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Abstract

In this paper, we analyze optimal control problems of semilinear elliptic equations,
where the controls are distributed. Box constraints for the controls are imposed and the
cost functional does not involve the control itself, except possibly for a non-differentiable
sparsity-promoting term. Under appropriate second order sufficient optimality condi-
tions, first we estimate the difference between the discrete and continuous optimal
states. Next, under an additional assumption on the optimal adjoint state, we prove
error estimates for the controls and improve the estimates for the states.
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1 Introduction

In this paper, we continue the investigation started in [9, 10] about the numerical approx-
imation of problems without Tikhonov regularization term. In the first work, we provide
second order conditions for problems with distributed controls and a term in the cost func-
tional that promotes sparsity of the solutions. In the second one, appropriate second order
sufficient conditions and error estimates for the numerical approximation are provided for
optimal control problems governed by semilinear parabolic equations when the control acts
only in time.
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In [10], both the state and the adjoint state equation are discretized using continuous
piecewise linear functions in space and piecewise constant functions in time, while controls
are discretized by piecewise constant functions. This coincidence in the time discretization
of the state, adjoint state and control, and the fact that the L? projection onto the space
of piecewise constant functions preserves the admissibility of the controls, leads to some
simplifications in the proofs, see [10, Eq. (4.4)]. In the current work, those properties do
not apply. Nevertheless, we are able to modify the proofs and to obtain the same kind of error
estimates, both for piecewise constant and continuous piecewise linear approximations of the
control. Moreover, this is carried out including a nondifferentiable term in the functional
that promotes the sparsity.

To our best knowledge, there are two references where the discretization of optimal
control problems without Tikhonov regularization term and governed by elliptic equations
is studied, [14, 16]. In the first one, error estimates for the control variable are derived under
a structural assumption on the solution, cf. (6.1) for v = 1, which assures that the control
is bang-bang. As the authors themselves notice, due to the fact that they study a bilinear
control problem, this assumption does not hold in 2D or 3D problems if the control acts in
the whole domain, so they chose to restrict the control to act on a subdomain. We are able
to derive error estimates for the control and also for the state in the case v < 1, so that the
structural assumption will hold naturally for bang-bang controls in 2D and 3D domains; see
Theorem 9. In [16], the authors study the variational discretization of a control problem
governed by a linear elliptic equation. Our result for this kind of discretization and problems
governed by semilinear elliptic equations, see Remark 7, is comparable with Corollary 3.3
in [16], and slightly generalizes this result, even for the case of linear equations.

We also provide error estimates in the state variable for control problems whose solution
is not bang-bang; see Theorem 7. This situation, not studied in [14], is taken into account
in [16] for the variational discretization of the problem.

One of the key points to deduce error estimates when the problem is non-convex, as
is the case where the equation is semilinear, is the obtention of appropriate second order
sufficient conditions. We obtained such conditions for strong local minimizers in [9]. In
that reference we wrote all the details of the proofs to obtain the second order sufficient
optimality condition for a problem governed by a parabolic equation, the translation to the
elliptic case being immediate. Though, in the paper at hand, we give the details of the
numerical analysis for a problem governed by an elliptic equation, the translation to the
parabolic case is straightforward.

The plan of this paper is as follows. In the next section, we introduce the problem,
formulate the main assumptions and establish some auxiliary results. The first and second
order optimality conditions are studied in section 3, although the details of the proof of
Lemma 2 are moved to Appendix A. In section 4 we discretize the control problem, and
in section 5 we prove convergence of the discretizations and derive error estimates for the
states. In section 6 we prove error estimates for the controls and improve the estimates for
the states under the additional assumption (6.1). Finally, we present some numerical results
in section 7.
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2 Main assumptions and auxiliary results

Let us consider a domain 2 C R", n < 3, with C*! boundary I'. We will study the following
control problem
min J(u), (P)

u€U,q
where

Usd ={u € L™(Q):a<u(z) <p forae ze€}
with —oo < a < 8 < 400, and, for u > 0,

J(u) = / L(z,yy(z)) de dt + u/ |u(z)|dx.
Q Q
Above y, denotes the state associated to the control u related by the following state equation
Ay, + f(xa yu) = win{,
{ Yy = O0onT. (2.1)

On the data A, f, and L we make the following assumptions

(A1) A denotes the elliptic operator

n
Ay =— Z Oz, (ai,j(2)0z,y),
ij=1
where the coefficients a; ; € C%1(Q) satisfy the uniform ellipticity condition

IAa > 0:Malé? <> ai(2)&E; forall ¢ € R™ and aa. x € Q.

i,7=1

(A2) We assume that f : Q x R — R is a Carathéodory function of class C? with respect to
the last variable satisfying the following properties:

L(w,y) >0y R, f(-,0) € Lo(9Q),

2
VM > 03Csar > 0+ | % (@,9)| + |5 (0,9)] < Cran Yyl < M,
Vp > 0 and VM > 0 Je > 0 such that

0% f 0?

/ .
aT/g(I,yl) - aTJQ(Lm) < pViyilly2| £ M with |y, —ye| <e,

for almost all x € €.

(A3) L:Q xR — R isa Carathéodory function of class C? with respect to the last variable
satisfying the following properties:

L(-,0) € L'(Q)

oL 0*L
VM > 0 3Cf pr such that a—y(x,y) + 8—y2(z,y) <CrwmVyl <M
Vp >0 and YM > 0 Je > 0 such that

0L 0L
aiyg(xvyl) - aT/Q(xayz)

< pVyils ly2] < M with |y — 32| <,

for almost all x € ().
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Concerning the state equation, we have the following result on existence, uniqueness and
regularity of the solution.

Theorem 1. For every u € LP(Q) with p > n/2 there exists a unique y, € Y := Hg(2)) N
C(Q) solution of (2.1). Moreover, there exists a constant T, > 0 independent of u such that

1Yullg @) + lvullc@) < Tolllullr@) + 1FC0)l Lo (@)

If u, — u weakly in LP(QY), then the strong convergence
[Yur = Yulle@) + 1Yur — Yullgz @) — 0
holds. If, further, u € L>(Q) we have that y,, € WP (Q) for all p < oo and

lyullwsy < Mop(Jlullo oy + 1, 0)llz () (2.2)
holds for a constant My independent of u and p.

This is a well known result. See, for instance, [4]. The continuity property follows directly
from [12, Theorem 2.2] taking into account that for p > n/2, LP() is compactly imbedded
in W=14(Q) for ¢ = pn/(n—p) > nif p < n and all ¢ < +occ if p > n. The regularity follows
from [17, Theorem 9.9] and (2.2) can be deduced from [2, Theorem 2.2]. As a consequence
of (2.2) and the continuous embedding H?(Q2) — C(£), we can deduce the existence of a
constant M., > 0 such that

[Yullo@) < Moo Vu € Una. (2.3)

Given p > n/2, let us denote G : LP(2) — Y the mapping associating to each control
the corresponding state G(u) = y,,. The next theorem states the differentiability of G, whose
proof can be obtained in the standard way by using the implicit function theorem; see e.g.
[5, Theorem 1].

