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Abstract
This study builds a predictive model capable of estimating the critical temperature of a superconductor from experi-

mentally determined physico-chemical properties of the material (input variables): features extracted from the thermal

conductivity, atomic radius, valence, electron affinity and atomic mass. This original model is built using a novel hybrid

algorithm relied on the multivariate adaptive regression splines (MARS) technique in combination with a nature-inspired

meta-heuristic optimization algorithm termed the whale optimization algorithm (WOA) that mimics the social behavior of

humpback whales. Additionally, the Ridge, Lasso and Elastic-net regression models were fitted to the same experimental

data for comparison purposes. The results of the current investigation indicate that the critical temperature of a super-

conductor can be successfully predicted using this proposed hybrid WOA/MARS-based model. Furthermore, the results

obtained with the Ridge, Lasso and Elastic-net regression models are clearly worse than those obtained with the WOA/

MARS-based model.

Keywords Critical temperature � Superconductivity � Multivariate adaptive regression splines (MARS) � Whale

optimization algorithm (WOA)

1 Introduction

Superconducting materials (materials that conduct current

with zero resistance) have significant practical applications

[1–4]. Perhaps the best-known application is in the Mag-

netic Resonance Imaging (MRI) systems widely employed

by healthcare professionals for detailed internal body

imaging. Other prominent applications include the super-

conducting coils used to maintain high magnetic fields in

the Large Hadron Collider at CERN and the extremely

sensitive magnetic field measuring devices called SQUIDs

(Superconducting Quantum Interference Devices). Fur-

thermore, superconductors could revolutionize the energy

industry as frictionless (zero resistance) superconducting

wires and electrical system may transport and deliver

electricity with no energy loss.

A superconductor conducts current with zero resistance

only at or below its superconducting critical temperature

(Tc) [5–9]. Moreover, the scientific model and theory that

predicts Tc is an open problem, which has been baffling the

scientific community since the discovery of superconduc-

tivity in 1911 by Heike Kamerlingh Onnes [1–9]. In the

absence of any theory-based prediction models, we take

here an entirely data-driven approach to create a statistical

model that predicts Tc based on its chemical formula.

Indeed, an alternative approach for the superconducting

critical temperature prediction problem is the machine

learning (ML) approach, which builds data-driven predic-

tive models by exploring the relationship between material

composition similarity and critical temperature. Machine

learning methods need a sufficient amount of training data

to be available [10–14], but the availability of an increasing

number of materials databases with experimental
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properties allows the application of these methods for

materials property prediction.

In this investigation, a new hybrid regressive model

based on the multivariate adaptive regression splines

(MARS) technique has been used to successfully predict

the superconducting critical temperature Tc for different

types of superconductors. This novel procedure, which

combines the MARS approximation [15–19] with the

whale optimization algorithm (WOA) [20–22], could be an

attractive methodology that has not been tackled as of yet.

For comparative purposes, the Ridge, Lasso, and Elastic-

net regression models were also fitted to the same experi-

mental dataset to estimate the Tc and compare the results

obtained [23–29]. However, the MARS technique is a

statistical learning methodology built up in accordance

with the statistics and mathematical analysis which has the

ability to deal with nonlinearities including interactions

among variables [30, 31]. It is a nonparametric regression

technique and can be seen as an extension of linear models

that automatically model nonlinearities and complex

interactions between variables. MARS approximation

presents some benefits in comparison with the classical and

metaheuristic regression techniques, including [32–35]: (1)

avoiding physical models of the superconductor; (2) pro-

viding models that are more flexible than linear regression

models; (3) creating models that are simple to understand

and interpret; (4) allowing for the modeling of nonlinear

relationships among the physico-chemical input variables

of a superconductor; (5) offering a good bias-variance

trade-off; and (6) providing an explicit mathematical for-

mula of the dependent variable as a function of the inde-

pendent variables through an expansion of the basis

functions (hinge functions and products of two or more

hinge functions). This last feature is a fundamental and

noteworthy difference compared to other alternative

methods, as most of them behave like a black box. More-

over, the WOA optimizer has been used to satisfactorily

calculate the optimal MARS hyperparameters. In addition,

previous research has indicated that MARS is a very

effective tool for use in a large number of real applications,

including soil erosion susceptibility prediction [36], rapid

chloride permeability prediction of self-compacting con-

crete [37], evaluation of the earthquake induced uplift

displacement of tunnels [38], estimation of hourly global

solar radiation [39], atypical algal proliferation modeling in

a reservoir [40], pressure drop estimation produced by

different filtering media in microirrigation sand filters [41],

assessing frost heave susceptibility of gravelly soils [42]

and so on. However, it has never been used for evaluating

superconducting critical temperature Tc from the input

physico-chemical parameters in most types of

superconductors.

This paper is structured as follows: Sect. 2 contains the

experimental arrangement, all the variables included in this

research and MARS, Ridge, Lasso, and Elastic-net

methodologies; Sect. 3 presents the findings acquired with

this novel technique by collating the MARS results with

the observed values as well as the significance ranking of

the input variables, and Sect. 4 concludes this study by

providing an inventory of principal results of the research.

