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Abstract: Preference aggregation and in particular ranking aggregation are mainly studied by the
field of social choice theory but extensively applied in a variety of contexts. Among the most
prominent methods for ranking aggregation, the Kemeny method has been proved to be the only one
that satisfies some desirable properties such as neutrality, consistency and the Condorcet condition
at the same time. Unfortunately, the problem of finding a Kemeny ranking is NP-hard, which
prevents practitioners from using it in real-life problems. The state of the art of exact algorithms for
the computation of the Kemeny ranking experienced a major boost last year with the presentation
of an algorithm that provides searching time guarantee up to 13 alternatives. In this work, we
propose an enhanced version of this algorithm based on pruning the search space when some
Condorcet properties hold. This enhanced version greatly improves the performance in terms of
runtime consumption.

Keywords: ranking aggregation; Condorcet; Kemeny method; exact algorithm; recursive method

1. Introduction

Elections in which several voters express their preferences over a set of alternatives
in the form of rankings arise in many situations [1,2]. The problem of aggregating these
rankings in order to rank the alternatives according to the preferences of the voters has
been deeply studied in the field of social choice theory [3]. In particular, the problem can
be traced back to the eighteenth century at the latest, when French scientist Condorcet [4]
stated that whenever voters’ preferences are expressed in the form of rankings, the only
information that should be used is that given by the pairwise comparisons between the
alternatives. According to this, Condorcet set a (simple) majority criterion principle based
on choosing as winner of the election the alternative that beats all other alternatives by a
majority of the votes, whenever such alternative exists.

When applying this majority criterion for establishing a winning ranking instead of a
single winner, it is considered that an alternative should be ranked at a better position than
another alternative in the winning ranking if the former defeats the latter by a majority
of the votes. Unfortunately, the majority relation defined in this way is not necessarily
transitive, and cycles of preferences might occur. This is referred to as the voting paradox.
Even more so, the majority relation may be inconsistent with respect to any scoring method
based on assigning points to the different alternatives according to their positions in the
rankings, including the most prominent such method proposed by Borda [5].

Almost two centuries after Condorcet’s proposal, Kemeny [6] proposed selecting the
ranking that minimizes the distance to the rankings given by the voters [7]. This method can
be understood as a natural extension of Condorcet’s proposal since the ranking obtained
by the Kemeny method coincides with the Condorcet ranking if it exists [8]. Unfortunately,
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the computation of the Kemeny ranking for solving the Kemeny problem is known to be
NP-hard [9].

The computation of ranking aggregation methods has gained attention in recent years,
as they arise in real-life problems in several contexts [10–12]. The state-of-the-art exact
algorithm for computing the solution(s) of the Kemeny method was introduced last year by
Azzini and Munda [13]. In this paper, we review their proposal, pointing out a special case.
We also propose a variation to ease the computation of the solutions based on Condorcet’s
criterion.

The remainder of this paper is organized as follows. Section 2 presents the Ke-
meny method. The state-of-the-art exact algorithm to resolve this problem is presented
in Section 3. Sections 4 and 5 point out some modifications that can be incorporated into
the algorithm. Three variations of the original algorithm are presented in Section 6. The
experiments and the obtained results are presented and discussed in Sections 7 and 8. Final
conclusions and future lines of research are outlined in Section 9.

2. The Kemeny Method

Consider a set of n alternatives A = {a1, . . . , an}. Preferences over A are expressed
in the form of a ranking, which is a complete, reflexive and transitive (but not necessarily
antisymmetric) relation such that, for every pair of alternatives ai, aj ∈ A, a strict order
(ai � aj or aj � ai) or equivalence (ai ∼ aj) relation is defined. A strict order relation can
be understood as a numeric vector that assigns an integer value in the interval [1, n] to
each alternative representing the position of the alternative in the ranking, being 1 the best
possible position and consequently n the worst possible one.