Theorem 2. The control-to-state operator G is of class C* and for every u,v,w € LP(Q),
p > n/2, we have that z, = G'(u)v is the solution of

0
Az + Fz(x,yu)z = wvinfQ, (2.4)
z = 0onT,
and zy . = G (u)(v,w) solves the equation
2
Az + %(w,yu)z + g—yé(m,yu)zvzw = 0in 9,
z = 0onl.
Lemma 1. Let u,v € Uyq. Then, we have
1
Ye = Yol i) < EH“*”HH*(Q» (2.5)
1w = vollz2() < Cllu = vl L1y, (2.6)
[Yu — yolle@) < Cpllu — vllw-10(0), (2.7)

for p > n and some constants C', C'p > 0 independent of u and v.
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Proof. Define z = y, — y,. Subtracting the equations satisfied by y, and y, and using the
mean value theorem, we deduce the existence of a measurable function 0 < f(x) < 1 such
that, setting § = yu + 0(y» — yu), we have

0

Az+—f(x,g)z:v—uin Q, z=0onT.

dy
Inequality (2.5) follows from the standard variational formulation, the ellipticity of A and
Assumption (A2).

Let us prove inequality (2.6). From [23, §9] we know that for every ¢ < n/(n — 1) there

exists Cy > 0 such that

Izllwra) < Cyllu = vl @)-
Using the Sobolev imbedding W14(Q) < L?(Q) for ¢ > 2n/(n + 2) and fixing ¢ = 6/5 for
instance, we have

Izlliz2 (@) < Cllzlly g o) < CeCliu =il

and (2.6) follows for C' = CCs.

Inequality (2.7) is a classical result; see, for instance, [17, Theorem 8.30] and [23, Theorem
4.2]. 0

Next, we state the differentiability properties of the objective functional. We decompose
J in two summands

T(w) = F(w) + i) with F(u) = [ Lw,yu(a))de and j(w) = ooy,

To every u, we relate the adjoint state ¢, that satisfies

. of oL .
A Pu + @(xﬂ yu)@u - aiy(zvyu) m Q, (28)
oo = 0onl,

where A* denotes the adjoint operator of A. Assumption (A3) together with Theorem 1
imply that ¢, € HE () N C(Q) and analogously to (2.2) we have

loullwzr) < MopCrar,, Yu € Usa  Vp > 2,

where My, is introduced in (2.3) and Cp, s, is introduced in Assumption (A3). Again using
Sobolev embeddings, we deduce the existence of a constant T, > 0 such that

||‘Pu||H3(Q) + ”‘PUHC(Q) <Twx Vu€ Ua. (2.9)
The next theorem follows from the chain rule, Theorem 2 and assumptions (A2) and
(A3).

Theorem 3. Given p > n/2, the functional F : LP(Q) — R is of class C? and for every
u,v,w € LP(§2)

F'(u)v = / puvdz,
Q

oL 9 f (2.10)

F”(u)(v,w) = ./Q (ayg(‘rayu) - @uayQ(mvyu)> 2y 2y A,
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where @, is the solution of (2.8).

Remark 1. The functionals F'(u) and F"(u) can be extended to continuous linear and
bilinear forms, respectively, in L*(§)). Notice also that assumptions (A2) and (A3), Theorem
1 and (2.9) imply the existence of some My > 0 such that

|F”(u)(v,w)| < M2||Zv||L2(Q)HZw||L2(Q) Vu € Ung, Yv,w € Ll(Q)
Finally, we notice that, for given u € L'(Q), if we denote
Qf ={zecQ: ux)>0}, Q, ={zcQ: u(x)<0}and Q° ={z cQ: u(zx) =0},

then, the directional derivative of j at u is given by

7' (u;v) /Q+ v(:r)dxf/Q

As usual 9j(u) stands for the convex subdifferential of j at u. In the sequel, we will also
denote J'(u;v) = F'(u)v + pj’ (u; v).

v(x)dqu/Qo lv(z)|dz Vv e LY(Q).

u

3 First and second order optimality conditions

Existence of a global solution of (P) follows in a standard way. Since (P) is not a convex
problem, we have to consider local solutions as well. Let us state precisely the different
concepts of local solution.

Definition 1. We say that @ is an LP-weak local minimum of (P), p € [1,+oc], if there
exists some € > 0 such that

J(I_L) S J(U) Yu S Uad with ||fL — U”Lp(Q) S E.
We say that @ is a strong local minimum if there exists some € > 0 such that
J(w) < J(u) VYu € Uag with ||yg — yullL=() <e.

We say that @ is a strict (weak or strong) local minimum if the above inequalities are strict

for u # 1.

Strong local optimality implies weak local optimality. For more details about these
definitions, see [9, Lemma 2.8]. First order optimality conditions read as follows.

Theorem 4. Suppose @ is a local solution of (P) in any of the senses given in Definition
1. Then,
J'(Wu— 1) >0 Vu € Upg. (3.1)

Moreover, there exist § and @ in H3(Q) N C(Q) and X € dj(u) such that

Ay+ f(z,y) = uinQ,
{ y = 0onl, (3.22)
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af oL

= 0onT,
/(@ + pA) (u — @)dx > 0 Yu € Upqg. (3.2¢)
Q

The proof of (3.1) is classical. The optimality system (3.2a)—(3.2¢) follows easily from
(3.1), (2.10), and the fact that the convexity of j implies that j(u) — j(@) > j/(@;u — a).

From the conditions (3.2a)—(3.2c), the following relations can be deduced; see, e.g., [4].
For p =20

o) >0 =a(z) =q,
{ oz) <0 = ulx) = B (3.3)
and for p > 0,
lp(x)| <p = u(x) =0,
P() > 1 = u(z) = o,
p(e) < —p = u(z) = B, (3.4)
P(x) =+p = u(z) <0,
o(e) =~ = a(z) > 0.

Notice that, if meas({z € Q : ||@(z)| — pu| = 0}) = 0, then, for y = 0, we recover the classical
bang-bang structure of the control, while for ;> 0, the control will only take values in
{a, 8,0}, being a so-called bang-bang-bang or bang-off-bang control.

Now, we establish the second order optimality conditions. In what follows, u will denote
a control of U,q satisfying (3.1), along with the associated state § and adjoint state @,
solutions respectively of (3.2a) and (3.2b).

