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Abstract: Land use classification using aerial imagery can be complex. Characteristics such as ground
sampling distance, resolution, number of bands and the information these bands convey are the
keys to its accuracy. Random Forest is the most widely used approach but better and more modern
alternatives do exist. In this paper, state-of-the-art methods are evaluated, consisting of semantic
segmentation networks such as UNet and DeepLabV3+. In addition, two datasets based on aircraft
and satellite imagery are generated as a new state of the art to test land use classification. These
datasets, called UOPNOA and UOS2, are publicly available. In this work, the performance of these
networks and the two datasets generated are evaluated. This paper demonstrates that ground
sampling distance is the most important factor in obtaining good semantic segmentation results, but
a suitable number of bands can be as important. This proves that both aircraft and satellite imagery
can produce good results, although for different reasons. Finally, cost performance for an inference
prototype is evaluated, comparing various Microsoft Azure architectures. The evaluation concludes
that using a GPU is unnecessarily costly for deployment. A GPU need only be used for training.

Keywords: sentinel; pnoa; sigpac; unet; deeplab; multi-spectral; aerial; agriculture; convolutional
neural network; semantic segmentation

1. Introduction

Currently, when there is a need for land use classification from aerial imagery, the stan-
dard procedure consists in a manual process carried out by professionals in that specific
field. This process is time consuming and costly. Automation both reduces costs and makes
the process much faster. New applications that require a response time of milliseconds can
be developed, for example, for the classification of each frame of a video, and thus they are
able to process constantly changing regions.

Being able to automate location tasks in aerial imagery, such as land use or crop
classification, opens up the possibility of exploring new services, such as crop monitoring,
which may be of interest to companies. Many satellites not only update their data every
few days but also allow free access. This could lead to significant advances in agricultural
applications and other fields.

In other works [1–5], whenever a study of a land use classification dataset is performed,
the datasets usually remain private, so the results proposed are not reproducible. There
does not appear to be a common dataset specifically for testing accuracy and performance
of land use classification, in the way COCO [6] and PASCAL VOC [7] are used for image
classification. For this reason, two datasets are offered in this work for public use. Both
use data from SIGPAC [8], a free Spanish government database for agricultural land
identification, to generate the ground truths required for training and testing the models.
The first dataset, called UOS2, obtains its source imagery from the Sentinel-2 satellite [9].
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The second dataset, called UOPNOA, obtains its source imagery from the aircraft imagery
from the National Plan for Aerial Orthophotography [10] , also known as PNOA, a free
governmental database of aerial orthophotography of Spain. These datasets are released
with this work for public use and can be downloaded with the following DOI (last accessed
on 10 June 2021): doi.org/10.5281/zenodo.4648002.

Both UOPNOA and UOS2 identify eleven land use types, which means eleven differ-
ent target classes. They are constructed from SIGPAC data of the same region, the northern
part of the Iberian Peninsula plateau in Spain. The two datasets are very different as one
of them has been obtained from aircraft imagery and the other from satellite imagery.
However, as both of them are generated from the same region, a realistic comparison can
be made. Obviously, the aircraft images are taken much closer to the ground, which means
that objects and textures have a much better resolution. In contrast, the dataset taken from
satellite imagery has more bands, offering up to thirteen different bands.

Automation of land use classification using satellite imagery is not a new concept [3,11–13].
The previous methods used are mainly based on Random Forest [14] and Support Vector
Machine [4,15]. There are over 18,000 articles in 2020 mentioning Random Forest and land
use classification and 11,000 articles mentioning SVM and land use classification in 2020.
However, there are better alternatives with simple convolutional neural networks [1,16].
These networks are viable as long as the dataset used to train the models has sufficient data
and variability, which may be an issue in areas where the data is more restricted. Complex
convolutional neural networks using specifically semantic segmentation networks perform
even better if a correct dataset is provided, as has been demonstrated with other satellite
imagery tasks such as land cover classification [5].

This has led to the study of convolutional neural networks and the development
of semantic segmentation for aerial imagery [17]. There are scientific publications com-
paring these methods with more recent semantic segmentation architectures in satellite
imagery [5,18]. However, there are few publications that study the latest advances in
semantic segmentation in the specific application of land use classification tasks and their
particular behavior using this type of dataset. Those that do exist identify only a few main
target classes as abstract as “vegetation” [19] or highly differentiated classes such as “Bare
Rock”, “Beaches”, “Water bodies”, etc. For this reason, UNet [20] and DeepLabV3+ [21],
two semantic segmentation architectures, are tested with the UOPNOA and UOS2 datasets.
In this way, the influence of the different characteristics of the images in semantic segmen-
tation networks is studied.

The aim of this paper is to evaluate the difference between satellite imagery and
aircraft imagery for the specific task of land use classification using semantic segmentation
methods, the generation of a dataset of each type from the same region, and the evaluation
of a service for a realistic use case. Parameters such as ground sampling distance, multi-
spectral bands, and complexity of target classes are taken into account.

The accuracy of land use classification depends on the ground sampling distance of
the images and the number of bands. The UOS2 uses images with up to thirteen bands,
including different infrared bands. These images have bands with a ground sampling
distance or GSD of 10, 20, or 60 m/pixel, meaning that there are 10, 20, or 60 m of ground
between the center of one pixel and the center of the next. UOPNOA only includes RGB
bands, but its GSD is of 0.25 m/pixel. To isolate the effects of the number of bands and
to determine the minimum number needed to ensure good results, several versions of
the UOS2 dataset are used: two versions of three bands (RGB and non-RGB), six bands,
ten bands and thirteen bands. Since UOPNOA has a much smaller GSD than UOS2,
results from the two datasets are compared to determine its influence. The greater the
GSD, the more difficult it is to differentiate one class from another, even to the human eye.
Finally, as having too many classes can be detrimental to the accuracy of the models, tests
are conducted with different numbers of classes. Similar classes are merged to see how far
two similar classes can be separated without confusion in classification.

doi.org/10.5281/zenodo.4648002
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This study is performed with semantic segmentation networks, testing well-known [22–26]
convolutional neural networks such as UNet [20] or DeepLabV3+ [21]. This means that
not only are different imagery sources tested but also different methods. In addition,
the complexity of the target classes is studied. Different numbers of classes, generic and
specific classes, and the use of an all-purpose class are also evaluated in this study.

After training and testing, the feasibility of deployment is evaluated for the most
relevant implementations. A microservices architecture following modern standards is
then deployed to create an inference prototype on different infrastructures. Thus, the per-
formance and cost of different deployments can be studied. The deployments compared
are local, infrastructure as a service (IaaS), container as a service (CaaS), and function as a
service (FaaS). The hardware and its components are also compared, including the use of a
GPU versus a CPU, to determine whether the added cost of a GPU is justified.