The list of rankings given by the m different voters over the set of n alternatives is
called the profile of rankings, denoted by πn

m. As some voters may agree on their ranking,
this would lead to a representation of the profile containing repeated rankings. In this work,
we use the compact representation of the profile of rankings that only contains m′ ≤ m
unique rankings, where each ranking ri ∈ πn

m is weighted by the number wi of voters that
expressed the ranking ri. Thus, m = ∑m′

i=1 wi.
The alternatives in Amay be compared in a pairwise fashion by using a matrix O of

dimension n× n, known as the outranking matrix [14]. Each element oij of O represents
the number of times that the alternative ai is preferred over the alternative aj by a voter.
The value of the element oij is obtained from πn

m by adding 1 point every time that ai � aj
holds in a ranking of the profile and 0.5 points every time that ai ∼ aj holds. Therefore,
for each pair of alternatives ai and aj with i 6= j, it holds that oij + oji = m. By definition,
all the elements of the diagonal are set to 0. This simpler representation gathers the most
important information (pairwise information) provided by the profile of rankings.

An example of a profile of rankings and corresponding outranking matrix is shown in
Table 1. In order to obtain the outranking matrix, the position of each pair of alternatives
is evaluated in all the rankings of the profile. For example, to obtain the value of the
element o1,2 at the first row and second column, which represents the number of times
that a1 is preferred over a2, the relative position of the alternatives a1 and a2 is checked
over all the rankings. Every time that a1 � a2, meaning that the alternative a1 is ranked
at a better position than a2, one point is added to o1,2. For the first ranking of Table 1, it
holds that a2 � a1, so no points are added to o1,2. For the second ranking, it holds that
a1 � a2; therefore, one point is added to o1,2. For the third ranking, it also holds that
a1 � a2; however, this ranking is expressed by four voters and therefore four points are
added to o1,2. For the fourth ranking, it holds that a2 � a1 and, thus, no point is added
to o1,2. In this way, it is therefore determined that o1,2 = 5. The element o2,1 at the second
row and first column may be calculated from o1,2 due to the constant sum property of the
matrix, as the number of voters is constant and therefore o1,2 and o2,1 must add up to the
number of voters. In this example with 10 voters, o2,1 = 10− o1,2 = 5.
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Table 1. Profile of rankings π4
10 given by ten voters on the set of four alternatives A = {a1, a2, a3, a4}

(left) and corresponding outranking matrix (right).

Number of Voters Ranking a1 a2 a3 a4

4 a3 � a2 � a4 � a1 a1 0 5 2 2
1 a1 � a2 � a4 � a3 a2 5 0 2 6
4 a4 � a3 � a1 � a2 a3 8 8 0 4
1 a2 � a1 � a4 � a3 a4 8 4 6 0

The aim of a ranking aggregation function is to map the profile of rankings πn
m into

the ranking that best summarizes the information given by the voters, which is usually
referred to as the winning or consensus ranking.

Condorcet stated that an alternative ai should be ranked at a better position than
another alternative aj in the winning ranking if ai is preferred by the majority of the voters
over aj, which in terms of the outranking matrix means that oij > oji. Unfortunately, as
it was previously mentioned, this relation is not necessarily transitive as it may lead to a
situation in which ai � aj, aj � ak and ak � ai, even if the preferences were expressed in
the form of complete rankings.

A prominent family of ranking aggregation functions is based on the use of a distance
function δ on the set of rankings. The distance of a ranking to a profile of rankings δ(r, πn

m)
is computed by adding the individual distances from r to all rankings in πn

m. From all the
possible n! complete rankings that can be obtained by permuting the set of n alternatives
A, the one (or ones) that minimizes the value of δ is selected as the winning ranking.

The most representative example of this family of distance-based methods is the one
proposed by Kemeny [6]. According to Kemeny, the distance between two rankings is the
number of discrepancies in the relative order of every pair of alternatives. Formally, two
points are added every time that two alternatives appear in the rankings in the opposite
order and 1 point is added every time that two alternatives are tied in exactly one of the
rankings. Thus, the distance of a ranking s to the profile of rankings πn

m is defined as the
sum of the Kemeny distances from s to all the rankings ri ∈ πn

m.
The Kemeny ranking has been referred to in the literature as the maximum likelihood

ranking. This is due to an equivalent interpretation where, instead of seeking for the
ranking that minimizes the distance to the profile of rankings, we seek for the ranking
that maximizes the agreement with the profile of rankings. The Kemeny ranking(s) can
be computed from the outranking matrix by searching for the ranking(s) with maximum
agreement score σ, defined as

σ(s, πn
m) =

n

∑
i=1

n

∑
j=1

oij · xij, (1)

where xij = 1 if ai �s aj and 0 otherwise.
For the profile of rankings in Table 1, the agreement scores for all possible rankings

on A are shown in Table 2. It can be seen that the agreement score is maximized by the
rankings a3 � a2 � a4 � a1, a4 � a3 � a1 � a2 and a4 � a3 � a2 � a1. These three
rankings are the solutions to the Kemeny problem for the profile of rankings in Table 1.