We say that a function v € L?(Q) satisfies the sign condition if
>0 ifa(z)=a,
”@O{go if u(z) = B. (8:5)
We define the cone of critical directions
Cy = {v € L*(Q) satisfying (3.5) and J'(@;v) = 0}.
Following [4] we know that the following identities hold
Cy = {v € L*(Q) satistying (3.5) and v(x) = 0 if |p(x)| > 0} if u=0, (3.6)
Ca= {ve L?(Q) satisfying (3.5)
>0 if p(z) = —p and u(x)

and v(z) <0 if p(x) =+p and u(x)
=0 i ||p(@)| — u| > 0,

207
—0, 4 if 4> 0. (3.7)

It was proved in [6] that F”(@)v? > 0 Vo € Cy is a second order necessary condition for
local optimality of @. However, to formulate a second order sufficient condition we need to
extend the cone of critical directions; see [9] for a discussion on it. We have two possible
extensions of Cy. First

G7, = {v € L*(Q) satisfying (3.5) and J'(#;v) < 7|2y 21 (0)}-
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On the other hand, using the characterizations of the cone Cy given by (3.6) and (3.7) the
following extensions appear in a natural way as well.

If £ =0, DI ={v € L*(Q) satisfying (3.5) and v(z) = 0 if |¢(x)| > 7}.

If p >0, D} {v € L*(Q) satisfying (3.5)

In [9], it is proved that the cone
C: =D;NGy

is enough to formulate second order sufficient conditions.

Theorem 5. Let @ € Uyq satisfy (3.1) and
36 >0 and 3Ir > 0: F"(a)v* > 6| 20|72y Vv € CF, (3.8)

where z, = G'(a)v is the solution of (2.4) for y, = g, the solution of (3.2a). Then, there
exist € > 0 and k > 0 such that

_ K _ _
J(@) + 5y = 9l72(0) < T(w) Yo € Vaa + lgu = llio) <& (3.9)

In Section 6, we will also use the following result.

Lemma 2. Let u € Unq satisfy (3.1) and (3.8). Then, there exists k > 0 such that for all
p >0 a number €, > 0 can be found so that

pIF (@) (u — @) + pj(u) — pj(@)] + F" (@ +0(u — @) (u—0)* > S llya = §ll72)  (3.10)

| x

for all 0 € [0,1] and all u € Uaq satisfying ||y — YllL~ () < €p-

Proof. Following the same scheme of proof as in [9, Theorem 3.1], we can show the existence
of k > 0 such that

pJ (wu—a) + F"(a+0(u—1a))(u—1a)? > =||ye — g||2L2(Q) Vo € [0, 1]. (3.11)

| x

The details of the proof of (3.11) are provided in Appendix A; see [10, Remark 3.6] for a
similar situation. Now, using the convexity of j, we know that

Fr(u)(u— ) + pj(u) — pj(u) = J' (6 u — )

and the proof is complete. O
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4 Numerical approximation of the control problem (P)

In this section we discretize the control problem (P). To this end, we assume that  is
convex and consider a quasi-uniform family of triangulations {73, }r>0 of 2, cf. [1, definition
(4.4.13)]. We denote €, = Upe7, T. We assume that every boundary node of €2, is a point
of I'. Additionally we suppose that there exists a constant Cr > 0 independent of h such
that the distance dr(x) < Crh? for every z € T, = 9Qy,, which is always satisfied if n = 2
and I is of class C?; see, for instance, [21, Section 5.2]. Under this assumption we have that
there exists a constant C > 0 independent of h such that

1\ Q| < Cah?, (4.1)
where | - | denotes the Lebesgue measure.

Now we consider the finite dimensional space
Y, = {z, € C(Q) : zpir € Pi(T) VT € T, and 2z, =0 on Q\ Qp}.
Along this paper P;(T) denotes the polynomials in T of degree at most i.

For every u € L?(f2), we define its associated discrete state as the unique element yj, (u) €
Y}, satisfying

a(yn, zn) + f(z,yp)zndedt = / uzpdr Vzp € Yy, (4.2)
Qh Qh

where

aly,z) =Y /Q ;00,0 zdx Yy, z € HY(Q).

ij=1
The proof of the existence and uniqueness of a solution for (4.2) is standard; see e.g. [7].

Lemma 3. there exists a constant ¢ > 0, which depends on the data of the problem but is
independent of the discretization parameter h, such that for every u € Uyg

lyn (1) = yullL2 (@) < ch?, (4.3)
llyn (u) = yull Lo () < ch®|log h|?.

Proof. Estimate (4.3) follows from [7, Lemma 4] and (2.2).

Let us prove (4.4). First of all, notice that from [7, Theorem 1] and (2.3), it is straight-
forward to deduce that for A > 0 small enough

[yn ()|l L= @) < Moo + 1. (4.5)

Consider y" € H}(Q) the unique solution of the linear equation

Ayh = u- f(xa yh(u)) in Q?
y" = OonT.

Using Theorem 1, Assumption (A2) and (4.5), we know that y" € W2P(Q) for all p < oo
and

Iy ooy <M p (ma{lal, 181} + 11 (0) =) + Crar 1 (Mo + 1)
=Cop. (4.6)
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The difference 1, — y" satisfies

{ Aya —y") —f(z,yu) + f(2,yn(u)) in Q,

OonT.

yu_yh

From the results in Stampacchia [23], Assumption (A2), (2.3), (4.5) and estimate (4.3), we
have

ly — "l L (@) <C1llf (@, 90) — £ (2, yn (W) L2y
<C10f Mo +111Yu — yn ()| 12(0) < Cyh®. (4.7)

We notice now that yy, (u) satisfies
alynzn) = [ (u= Sn())ands Y € i
Qh

and hence it is the finite element approximation of y". Define I,y" the continuous piece-
wise linear Lagrange interpolation of y". Applying [22, Theorem 2.1] (see also [20]), the
interpolation error (see e.g. [1, Equation (4.4.22)]), and (4.6) we deduce that for all p < oo

ly" = yn(w)|| = @) <Csh|loghllly" — Iy lwr.=(q)
<Cyh|log h|h' =2/P||y" |lyw2.n(q)
<CoCyh® /7| log hlp.

Taking now p = |log h| and using that h~'/I1°8"l = ¢ for h < 1 we have
ly" — yn(w)ll < Csh®|log h|*.
Finally, (4.4) follows from (4.7) and the previous inequality. O
The control is discretized using piecewise constant functions, namely

Uy = {Uh, S LOO(Qh) D Up|T S PO(T) VT € 771},

Since the elements uy, of U, are not defined on all €, we have to specify what we mean
when we say that u, — u weakly™ in L*°(2). It means that

/ uhvdx%/uvdx Yo e L1(9Q).
Q Q

Due to Assumption (4.1), this is the same as saying that the extension to Q \ Qj, of up by
any fixed function in L°(§2) converges weakly* in L>°(Q).

We denote 7, the linear projection onto Uy, in the L?(Q;,) sense:
1
(Thu)), = —/ udr, VT €Tp.
IT| Jr

Abusing notation, we will sometimes write m,u = u in Q\ Q5. With this notation, we know
that mu — u in L(Q).



Error estimates for bang-bang controls 11

We will denote

Jn(u) = / |u(z)|dx.
Qp
The following approximation results will be useful.