2 Materials and methods

2.1 Dataset

The SuperCon database [43] is currently the biggest and

most comprehensive database of superconductors in the

world. It is free and open to the public, and it has been used

in almost all ML studies of superconductors [44–46]. The

SuperCon dataset was pre-processed for further research by

Hamidieh [7], and this database is deposited in the

University of California Irvine data repository [47]. As a

result of the pre-treatment, materials that had some missing

features were removed. Also, preliminary processing

included the formation of new features based on existing

ones. Atomic mass, density, first ionization energy, atomic

radius, density, electron affinity, fusion heat, thermal con-

ductivity, and valence were taken as the initial 8 features

(see Table 1). That is, the chemical formula of the material

was considered and based on statistical parameters of each

features: mean, weighted mean, geometric mean, weighted

geometric mean, entropy, entropy weighted, range,

weighted range, standard deviation, and weighted standard

deviation were calculated (see Table 2). This gives us

8 9 10 = 80 features. One additional feature, a numeric

variable counting the number of elements in the super-

conductor, is also extracted. We end up with 81 features.

Thus, we have data with 83 columns: 1 column corre-

sponding to the name of the material (identification), 81

columns corresponding to the features extracted, and 1

column of the observed critical temperature (Tc) values.

The dataset contains information for 21,263 superconduc-

tors so that we have 21,262 rows of data. All 82 attributes

for each material are numeric. The 81 features extracted are

used as independent predictors (input variables) of the

critical temperature (Tc), which is the dependent variable of

the model. This approach to the formation of features is

quite general and suitable for the study of superconducting

materials due to the general uncertainty of the dependence

of the critical temperature.
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2.2 Multivariate adaptive regression splines
(MARS) approach

In statistical machine learning, multivariate adaptive

regression splines (MARS) is a regression method first

conceived by Friedman in 1991 which is appropriate for

problems containing a large number of input variables

[15–19]. The technique uses a nonparametric approach that

can be understood as a prolongation of linear models which

allows for considering interactions among input variables

and nonlinearities.

The MARS technique constructs models according to

the following expansion [15–19]:

f̂ xð Þ ¼
XM

i¼0

ciBi xð Þ ð1Þ

Therefore, this technique approximates the dependent

output variable y by means of an averaged addition of Bi xð Þ
so that the coefficients ci are constant. Bi xð Þ can be

[15–19]:

• constant and equal to 1. This term is called intercept

and corresponds to the term c0;

• a hinge or hockey stick function: this function is

max 0; constant � xð Þ or max 0; x� constantð Þ. The con-
stant value is termed knot. The MARS technique

chooses variables and knot values for these according to

the procedure indicated later;

• the multiplication of hinge functions: in this case, these

functions model nonlinear relationships between

variables.

For instance, Fig. 1 shows a couple of splines for q = 1

at the node t = 3.5.

Two steps provide the base of the MARS method. First,

it constructs a very complex model in the forward phase

and then it simplifies it in the backward stage

[19, 30, 34, 48]:

• Forward stage: MARS starts with the intercept term,

which is calculated by averaging the values of the

dependent variable. Next, it adds linear combinations of

pairs of hinge functions with the aim of minimizing the

least-square error. These new hinge functions depend

on a knot and a variable. Thus, to add new terms MARS

has to try all the different combinations of variables and

knots with the previous terms, called parent terms.

Then, the coefficients ci are determined using linear

regression. Finally, it adds terms until a certain

threshold for the residual error or a maximum number

of terms is reached.

• Backward stage: the previous stage usually constructs

an overfitted model. In order to construct a better model

with greater generalization skill, this new stage simpli-

fies the model by removing terms, using the generalized

cross-validation (GCV) criterion described below by

first removing the terms that add more GCV to the

model.

Generalized cross-validation (GCV) is the goodness-of-

fit index utilized to assess the suitability of the terms of the

model in order to prune them from the model. GCV not

only takes into account the residual error but also how

complex the model is. High values of GCV mean high

residual error and complexity. The formula of this index is

[15–19, 30, 34, 48]:

GCV Mð Þ ¼
1
n

Pn
i¼1 yi � f̂M xið Þ
� �2

1� C Mð Þ=nð Þ2
ð2Þ

where the parameter C Mð Þ increases with the number of

terms in the regression function and thus, the value of the

GCV index rises. It is given by [15–19]:

C Mð Þ ¼ M þ 1ð Þ þ dM ð3Þ

where d is a coefficient that determines the importance of

this parameter and M is the number of terms in Eq. (1).

Table 1 The physico-chemical properties of an element that are employed for building its features in order to forecast Tc

Variable Units Description

Atomic Mass Atomic mass units (AMU) Total proton and neutron rest masses

First Ionization Energy Kilo-Joules per mole (kJ/mol) Energy required to remove a valence electron

Atomic Radius Picometer (pm) Calculated atomic radius

Density Kilograms per meters cubed (kg/m3) Density at standard temperature and pressure

Electron Affinity Kilo-Joules per mole (kJ/mol) Energy required to add an electron to a neutral atom

Fusion Heat Kilo-Joules per mole (kJ/mol) Energy to change from solid to liquid without temperature change

Thermal Conductivity Watts per meter-Kelvin (W/(m K)) Thermal conductivity coefficient j

Valence No units Typical number of chemical bonds formed by the element
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The relative importance of the independent variables

that appear in the regression function (as only some of

these variables remain in the final function) can be assessed

using different criteria [15–19, 30, 34, 48]: (a) the GCV

attached to a variable can be one of these criteria, and it is

measured taking into account how much this index

increases if the variable is erased from the final function;

(b) the same criterion can be applied using the RSS index;

(c) another criterion is the number of subsets (Nsubset) of

which the variable is a part. If it is part of more terms, its

importance is greater.