Young [8] observed that the Kemeny method returns the Condorcet ranking in case it
exists. Furthermore, it is known that the Kemeny method is the only ranking aggregation
method that is neutral, consistent, and Condorcet [15,16]. Unfortunately, the problem of
finding a Kemeny ranking has been proved to be NP-hard [9], which prevents its use
in practice in many real-life problems. There exists no known algorithm to compute the
Kemeny ranking in polynomial time, for any given number of alternatives greater than or
equal to 3.
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Table 2. Agreement score σ for all the possible rankings according to the Kemeny method for the profile of rankings in
Table 1.

Ranking σ Ranking σ Ranking σ Ranking σ

a3 � a2 � a4 � a1 39 a2 � a3 � a4 � a1 33 a2 � a4 � a1 � a3 29 a1 � a3 � a4 � a2 25
a4 � a3 � a1 � a2 39 a3 � a2 � a1 � a4 33 a1 � a3 � a2 � a4 27 a1 � a2 � a4 � a3 23
a4 � a3 � a2 � a1 39 a3 � a1 � a2 � a4 33 a1 � a4 � a3 � a2 27 a2 � a1 � a4 � a3 23
a3 � a4 � a1 � a2 37 a4 � a1 � a3 � a2 33 a2 � a3 � a1 � a4 27 a1 � a2 � a3 � a4 21
a3 � a4 � a2 � a1 37 a4 � a2 � a3 � a1 33 a4 � a1 � a2 � a3 27 a1 � a4 � a2 � a3 21
a2 � a4 � a3 � a1 35 a3 � a1 � a4 � a2 31 a4 � a2 � a1 � a3 27 a2 � a1 � a3 � a4 21

3. Azzini and Munda’s Algorithm

The state-of-the-art exact algorithm for the computation of the Kemeny ranking(s)
was presented by Azzini and Munda in [13] and is based on the theoretical equivalence
between the Kemeny ranking and the maximum likelihood ranking. The algorithm con-
siders a recursive process based on outranking matrices to compute σ, which makes the
computational time only depend on the number of alternatives to be considered, so it
does not increase as the number of voters increases. The obtained results improved the
computational time by the exact algorithm used as benchmark up to that moment. Azzini
and Munda’s algorithm is based on the two following propositions:

Proposition 1 ([13]). Let A be a set of n alternatives and let O = [oij] be an outranking matrix
defined on A. There exists at least one alternative ai ∈ A such that ∑n

j=1 oij ≥ ∑n
j=1 oji .

Proposition 2 ([13]). Let A be a set of n alternatives and let O = [oij] be an outranking matrix
defined on A. A necessary condition for a ranking to have the maximum likelihood score is that the
alternative at the top position ai ∈ A satisfies that ∑n

j=1 oij ≥ ∑n
j=1 oji.

Note that not all the alternatives whose row sum is greater than or equal to their
corresponding column sum are ranked at the first position in one of the solutions of the
Kemeny problem.

For the sake of simplicity, in the remainder of this paper we denote by αi the truth
value obtained from the Boolean expression:

αi =

(
n

∑
j=1

oij ≥
n

∑
j=1

oji

)
, (2)

meaning that αi is True when the alternative ai is preferred over the remaining alternatives
in A at least as many times as the other alternatives are preferred over ai.

From Proposition 2 it is deduced that the alternative ai at the first position of the
ranking must always be one such that αi = True. From a computational point of view, this
allows for a great reduction in the set of rankings to explore as possible solutions.

The starting point of our work is the Mork-Exact algorithm (consequence of Proposition 2),
presented in [13], which is outlined below:

Step p. In the current outranking matrix with (n ≥ 3), choose all alternatives whose row
sum is not smaller than the corresponding column sum.