Lemma 4. For all u € Uy,
Jn(mnu) < ju) ¥h >0 (4.8)

and
lim jp(mhu) = j(u). (4.9)
h—0

Moreover, given 1 < p < oo there exists a constant K, > 0 that depends on p and §2 but it
is independent of h such that

[l — 7Thu||W—1,p(Qh) < Kph”uHLp(Q) Yu € LP(Q). (4.10)

Proof. The first estimate follows from the definition of 7. The convergence j(mpu) — j(u)
is an immediate consequence of the well known convergence property |u — mpul|r2(q,) — 0
as h = 0.

Set p’ = p/(p — 1) the conjugate exponent of p and consider V;, = {v € Wol’pl (Qp) :
||v|\W1,p/(Q}) = 1}. By definition of dual norm, the orthogonality property of 7, [1, Lemma
f .

(4.3.8)] (Bramble-Hilbert’s Lemma) and the quasi-uniformity of the family of triangulations,
we have

lu = mnullw-100,) = Sub (U = T0U V) 0, W (@)

veVh
= sup / (u — Tpu)vdx = sup / (u — mTpu)(v — Thpv)de
vEVH JQy, veEVL JQp

sup [ (v = m)ds < sup fulloyllo = Tl o,
veV)E JQ,

veVy

< sup Kpllollyga o lullr@h = Kpllull o @)h-
O
Finally, we define
Fr(u) = /Q L(z,yn(u)(x)) dz, and Jp(u) = Fp(u) + pin(u).
h
and formulate the discrete problem as
min  Jj(up), (Pn)

UpE€UR,aa

where Up aq = Up N Uaq. Since this set is compact and nonempty, existence of a global
solution of (P,) follows immediately from the continuity of Jj in Uy.
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For every u € L'(2), we define the related discrete adjoint state o, (u) € Yj as the
unique solution of

0 oL
a(zp, pn) + —f(x, yr(u))przpde = —(x,yn(w)zpde  Vzp € Y. (4.11)
Qn dy Qn 0y

With this notation, we have that for every u,v € L(Q)
F(u)v = / on(u)vdz.
Qp

If @y, is a local solution of (Pp), then

Fy (up)(un, — an) + pin(un) — pin(an) > Jp(@n;up — ) >0 Vup, € Up ad. (4.12)

5 Error estimates for the optimal states

In this section, we first analyze the convergence of the approximations (P,) of (P) in a sense
to be precised below. Then we prove error estimates for the difference between the discrete
and the continuous optimal states.

Before stating the convergence theorems, we establish an auxiliary result.

Lemma 5. Consider {up}r>0 C Uaa such that up, Sowin L®(Q) as h — 0. Then,

lim Fy (u,) = F(u), (5.1)
j(u) < Timint (). (5.2)

Proof. We first write

|Fp(un) — F(u)| < [Fp(un) — F(up)| + [F(up) — F(u)].

The convergence to zero of the second term follows from Assumption (A3) and Theorem
1.

For the first term, by the mean value theorem, we know that there exists a measurable
function 0 < 0(x) < 1 such that, if we name §5, = yn(un) + On(yu, — yn(un)), then, using
Theorem 1, assumptions (A3) and (4.1) together with (2.3), we obtain

|F(un) — Fp(up)]

(
| [ (B o)~ L)@ dot [ Ll (@) de

N\
/ oL
<
Qp,

dy
—|—/ (|L(.Z‘,O)| + MooCL,MxJ dx
Q\Qp

(7, Jn(x)) (yuh (x) — yh(uh)(:c)) ’ dx
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The second summand converges to zero due to assumptions (A3) and (4.1). For, the first
one, using the finite element estimate (4.3) we obtain

oL, .
[ 5 g ) = ) ) d
o, |0y
oL, .
<[5y ] T = 9ol

<Cp Q|7 ch?,

which also converges to zero.

To prove (5.2), we notice that if we define u" = uy, in ), and " = 0 in Q\ Q, we

have, due to Assumption (4.1), that u” = u in L>(Q) and also j,(us) = j(u”). Since j(-)
is convex and continuous, it is weakly lower semicontinuous, so

. <]"f'h:1' inf i
J(u) < im in Ju™) imin Jn(un)

and inequality (5.2) follows. O
Theorem 6. Let u be a strict strong local minimizer for (P), i.e.,
dp>0:J(u) < J(u) Yu€ Uy \ {8} : [|[yu — YllL () < p- (5.3)

Then, there exists a sequence {up}y, of local minimizers of (P,) such that up — 4 weakly*

in L>(Q2). Moreover, there exists hg > 0 such that
Jh(’[l,h) < Jh(uh) Vup, € Up aa with ||yh(uh) - gh”Loo(Qh) < §7 Vh < hy. (54)

Conversely, let {up}y be a sequence of local minimizers of (Py) satisfying (5.4) for some
given p > 0 and such that @, — @ in L>(Q). Then @ is a strong local solution of (P)
satisfying

J(@) < J(u) Vu € Uad: |[Yu — Jllo=) < 5- (5.5)

[N ISt

Proof. Part I: Consider the set

Vadh,p = {un € Unaa : |yn(un) — YllL=) < p}-

From (2.7) and (4.10), we have that there exists h; > 0 such that
_ P
19 — Ymnall Lo (@) < 5 Vh < h.
From the finite element error estimate (4.4) we deduce the existence of hs such that
_ p
ymna = yn(mnt)llLe(@) < 5 Vh < ha.
So we have that for 0 < h < hg := min{hq, ho}

19 — yn(mntt) || Lo o) < p,
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and we conclude that m,% € Vyan,, Yh < hg. Hence, Vygn,, is compact and nonempty.
Therefore the problem

min  Jp(u
up €EVad,h,p h( h)

has a solution @ for every h < hg. We can extract a subsequence, denoted in the same
way, such that @, — @ in L>(Q). Since Upaqa C Uag and U,g is weakly™ closed in L>(£2),
we deduce that @ € U,q. We also have that g;, = yn(un) — ya in L>(Q). To check this we
write

196 — yallL=@) < lyn(@n) = va, o=@y + 1Ya, — YallL=()- (5.6)
From (4.4) and Theorem 1 we infer that both terms converge to 0. Since @y, € Voa,pn,p, We
have that
lva — Fllee= ) < llyva — Unll=) + U — Gl ()
< \lya — Unllree@) +p—p ash—0.

Hence ||ya — 9|z~ (q) < p holds. Now we use Lemma 5, the optimality of % and Lemma 4
to infer that

J(@) < liminf Jy (@) < limsup Jp(ap) < limsup Jp,(mp@) = J(4).

Due to the strict strong local optimality of @, cf. (5.3), this is possible only if @ = @, and so

(5.6) implies that ||gn, =%z~ (q) — 0as h — 0. Let us take ho such that ||gn, 7| L) < p/2

for any h < hg. Then for any up € Uy aq such that |y, (un) — nllz= ) < p/2, we get
lyn(un) = 9l @) < lyn(un) = GnllLe(@) + 190 — llLe@) < p Vh < he.