In summary, the contributions offered by this work are the following:

• Different sources of imagery such as aircraft and satellite imagery are compared.
• Two new public datasets to evaluate land use classification with different characteris-

tics and complexities are released for public use.
• Differences in GSD, number of bands of the images, resolution, and other characteris-

tics are evaluated for semantic segmentation for land use classification.
• Semantic segmentation methods are evaluated in aerial and satellite imagery.
• The complexity of classes and target classes is studied.
• Cost performance of different deployments for a possible implementation of a seman-

tic segmentation model for land use classification in aerial imagery is analyzed.

2. Materials and Methods
2.1. Datasets
2.1.1. Target Classes

“Sistema de Información Geográfica de Parcelas Agrícolas” or SIGPAC, is a free
database provided by the Spanish government which allows one to geographically identify
the plots declared by the farmers. It has up to thirty different classes defined, but according
to the requisites of the potential users of this kind of product, not all of these classes are
relevant for agriculture. From SIGPAC the following classes are extracted, each of them
associated to a color. Both UOPNOA and UOS2 datasets will use the same classes and
color palette.

• UN—Unproductive
• PA—Pastureland
• SH—Shrub grass
• FO—Forest
• BU—Buildings and urban area
• AR—Arable Land
• GR—Grass with trees
• RO—Roads
• WA—Water
• FR—Fruits and nuts
• VI—Vineyard

Pixels that do not correspond with any of these classes will either be assigned to an
all-purpose class called “OT—Other” or be unused depending on the experiment. This
class is of no relevance to the study and its only purpose it to provide a realistic prediction
that permits pixels that do not belong to any other target class.

To test a lower number of more generic classes, new classes made from combinations of
the previous one are created. This allows for simpler experiments to study class complexity.

• PASHGR—All pastures
• BURO—All infraestructures
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• ARVI—Arable lands and vineyards

2.1.2. Uopnoa Dataset

PNOA is a database of digital aerial orthophotographs that are accessible for free in
Enhanced Compressed Wavelet, a format capable of compressing enormous images and
storing their georeference. Georeference is important to establish the ground truth for a
dataset as it makes it possible to merge data from different sources such as SIGPAC. This
format is necessary because of the resolution of the images, with hundreds of thousands
of pixels in width and height, but it can be converted to GEOTIFF if required. Each
orthophotograph has a GSD of 0.25 m/pixel and covers a region equivalent to one MTN50
page, the National Topographic Map of Spain. One of the main advantages of PNOA, apart
from its great GSD, is that the images have no clouds or other defects. However, it has a
great disadvantage for periodic crop monitoring as this data is only updated once a year.
Information about the bands is described in Table 1.

Table 1. Bands from PNOA.

Bands GSD (m/pixel) Bits

B1 Red 0.25 8
B2 Green 0.25 8
B3 Blue 0.25 8
B4 NIR 0.25 8

UOPNOA consists of 33,699 images of 256 × 256 pixels. These images are cropped
out of PNOA images that cover a region equivalent to an MTN50 page. In order to keep
the georeferencing data in the images, functions from the GDAL library are used to crop
the images.

Images from PNOA are downloaded using CNIG (Centro Nacional de Información
Geográfica) [27], as this is the official procedure of the government of Spain to download
PNOA imagery. However, the band “B4 NIR” cannot be downloaded.

The annotation process was carried out using the coordinates of the SIGPAC plots to
colour the regions of the images to generate masks. Since the images are georeferenced,
this process can be done automatically.

Figure 1 shows one of these cropped images. To check that the ground truth has been
correctly generated, it is compared to official data from the SIGPAC visor. A screenshot of
this visor is presented next to the ground truth mask. The SIGPAC visor separates each
plot, or individually fenced piece of land, but as only the type of land use is needed, there
is no need to separate plots with the same type.

(a) (b) (c)

Figure 1. Cropped image and ground truth checking for UOPNOA. (a) cropped image of
256 × 256 pixels from a PNOA image, (b) SIGPAC visor of the same region to check the ground truth
mask , (c) ground truth mask.
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The number of plots from SIGPAC used to make the ground truth for each class is
presented in Table 2 along with the number of pixels of the UOPNOA dataset. A visual
representation of the pixels is shown in Figure 2. A large difference between the AR class
and the rest of the classes can be observed. This kind of land use is usually bigger than the
rest of the target classes, and in the region selected this class is very common.

Table 2. Number of SIGPAC plots and pixels for each class used in UOPNOA.

Class Plots # of Pixels

UN 410 8,095,351
PA 1883 46,738,269
SH 3467 168,342,415
FO 472 73,980,816
BU 125 7,562,696
AR 4935 968,106,602
GR 220 93,208,409
RO 943 67,552,872
WA 340 19,776,364
FR 93 4,150,529
VI 1759 163,774,218

Number of pixels of UOPNOA

UN PA SH FO BU AR GR RO WA FR VI

Class

0

1

2

3

4

5

6

7

8

9

10

# 
of

 p
ix

el
s

108

Figure 2. Number of pixels for each class of the dataset UOPNOA.

2.1.3. Uos2 Dataset

Sentinel-2 is a mission based on a constellation of two identical satellites (Sentinel-2A
and Sentinel-2B) on the same orbit, which offers its data for free in GEOTIFF. This format
is capable of storing not only the image with as many bands as necessary but also all the
data needed to georeference every pixel in the image. These georeferences are used to
establish the ground truth from SIGPAC data. Sentinel-2 offers thirteen different bands,
with different wavelengths, bandwidths, and GSDs. Each satellite has a 10-day period
around the equator and 4–6 days at midlatitudes. However, since they are half a revolution
apart, the time required to update the images is reduced by half.
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Sentinel-2 has been widely used in works that study semantic segmentation of satellite
imagery, as there are more than 11,000 papers mentioning this satellite in 2020 and more
than 38,000 in total. One of its main advantages is its period of five days around the equator
and 2–3 days at midlatitudes.

In Table 3, the data for each band is shown. The columns “Wavelength” and “Band-
width” have information from Sentinel-2A/Sentinel-2B in this same order.

Table 3. Bands from Sentinel-2A and Sentinel-2B.