Step p+1. Choose one of the alternatives found in Step p and delete its corresponding row
and column.

Step p+2. Given the new current outranking matrix, repeat Step p and Step p+1. The
algorithm stops when the outranking matrix becomes a matrix of dimension
2× 2, in this case choose the alternative with largest concordance index (i.e., the
largest nondiagonal value). Steps p+1 and p+2 are repeated for each alternative
whose row sum is bigger than or equal to its column sum found in all steps.
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Final step. Compute the total score for all the rankings obtained in the previous steps. Delete
all rankings whose total score is not the maximum one. Note that this step is
needed since Proposition 2 gives a necessary but not sufficient condition.

In this paper, we propose an improvement for the Mork-Exact algorithm with the aim
of decreasing its execution time and make it more efficient in computational terms.

4. Constraints Based on the Condorcet Conditions
4.1. The Condorcet Ranking

The Condorcet ranking is a ranking such that each alternative is preferred by more than
half of the number of the voters to all other alternatives ranked at a worse position. The
Condorcet ranking might not exist for a given profile of rankings; however, it is unique in
case of existence. The Kemeny method returns the Condorcet ranking in case it exists for
the profile of rankings [15].

In case of existence of the Condorcet ranking, the outranking matrix must be transitive.
In such case, the algorithm could avoid the execution of the recursive process, since the
winning ranking can be determined faster from the outranking matrix by counting how
many times each alternative ai ∈ A is preferred over other alternatives.

Let h be the value representing half of the number of voters, more precisely, h = m
2 if

m is even and h = m−1
2 if it is odd. The Boolean outranking matrix B is obtained from the

outranking matrix O such that bij = 1 if oij > h and bij = 0 otherwise. Let us denote the
sum of the elements at the i-th row of the Boolean matrix as βi = ∑n

j=1 bij .
When there exists a Condorcet ranking, the sum of the elements of each row in B gives

for each alternative a different integer value in the interval [0, n− 1]. Thus, the Condorcet
ranking is obtained by sorting these values in descending order.

This can be used as a precondition in the algorithm in order to determine whether the
recursive process used to find the Kemeny ranking may be skipped.

4.2. The Condorcet Winner

The Condorcet winner is an alternative that is preferred by more than half of the number
of the voters to all other alternatives. The Kemeny method is known to be a Condorcet
method, which means that, in case the Condorcet winner exists, this alternative is ranked at
the first position.

It is known that in the cases in which the profile of rankings does not yield a Condorcet
ranking, B is not transitive. If there exists a Condorcet winner, then the row corresponding
to this alternative in O contains n− 1 values greater than h, as the alternative ai is preferred
over all other alternatives by more than half of the number of voters. This means that
the column associated with this alternative has a value β = n − 1. Therefore, for the
outranking matrices where this value of β is present but the Condorcet ranking does
not exist, the Condorcet winner still exists. Notice that only one alternative may be the
Condorcet winner.

However, although there exists at most one Condorcet winner, there could be more
than one alternative such that αi = True. If one of these alternatives is the Condorcet
winner, the exploration of all other elements with αi = True could be omitted, which may
lead to a significant decrease in the execution time of the algorithm.

5. Tied Alternatives in the Recursive Process

Step p+2 of Mork-Exact states that ‘the algorithm stops when the outranking matrix becomes
a matrix of dimension 2× 2, in this case choose the alternative with the largest concordance index’.
At this point, this matrix of dimension 2× 2 is of the following form:(

0 x
m− x 0

)
,
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for the two remaining alternatives ai and aj, where x is the number of times that ai is
preferred over aj due to the property of constant sum oij + oji = m of the outranking matrix.

Notice that there is a special case that can be found in some profiles of rankings. Con-
sider a profile of rankings with an even number of voters m. If two alternatives ai, aj ∈ A
that are tied (each of them is preferred to the other one by h = m

2 voters) are considered
at the end of the recursive process, then the matrix of dimension 2× 2 obtained from the
recursive process has two equal concordance indexes, i.e., x = m− x = h. In this case
Mork-Exact does not determine what to do as the largest concordance index does not exist.
It is necessary for the implementation of the algorithm to take into account this scenario,
which implies that the recursive process must return both rankings as tentative solutions.