Then up, € Vaa,n,, and, hence, Jy,(upn) < Jp(up) for every h < hg, which proves the first part
of the theorem.

Part II: We denote, as above, 45, and y the discrete and continuous states associated with
iy, and 4, respectively. Let us take an arbitrary element u € Uy,q such that ||y, — gl (o) <
p/2. We have to prove that J(a) < J(u).

First, we observe that, proceeding as in (5.6), ||gn — ¥l () — 0 as h — 0.

Next, we consider the discrete controls mpu. It is obvious that mpu € Uy, aq and, we have,
from (4.4), (2.7) and (4.10), that

lyn(mnu) = Yull oo (@) < Nyn(Thte) = Ymyull oo (@) + 1Yrnu — YullLo @) — 0
as h — 0. Therefore, we get
lyn(mhu) = GnllLee @) = [1Yu = Yl (@) < g as h — 0.
Hence, there exists hsy with hs < hg such that
lyn(mne) = Gl iy < & Vh < ha.

Thus, from the convergence @, — @ in L>(2), Lemma 5 and the local optimality of @,
stated in (5.4), we infer

J(@) < liminf Jp(ap) < limsup Jp,(t4r) < limsup Jy(mpu) = J(u),
h—0 h—0 h—0

which concludes the second part of proof. O
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Remark 2. For any fized @ strict strong local minimizer of (P), and any sequence {p}p of
local minimizers of (Pp) converging weakly* in L>°(Q) to @, we will define without ambiguity
ap = u in Q\Qp. This is consistent with our abuse of notation for mpu and our definition of
weak* convergence in L (Q). Also we can define without problem j(up) and using (4.12),
we can write

Fy (an)(mpu — ap) + pj(mptt) — pj(an) > 0.
Remark 3. Let us observe that if {up}n is a sequence of global minimizers of (P,), then
there exist subsequences converging to elements . Any of these controls u is a global mini-

mizer of (P). This is an immediate consequence of the second part of Theorem 6. Indeed,
it is enough to take p sufficiently large.

To obtain error estimates, we will assume in what follows that, besides (A3), there exists
a constant Cp o > 0 and some h > 0 such that for all h < h

|L(z,0)] <CLo forae. ze€\Q,. (5.7)

Assuming the second order optimality conditions we can prove some error estimates for
the difference between the continuous and discrete optimal states.

Theorem 7. Let @ be a local solution of (P) satisfying the second order sufficient conditions

(3.8). Let {ap}n be a sequence of local minima of (P},) such that (5.4) holds and @y — @
in L*°(Q). Then, there exists a constant C' > 0 independent of h such that

|9 — ll22(0) < CcVh,

where § is the solution of (3.2b) and gy, = yn(un), the solution of (4.2) for uy,.

Proof. By the triangle inequality we have

0 = Tllz2) < 1Un — Yan 22 + [lva, — Tllz2@)-

The first term in the right hand side is of order O(h?); see (4.3). We just need to study the
second term.

From Theorem 1 we know that ygz, — ¢ strongly in L>°(£2), and hence there exists hg > 0
such that for all 0 < h < ho, ||ya, — JllL=() < €, where € > 0 is the one given in (3.9).
From Theorem 5, we deduce the existence of k > 0 such that

A\

Sl = 30y < J(@n) — J(@)

[J(@n) = Jn(tn)] + [Tn(@n) = Jn(mati)]
+ [Jn(mpa) — J(mpa)) + [J(mpa) — J (@)
= I+II+II+1V.

IN

Let us estimate the first term. By the mean value theorem, there exists a measurable
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function §p, = gn + 0(ya, — yn) with 0 < 8(x) < 1 such that
I=J(un) — Jn(tn) = pj(un) — pjn(tn)
[ L @)dot [ (L, @) - L) de
Q\Qh Qh
oL

o, 3y (,9n(2)) (ya, (2) — Gn(x)) do

- / (@) + L(z, yan (2))) di +
Q\Qp

oL, .
<(umax{lal. |81} + Cro + MacCrar)Coh® ]| 5 ()|

L2(Qh)||yah, — Unllz2(an)

< (Mmax{|a|7 18|} +Cro+ MxCr .. )Ca + CL,MOO|Q|%C) h?,

where we have used assumptions (4.1) together with (5.7) and (A3), Theorem 1, the bound
(2.3) and the finite element estimate (4.3). Term III can be estimated exactly in the same
way, taking into account that, due to our notation mp@ = @ in  \ Qp, and hence

/ (il da :/ (alde < max{|al, |8]}Cah?
Q\Q;L Q h

h

thanks to Assumption to (4.1).

Since 4y, satisfies (5.4), we have that IT < 0 for h small enough. Indeed, we can argue
as in the second part of the proof of Theorem 6 to deduce the existence of hy such that
ThU € Uh,ad and ||yh(7rhﬂ) — thLoo(Q) < p/2 for h < h;.

To estimate term IV, we use again the mean value theorem, together with (2.5), (4.10),
our abuse of notation 7, = @ in Q\ Qj, and the fact that ||mal L1 (o) < [|@]|L1(q), to obtain

J(mnu) — J(w) :/Q (L@, ym,a(2)) = L(x,5(2))) dz + pj(mni) — pj(a)

oL, _ _ _
= | 3y @ (@) (Yrna(@) = §(@)) do + p(lmnil o) — llall o)
<| %) . Mo -3
> 3y yYh L2() Ympu — YllL2(Q)
C Qz, K»C Q3
<OMl ) < KO,
Collecting all the estimates, we achieve the desired result. O

Remark 4 (Approximation by continuous piecewise linear functions.). If we take
U, = {’Uh S C(Qh) DoUpT S Pl(T) VT € 771}‘

and Uy qq = Uy NU,q, we do not improve the order of convergence. The proof follows the
same lines as before, replacing mpu by Carstensen’s quasi-interpolate; see [3] and [15, Lemma
4.5]. Notice that estimate (4.10) for p = 2 is still of order O(h), and although for p > 2 the
order of convergence is smaller, this case was only used in Theorem 6 to prove convergence,
so the proof is still valid.
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Remark 5 (Variational discretrization.). If U, = L?(S2), then the projection is the identity
and mpa = uw in 2. So in the proof of Theorem 7 the term IV disappears and we obtain order
O(h). Notice that, unlike the case where the Tikhonov parameter is positive, we cannot
express in general the variational optimal control as a function depending on a finite number
of parameters.

6 Bang-bang-bang control and control error estimates

In the last section we have used the quadratic growth property of the states (3.9) to prove
error estimates between discrete and continuous optimal states. The reader can wonder
whether it is possible to get an analogous condition involving a quadratic term for the
controls. The answer is negative in general. In [13], the authors prove that if @ is a local
minimizer of (P), which is not bang-bang, then there do not exist € > 0, kK > 0, v > 0 and
r > 1 such that the inequality

J(@) + 5w —al

z,,.(Q) <J(u) Yu €Uy : |lu—1l|piq) <€

holds. However, if we make a certain structural assumption on the associated adjoint state
with @, which implies the bang-(bang-)bang property of @, then we can get the desired
inequality. Following [13], the next hypothesis will be assumed in the rest of the paper.