Band Wavelength (nm) Bandwidth (nm) GSD (m/pixel)

B1 Coastal aerosol 442.7/442.2 21/21 60
B2 Blue 492.4/492.1 66/66 10

B3 Green 559.8/559.0 36/36 10
B4 Red 664.6/664.9 31/31 10
B5 VRE 704.1/703.8 15/16 20
B6 VRE 740.5/739.1 15/15 20
B7 VRE 782.8/779.7 20/20 20
B8 NIR 832.8/832.9 106/106 10

B8A Narrow NIR 864.7/864.0 21/22 20
B9 Water vapour 945.1/943.2 20/21 60
B10 SWIR Cirrus 1374.0/1376.9 31/30 60

B11 WIR 1614.0/1610.4 91/94 20
B12 SWIR 2202.0/2185.7 175/185 20

UOS2 consists of 1958 images of 256 × 256 pixels, all of them taken in July 2020.
These images are cropped from Sentinel-2 images. To facilitate the generation of ground
truth masks, images from Sentinel-2 that cover entire regions from MTN50 pages and its
respective data from SIGPAC are obtained. Combining these to make the ground truth is
straightforward. Then, these images are cropped to images of 256 × 256 pixels.

Images from Sentinel-2 are downloaded using SentinelHub [28], as this is the easiest
way to download a specified region from a concrete date using a simple script.

To obtain valid images from Sentinel-2, images that do not contain clouds or any other
defect are searched for manually. When a region of interest includes anything that could
compromise its quality, another date on which the image has no defects is found. In this
manner, the number of images to check goes from 1958 small images to 39 larger Sentinel-2
images, making it much easier to check manually.

The annotation process was carried out similarly to the UOPNOA dataset, using the
coordinates of the SIGPAC plots to paint the mask accordingly.

Figure 3 shows an example of one these cropped images and its mask. In the same
way as before, to check that the ground truth is correctly generated, it is compared with the
official data from the SIGPAC visor.

(a) (b) (c)

Figure 3. Cropped image and ground truth checking for UOS2. (a) cropped image of 256 × 256 pixels
from a Sentinel-2 image, (b) SIGPAC visor of the same region , (c) ground truth mask.
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The number of plots from SIGPAC used to make the ground truth for each class
is presented in Table 4 along with the number of pixels of the UOS2 dataset. A visual
representation of the pixels is in Figure 4. Given that the UOS2 dataset covers the same
region as the UOPNOA dataset, a large difference between the AR class and the rest of the
classes is also observed.

Table 4. Number of SIGPAC plots used in UOPNOA.

Class Plots # of Pixels

UN 26,912 1,455,995
PA 152,359 5,591,140
SH 265,046 16,465,578
FO 48,977 10,746,146
BU 207,839 1,047,900
AR 772,427 60,046,203
GR 28,649 4,494,801
RO 73,250 3,719,742
WA 16,802 1,733,641
FR 6306 566,355
VI 87,071 4,126,803

Number of pixels of UOS2

UN PA SH FO BU AR GR RO WA FR VI

Class

0

1

2

3

4

5

6

7

# 
of

 p
ix

el
s

107

Figure 4. Number of pixels for each class of the dataset UOS2.

2.2. Analysis of the Evaluated Architectures
2.2.1. Unet

Originally developed for binary classification to segment cells in biomedical images,
UNet is one of the most widely referenced networks in semantic segmentation, cited in over
25,000 papers. Its original motivation was to train and produce precise predictions with as
few training images as possible. The name UNet comes from its symmetric encoder-decoder
architecture, giving it a u-shaped architecture. As it has a relatively simple architecture, it
offers a high degree of flexibility. Thanks to this flexibility, many networks based on its
architecture have been developed. UNet was quickly modified to work with all kinds of
images and numbers of classes and is currently the most widely used with satellite imagery.
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Therefore, UNet will be used in this evaluation study. In Figure 5, an overview of UNet
architecture can be seen.

64 64
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256 256
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512 256

256 128
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512 512
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25
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output
segmentation

map

conv 3x3, Relu

copy and crop 

max pool 2x2

up-conv 2x2

conv 1x1

Figure 5. UNet architecture. This diagram is based on the original UNet publication [20].

2.2.2. Deeplab

Developed by Google, this network is still under development, having had a number
of versions until now. The first version [29] uses atrous convolutions to control the res-
olution at which feature responses are computed. The second version, DeepLabV2 [30],
adds an Atrous Spatial Pyramid Pooling (also known as ASPP) module to make better
predictions at different scales. The third version, DeepLabV3 [31], upgrades the ASPP
module and also adds Batch Normalization to the architecture to make setting up the
training easier, since a manual normalization is no longer needed. The fourth version,
DeepLabV3+ [21], adds a decoder module to convert its architecture to encoder-decoder.
Finally, there is also an auto machine learning version called AutoDeepLab [32], whose
architecture is based on DeepLabV3+. AutoDeepLab is not evaluated in this work because
its computational cost would make the time required to train it far too long. Therefore,
because DeepLabV3+ is the most recent version and usually obtains better results than
UNet, it has been selected for evaluation in this paper. This architecture is widely used
since it has over 3600 citations on its paper. In Figure 6, an overview of DeepLabV3+
architecture can be seen.

2.3. Network and Training Parameters

In this section the following parameters used in the experiments to train the models
and to modify the architecture of the networks are described:

• Input size: The resolution and number of channels of the input images.
• Classes: Number of classes to train.
• Backbone network: Classification network used as a part of the initial architecture of

a more complex network, such as DeepLabV3+.
• Depth: The number of max pooling layers in the UNet architecture.
• Filters on first level: The number of filters on the first convolution of the UNet

architecture. This value is multiplied by 2 on every depth level.
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• Output stride: The division between the input image resolution and the final fea-
ture map. For example, if the input image has a resolution of 256 × 256 and the
final feature map 32 × 32, then the output stride is 8. It controls the separation be-
tween each step of the convolution. This is a configurable parameter in the Google
DeepLabV3+ implementation.

• Padding: A filler that is added to each convolution so as not to reduce the resolution
of the final feature map.

• Class balancing: The method used to prevent a biased training when the dataset
is unbalanced.

• Solver: Algorithm that calculates the gradient when training the network.
• Epochs: Number of times the complete dataset is used in training.
• Fine-Tune Batch Normalization: A parameter that allows the DeepLabV3+ implemen-

tation to train the batch normalization layers instead of using the pretrained ones.
• BatchSize: Number of images used in each batch. Since the entire dataset cannot be

stored in memory, the dataset is divided into batches.
• LearningRate: Parameter that controls how the network weights are adjusted with

respect to the gradient.
• Gradient clipping: Limits the maximum value of the gradient to prevent the exploding

gradient problem when training.
• L2 regularization: A technique to reduce the complexity of a model by penalizing the

loss function. As a result, overfitting is reduced.
• Data augmentation: Generation of new data from the original data.
• Shuffle: The dataset is shuffled on every epoch.