A profile of rankings for which this situation occurs is presented in Table 1. The
execution trace for the algorithm is illustrated in Figure 1.

Step 1:

a1

a2

a3

a4

a1 a2 a3 a4

0

5

8

8

5

0

8

4

2

2

0

6

2

6

4

0

9 7

13 7

20 3

18 3

Two recursive calls:
a3 � . . .

a4 � . . .

Step 2: a3 � . . .

a1

a2

a4

a1 a2 a4

0

5

8

5

0

4

2

6

0

7 7

11 3

12 3

Two recursive calls:
a3 � a2 . . .

a3 � a4 . . .

Step 3: a3 � a2 . . .

a1

a4

a1 a4

0

8

2

0

2 7

8 3

Winning alternative a4, return:

a3 � a2 � a4 � a1

Step 4: a3 � a4 . . .

a1

a2

a1 a2

0

5

5

0

5 3

5 3

Tie, return both rankings:

a3 � a4 � a1 � a2

a3 � a4 � a2 � a1

Step 5: a4 � . . .

a1

a2

a3

a1 a2 a3

0

5

8

5

0

8

2

2

0

7 7

7 7

16 3

One recursive call:
a4 � a3 � . . .

Figure 1. Cont.
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Step 6: a4 � a3 . . .

a1

a2

a1 a2

0

5

5

0

5 3

5 3

Tie, return both rankings:

a4 � a3 � a1 � a2

a4 � a3 � a2 � a1

Figure 1. Recursive process followed by the algorithm over the profile of rankings in Table 1 in order
to determine the tentative solutions, whose score will be later computed to determine the winning
ranking(s) according to the Kemeny method.

After the recursive process is terminated, the agreement score of the rankings in the
list of tentative solutions for the profile of rankings must be computed. The obtained
agreement scores are the following ones:

• a3 � a2 � a4 � a1 (σ = 39)
• a3 � a4 � a1 � a2 (σ = 37)
• a3 � a4 � a2 � a1 (σ = 37)
• a4 � a3 � a1 � a2 (σ = 39)
• a4 � a3 � a2 � a1 (σ = 39)

From this list, only the ones maximizing the agreement score (in other words, the ones
that are the closest to the profile of rankings) are kept. These rankings are a3 � a2 � a4 � a1,
a4 � a3 � a1 � a2 and a4 � a3 � a2 � a1. Thus, the Kemeny method applied to this profile
of rankings admits three possible solutions.

Therefore, we conclude that it is necessary to include these rankings in the list of
rankings to explore as these rankings might be Kemeny rankings. Otherwise, the obtained
list of Kemeny rankings might be incomplete.

6. Proposed Algorithms

In this work, we propose three variations of the Mork-Exact algorithm based on the
considerations introduced in the previous sections:

• ME: Implementation of the original algorithm taking into account the case in which
more than one ranking must be returned in the recursive process. It also incorporates
the precondition that allows one to skip the recursive process in first place in case the
Condorcet ranking exists for the given profile of rankings.

• ME-CW: Checks whether the Condorcet winner exists for the given profile of rankings.
If this is the case, then the recursive call of the first level is made only for the Condorcet
winner and not for all the other alternatives with a value of αi = True.

• ME-RCW: If the Condorcet winner is found in the recursive call, then the ranking of the
remaining alternatives that minimizes the distance to the profile in the recursive call
must start with this alternative. This algorithm recursively checks the existence of the
Condorcet winner and in case the Condorcet winner exists at any level it avoids the
exploration of the alternatives that have a value of αi = True but are not the Condorcet
winner (if any).

The results are presented for these three algorithms. Please note that the algorithm
that checks whether the Condorcet ranking exists for the remaining alternatives in the
recursive process has also been tested. In this case, the results are not improved for all
the profiles of rankings. The reason is that, for those profiles for which the Condorcet
ranking does not exist at any point, the cost of recursively computing if the Condorcet
ranking exists increases the execution time without providing any advantage. Therefore,
this algorithm has been omitted in the upcoming sections.