JK >0, Iy € (0,1] : meas{z € O : ‘|g5(x)| - ,u‘ <e} < Kev, Ve > 0. (6.1)

Notice that a control @ satisfying first order optimality conditions and (6.1) is a bang-
(bang-)bang control. In some papers, the above condition is assumed to be satisfied with
v = 1. Nevertheless, for dimension n > 2 and p = 0, the case v = 1 may not hold in certain
common situations; see the explanation after [19, Eq. (3.5)] for an example in a polygonal
domain.

Assuming that p = 0, if @ satisfies the first order optimality conditions and (6.1), then
it was proved in [13, Theorem 2.5] that @ is a local minimum in the L°°(£2) sense. However,
this is not enough to deduce error estimates for the controls. We are going to show that
the second order condition (3.8) along with the structural assumption (6.1) are sufficient to
obtain some error estimates for the controls. To this end, we first establish the following
lemma.

Lemma 6. Let u € Uyq satisfy the first order condition (3.1) and the structural assumption
(6.1). Then

_ _ . L 141
F'(@)(u— 1) + pj(w) — pg (@) 2 vlju—all 1) Yu € Una (6.2)

1 -1/~
holds, where v = 3 (2||ﬂ - Oz||Loo(Q)) )

1
Proof. The inequality F'(a)(u—u)+uj('@;u—a) > 1/||u—ﬂ||1;(}l) was proved in [18, Lemma
6.3]. Then, it is enough to use that j(u) — j(@) > j('4;u — @) to obtain (6.2). O
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Theorem 8. Let u be a solution of (P) satisfying the second order sufficient condition (3.8)
and the structural assumption (6.1). Then there exist € > 0 and k > 0 such that

J(a)+%

143 K _ _
llu— U||L1(Q) + ZHyu - yH%%Q) < J(w) Vu € Uaa: lyu — Yllze=(o) <e.
Proof. First, we make a Taylor expansion and to use (6.2) as follows

J(u) =F(u) + pj(u) (6.3)

=F(a) + () + F/ () o — ) + i () — 1 (a) + 5 F" g — )

=J(8) + 5 [F(@)(u — @) + () — (@)
+ 5 [F@) 1)+ i) — g (8) + F (g (s — )]
> (@) + 2l — 0l + 5 [F () — 1) + i) — () + F (g (s — 0)?]

Now, it is enough to estimate the last term with (3.10), taking p = 1, to conclude the
proof. O

Next, we consider the discrete control problems (Pj,) defined in section 4. Let @ be a
local minimizer of (P) satisfying the second order condition (3.8) and the assumption (6.1).
Then, from Theorem 6 we get the existence of a sequence {up}, of local minimizers of
problems (P,) such that @, — @ in L®(Q), ||gn — Yl — 0 as b — 0, and (5.4) is
fulfilled. The goal is to provide error estimates for u#; — w. To this end we will need the
following approximation properties of 7,%. Recall that we are defining @ = @ on Q\ Q.

Lemma 7. Let @ € U,q satisfy the first order condition (3.1) and the structural assumption
(6.1). Then there exists C, > 0 independent of h such that

@ — mha) L1 (q,) < CyhY (6.4)

and
|F' (@) (mpa — @) + pj () — pj(a)| < Co R (6.5)

Proof. Consider an element T' where |@(x)| — v changes sign if > 0, or @(z) changes sign
if p = 0. Since @ is continuous, there exists zo € T such that |@(zg)| = p or @g(zg) = 0.
We also have that ¢ € W?2P(Q) for some p > n, so @ is Lipschitz, and hence there exists a
constant Lg > 0, independent of T', such that for all z € T

|lp(@)| = | = [lp(@)] = 1@(x0)|| < Loh if 11> 0,

|2(2)] = |#(2) = G(0)| < Lph if p=0.
Denote

S =U{T: |p(x)| — p changes sign in T} if >0,

S =U{T: @(zx) changes sign in T'} if p=0.
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We have just proved that
Sc{xe:||g()|—pu| <Lgh}

and by Assumption (6.1) we have that measS < KLJhY. From (3.4) we get that @ is
constant in every triangle T where |@(x)| — p has a constant sign if 4 > 0 or g(z) has a
constant sign if g = 0. Hence, the identity @ — 7,4 = 0 holds in Q \ S. Therefore

12— mntll L, = 1© = mnttl| sy < (B — ) KLGAY,
and (6.4) follows.
Let us prove (6.5). If 4 = 0, we have

/ @(mpa — ) dx / @(mpa — ) dx
Qh S

SH@HL“’(S)H’EL — ﬂ-hﬂHLl(S) < L@h(ﬁ — Oz)KL%h’Y < thlJr’y.

|F' () (mnu — )| = =

For the case p > 0, we proceed as follows. For h < ﬁ we have ¢(z) # 0 Vz € S. Then, for

every element T' C S, either @(x) > 0 or g(z) < 0 for all x € T. Using (3.4), we deduce in
the first case, that both @(x) < 0 and 7pa(z) < 0 for all z € T and in the second case that
a(z) > 0 and mpa(z) > 0 for all z € T. Thus, we have

/ o(mpu — u)dx + u/ |mpalde — u/ |u|dz
Qpn Q Q

/ o(mpu — u)dw + u/ |mpalde — u/ |a|dz

S S S

/ p(mpa — a)dx — ,u/ Trudr + ,u/ udx
Sn{g>0} Sn{g>0} Sn{g>0}

+/ @(mpu — u)dx + u/ TRudx — M/ udx
Sn{g<0} Sn{g<0} Sn{e<0}

[ emma-ades [ (el-pa- ma)ds
SNn{g>0} SN{p<0}

|F' (@) (mpte — @) +pj(mni) — pj(u)| =

<|l|@] = pll Lo (sl — mpiall L1 sy < Loh(B — o) KLIRY < Cy R,
and (6.5) is satisfied. O

The next theorem provides an estimate for the difference 4, —@ and improves the estimate
for the differences of the states provided in Theorem 7 for v > ¢! ~ 0.6180..., where
¢ = 1+T‘/5 is the so called golden ratio.