Atrous Conv

1x1 Conv

3x3 Conv 
 rate 6

3x3 Conv 
 rate 12

3x3 Conv 
 rate 18

Image Pooling

1x1 Conv

Upsample by
4

Concat 3x3 Conv Upsample by
41x1 Conv output

  segmentation map

input
image

Encoder

Decoder
Low-Level
Features

DCNN

Figure 6. DeepLabV3+ architecture. A backbone network such as ResNet-101 or Xception65 can be used as DCNN. This
diagram is based on the original DeepLabV3+ publication [21].
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2.4. Performance Metrics

To evaluate accuracy of the trained models, a brief description of the metrics used [33]
is presented below. These metrics are usually calculated per class and then averaged to
obtain a global metric for the model. This is done to prevent unbalanced classes from
affecting the global results.

• True positive (TP): number of pixels that are correctly classified.
• True negative (TN): number of pixels that are from other classes and are correctly

classified as such.
• False positive (FP): number of pixels classified as the target class but belonging to

other classes.
• False negative (FN): number of pixels that are classified as other classes but are from

the target class.
• Producer accuracy (PA): Percentage of correctly predicted pixels of a given class.

Producer accuracy is often called Recall (R).

PA =
TP

TP + FN
(1)

• User accuracy (UA): A percentage that represents how many predictions are correct
from the total number of predictions for that class. User accuracy is often called
Precision (P).

UA =
TP

TP + FP
(2)

• F-score (F11): equivalent to the Dice Coefficient, is a metric that combines both Pro-
ducer accuracy (Recall) and User accuracy (Precision) as a way to represent them as a
single value, making comparisons between models easier.

F1 =
2 × UA × PA

UA + PA
(3)

• Overall accuracy (OA): A percentage that represents how many pixels are correctly
classified from the total. Overall accuracy is often called Global accuracy (GA). This
metric can be misleading if the classes are not balanced. For example, given two
classes, if one of them represents 99% of the pixels in the dataset and the other one
represents the remaining 1%, even if all of the pixels from the second class are classified
wrongly as pixels from the first class, this metric will still obtain an OA of 99%.

OA =
TP

Total of pixels
(4)

• Intersection-Over-Union (IoU): equivalent to the Jaccard Index, this metric measures
the degree of similarity between the ground truth and prediction sets.

IoU =
Area of Overlap
Area of Union

=
TP

TP + FN + FP
(5)

2.5. Experimental Procedure

In order to make a comparison between methods, a basic experimentation with RF
and SVM has been performed. This experimentation consists in using the values Red,
Green, and Blue as features. For the RF and SVM experiments, a total of 12,000 pixels
were used, 1000 pixels for each class. The entire dataset has not been used due to temporal
constraints and because these models do not scale to the same level as a neural networks,
so no improvement is observed above a certain amount of data.

The hyperparameters of all networks must be tuned to match the dataset used. In this
work these hyperparameters are tuned manually in each network for the two datasets
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separately. In the case of UNet, these hyperparameters are: learning rate, epochs, L2
regularization, depth levels, number of filters in the convolutional layers, type of solver,
gradient clipping, and batch size. On the other hand, for DeepLabV3+, the hyperparameters
used are: learning rate, epochs, L2 regularization, type of solver, usage of fine-tune batch
norm, gradient clipping, batch size, and the backbone network used.

Every parameter is tested one by one until its best configuration is found. The effect of
changing multiple parameters at the same time has not been tested. In this regard there is
still leeway for further improvement. As this process is done manually, this methodology
is the best option to obtain an optimal configuration.

There must be sufficient separation between the training and testing data to avoid
repeating samples. To obtain more meaningful and realistic results, the testing must be
done with data that the model has not seen before. To do this separation, the dataset is
divided into four parts. In this way, not only can a separation between training and testing
data be made but also a four-fold crosstesting.

For the selection of the optimal hyperparameters, instead of evaluating each class
separately only the global User and Producer accuracy will be compared. For the best
experiments, both Producer accuracy and User accuracy for each class will be considered
and studied.

The visualization examples from some of the testing data give a better idea of how
well the network performs. These images allow for a more in depth analysis and might
give explanations for some of the results obtained. To distinguish when the “Other” class
is being used, pixels identified with this class are coloured black. Similarly, when no class
is associated with a pixel, these pixels are coloured white. Pixels not classified as belonging
to any class are not taken into account when training or testing the network. This means
that for the purposes of the evaluation, these pixels and their predictions are irrelevant.

The machines used for the experiments consist of a GPU NVIDIA RTX 2080 Ti and a
I7-9700K CPU.

3. Results And Discussion
3.1. Previous Methods

To make a fair comparison and see the performance of the proposed methods, they
should be compared to the previous methods: Random Forest and Support Vector Machine.
Both methods need much less data than a common neural network and take much longer
to run. For this research work a reduced UOPNOA dataset with 1000 samples (pixels)
per class was used, with a total of 12,000 samples. More detailed results can be found in
Table 5. Random Forest achieved results of 0.074% overall accuracy with only four seconds
of training. The Support Vector Machine achieved 0.073% overall accuracy in three and
a half minutes of training. The time required to train these experiments does not scale
linearly: when tested with only 6000 samples, 500 per class, SVM took only about thirty
seconds. The overall accuracy did not improve, obtaining almost the same value of 0.07%.
The testing of the two methods coincides with the same set of images that the rest of the
UOPNOA experiments use.

Table 5. Global metrics for the experiments with RF and SVM on UOPNOA.

Experiment OA PA UA IoU F1

RF 0.074 0.114 0.130 0.034 0.121
SVM 0.073 0.138 0.130 0.035 0.134

The features used for these experiments consist of the red, green, and blue values of
each pixel. Proper experimentation with these methods must include feature engineering.
This is not necessary with neural networks, as they generate their own features. This is a
great advantage, although a large dataset is needed. When comparing Random Forest and
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SVM with proper feature engineering with neural networks, results can still be worse as
long as the dataset used is sufficiently large and variable [22,34,35].

3.2. Experimentation with Uopnoa

Experiments with DeepLabV3+ and UNet for the UOPNOA dataset and a discussion
of their results are presented in this subsection.

3.2.1. Deeplabv3+

Optimal network configuration for DeepLabV3+ with the dataset UOPNOA is pre-
sented in Table 6, and its best training parameters are shown in Table 7. The architecture of
the network used for this experiment is the official Google architecture. It can be down-
loaded from its repository on GitHub along with pretrained models to reduce training time.
After manually tuning the network to work with this dataset, the optimal hyperparameters
found are listed in Table 6.

Table 6. Network parameters for DeepLabV3+ on UOPNOA.