As it is not possible to know in advance the number of recursive calls, the study of
the complexity is not trivial. Furthermore, the problem is still NP-hard as the proposed
algorithms cannot guarantee that the obtained complexity could be polynomial. In relation
to the execution time, this depends on the number of alternatives that fulfill the condition
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α = True, which determines the number of recursive calls. In a more general sense, the
execution time of these algorithms depends on the number of rankings that are potential
solutions (which is at most n!) and how many of them can be discarded by taking into
account Proposition 2. The proposed algorithms also incorporate the Condorcet conditions
to discard potential solutions and thus reduce the execution time. For example, the
best situation for the ME-CW algorithm occurs when there exists a Condorcet winner and
therefore only n!

n = (n− 1)! rankings are potential solutions to the Kemeny problem in
the first recursive call (and some of them are discarded in the next steps). The ME-RCW
algorithm follows a similar approach at different levels of the execution, which greatly
reduces the number of tentative solutions and, consequently, the execution time. Notice
how the execution time is mainly dominated by the number of alternatives, as the size
of the input data of the algorithm is always a matrix of dimension n× n, no matter the
number of voters.

7. Experiments

In the original paper in which the Mork-Exact algorithm was proposed [13], the
authors provide the average execution time of the algorithm for different numbers of
alternatives. To measure this execution time, they randomly generated 1000 different
matrices for each n ∈ [3, 13], with a fixed number of voters equal to 100.

However, as it is highlighted in [17], the execution time of the algorithms does not
depend only on the number of alternatives in the profile of rankings but also in the difficulty
of the profile of rankings itself. As the computation time of the algorithms considered in
this work strongly relies on the number of alternatives with α = True, we have defined the
difficulty of the profiles according to the number of alternatives satisfying α = True. Let ω
be the number of alternatives in the profile satisfying α = True, formally defined as

ω = ∑
ai∈A

αi . (3)

The value of ω in a profile of rankings with n alternatives ranges in the interval of
natural numbers [1, n]. Note that ω depends on the votes distribution.

The value of ω has a high impact on the execution time of the algorithm, as it deter-
mines the number of recursive calls that are made at the first level of the matrix. This has a
strong relation with the number of rankings considered as tentative solutions and therefore
with the impact of the time required to solve this problem.

For our experiments, we have designed two different lists of profiles of rankings
in order to test the algorithm under different conditions: (1) a list containing profiles of
rankings for which the Condorcet winner exists but the Condorcet ranking does not exist
and (2) a list with profiles of rankings for which the Condorcet winner does not exist (and
consequently the Condorcet ranking does not exist either). Each list contains for each
pair (n, ω) with n ∈ [8, 12] (we focus on these values of n because the solution for n < 8
when using this algorithm is instantly returned) and ω ∈ [1, n− 1], 5 different profiles of
rankings that have been synthetically generated with a constant number of voters. With
this experimental setting it is ensured that profiles associated with all ranges of execution
time are considered in the evaluation of the algorithm. This allows to explore the worst-case
execution time of the algorithm, presented when all the alternatives are such that α = True,
even if that scenario is not common in real-life datasets. Furthermore, we have also created
two shorter lists of 30 and 25 profiles of rankings of 13 and 14 alternatives, respectively,
for which the Condorcet winner does not exist. The generated profiles of rankings are
available at https://github.com/noeliarico/consensus_benchmark (accessed on 12 May
2021).

Considering the lack of access to the original code and experiments and the fact that
the algorithms have been tested by using different processors (original results are obtained
by using an Intel Core i7, whereas the here-presented results are obtained by using an
Apple M1), a fair comparison with the algorithm proposed in [13] is not possible. For

https://github.com/noeliarico/consensus_benchmark
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this very reason, the execution time of the algorithm ME will be used as a baseline for
measuring the improvement attained by the new versions of the algorithm. This ME version
is the most efficient version of the algorithm that we have obtained after considering
different approaches and making use of different data structures and memory optimization
techniques in Python 3.7. Therefore, the results presented in the next section are given
based on the relative reduction of the execution time in relation to ME.

The aim of these experiments is to analyze the behavior of the three proposed algo-
rithms for every profile of rankings in the generated lists. In order to minimize the impact
of other processes being executed by the computer during the measurements when the
execution times are low (i.e., up to n = 11), each experiment has been repeated three
times and the median value of these executions (to avoid the effect of possible outliers
if computing the mean) has been taken into account. For each pair of values (n, ω), the
average time obtained from executing the algorithms for the five profiles of rankings with
similar characteristics has been considered.