Theorem 9. Let @ be a solution of (P) satisfying the second order sufficient conditions (3.8)
and the structural assumption (6.1). Let {ap}n be a sequence of local minima of (Pp) such

that (5.4) holds and @y, — @ in L>®(Q). Then, there exists a constant C > 0 independent of
h such that

2
an — L1,y < ChY,

y(y+1)

l9n — Gl L2 < Ch™ 2
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Proof. Since i@, = @ in L>(f2), using Theorem 1, we deduce that for any £ > 0 there exists
ho > 0 such that ||y — gllr~) < € for every h < hg. We extend u, to Q by setting
ap(z) = u(z) if x € Q\ Q4. The same extension is considered for 7pa. Thus we have
Jn(mn@) — jp(tn) = j(mpa) — j(ur). Now, using (6.2), (6.5), the fact that m,a € Uy, qq and
the first order optimality condition (4.12) (see also Remark 2) for the discrete problem (Pj,)
we get

v, 1+t 1., ., N o o
llan =all o) + 5 [F (@) (@n — ) + pjan) — pj(@)]

F'(u)(u h_u)+ﬂj(uh) i ()
[ "(@)(an — @) + pg(an) — pg(@)] + [Fy (@) (ma@ — @n) + pgj (mpa) — pg(an)]
= [F'(a) — Fy(an)](an — 7Thu) + [F'(a)(mp@ — @) + pj (mpta) — pug ()]
< [F'(@) — Fy(un))](un — mptt) + Cy R
= [F'(@) — F'(an))(an — wp@t) + [F'(an) — Fj,(@n))(@n — 70) + Cyh' 7
11+ O R, (6.6)

Let us estimate the terms I and II.

First, we notice that there exists a constant Cy > 0 independent of h such that
2 = @, llL=(@) < Collt = anll L1 (0,)- (6.7)

To prove (6.7), define z = @ — ¢y, . Subtracting the equations satisfied by ¢ and ¢z, , we
obtain that z satisfies

of ,
Atz + 2L
Z+8y(x,y)z

af af oL, . 9L .
s oy 2L _ it _ = _ 0
By (%, ya,) 9y (x,y)}souh + {ay (z,9) 3y (%, ya,)| inQ,

z=0onT.

From assumptions (A2) and (A3), Theorem 1, (2.9) and using the mean value theorem
I2llz= @) < C1llT = yanllL2(0),

where Cy = Ty(TooC s, + Crar..). Now, (6.7) follows from (2.6), and Cy = C,C.

For the first term, using the mean value theorem, (6.7), (6.4), and Young’s inequality

I

(F'(a) — F'(an))(@n — mna)

=(F'(a) — F'(up))(an — @) + (F'(a) — F'(ay)) (@ — mpa)
=—FWwﬂw—uV+A;w—wwﬂu—mme
"(Ue)(ﬂh —)* + | — ap |l Lo () 1T — Tl 11 (0
) +C0||7.L - uhHLl(Qh)C hY

IN N
I |
5
=
N
’T
ﬁl

sfF%wxmfﬂ>+gwfawﬁ&w+0mﬁ“% (6.8)
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where C’ = % (Cocvﬁ)VH (%)7.

For the second term, taking into account that @ =0 in Q\ 5, we can write
= / (0a, — @n)(Un — Tht)dz.
Qp

Let us estimate ¢z, — @p. To this end, we introduce the function " € W2P(Q) for all
p < oo as the solution of

L of, . on,
Aso+afy(:v,yh)s0 = 8y($7yh) in Q,
¢ = 0OonT.

Obviously, estimate (4.4) can be applied to estimate ©" — @y, hence we have

¢" = @ullLe(a) < ch?|logh|?.

Now, we estimate the difference 2" = o, — ¢". Subtracting the equations satisfied by
¢a, and " we obtain

A*zZh 4 g% (z,ya, )"

9 9 oL
— [875(%’%) - aijc(x,yah)} o+ [@(x,yah) - a—y(w,gh)] in O,

2" =0onT.
From assumptions (A2) and (A3), Theorem 1, and using the mean value theorem we infer
12| Lo ) < Ctillya, — Tnllz2(o)-
Now, (4.3) and the definition of 2" imply
lea, — "l () < Cich®.

Altogether, and using Young’s inequality for p = y+1 and ¢ = (y+1) /7 along with estimate
(6.4), we deduce the existence of constants Cy, C5,Cy > 0 independent of h such that

11 §02h2| log h|2(H’0,h — ’U,HLl(Qh) + Ha — 7Th'a||L1(Qh))

v,_ _ ,1+%
<Cs(h?|log h|)"+1 + sla—anlg,) + C4h** 7| log h|?. (6.9)

From (6.6), (6.8) and (6.9), we have that there exists C5 > 0 independent of h such that

v, _ I 1 o _ o o _ _
i — 5 oy + 5 (P — ) ) — @]+ F () i, — )
< C5((h*|log h?)" ! + B**7[log h|? + A1+ 4+ B7OFD). (6.10)

From Lemma 2 we deduce the existence of x > 0 such that for € as above sufficiently small

Mo~ Ty < 5 [ @)@~ ) g ) — i (@)] + F (o) (i, — 07 h < . (6.11)
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Combining (6.10) and (6.11) and taking into account that v < 1, we get
Zlan =l oy + 5 v, — T3y < ConTHD
for some Cg > 0 independent of h.
The proof concludes observing that |ya, — ¥nllL2(0) < ch?; see (4.3). O
Remark 6 (Approximation by continuous piecewise linear functions.). If we take
Up = {vy, € C(Q) : vpr € PL(T) VT € T}

and Uy qq = Uy NU,q, we do not improve the order of convergence. The proof follows the
same lines as before, replacing mpu by any control uy € Uy, qq such that UZIT =aifg(x) > p
forallz €T, up =B if g(x) < —p for allx € T and ujy . = 0 if |§(x)| < p for all z € T.

Remark 7 (Variational discretrization.). If U, = L?(S2), then the projection is the identity
and T = u in Q. So in the proof of Theorem 9 the terms of order h*™7|logh|?, h*™7 and
R+ in (6.10) disappear, and finally we get

1% = @nllzr (o, < C(hllog h))*?, |17 = Gnll 20y < C(hllogh])'*.

This order of convergence was obtained for problems governed by linear equations in [106,
Lemma 8.3] assuming that p =0, v =1, and ¢ € W2>(Q).

7 Numerical experiment

Consider n = 1, Q = (—1,1), A = —A = —0,,. We will take f(x,y) = y|y|>, n = 0 and
L(z,y) = 3(y — ya(z))?, where yq4 is defined later. The state equation is given by

=05y +yly? = win (=1L 1), y(-1) =y(1) =0,
and the adjoint state equation is given by
—0ze+4ylPe = y—yain (-1,1), o(-1) = ¢(1) =0.
We define a = —1, =1 and
p(x) = (1 —2°)(zo — x)|o — 2|77,

where the switching point zg is 2o = 27° /3 for some § > 0 and g > 1. We test examples for
6=09,g=1and d =3, ¢ =2. This function clearly satisfies the boundary conditions of the
adjoint state equation and Assumption (6.1) holds for v =1/q € (0, 1].

Taking into account the sign of @, we define

u(x):{ a ifx <z,

B if x> xp.

Using this control, we compute § = y5. Since we cannot solve the state equation exactly, we
solve it for a uniform mesh with constant step size h = 2715/3, so that z is a mesh node.
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Finally, we define y4(z) = @"(z) — 4|y(2)>p(z) + §(z).

