the current window,

extracting the uncorrelated sources and sorting
them by their kurtosis value. The highest kurtosis
corresponds to the artifact component.

b) EEMD algorithm is applied to that component,
computing the IMFs and sorting them using the
kurtosis value. The artifact data contamination cor-
responds to components with high kurtosis.

c) Dismiss the IMFs from the artifact -i.e., the two
IMFs with the highest kurtosis- and reconstruct the
component using the remaining IMFS.

d) Reconstruct the free-from-artifact EEG window
from the components.

IV. EXPERIMENTS AND RESULTS

This section introduces the data set used and the exper-
iments implemented with their results. All the experiments
were implemented in Python.



A. Materials

The data used in the experiments are from the public BCI
Competition IV dataset. This data set is a compilation of var-
ious data sets about motor imagery and muscular movements.
Thus, the data set used in this work is DataSet 1.

This data set was provided by [18] in the ”BCI Competition
IV” event. The data was obtained from 7 healthy subjects in
two sessions: calibration and evaluation. In the latter session,
the two more informative classes were selected from the three
performed motor imagery tasks (right hand, left hand and one
foot movements). The calibration data is the data used in this
study: it is a continuous EEG signal composed of 100 trials of
each selected class. In each trial, a visual cue was displayed
for 4 seconds during which the subject had to perform the
corresponding motor imagery task separated by 2 seconds
breaks. The EEG was recorded from 59 electrodes, digitized
at a sampling rate of 1000Hz and band-pass filtered between
0.5Hz and 200Hz.

The EEG signals were normalized and then filered using a
Notch and a fifth-order Butterworth filters. The Notch filter
acts as a band-stop filter with a 50Hz null frequency to reject
the power supply components (quality factor Q = 30.0). The
Butterworth filter acts as a band-pass filter with 0.5Hz to 50Hz
cut-off frequencies used to eliminate high-frequency noise
and extract the frequency bands of brain activity. After that,
the PSD was calculated between 0Hz and 50Hz frequencies,
resulting in 50 values per window, and has been used as
window features.

The detection stage is performed in a single channel: F3
is the nearest electrode to the eye in this data set, so it’s
the electrode where the craniofacial myogenic artifacts can
be detected easier. Otherwise, the removal stage is performed
in 15 selected channels to reduce the amount of data.

Several sets of templates were manually created from the
data set described in IV-A. Firstly, the training-testing subset,
including 30 normal windows and 30 artifact windows (la-
belled as abnormal), was extracted from the F3 EEG channel
of the first subject; all windows are of 1 second long. A
second set of templates, called 150-WIN, is a continuous EEG
fragment of 150 seconds extracted from the same EEG and
split into 150 windows that have been manually labeled as
abnormal or normal according to whether the window includes
an artifact or not. Finally, a third set of templates (100-SEC)
includes an EEG fragment of 100 seconds extracted but neither
divided not labeled.

B. Experimental set up

The experimentation is split in two stages: the former
compares the two techniques for artifact detection (experiment
IV-B1), while the latter focuses on the performance of the
complete proposal for artifact detection and removal (experi-
ments IV-B2 and IV-B3).

1) Experiment IV-B1 - Comparison of the Detection Tech-
niques: The aim of this experiment is to compare the two
AD techniques (using a dynamic threshold and using a MLP)

in terms of detection performance, so we can select the most
promising one for the next experiments. The detection methods
are applied in a single EEG channel: F3, the channel from the
data set that is closest to an eye, so the craniofacial myogenic
artifacts are more visible.

The training-testing subset together with the 150-WIN tem-
plates are used in a 10-fold cross-validation training and test-
ing of the models, allowing us to compare their performances.
Results from the evaluation using the testing part will be used
for comparison purposes.

When tuning the automatic threshold method -that is, set-
ting the threshold- only the normal windows are employed.
For each window the PSD is computed. Afterwards, the
Bhattacharyya Distance is calculated for each pair of PSDs.
Finally, the mean and standard deviation are computed and the
threshold is determined using Eq. 3.