Network Parameters

Input size 256 × 256 × 3
Classes 11

Backbone network Xception41
Output stride 16

Padding Yes
Class balancing Median frequency weighting

The input size from the evaluation for UNet was maintained for all the experiments
in this work to compare the exact same dataset between implementations. The following
backbone networks were tested: Xception65, Xception41, Xception71, MobileNetV2, Mo-
bileNetV3 Small, MobileNetV3 Large, and Resnet50. For each of them, the best learning
rate, batch size, and number of epochs was established. The values tested for output stride
are 8 and 16, the most commonly used. Padding is always added to equal the sizes of
the outputs to the inputs, making tasks such as translating information to geojson easier.
For class balancing, “No class weighting”, “inverse frequency weighting”, and “median
frequency weighting” are compared.

Table 7. Training parameters for DeepLabV3+ on UOPNOA.

Training Parameters

Solver Adam
Epochs 60

Fine Tune Batch Normalization No
Batch size 12

Learning rate 0.00005
Gradient clipping No
L2 regularization 0.0004

Shuffle Yes
Data augmenting No

For the training parameters in Table 7, the network solvers Adam [36] and SGDM [37]
were both evaluated. The number of epochs for training was calculated by overshooting
their values and then observing where the overfitting starts or where the loss seems to
plateau. The use of Fine-Tune Batch Normalization was tested with multiple configurations
to ensure that it does not depend on parameters such as the backbone network, learning
rate, batch size, or epochs. Batch size is the parameter with the greatest effect. With small
batch sizes, the use of Fine-Tune Batch Normalization makes the results noticeably better,
but with bigger batch sizes, in the order of twelve images, results are slightly worse.
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DeepLabV3+ is a very complex architecture but a batch of twelve images can be used for
all the backbone networks evaluated for eleven gigabytes of VRAM. The more images used
in a single batch, the better the results. Batch sizes in the range of four to sixty-four were
tested for those backbone networks that allow it. Constant learning rates from 0.001 to
0.00005 were studied using decrements that consist of halving or dividing by ten its value
for each experiment, depending on its loss during training. The training process did not
encounter the exploding gradient problem so gradient clipping was not needed.

Two experiments were carried out to compare the use of the class “Other”. The first
experiment, called “Base”, had no “Other” class, whereas the second experiment, called
“All-Purpose”, did. Both experiments used the same data and configurations.

Global metrics for both experiments can be seen in Table 8. In the “Base” experiment,
a considerable increase in PA and UA was observed, with approximately 10% and 8%
better results for PA and UA respectively. Moreover, the OA improves by up to 15% when
the “Other” class is not used. This indicates that an all-purpose class does not help in this
kind of dataset and network.

Table 8. Global metrics for the experiment with DeepLabV3+ on UOPNOA.

Experiment OA PA UA IoU F1

Base 0.898 0.781 0.758 0.637 0.769
All-Purpose 0.750 0.678 0.678 0.524 0.678

To prove that the tuning was done correctly, progress from the loss function for
training and validation can be seen in Figure 7. Training loss starts to plateau and validation
loss stabilizes.
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Figure 7. Loss function for the “Base” experiment with DeepLabV3+ for PNOA.

Looking at the results of both experiments by class in Table 9, it is obvious that in most
cases an all-purpose class only introduces confusion. This may be because an all-purpose
class like “Other” is too generic. This class obtains the best results of all of the classes,
but since it is of no interest, this is not the desired behavior.
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Table 9. Class metrics for the experiment with DeepLabV3+ on UOPNOA.

Experiment Base Experiment All-Purpose
Class PA UA IoU PA UA IoU

UN 0.56 0.66 0.43 0.65 0.63 0.47
PA 0.79 0.78 0.65 0.55 0.48 0.27
SH 0.58 0.53 0.38 0.38 0.39 0.30
FO 0.84 0.84 0.73 0.63 0.68 0.49
BU 0.85 0.86 0.76 0.78 0.75 0.62
AR 0.94 0.97 0.92 0.76 0.82 0.65
GR 0.75 0.89 0.69 0.81 0.87 0.72
RO 0.84 0.60 0.54 0.82 0.75 0.65
WA 0.77 0.47 0.41 0.75 0.52 0.44
FR 0.66 0.73 0.53 0.46 0.56 0.34
VI 0.96 0.95 0.92 0.62 0.77 0.53
OT - - - 0.86 0.86 0.76

From Figures 8 and 9 the two experiments can be compared graphically. At first
glance, both seem to make good predictions, especially when all the pixels of an image
are of the same class. However, upon closer inspection the “Base” experiment is sightly
more stable and closer to a human technician’s classifications. This confirms the figures
presented in Table 9.

3.2.2. Unet

The optimal network configuration for UNet with the dataset UOPNOA is presented
in Table 10, along with its best training parameters in Table 11. This architecture is exactly
the same as the official publication [20], except that it has been adapted to take RGB images
instead of grayscale images. As this problem is a multi-class classification rather than
a binary classification, categorical cross entropy (CCE) is used to calculate loss values.
Different numbers of depth levels, from one to five, and filters on the first level, from 16 to
128, were tested. The optimal configurations coincide with the original architecture.

Table 10. Network parameters for UNet on UOPNOA.

Network Parameters

Input size 256 × 256 × 3
Classes 11
Depth 4

Filters on first level 64
Padding Yes

Class balancing Median frequency weighting

After testing multiple resolutions from 1024 × 1024 pixels to 256 × 256 pixels for
the input size of the images, it was found that the network performs far better when
using a resolution of 256 × 256 pixels. To maintain cohesion and facilitate comparisons,
this resolution is used throughout this work. As for class balancing, “median frequency
weighting” always obtains the best results.
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Figure 8. Visualization of the predicted results for DeepLabV3+ evaluated in UOPNOA (Experiment Base). (1st col.)
Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of original images with
ground truth masks, (5th col.) overlapping of original images with predictions.
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Figure 9. Visualization of the predicted results for DeepLabV3+ evaluated in UOPNOA with “Other” class (Experiment
All-Purpose). (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of
original images with ground truth masks, (5th col.) overlapping of original images with predictions.
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Table 11. Training parameters for UNet on UOPNOA.

Training Parameters

Solver Adam
Epochs 20

Batch size 16
Learning rate 0.0001

Gradient clipping 1.0
L2 regularization 0.0001

Shuffle Yes
Data augmenting No

Tuning the training parameters from Table 7 is a process equivalent to that described
for the DeepLabV3+ network, except there is no backbone network or Fine-Tune Batch
Normalization. Gradient clipping is not relevant as its value in this case is too high, so it
does not affect training. Furthermore, it is not needed since there is no exploding gradient
problem. Finally, L2 regularization was tested and a value of 0.0001 works best, reducing
overfitting and improving results. Higher values were tested but caused accuracy to drop.
Similarly, when using lower values, overfitting starts earlier, reducing accuracy in testing.