2.3 Whale optimization algorithm (WOA)

The whale optimization algorithm (WOA) is a new tech-

nique for solving optimization problems that was first

proposed by Mirjalili and Lewis in order to optimize

numerical problems [20]. The algorithm simulates the

highly intelligent hunting behavior of humpback whales.

This foraging behavior is called the bubble-net feeding

method and is only observed in humpback whales, which

create bubbles to encircle their prey while hunting. The

whales dive approximately 12 m deep and then create the

bubble spiral around their prey and then swim upward the

surface following the bubbles. The mathematical model for

spiral bubble-net feeding behavior is given as follows

[20–22]:

• Encircling prey

Humpback whales can recognize the location of prey

and encircle them. Since the position of the optimum

design in the search space is not known a priori, the WOA

algorithm assumes that the current best candidate solution

is the target prey or is close to the optimum. After the best

search agent is defined, the other search agents will hence

try to update their positions toward the best search agent.

This behavior is represented by the following equations:

D~ ¼ C~ � X~p tð Þ � X~ tð Þ
���

���

X~ t þ 1ð Þ ¼ X~p tð Þ � A~ � D~
ð4Þ

where t indicates the current iteration, A~ and C~ are coef-

ficient vectors, X~p is the position vector of the prey, and X~

indicates the position vector of a whale. The vectors A~ and

C~ are calculated as follows:

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
5

1.
0

1.
5

x

y

h(x−3.5)

h(3.5−x)

Fig. 1 An example of linear basis functions (hinge function)

Table 2 Description of the procedure for features extraction from material’s chemical formula. (The last column serves as an example: features

relied on thermal conductivities for Re7Zr1 are derived and reported to two decimal places; Rhenium and Zirconium’s thermal conductivity

coefficients are t1 ¼ 48 and t2 ¼ 23 W/(m K), respectively. Here: p1 ¼ 2
3
; p2 ¼ 1

3
; w1 ¼ 48

71
; w2 ¼ 23

71
; A ¼ p1w1

p1w2þp2w2
�

0:867; B ¼ p2w2

p1w2þp2w2
� 0:193Þ

Feature and description Formula Sample value (Re7Zr1)

Mean l ¼ t1 þ t2ð Þ=2 35.5

Weighted mean m ¼ p1t1ð Þ þ p2t2ð Þ 39.67

Geometric mean ¼ ffiffiffiffiffiffiffi
t1t2

p
33.23

Weighted geometric mean ¼ t1ð Þp1 t2ð Þp2 37.56

Entropy ¼ �w1 ln w1ð Þ � w2 ln w2ð Þ 0.63

Weighted entropy ¼ �A ln Að Þ � B ln Bð Þ 0.44

Range ¼ t1 � t2 t1 [ t2ð Þ 25

Weighted range ¼ p1t1 � p2t2 24.33

Standard deviation ¼ 1=2ð Þ t1 � lð Þ2þ t2 � lð Þ2
� �h i1

2 12.5

Weighted standard deviation ¼ p1 t1 � mð Þ2þp2 t2 � mð Þ2
h i1

2 11.79
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A~ ¼ 2a~ � r~1 � a~

C~ ¼ 2r~2
ð5Þ

where components of a~ are linearly decreased from 2 to 0

over the course of iterations and r~1, r~2 are random vectors

in [0,1].

• Exploitation phase: bubble-net attack method

The bubble-net strategy is a hybrid technique that

combines two approaches that can be mathematically

modeled as follows [20–22]:

1. Shrinking encircling mechanism: This behavior is

achieved by decreasing the value of a~. Note that the

fluctuation range of A~ is also decreased by a~. In other

words, A~ is a random value in the interval �a; a½ �
where a is decreased from 2 to 0 over the course of

iterations. Setting random values for A~ in �1; 1½ �, the
new position of a search agent can be defined anywhere

in between the original position of the agent and the

position of the current best agent.

2. Spiral updating position: This approach first calculates

the distance between the whale located at X~; Y~
� �

and

prey located at X~
�
; Y~

�� �
. A spiral equation is then

created between the position of whale and prey to

mimic the helix-shaped movement of humpback

whales as follows:

X~ t þ 1ð Þ ¼ D~
0
ebt cos 2ptð Þ þ X~

� ð6Þ

where D~
0 ¼ X~

�
tð Þ � X~ tð Þ

���
��� is the distance between the i-th

whale and the prey (best solution obtained so far), b is a

constant for defining the shape of the logarithmic spiral,

and t is a random number in �1; 1½ �. Note that humpback

whales swim around the prey within an increasingly

shrinking spiral-shaped path. In order to model this

simultaneous behavior, we assume that there is a proba-

bility of 50% to choose between either the shrinking

encircling mechanism or the spiral model to update the

position of the whales during optimization. The mathe-

matical model is as follows [20–22]:

X~ t þ 1ð Þ ¼ X~
�
tð Þ � A~ � D~ if p\0:5

D~
0
ebt cos 2ptð Þ þ X~

�
if p� 0:5

( )
ð7Þ

where p is a random number in 0; 1½ �. In addition to the

bubble-net method, the humpback whales search for prey

randomly. The mathematical model of the search is as

follows:

• Exploration phase: search for prey

The same approach based on the variation of the A~

vector can be utilized to search for prey (exploration). In

fact, humpback whales search randomly according to their

relative position to each other. Therefore, we use A~with the

random values greater than 1 or less than �1 to force the

search agent to move far away from a reference whale. In

contrast to the exploitation phase, the position of a search

agent in the exploration phase is updated according to a

randomly chosen search agent instead of the best search

agent. This mechanism and A~
���
���[ 1 emphasize exploration

and allow the WOA algorithm to perform a global search.

The mathematical model is as follows [20–22]:

D~ ¼ C~ � X~rand � X~
���

���

X~ t þ 1ð Þ ¼ X~rand � A~ � D~
ð8Þ

where X~rand is a random position vector (a random whale).

The WOA algorithm starts with a set of random solu-

tions. At each iteration, search agents update their positions

with respect to either a randomly chosen search agent or

the best solution obtained so far. The a parameter is

decreased from 2 to 0 in order to provide exploration and

exploitation, respectively. A random search agent is chosen

when A~
���
���[ 1, while the best solution is selected when

A~
���
���\1 for updating the position of the search agents.

Finally, the WOA algorithm is concluded upon the satis-

faction of a termination criterion.

2.4 Ridge regression (RR)

Typically, we consider a sample consisting of n cases (or

number of observations), that is, we have a set of training

data x1; y1ð Þ; :::; xn; ynð Þ, each of which consists of p

covariates (number of variables) and a single outcome. Let

yi be the outcome and xi ¼ xi1; xi2; :::; xip
� �T

be the

covariate vector for the ith case. The most popular esti-

mation method is known as the least squares fitting pro-

cedure, in which the coefficients b ¼ b0; b1; :::; bp
� �T

have

been selected to minimize the residual sum of squares

(RSS) [23–25]:

RSS ¼
Xn

i¼1

yi � b0 �
Xp

j¼1

bjxij

 !2

ð9Þ

Ridge regression is very similar to least squares, with

the exception that their coefficients are estimated by min-

imizing a slightly different quantity. Specifically, the ridge

regression coefficient estimates b̂RR are the values that

minimize [18, 23–25]:
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LRR bð Þ ¼
Xn

i¼1

yi � b0 �
Xp

j¼1

bjxij

 !2

þ k
Xp

j¼1

b2j = RSS + k
Xp

j¼1

b2j ð10Þ

where k� 0 is the regularization parameter or complexity

parameter to be determined separately (tuning parameter),

that controls the amount of shrinkage: the larger the value

of k, the greater the amount of shrinkage. Indeed, Eq. (10)

trades off two different criteria. As with least squares,

Ridge regression seeks coefficient estimates that fit the data

well, by making the RSS small. However, the second term,

k
Pp

j¼1

b2j , called a shrinkage penalty, is small when b1; :::; bp

are close to zero, and so it has the effect of shrinking the

estimates of bj toward zero. The tuning parameter k serves

to control the relative impact of these two terms on the

regression coefficient estimates. When k ¼ 0, the penalty

term has no effect, and Ridge regression will produce the

least squares estimates as k ! 0; b̂
RR ! b̂

RRS
� �

. How-

ever, as k ! 1, the impact of the shrinkage penalty grows,

and the Ridge regression coefficient estimates will

approach zero as k ! 1; b̂
RR ! 0

� �
. Unlike least

squares, which generates only one set of coefficient esti-

mates, ridge regression will produce a different set of

coefficient estimates, b̂RRk , for each value of k. Since

selecting a good value for k is critical, cross-validation has

been used.

The advantage of Ridge regressions over least squares is

rooted in the bias-variance trade-off. As k increases, the

flexibility of the ridge regression fit decreases, leading to

decreased variance but increased bias. At the least squares

coefficient estimates, which correspond to ridge regression

with k ¼ 0, the variance is high, but there is no bias. But as

k increases, the shrinkage of the ridge coefficient estimates

leads to a substantial reduction in the variance of the pre-

dictions, at the expense of a slight increase in bias. Ridge

regression improves prediction error by shrinking large

regression coefficients in order to reduce overfitting, but it

does not perform covariate selection and therefore does not

help to make the model more interpretable.

2.5 Least absolute shrinkage and selection
operator (Lasso) regression (LR)

Ridge regression does have one obvious disadvantage: it

will include all p predictors in the final model. The penalty

k
Pp

j¼1 b
2
j in Eq. (10) will shrink all of the coefficients

toward zero, but it will not set any of them exactly to zero

(unless k ! 1). This may not be a problem for prediction

accuracy, but it can create a challenge in model interpre-

tation in situations in which the number of p variables is

quite large.

The Lasso regression is a relatively recent alternative to

Ridge regression that helps to overcome this disadvantage.