On the other hand, two different neural network libraries for
Python were used to create a MultiLayer Perceptron: Neurolab
and Sklearn. Both of them have the same configuration: input
layer with 50 neurons, output layer with a single neuron for
binary classification, hidden layer with 20 neurons was tested
and logistic Sigmoid function as the activation function of all
neurons. These neural networks receive the PSD of a certain
window as an input and generate a binary output to classify it:
0 corresponds to ”normal” and 1 corresponds to ”abnormal”,
i.e., a clean window or one contaminated with an craniofacial
myogenic artifact.

2) Experiment IV-B2 - Craniofacial Myogenic Artifacts
Removal in EEG activity fragment: The aim of this experiment
is to evaluate the performance of the method on the 100-SEC
data. The idea is to compare how the combination of methods
work for each of the AD techniques with unseen EEG data.

This experiment, thus, considers only the 100-SEC data;
a sliding window without overlap is applied all over the
stream. Whenever a window is labelled as abnormal using the
corresponding AD technique, the removal part of the method
is applied to get the artifact filtered.

3) Experiment IV-B3 - Craniofacial Myogenic Artifacts Re-
moval in a complete Motor Imagery signal: This experiment
evaluates the complete proposal on the EEG signal from the
first subject, which was the one for which the training of the
models was performed. The complete EEG signal last for 32
minutes. The aim of this study is to analyze the robustness of
the method for data from the same subject.

C. Results and discussion

In the following, the results of all the experiments are
provided.

1) Experiment I Results - Comparison of the Detection
Techniques: As mentioned in section IV-B1, two different
neural network libraries for Python were used: NeuroLab
and Sklearn. Both neural networks were tested but only the
results of the Sklearn’s MLP are provided. This is because the
training of the Neurolab’s network takes much longer than the
Sklearn’s one so it is discarded.



The performance of the two detection methods is depicted
in Table I. Variations on the figures was a consequence of the
relatively reduced size of testing data set as long as for one
fold only two AD were included.

Dynamic Threshold Sklearn’s MLP

Fold Acc Sens Spec Acc Sens Spec

1 1.0000 1.0000 1.0000 0.9524 0.8571 1.0000
2 0.9474 1.0000 0.9375 0.9524 0.8750 1.0000
3 0.9474 1.0000 0.9375 1.0000 1.0000 1.0000
4 0.9474 1.0000 0.9412 1.0000 1.0000 1.0000
5 0.8947 1.0000 0.8750 1.0000 1.0000 1.0000
6 0.8947 0.5000 0.9412 0.9524 1.0000 0.9286
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.8421 1.0000 0.8125 0.9524 1.0000 0.9375
9 0.7368 1.0000 0.7059 0.7143 0.5000 0.8000
10 0.8421 1.0000 0.8000 0.8571 0.8571 0.8571

Mn 0.9053 0.9500 0.8951 0.9381 0.9089 0.9523
Mdn 0.9211 1.0000 0.9375 0.9524 1.0000 1.0000
StD 0.0774 0.1581 0.0905 0.0853 0.1576 0.0683

TABLE I: Results of Cross-Validation using Sklearn library
(left) and Dynamic Thresholding (right). Mn = Mean. Mdn =
Median. StD = Standard Deviation.

Welch’s t-test was used to test whether the two distributions
of values (one from the threshold method and the other
from the MLP) were comparable. We performed the test for
the three statistics and found that the two methods were
comparable. As long as the artifacts that were proposed in
this research are mainly peak type, it would be difficult for
the threshold method to continue performing well with more
complex artifacts: in this case, perhaps Hidden Markov Models
for each type of artifact could become an alternative. On the
other hand, the MLP also suffered for some of the folds, which
suggest that more elaborated Neural Network models would
be required to tackle more complex artifacts such as ocular
artifacts.