To compare UNet with DeepLabV3+, both experiments done with UOPNOA are
recreated with the optimal configuration for UNet. This also allows for a study on the
behavior of the all-purpose class “Other” in different networks.

Global metrics for both experiments can be seen in Table 12. In the experiment “Base”,
an increase in PA and UA is observed, around 1% and 8% better results respectively.
The OA improves up to 19% when the “Other” class is not used. Like the experiments with
DeepLabV3+, this indicates that an all-purpose class does not help in this kind of dataset
and network. When comparing these results to DeepLabV3+, a difference of 16% and 30%
in PA and UA is observed for the best experiments.

Table 12. Global metrics for the experiment with UNet on UOPNOA.

Experiment OA PA UA IoU F1

Base 0.830 0.618 0.473 0.473 0.536
All-Purpose 0.641 0.607 0.391 0.391 0.476

To prove that the tuning has been done correctly, progress from the loss function for
training and validation can be seen in Figure 10. Validation loss stabilizes but training loss
keeps lowering; if more epochs are executed, overfitting of the model would start to occur.

In Table 13, the results from each class are presented. Like the experiments conducted
on DeepLabV3+, there is a considerable increase in accuracy when the all-purpose class
is not used. On the other hand, in this case the class “Other” has the worst results. Like
the DeepLabV3+ experiments, the rest of the classes drop noticeably when PA and UA
are considered.

Figures 11 and 12 show the predicted results from the experiments. These predictions,
when compared to those of DeepLabV3+, are quite noisy, and there is far more confusion
between classes. In this case the experiment “Base” is similar to the experiment “All-
Purpose” for these particular examples, even though there is a difference of 8% in UA.
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Figure 10. Loss function for the “Base” experiment with UNet for PNOA.

Table 13. Class metrics for the experiment with UNet on UOPNOA.

Experiment Base Experiment All-Purpose
Class PA UA IoU PA UA IoU

UN 0.45 0.29 0.21 0.40 0.23 0.17
PA 0.54 0.25 0.20 0.36 0.21 0.15
SH 0.69 0.62 0.49 0.64 0.51 0.39
FO 0.21 0.78 0.20 0.52 0.63 0.40
BU 0.59 0.92 0.56 0.71 0.62 0.49
AR 0.93 0.96 0.90 0.88 0.75 0.68
GR 0.62 0.70 0.49 0.67 0.59 0.46
RO 0.77 0.51 0.45 0.79 0.37 0.34
WA 0.60 0.43 0.34 0.63 0.30 0.26
FR 0.45 0.92 0.43 0.54 0.70 0.44
VI 0.90 0.97 0.88 0.95 0.76 0.74
OT - - - 0.15 0.47 0.13
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Figure 11. Visualization of the predicted results for UNet evaluated in UOPNOA (Experiment Base). (1st col.) Original
images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of original images with ground truth
masks, (5th col.) overlapping of original images with predictions.
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Figure 12. Visualization of the predicted results for UNet evaluated in UOPNOA with “Other” class (Experiment All-
Purpose). (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of original
images with ground truth masks, (5th col.) overlapping of original images with predictions.
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3.3. Experimentation with Uos2

Experiments with DeepLabV3+ and UNet for the UOS2 dataset and discussion of
their results are presented in this subsection.

3.3.1. Unet with All Classes

Optimal network configuration for UNet with the dataset UOS2 is presented in
Table 14 and its best training parameters in Table 15. This architecture is similar to its first
official publication [20], but as the images used have ten different bands, the architecture
has been changed to allow these input images. In addition, the problem to solve is not a
binary classification but rather a multi-class classification. The final difference from the
original implementation is that rather than using sixty-four filters on the first depth level,
thirty-two are used, as this is the optimal configuration found. This means that on every
depth level there are half as many filters as the original implementation. As a result, far
less computational resources are needed to train the network, with no tradeoff in accuracy
for this particular dataset. The number of depth levels necessary were also tested, and four
were found to be optimal, coinciding with the official implementation.

Table 14. Network parameters for UNet on UOS2.

Network Parameters

Input size 256 × 256 × 10
Classes 11
Depth 4

Filters on first level 32
Padding Yes

Class weighting Median frequency

Table 15. Training parameters for UNet on UOS2.

Training Parameters

Solver Adam
Epochs 125

Batch size 32
Learning rate 0.0005

Gradient clipping 1.0
L2 regularization 0.0001

Shuffle Yes
Data augmenting Yes (Mirroring on both axes)

Training parameters for Table 15 were found following the same procedure described
on UNet for UOPNOA. In this case data was augmented for the training data since there
were far fewer images than on UOPNOA.

After training the model, the test data was evaluated. The results obtained can be
seen in Table 16. In addition to the experiments “Base” and “All-Purpose”, four more
experiments were carried out. These included: experiment “RGB” to test how the dataset
performs with only RGB bands, experiment “ME”, which utilizes only three multi-spectral
bands (B8 NIR, B12 SWIR, B6 VRE) to compare with the RGB experiment, and two addi-
tional experiments using six and thirteen bands. Given that the “Base” experiment and
the “All-Purpose” experiments use ten bands, a comparison between three, six, ten, and
thirteen bands can be made. All the experiments except the “Base” experiment use the
class “Other”.

Using only three bands, both the “RGB” and “ME” experiments perform badly, ob-
taining a PA and UA close to 10%. Moreover, there is little difference between using RGB
bands or the three multi-spectral bands selected.
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The experiments with six, ten, and thirteen bands have similar results. This proves
that only six bands are really needed and that three bands does not provide enough data to
differentiate between classes at this GSD.

A comparison between the “Base” experiment from UNet on UOPNOA (0.61 PA and
0.47 UA) and the best experiment from UNet on UOS2 (0.56 PA and 0.42 UA) reveals that
UOPNOA has better results. Thus, GSD is the most important feature of an aerial imagery
dataset. The next most important factor is to have more bands than simply RGB.

Finally, the “Base” experiment outperforms the “All-Purpose” experiment in the same
way that occurs in the UOPNOA dataset. This can be seen in detail in Table 17

Table 16. Global metrics for the experiment with UNet on UOS2.

Experiment OA PA UA IoU F1

Base 0.647 0.569 0.428 0.323 0.489
All-Purpose 0.527 0.521 0.364 0.259 0.429

RGB 0.585 0.090 0.079 0.053 0.084
ME 0.570 0.091 0.109 0.052 0.099

6 bands 0.569 0.480 0.373 0.252 0.420
13 bands 0.589 0.463 0.371 0.261 0.412

Table 17. Class metrics for the experiment with UNet on UOS2.