The Lasso coefficients, b̂Lassok , minimize the quantity

[18, 25–28]:

LLR bð Þ ¼
Xn

i¼1

yi � b0 �
Xp

j¼1

bjxij

 !2

þ k
Xp

j¼1

bj
�� �� = RSS + k

Xp

j¼1

bj
�� �� ð11Þ

Comparing Eqs. (11) to (10) demonstrates that the Lasso

and Ridge regressions have similar formulations. The only

difference is that the b2j term in the Ridge regression

penalty in Eq. (10) has been replaced by bj
�� �� in the Lasso

penalty in Eq. (11). In statistical terms, the Lasso uses an

L1 penalty instead of an L2 penalty. The Lp norm of a

coefficient vector b is given by bk kp¼
Pn

i¼1 bij jp
� �1=p

.

As with Ridge regression, the Lasso shrinks the coeffi-

cient estimates toward zero. However, in the case of the

Lasso, the L1 penalty has the effect of forcing some of the

coefficient estimates to be exactly equal to zero when the

tuning parameter k is sufficiently large. Hence, then it

performs variable selection. As a result, the models gen-

erated are generally much easier to interpret than those

produced by Ridge regression. It can be said to yield sparse

models, that is, models that involve only a subset of the

variables. As in Ridge regression, selecting a good value of

k for the Lasso is critical. As a result, cross-validation has

been employed.

2.6 Elastic-net regression (ENR)

Elastic-net regression (ENR) first emerged in response to

critiques of the Lasso regression model, whose variable

selection can be too dependent on data and thus unstable.

The solution was to combine the penalties of Ridge and

Lasso regressions to get the best of both worlds. Therefore,

ENR is a convex combination of Ridge and Lasso regres-

sions. Indeed, it aims at minimizing the following loss

function [18, 23–29]:

LENR bð Þ ¼ 1

2n

Xn

i¼1

yi � b0 �
Xp

j¼1

bjxij

 !2

þ k
1� a
2

Xp

j¼1

b2j þ a
Xp

j¼1

bj
�� ��

 !
ð12Þ

where a is the mixing parameter between Ridge (a ¼ 0)

and Lasso (a ¼ 1). Now, there are two parameters to tune:
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k and a. In short, the ENR is a regularized regression

method that linearly combines both penalties i.e. L1 and L2
of the Lasso and Ridge regression methods, and it proves

particularly useful when there are multiple correlated fea-

tures. The essential difference between Lasso and Elastic-

net regressions lies in the fact that the Lasso model is likely

to pick only one of these features at random while elastic-

net model is likely to pick both at once.

2.7 Approach accuracy

Eighty of the above-mentioned input variables from

Sect. 2.1 have been employed in this study to build this

novel WOA/MARS-based method. As is well known, the

superconducting critical temperature Tc is the dependent

variable to be predicted. In order to predict Tc from eighty

variables with sufficient confidence, it is essential to select

the best model fitted to the observed dataset. Although

there are several possible statistics that can be used to

ascertain the goodness-of-fit, the rule employed in this

study was the coefficient of determination R2 [48–50], as it

is a statistic employed in the scope of a statistical model

whose principal objective is to predict upcoming results or

to check an assumption. Next, the observed values are

referred to as ti and the values predicted by the model yi,

making it possible to define the following sums of squares

given by [48–50]:

• SStot ¼
Pn

i¼1 ti � tð Þ2: is the overall sum of squares,

proportional to the sample variance.

• SSreg ¼
Pn

i¼1 yi � tð Þ2: is the regression sum of

squares, also termed the explained sum of squares.

• SSerr ¼
Pn

i¼1 ti � yið Þ2: is the residual sum of squares.

where t is the mean of the n observed data:

t ¼ 1

n

Xn

i¼1

ti ð13Þ

Based on the former sums, the coefficient of determi-

nation is specified by the following equation [48–50]:

R2 � 1� SSerr
SStot

ð14Þ

Further criteria considered in this study were the root-

mean-square error (RMSE) and mean absolute error

(MAE) [48–51]. The RMSE is a statistic that is frequently

used to evaluate the predictive capability of a mathematical

model. Indeed, the root-mean-square error (RMSE)

[48–51] is given by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ti � yið Þ2

n

s

ð15Þ

If the root-mean-square error (RMSE) is zero, there is

no difference between the predicted and the observed data.

The MAE, on the other hand, measures the average mag-

nitude of the errors in a set of forecasts without considering

their direction. MAE is the average over the verification

sample of the absolute values of the differences between a

forecast and the corresponding observation. Its mathemat-

ical expression is given by [48–51]:

MAE ¼
Pn

i¼1 ti � yij j
n

ð16Þ

Moreover, the MARS methodology relies heavily on the

three hyperparameters [15–19]:

• Maximum number of basis functions (Maxfuncs):

maximum number of model terms before pruning, i.e.,

the maximum number of terms created by the forward

pass.

• Penalty parameter (d): the generalized cross-validation

(GCV) penalty per knot. A value of 0 penalizes only

terms, not knots. The value �1 means no penalty.

• Interactions: maximum degree of interaction between

variables.

It is important to consider that the MARS technique

relies largely on the determination of all three of the

aforementioned optimal hyperparameters. Some of the

methods often used to determine suitable hyperparameters

are [15–19, 30, 34, 48, 52]: grid search, random search,

Nelder-Mead search, artificial bee colony, genetic algo-

rithms, pattern search, etc. In this study, the numerical

optimizer denominated whale optimization algorithm

(WOA) [20–22] has been employed to determine these

parameters based on its ability to solve nonlinear opti-

mization problems.