2) Experiment II Results - Craniofacial Myogenic Artifacts
Removal in EEG activity fragment: From the results of the
previous experiment, both detection methods (the dynamic
thresholding and the MLP) are used for the detection stage.
The combined removal method is applied only in the windows
previously marked as an anomaly.

After applying the AD thresholding method to the EEG
fragment of 100 seconds in channel F3, all the windows
labelled as 1 are considered artifacts and the removal process
is applied to each window separately to all 15 channels.

After apply CCA, the source with the highest kurtosis value
corresponds to the craniofacial myogenic artifact.

After apply EEMD, the IMFs with higher kurtosis values
correspond to the artifact data. The two highest IMFs are the
ones eliminated.

The results of the artifact elimination are shown in Fig. 2:
the upper part depicts the F3 channel’s EEG signal, while the
reconstructed signal after the threshold-based artifact removal

(a) Original EEG channel F3 before AD and removal.

(b) Reconstructed signal applying the combined technique
CCA+EEMD in channel F3 after the thresholding detection.

(c) Reconstructed signal applying the combined technique
CCA+EEMD in channel F3 after the MLP detection.

Fig. 2: Results of the combined removal method.

is included in the middle part; the reconstructed signal for the
MLP-based removal is shown in the bottom part. As can be
seen in 2b, all the craniofacial myogenic artifacts existing in
have been successfully removed but preserving as much brain
activity as possible despite one particular anomaly between
seconds 1 and 2. This anomaly was not removed because
it wasn’t dispersed across all channels as all other artifacts
and the CCA algorithm could not compute the artifact source.
However, as can be seen in 2c, the results observed are worse:
the MLP cannot detect the smallest artifacts.

3) Experiment III Results - Craniofacial Myogenic Artifacts
Removal in a complete Motor Imagery signal: From the
results of the previous experiment, the artifact removal process
applied in the complete EEG signal of 32 minutes of duration
uses the dynamic thresholding detection method.

As shown in Fig. 3, almost all craniofacial artifacts are
eliminated preserving the dense motor imagery activity for the
same reason as found above. Concerning the computational
complexity, the AD phase represents a light algorithm in both
cases, which is not the same for the artifact removal step -for
32 minutes it took nearly 3 hours to complete in a core i3
with 16 GB RAM-. While it is useful in off-line studies, for
those cases requiring on-line analysis AD can assist in marking
those time windows where there exists an artifact.



(a) Original 32-minutes EEG channel F3.

(b) Reconstructed 32-minutes signal in channel F3 after the thresh-
olding detection.

Fig. 3: Results of the combined removal method.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a two-stage automatic artifact
detection and removal procedure: in the first one, the detection
stage, a dynamic thresholding method and a MLP neural net-
work were proposed to detect the EEG windows contaminated
with artifacts; in the second one, the removal stage, a combined
technique formed by CCA and EEMD algorithms is applied
to remove only the artifact data and preserve as much brain
information as possible. This study also proposed a method
based on the Empirical Rule to automatically determine the
thresholds.

Normal and artifact windows of 1 second are extracted
from the EEG to create a normal and an abnormal templates
respectively. Also, a 150-seconds EEG segment is extracted
and divided in windows of 1 second. All the windows are
manually labelled as normal or artifact. The PSD of the EEG
windows is calcuted as the feature to be analysed in the
detection stage.

On the one hand, the results of the detection experiment
shows that both detection techniques perform well for this
type of simple artifact, being both comparable. Nevertheless,
the performance with more complex artifacts might be in
compromise and Hidden Markov Models or more complex
Neural Networks structures should me required for these cases.

On the other hand, the results of the removal experiment cor-
roborate that the combined CCA+EEMD applied can remove
the artifacts correctly detected preserving brain information
if they are well dispersed throughout the channels. However,
this technique depends on the detection performance. Thus,
the artifact removal have better results if it’s applied with the
thresholding method.

Future work includes the design of methods to tackle ocular
artifacts, which are needed for the analysis of some epilepsy
EEG analysis and biomarker development.
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