Experiment Base Experiment All-Purpose
Class PA UA IoU PA UA IoU

UN 0.56 0.22 0.19 0.51 0.22 0.18
PA 0.42 0.28 0.20 0.46 0.21 0.17
SH 0.36 0.67 0.30 0.37 0.54 0.28
FO 0.59 0.60 0.43 0.52 0.48 0.34
BU 0.81 0.50 0.45 0.74 0.39 0.34
AR 0.77 0.94 0.73 0.69 0.85 0.62
GR 0.62 0.37 0.30 0.58 0.28 0.23
RO 0.36 0.16 0.12 0.40 0.13 0.11
WA 0.61 0.22 0.19 0.63 0.17 0.16
FR 0.34 0.10 0.08 0.45 0.08 0.07
VI 0.78 0.59 0.51 0.76 0.56 0.48
OT - - - 0.09 0.38 0.08

To prove that the tuning has been done correctly, progress from the loss function for
training and validation can be seen in Figure 13. Training loss and validation loss both
start to stabilize.

Observing the visualization of the predictions from both experiments (Figures 14 and 15),
it is clear that UOS2 is far more complex than UOPNOA. There are many different classes
in a single image and their area is considerably smaller. Taking this into consideration,
the results provided are good. When examining the predictions globally, they are very
similar to the ground truth.

Finally, when comparing the use of the class “Other”, the predictions are similar
although there is a significant difference in results.
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Figure 13. Loss function for the “Base” experiment with UNet for UOS2.

3.3.2. Unet with Simplified Classes

The purpose of these experiments is to test the effects of using fewer classes by merging
similar classes together. In addition, the effects of including the all-purpose class “Other”
with fewer and more stable classes is studied. To make these new classes, the confusion
matrix from the experiments is used to distinguish which classes are the most similar. Only
classes that are similar from a logical standpoint are merged. Classes that do not obtain
good results and have little relevance are not used.

Optimal configurations from the previous experiments with eleven classes are reused
(Tables 18 and 19). Experiments were conducted to verify that these configurations are
still optimal.

Table 18. Network parameters for UNet with simplified classes on UOS2.

Network Parameters

Input size 256 × 256 × 10
Classes 4
Depth 4

Filters on first level 32
Padding Yes

Class weighting Median frequency

Table 19. Training parameters for UNet with simplified classes on UOS2.

Training Parameters

Solver Adam
Epochs 125

Batch size 32
Learning rate 0.0005

Gradient clipping No
L2 regularization No

Shuffle Yes
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Figure 14. Visualization of the predicted results for UNet evaluated in UOS2 (Experiment Base). (1st col.) Original images,
(2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of original images with ground truth masks,
(5th col.) overlapping of original images with predictions.
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Figure 15. Visualization of the predicted results for UNet evaluated in UOS2 with “Other” class (Experiment All-Purpose).
(1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of original images
with ground truth masks, (5th col.) overlapping of original images with predictions.

After training the model, an evaluation with the test data was carried out. The results
obtained can be seen in Table 20. “Base” and “All-Purpose” experiments (with and without
class “Other”) are carried out to compare with previous experiments.
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Globally, the results coincide with previous experiments in that the “Base” experiment
outperforms the “All-Purpose” experiment. Merging and reducing the number of classes
drastically improves the accuracy of the predictions, obtaining an improvement of almost
22% and 25% on PA and UA, respectively, for the best experiments.

Table 20. Global metrics for the experiment with UNet with simplified classes on UOS2.

Experiment OA PA UA IoU F1

Base 0.822 0.786 0.677 0.576 0.727
All-Purpose 0.650 0.639 0.578 0.402 0.607

Looking at the results per class from Table 21, outstandingly high PA and UA can be
seen for every class except BURO. As seen in previous experiments, when the “Other” class
is used, all the remaining classes lose accuracy.

To prove that the tuning has been done correctly, progress from the loss function for
training and validation can be seen in Figure 16. Validation loss stabilizes but training loss
keeps lowering; if more epochs are executed, overfitting of the model would start to occur.
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Figure 16. Loss function for the “Base” experiment with UNet for UOS2 with simplified classes.

Table 21. Class metrics for the experiment with UNet with simplified classes on UOS2. These
classes consist of PASHGR (PA+SH+GR—all pastures), BURO (BU+RO—all infrastructures), ARVI
(AR+VI—arable lands and vineyards), and OT.

Experiment Base Experiment All-Purpose
Class PA UA IoU PA UA IoU

PASHGR 0.82 0.81 0.69 0.71 0.52 0.43
BURO 0.70 0.25 0.23 0.70 0.17 0.16
ARVI 0.83 0.95 0.80 0.77 0.85 0.68

OT - - - 0.36 0.75 0.21
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To prevent confusion between the classes in Figures 17 and 18, a change in the color
keys of classes has been made. In this visualization it is interesting to note that the class
BURO, which performs the worst, has predictions around the boundaries of the plots.
It seems to confuse the boundaries with roads. Furthermore, roads that are not classified
as such in the original ground truth are predicted, outperforming the ground truth. This
means that the low accuracy in this class can be seen as an error in the ground truth, which
is logical given that not every dirt road is registered in the SIGPAC. This behavior may be
beneficial to the predictions even though numerically the UA is low.

Figure 17. Visualization of the predicted results for UNet evaluated in UOS2 for four classes (Experiment Base). (1st col.)
Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of original images with
ground truth masks, (5th col.) overlapping of original images with predictions.
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Figure 18. Visualization of the predicted results for UNet evaluated in UOS2 with four classes and “Other” class (Experiment
All-Purpose). (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) overlapping of
original images with ground truth masks, (5th col.) overlapping of original images with predictions.
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3.4. Deployment

After training the models, a prototype for inference with a microservice architecture
that follows modern standards using Flask was created. To ensure that all the required
dependencies are met and to make deployment easier, Docker was used to containerize
the microservice. Then, the different infrastructures were deployed to test performance.
The model selected for this deployment is the UNet architecture with simplified classes
from the “Base” experiment. The deep learning tool used for the inference is PyTorch.

Semantic segmentation networks can only operate with the same resolution used for
training when the inference is done. This means that the only way to predict larger images
is by cropping them and then fusing the predictions together. Each cropped image will take
the same amount of time because every pixel in the image is predicted, so the same number
of predictions are made for every image fed to the network. For this reason, the method
used to test performance is based on the number of images requested per petition. These
images have the same resolution as those used for training.