Hence, a novel hybrid WOA/MARS-based method has

been applied to predict the superconducting critical tem-

perature Tc (output variable) from eighty variables (input

variables) by studying their influence in order to optimize

the calculation through the analysis of the coefficient of

determination R2 with success. Figure 2 shows the

flowchart of this new hybrid WOA/MARS-based model

developed in this study.

Cross-validation was the standard technique used to find

the real coefficient of determination (R2) [48–50]. Indeed,

in order to guarantee the predictive ability of the WOA/

MARS-based model, an exhaustive tenfold cross-validation

algorithm was used [53], which involved splitting the

sample into 10 parts and using nine of them for training and

the remaining one for testing. This process was performed

10 times using each of the parties of the 10 divisions for

testing and calculating the average error. Therefore, all the

possible variability within the WOA/MARS-based model

Neural Computing and Applications (2021) 33:17131–17145 17137

123



parameters has been evaluated in order to determine the

optimum point, by having first searched for the parameters,

which minimize the average error.

The implementation of the new hybrid WOA/MARS-

based model has been performed using a multivariate

adaptive regression splines (MARS) method, based on

information obtained from the Earth library [54] together

with the WOA technique with the MetaheuristicOpt

package [20, 52] from the R Project. Additionally, the

Ridge, Lasso, and Elastic-net regression models were

implemented by using the glmnet package [55].

The bounds (initial ranges) of the space of solutions

used in the WOA technique are shown in Table 3. A

population of 40 whales has been used in the WOA

optimization. The stopping criteria were the number of

iterations along with at least 5 iterations with the same

results. A total of fifty iterations were performed.

To optimize the MARS parameters, the WOA module is

used as it searches for the best Maxfuncs, Interactions, and

Penalty parameters by comparing the cross-validation error

in every iteration. The search space is organized into three

dimensions, one for each parameter. The main fitness

factor or objective function is the coefficient of determi-

nation R2.

3 Analysis of results and discussion

All of the eighty independent input variables (eighty phy-

sico-chemical variables) are indicated above in Tables 1

and 2. The total number of samples used in the present

study was 21,263, which is to say that it has built and

treated data from 21,263 experimental samplings. This

entire dataset was split into two approximate halves and

one was used as a training set while the other was used as

the testing set. As the training set still contained a very

large number of samples, 1000 samples were randomly

extracted and the hyperparameter tuning was performed

using tenfold cross-validation. Once the optimal parame-

ters were determined, a model was constructed with the

whole training dataset, which served as model validation

using the testing dataset.

Based on this methodology, Table 4 identifies the opti-

mal parameters of the best fitted MARS-relied approach

that were encountered using the WOA optimizer.

Table 5 shows a list of 32 main basis functions for fitted

WOA/MARS-based model and their coefficients, respec-

tively. Note that h xð Þ ¼ x if x[ 0 and h xð Þ ¼ 0 if x	 0.

Therefore, the MARS model can be seen as an extension of

linear models that automatically model nonlinearities and

interactions as a weighted sum of the basis functions called

hinge functions [15–19].

A pictorial graph of the first-order and second-order

terms that create the MARS-based approach for the

superconducting critical temperature Tc is shown in Figs. 3

and 4, respectively.

Based on the resulting calculations, the WOA/MARS-

based technique allowed for the construction of a model

Fig. 2 Flowchart of the process of parameter optimization with WOA

of the MARS model

Table 3 Search space for each of the MARS parameters in the WOA

tuning process

MARS hyperparameters Lower

limit

Upper

limit

Maximum number of basis functions

(MaxFuncs)

3 100

Interactions 1 4

Penalty parameter (d) -1 4

Table 4 Optimal hyperparameters of the best fitted MARS model

found with the WOA technique in this investigation for the training

set

Hyperparameters Optimal values

MaxFuncs 56

Interactions 2

Penalty (d) 1
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Table 5 List of basis functions of the best fitted WOA/MARS-based model for the superconducting critical temperature (Tc) and their

coefficients ci

Bi Definition ci

B1 1 8:2954365

B2 h(159-range_atomic_radius) �0:0310443

B3 h(range_atomic_radius-159) 0:1093384

B4 h(6889.5-mean_Density) 0:0056201

B5 h(wtd_std_ThermalConductivity-85.1085) 0:3020147

B6 h(54.1925-std_atomic_mass)
h(wtd_std_ThermalConductivity-85.1085) 0:0014886

B7 h(std_atomic_mass-54.1925)
h(wtd_std_ThermalConductivity-85.1085) 0:0263762

B8 h(64.2578-wtd_std_atomic_mass)
h(wtd_std_ThermalConductivity-85.1085) �0:0080287

B9 h(wtd_std_atomic_mass-64.2578)
h(wtd_std_ThermalConductivity-85.1085) �0:0379316