8. Results

The results of the above-detailed experiments are presented in this section. Figure 2
presents the results obtained for the list of profiles of rankings for which the Condorcet
winner exists. Each bar represents the average time for a different number of alternatives,
showing that the execution time of the basic algorithm ME is reduced by at least 75% for the
ME-CW algorithm and by around 90% for the ME-RCW. Note that the Condorcet winner exists
for 28–77% (depending on the values of n and m) of the generated profiles of rankings.

The results for profiles of rankings for which the Condorcet winner does not exist
are presented in Figure 3, where these are compared in terms of execution time with the
original ME algorithm, showing improved times for any number of alternatives. In this
case, the ME-RCW also reduces the execution time, reaching a reduction of almost 50% of
the execution time when the number of alternatives increases. The results of the ME-CW
are not presented in this plot, as this algorithm only reduces the execution time when the
Condorcet winner exists. Nevertheless, it is important to remark that the execution time
does not increase for profiles of rankings when the Condorcet winner does not exist, as the
operation to check the existence of the Condorcet winner can be executed in less than 1ms
and it is only performed once at the beginning of the algorithm.

For a better understanding of the results, a detailed visualization is presented in
Figure 4. The x-axis in both plots of the figure has been obtained with a log10 transformation
of the number of tentative solutions explored for each profile. On the left-hand side, a
complete view of the results given by the algorithms ME and ME-RCW for the profiles of
rankings with n = 12 for which the Condorcet winner does not exist is shown. Notice
that the execution time soars for high values of ω in the basic implementation of the
algorithm ME according to our experiments. On the right-hand side, the same plot is
zoomed highlighting the values of ω < 8, where a similar behavior can be observed. Note
that the greater the value of ω is, the bigger is the gap in the execution time between
both algorithms.

Due to the increase of the execution time of ME in extreme situations, we have measured
the execution time for n = 13 and n = 14 only for the improved algorithm ME-RCW and
avoided large values of ω. The results are presented in Table 3. Note that the execution
time varies widely depending on the value of ω, but the algorithm is still executed in
reasonable time and it does not show any memory requirement problem. For profiles of
rankings with a small value of ω, the number of recursive calls made at the first level of
the algorithm is reduced, allowing many tentative solutions from the very beginning to be
discarded. Therefore, aside from large values of ω, the execution time is affordable even
for this number of alternatives.
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Figure 2. Execution time in seconds and percentage of time reduction of the three algorithms for
the profiles of rankings for which the Condorcet winner exists. Results are presented for different
numbers of alternatives.
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Figure 3. Average execution time in seconds and percentage of time reduction of the ME-RCW algorithm
for the profiles of rankings for which the Condorcet winner does not exist. Results are presented for
different numbers of alternatives.

Table 3. Execution time for profiles of rankings of 13 and 14 alternatives for which the Condorcet
winner does not exist.

ω Time (in Seconds)

n min max min Median Mean max

13 3 8 6.52 105.93 278.25 1935.66
14 3 7 159.90 579.86 900.38 4002.10
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Figure 4. Reduction of the execution time with ME-RCW for profiles of rankings of n = 12 that
do not have a Condorcet winner. Each plot shows the execution time in the y-axis and the log10
transformation of the number of tentative solutions explored in the x-axis. Each line represents, for
one profile of rankings, the reduction time of the algorithm ME-RCW in relation to ME. Lines are colored
according to the value of ω of the profile.

The obtained results show that the proposed algorithms for the computation of the
Kemeny rankign(s) outperform the state-of-the-art exact algorithm [13], which already
outperformed greatly other exact algorithms proposed in the literature [18,19].

9. Conclusions

In this work, we proposed some variations of the exact algorithm recently proposed
by Azzini and Munda for the computation of the Kemeny ranking(s). These variations
are proved to improve the efficiency of the algorithm. Furthermore, we have stressed
the influence of the characteristics of the profile of rankings on the execution time of the
algorithms. Future work will consider a more detailed revision of the characteristics of the
profiles of rankings and their influence on the performance as well as the implementation
of more elaborate techniques for reducing the exploration of tentative solutions in order to
find the Kemeny ranking.
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