With this data, we have that first order optimality conditions are satisfied and Assump-
tions (Al), (A2), (A3) and (6.1) hold for ¢ = 1 and all ¢ > 2. Experimentally, it is clear
that %(m,g(x)) - @(x)%(m,gj(z)) > 1 for all x € €, so second order sufficient condition
(3.8) is also satisfied; see (2.10).

We discretize the problem using a family of uniform meshes with constant step size

hi = 27% i = 3,.... To solve the discrete problems, we do a Tikhonov regularization, cf.
[18], i.e., we solve the finite element approximation of

) . vy
(P*2) min Jy, (u) = J(u) + fulizo).
for a sequence v; N\, 0. This problem is solved using a semismooth Newton method as

described in [8, Section 14]. We use algorithm 7.1, with parameters vy = 1, r = 0.1,
e =101 and vpin = 1071

Algorithm 7.1: Optimization algorithm

1 Set j =0, an initial vg > 0 and an initial guess ug, Yo, ¢o- Fix 0 <7 <1 and a
tolerance € > 0

2 Solve (P¥7) with initial guess u;, y;, ¢,

3 Name the result w11, yj4+1, ©j+1

4 Set vj11 = max{rv;, Vmin}

s if [lujr —ujllnom) + v+ — Uillz) + llvisr — @jll2@) <€ then
6 ‘ stop

7 else

8 ‘ Set 7 =37+ 1 and go to 2

9 end

For v = 1, we obtain the results summarized in Figure 1 (piecewise constant approxima-
tions), Figure 2 (piecewise linear approximations) and Figure 3 (variational approximation).
The experimental results are quite in agreement with the results in Section 6.

For v = 1/2, we are only able to observe the predicted error estimate for the error control
in the variational approach. See Figure 4. For the other approximation we observe O(h),
despite expecting only O(h'/4) for the controls and O(v/h) for the states.

A Appendix: sketch of the proof of equation (3.11)

For a given 6 € [0, 1], we denote up = u+0(u—u). We will use the following property, proved
in [10, Lemma 3.5-2]. For every 7 > 0 there exists ¢ > 0 such that if ||y, — |1~ @) < &,
then

[(F" (ug) — F"(@) 75| < Vlz072(q) Yo € L*H(). (A.1)

Firstly, we prove that there exists a constant C' > 0 such that
p (50 — 7) + F" (ug) (1 — @) = Cllzu—all3 (o, (A.2)

As in [9, Theorem 3.1], we distinguish three cases
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Figure 1: Experimental

control. v =1

Figure 2: Experimental

of the control. v =1
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Figure 4: Experimental order of convergence. Variational approximation of the control.

y=1/2

Case 1: u—u € CT. On one hand, from [6, Lemma 2.5], we have that

On the other hand, taking ¢ small enough, using (A.1) with v = 6/2 and the second
order condition (3.8), we have

F"(ug)(u—u)* > 5 llzu-allZ2(q)

N S

and (A.2) follows.

Case 2: w—u ¢ GT. In this case it is the first derivative the one that dominates.
For any given p > 0, it is proved as in [9, eq. (3.8)] that for ¢ > 0 small enough and
1Y — Ul () < &, we have

_ _ PT
pJ' (W5 u —a) > 7||Zu—ﬂ||%2(9)~
5
By continuity properties of the second derivative, there exists M > 0 such that
F"(up)(u — 1)* < M|zu—al72(0)-

So for € > 0 small enough (and maybe depending on p), equation (A.2) holds.
Case 3: u—u ¢ Dy and u — @ € G First of all, let us define 7% = 7/max{1l,Cq1}. If
u—1u & GT , then Case 2 applies. Otherwise, we define the set W C 2 in the following way:
ifp=0, W={zeQ:|p()|>randu(x)—u(x)#0},
ifn>0, W={zeQ:@()=—pand u(zr) =0 and u(z) <0,
or @(x)=+p and (x) =0 and u(z) > 0,

$(@)] = | > 7 and u(a) # u()},

T

or
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Let us also denote V = Q \ W and define now v = (u — @)xy and w = (u — @)xw. On
one hand we have (see [11, Proposition 3.6] and [9, eq. (3.11)]) that

S (@ u—a) > llwl| o). (A.3)

On the other hand, by construction, v belongs to DI. We also know that v € GZ~ C GZI.

This result is proved in [9] for the parabolic case and applies mutatis mutandis to the elliptic

case. Thus, v is an element of C7. Using now that u — @ = v + w, (A.1) and (3.8), we have
that there exists a constant ¢ > 0 such that

_ ]
F(ug)(u = 0)* = 2llzu-alliz(a) = clzwliza) (A4)

Define now Cq 1 and C o as the continuity constants of the mapping v — z, respectively
in L'(Q) and from L?(Q) to L>(Q), i.e.,

llzull @) <Callvlii(a) Vo € L'(Q), (A.5)
||Zru||Loo(Q) SCQ,ooHU||L2(Q) Yv € LQ(Q). (A.G)

In addition, we know that there exists § > 0 such that,
19u = ll=(@) <0 = llzu-allLe@) < 2l — Yllr=() (A.7)

The proof of this result is done [9, Lemma 2.4] for the parabolic case, the adaptation for the
elliptic case being immediate.

Let us define the constants

2 PT i
K =205 (8—a)|Q], &= 1eCol’ and € = min{6,4K} ,

From now on, we suppose
Yu — Yl Lo () <e.

Using (A.3), the fact that u — 4 € GT, that £ < §, and (A.7) we have
T||'LU||LI(Q) SJ/(TL; u—1a) < THZu,a”Ll(Q) < Tqu,ﬁ||Loo(Q)|Q| < 27(Qle.

With this inequality, and taking into account that [|w||p~ (o) < 8 — a, and the definitions of
¢ and K, we obtain

12 250

loll e < (8 = )2l o) < (8 = ) /2@I01) %2 < o=

Taking into account the previous estimate and (A.6), we deduce that ||y 0) < 20, and
hence, using (A.5), we obtain

I2wllZ20) < 2¢0ll2wllzr (@) < 260Cal[w]l L1 (o)
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Finally, (A.2) is deduced using inequalities (A.4) and (A.3), the previous inequality, and the
definition of ¢y as follows:

_ _ _ 1)
pJ (w;u — @) + F" (ug)(u — ) Z§||Zu—ﬂ||2L2(Q) — cllzwlliz@) + p7llwlLi0)
)
Z§||Zu—ﬂ||2L2(Q) + (p1 — 2c20Ca,1) || L1 (o)
1)

1
=§||Zu—ﬂ||2L2(Q) + §PT||U)||L1(Q)

Z§||Zu—ﬂ||2L2(Q)-

To conclude the proof of (3.11), it is enough to notice that (see [9, eq. (2.9)]) for € > 0

small enough

1 _
lzu—allz2(2) = 51vu — FllL2()-
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