B10 h(310.6-range_fie)
h(wtd_std_ThermalConductivity-85.1085) 0:0027402

B11 h(range_fie-310.6)
h(wtd_std_ThermalConductivity-85.1085) �0:0001969

B12 h(range_atomic_radius-159)
h(wtd_mean_Valence-2.26857) �0:0748170

B13 h(range_atomic_radius-159)
h(2.26857-wtd_mean_Valence) 3:1894155

B14 h(6889.5-mean_Density)
h(wtd_gmean_ThermalConductivity-6.09074) �0:0000326

B15 h(6889.5-mean_Density)
h(6.09074-td_gmean_ThermalConductivity) �0:0009077

B16 h(2006.63-gmean_Density)
h(wtd_std_ThermalConductivity-85.1085) 0:0002240

B17 h(gmean_Density-2006.63)
h(wtd_std_ThermalConductivity-85.1085) �0:0000403

B18 h(79.0562-wtd_gmean_Density)
h(wtd_std_ThermalConductivity-85.1085) 0:0078285

B19 h(wtd_gmean_Density-79.0562)
h(wtd_std_ThermalConductivity-85.1085) 0:0000419

B20 h(46.9714-wtd_range_ElectronAffinity)
h(wtd_std_ThermalConductivity-85.1085) �0:0138414

B21 h(wtd_range_ElectronAffinity-46.9714)
h(wtd_std_ThermalConductivity-85.1085) �0:0016589

B22 h(60.1526-wtd_std_ElectronAffinity)
h(wtd_std_ThermalConductivity-85.1085) �0:0153485

B23 h(wtd_std_ElectronAffinity-60.1526)
h(wtd_std_ThermalConductivity-85.1085) �0:0071685

B24 h(8.6244-mean_FusionHeat)
h(wtd_std_ThermalConductivity-85.1085) �0:0617544

B25 h(mean_FusionHeat-8.6244)
h(wtd_std_ThermalConductivity-85.1085) �0:0069835

B26 h(0.534908-wtd_entropy_ThermalConductivity)
h(wtd_std_ThermalConductivity-85.1085) 0:0865304

B27 h(wtd_entropy_ThermalConductivity-0.534908)
h(wtd_std_ThermalConductivity-85.1085) 1:1084331

B28 h(wtd_std_ThermalConductivity-85.1085)
h(wtd_mean_Valence-2.38385) �0:1650073

B29 h(wtd_std_ThermalConductivity-85.1085)
h(2.38385-wtd_mean_Valence) �0:5945354

B30 h(wtd_std_ThermalConductivity-85.1085)
(std_Valence-0.433013) 0:2547686

B31 h(wtd_std_ThermalConductivity-85.1085)
h(0.433013-std_Valence) �0:8776123

B32 h(wtd_std_ThermalConductivity-85.1085)
h(0.515047-wtd_std_Valence) 1:3096580

Fig. 3 Representation of the first-order terms of the three more important input independent variables for the dependent superconducting critical

temperature Tc variable: a Tc vs. Range atomic radius; b Tc vs. Mean density; and c Tc vs. Weighted standard deviation Thermal Conductivity
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with high allowances to assess the critical temperature Tc
by means of the test dataset. Additionally, the Ridge,

Lasso, and Elastic-net regression models were also built for

the Tc output variable in order to predict the supercon-

ducting critical temperature of the superconductor state for

different types of materials. Table 6 shows the determi-

nation and correlation coefficients (R2 and r), root-mean-

square error (RMSE), and mean absolute error (MAE) over

the testing set for the WOA/MARS, Ridge, Lasso, and

Elastic-net models for the dependent Tc variable.

3.1 Significance of variables

Another important result of the current study is the rele-

vance of the independent input variables in order to predict

the superconducting critical temperature Tc for this non-

linear complex problem (see Table 7 and Fig. 5).

Fig. 4 Representation of the second-order terms of the more important input independent variables for the dependent critical temperature Tc
variable

17140 Neural Computing and Applications (2021) 33:17131–17145

123



Ultimately, the most relevant input variable according to

WOA/MARS approach in the Tc forecasting is Weighted

Standard Deviation Thermal Conductivity. The second

most significant input variable is Standard Deviation

Atomic Mass, followed by: Range Atomic Mass, Weighted

Mean Valence, Geometric Mean Density, Weighted

Entropy Thermal Conductivity, Weighted Standard Elec-

tron Affinity, Mean Density, Weighted Range Electron

Affinity, Standard Valence, Weighted Geometric Mean

Thermal Conductivity, Weighted Standard Valence,

Weighted Standard Atomic Mass, Range First Ionization

Energy, Weighted Geometric Mean Density and Mean

Fusion Heat.

We found that the most influential attributes were rela-

ted to thermal conductivity. This is to be expected as both

superconductivity and thermal conductivity are driven by

lattice phonons and electrons transitions [8]. Also, the

influence of ionic properties (related to the first ionization

energy and electron affinity) could likely reflect the capa-

bility of superconductors to form ions, which is related to

the movement through the crystalline lattice. This inter-

pretation aligns well with BCS theory of superconductivity

[2]. The knowledge of the physico-chemical features that

are more directly related to the critical temperature can

facilitate the study of superconducting materials.