The majority of the tools used in Geographic Information Systems are designed to
work with geojson as this format is easier to work with than a mask. To add realism to
the service, a process to convert the output from the network to a georeferenced geojson
with every region and land use type predicted on it, is added at the end of each petition.
This adds many computations to the prototype as it must polygonize the mask from the
output of the inference and convert it to a geojson. To limit the size the geojson, the Ramer–
Douglas–Peucker algorithm [38] is executed to simplify the numbers of points defining the
polygons. This process is adapted to make use of multiple CPU cores.

In Figure 19, performance by infrastructure is presented. “Local:A-B” are the machines
used to train the networks in this work. These machines are connected via 1Gbit LAN.
The rest of the infrastructures are provided by Microsoft Azure. Infrastructures “NC6”,
“A4 v2”, “F4s v2”, and “D4as v4” are IaaS. CaaS and FaaS implementations from Azure are
also evaluated. In all the cases, the client is a local machine from outside Azure’s network
with a connectivity of approximately 250 Mbps.

For the evaluation of performance, times are defined as follows: “Load” is the time
to access the libraries, loading the images into the memory, etc. “Prediction” is the time
needed for the model to make the predictions. “Results” is the time required to convert the
predictions into a geojson format. For this task, polygonization of the predictions masks,
a simplification of their results using the algorithm RDP, and the generation of geojsons are
timed. “Network” is the time needed to upload the images to be predicted and the time
needed to download the predictions and their geojsons.

Performance for one image is presented in Figure 19. To compare performance
between infrastructures, the latency ratio is shown on top of each stacked bar. This ratio
is calculated as the total time of a given experiment divided by the total time of the best
experiment. Cost-performance metrics for ten images are presented in Figure 20.

In Table 19, a minimal improvement when using GPU can be seen. “Load” times
are negligible. “Prediction” depends on the single core speed and the number of cores.
However, using a GPU is always faster. “Results” have the greatest impact on time,
depending mainly on single core speed. “Network”is not affected by the infrastructure,
except in the case of “Local:A-B” where both computers are in the same local network.

Table 20 shows almost no improvement when using a GPU, but the cost is multiplied.
A tradeoff in cost and performance must be done since CaaS is more economical, but IaaS
solutions such as “D4as v4” and “F4s v2” have better performance. “Local:A-B” seems
to be the best option even when accounting for electricity cost and amortization over
five years. Setting up and maintaining this kind of infrastructure can be excessively
complex. However, cloud options get upgrades to the hardware from time to time. FaaS
cost performance is calculated as if there were always a petition running for the entire hour.
This means that the cost is zero if there are no petitions, but it would be greater if there
were multiple simultaneous petitions causing multiple instances of FaaS to execute at the
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same time, multiplying its cost. The rest of the infrastructures are priced for availability
and not use: they can await petition at the same cost.

Local: A-B NC6 A4 v2 F4s v2 D4as v4 CaaS FaaS

0

2

4

6

8

10

1x 1.06x

1.95x 1.99x

7.3x

2.05x 1.93x

3.77x

3.03x
2.83x 2.89x

4.25x

T
o
ta
l
T
im

e
(s
ec
o
n
d
s)

Load Prediction Results Net

GPU CPU GPU CPU CPU CPU CPU 1 2 3 4 CPU

Local: A-B NC6 A4 v2 F4s v2 D4as v4 CaaS FaaS

0

2

4

6

8

10

1x 1.06x

1.95x 1.99x

7.3x

2.05x 1.93x

3.77x

3.03x
2.83x 2.89x

4.25x

T
o
ta
l
T
im

e
(s
ec
o
n
d
s)

Load Prediction Results Net

GPU CPU GPU CPU CPU CPU CPU 1 2 3 4 CPU

Figure 19. Performance in seconds per infrastructure.
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Figure 20. Cost performance per infrastructure. Prices and the computing power are subject to change (April 2021).

4. Conclusions

Land use classification in aerial imagery, especially satellite imagery, is a complex
task. Thanks to recent advances in convolutional neural networks, a specific technology
called semantic segmentation seems the most appropriate to improve on actual results.
UNet is the most widely used semantic segmentation network thanks to its great flexibility,
but when compared to DeepLabV3+, the latter performs far better. As a counterpoint,
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DeepLabV3+ lacks an implementation that can use more than three bands, so it is the best
option for RGB. However, for satellite imagery, where most of the data is presented as
extra multi-spectral bands, it falls short. This gives the advantage to UNet for satellite
imagery. Taking this into consideration, the most important factor for good accuracy in
aerial datasets is their GSD. In the case of UOPNOA, impressive results were achieved with
a GSD of 0.25 m/pixel (PA and UA of 78% and 75% respectively for DeepLabV3+ and 61%
and 47% for UNet). However, in UOS2 using only RGB bands, its results are completely
unusable with a PA and UA of less than 10%. UOS2 has a GSD of 10–60 m/pixel, which
means that the difference in resolution is from 40 to 240 times worse.

When using UOS2 with at least six bands, including RGB and multi-spectral bands,
its accuracy rises greatly (up to 48% PA and 37% UA), obtaining far better results but still
falling short when compared to UOPNOA. However, this difference its greatly reduced
when using more bands. While it is true that the GSD is of fundamental importance,
the number and type of bands used are equally important. In this way, satellite imagery
can equal the results of aircraft imagery. It is interesting to note that using more than six
bands, even as many as thirteen, gives no significant improvement in the classification of
land use.

Merging together similar or confusing classes improves the predictions noticeably (up
to 78% PA and 67% UA for UNet with UOS2). This proves that it is better to use fewer, well
defined classes. This can be verified with the experiment for UNet in UOS2 that uses only
three classes, as this is one of the experiments with the best results even when compared
with DeepLabV3+ on UOPNOA.

Using an all-purpose class is counterproductive, causing all the remaining classes
to lose accuracy. There is a large variability associated with pixels that do not belong
to any of the target classes. Semantic segmentation models will have to deal with these
“unknown” classes when used in practice, unless the user removes these pixels beforehand.
This could be done by selecting only the region of a desired plot, although this reduces
the attractiveness of the approach. This approach is only useful if the input images have
no pixels that belong to the target classes. Therefore, while this is acceptable for research
purposes, only specific use cases can benefit from it.

The use of the two newly created datasets for land use classification in aerial imagery,
UOPNOA and UOS2, are proven to be good for comparisons and evaluation of different
models thanks to their great complexity and variability.

Finally, for performance with an inference prototype, network time alone takes more
time than the predictions, even using only CPU. This is extremely important to take into
account when choosing an infrastructure to offer services, like the one presented in this
work. The use of a GPU is not recommended as it increases cost greatly, with no significant
improvement in performance.
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