Overall, the MARS-based technique has demonstrated

itself to be an extremely accurate and highly satisfactory

tool to indirectly assess the superconducting critical tem-

perature Tc (dependent variable), conforming to the real

observed data in this study, as a function of some main

measured physico-chemical parameters. Specifically,

Fig. 6 indicates the comparison between the experimental

and predicted Tc values employing the WOA/MARS,

Ridge, Lasso, and Elastic-net regression models for the test

dataset. Thus, it is essential to combine the MARS

methodology with the WOA optimizer to overcome this

nonlinear regression problem through a novel hybrid

approach that is significantly more robust and more

effective than the three remaining regression models. In

particular, the modeled and measured Tc values were found

to be highly correlated. Table 8 shows the Tc observed and

predicted for the first materials in Fig. 6.

4 Conclusion

Based on the abovementioned results, several core dis-

coveries of this study can be drawn:

• Existing analytical models to predict the superconduct-

ing critical temperature Tc from the observed values are

not accurate enough as they make too many simplifi-

cations of a highly nonlinear and complex problem.

Consequently, the use of machine learning methods

such as the novel hybrid WOA/MARS-based approach

employed in this study offer the best option for making

accurate estimations of the Tc from experimental

samplings.

• The hypothesis that the identification of Tc can be

determined with precision by employing a hybrid

Table 6 Coefficients of determination (R2), correlation coefficients (r), root-mean-square deviation (RMSE) and mean absolute error (MAE)

over the testing set for the models fitted (WOA/MARS, Ridge, Lasso and Elastic-net) in this study using the training set

Error measure WOA/MARS Ridge Lasso Elastic-net

R2 0.8005 0.6936 0.7295 0.7291

r 0.8950 0.8334 0.8541 0.8539

RMSE 15.14 18.77 17.64 17.65

MAE 10.75 14.50 13.43 13.44

Table 7 Relative importance of the input physico-chemicals variables

involved in the best fitted WOA/MARS-based model for the super-

conducting critical temperature Tc prediction according to criteria

Nsubsets, GCV, and RSS

Input variable Nsubsets GCV RSS

wtd_std_ThermalConductivity 31 100.0 100.0

std_atomic_mass 30 57.9 58.0

range_atomic_radius 30 57.9 58.0

wtd_mean_Valence 30 57.9 58.0

gmean_Density 29 42.0 42.2

wtd_entropy_ThermalConductivity 28 32.8 33.0

wtd_std_ElectronAffinity 27 27.2 27.5

mean_Density 26 25.4 25.6

wtd_range_ElectronAffinity 25 23.2 23.5

std_Valence 24 22.1 22.4

wtd_gmean_ThermalConductivity 23 21.0 21.3

wtd_std_Valence 20 17.9 18.1

wtd_std_atomic_mass 17 14.4 14.7

range_fie 14 11.9 12.2

wtd_gmean_Density 12 9.9 10.2

mean_FusionHeat 11 8.7 9.0

Neural Computing and Applications (2021) 33:17131–17145 17141

123



WOA/MARS-based approach in a wide variety of

superconductors has been successfully validated here.

• The application of this MARS-based methodology to

the complete experimental dataset belonging to the Tc
resulted in a satisfactory coefficient of determination

and correlation coefficient whose values were 0.8005

and 0.8950, respectively.

• The ranking according to the order of importance of the

input variables entailed in the estimation of the Tc from

experimental samplings in different superconductors

has been established. Specifically, Weighted Standard

Thermal Conductivity has been identified as the single

most important factor in predicting critical temperature

Tc. It is also important to note the successive order of

importance, which is as follows: the Standard Atomic

Mass, Atomic Range Radius, Weighted Mean Valence,

Geometric Mean Density, Weighted Entropy Thermal

Conductivity, Weighted Standard Electron Affinity,

Mean Density, Weighted Range Electron Affinity,

Standard Valence, Weighted Geometric Mean Thermal

Conductivity, Weighted Standard Valence, Weighted

Standard Atomic Mass, Range First Ionization Energy,

Weighted Geometric Mean Density and Mean Fusion

Heat in the obtained Tc outcome.

• The principal role of the accurate hyperparameter

determination in the MARS-based methodology in

relation to the regression performance carried out for

critical temperature Tc has been established using the

WOA optimizer.

In conclusion, this procedure can be applied to suc-

cessfully predict the superconducting critical temperature

Tc of a variety of superconductors; however, it remains

essential to consider the different physico-chemical fea-

tures of each superconductor and/or experiment. Hence, the

WOA/MARS-based method proves to be an extremely

robust and useful answer to the nonlinear problem of the

estimation of the Tc from experimental samplings in dif-

ferent superconductors. Researchers interested in finding

high temperature superconductors may use the model to

narrow their search. As a future extension of this work, we

intend to apply the presented methodology to a more

extensive database [43]. For instance, researchers could use

Fig. 5 Relative importance of

the input physico-chemical

variables to predict the critical

temperature Tc for the optimized

fitted WOA/MARS-relied

model according to the GCV
parameter criterion
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Fig. 6 Observed vs. predicted

superconducting critical

temperature Tc values using 100

samples from the testing dataset

for four different models: a
Ridge regression model

(R2 ¼ 0:6936 and r ¼ 0:8334);
b Lasso regression model

(R2 ¼ 0:8005 and r ¼ 0:8541);
c Elastic-net regression model

(R2 ¼ 0:7291 and r ¼ 0:8531);
and d WOA/MARS-relied

model (R2 ¼ 0:8005 and

r ¼ 0:8950)
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this dataset along with new data (such as pressure or crystal

structure) to make better models.
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