
Vehicle Routing Problem with Zone-Based Pricing

Abstract

In this paper we study the vehicle routing problem with zone-based pricing

where the transporter defines a service price for all customers in a geograph-

ical zone. Each customer accepts or rejects the transporter’s offer according

to a personal threshold value. Once the customer accepts the offer, the deliv-

ery service becomes compulsory. Two decisions need to be made: the price

per zone and the routing to serve all customers that accept that price. The

objective is to maximize the profit, which is the difference of total service

revenue and the routing costs. We present a mathematical model for the

problem and propose a branch-and-price algorithm. A numerical analysis

shows promising results on the proposed set of instances.

Keywords: Vehicle Routing Problem with Pricing, Branch-and-Price,

Zone-pricing

1. Introduction

The well-known vehicle routing problem (VRP) aims at designing dis-

tribution routes so a set of customers can be visited by a fleet of vehicles,

typically minimizing the costs or maximizing the profit of the delivery com-

pany (Dantzig and Ramser (1959)). The problem has been very relevant in

the literature due to its many applications in the real world, not only for

delivering goods but also offering services, or collecting different items to
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redistribute them.

In today’s society, companies understand the necessity of complement-

ing provision of industrial goods with value-added services (Legnani et al.

(2013)). Customers do not settle for the delivery of goods alone and instead,

demand more services and quality of service. Therefore, the customers do

not only decide if they want to pay for home delivery, but also they tend to

have in mind a price they are willing to pay depending on the services the

company offers, as for instance being able to fix a delivery date. One of the

main factors involving the delivery fee is the geographical zone of the deliv-

ery address, being more expensive to deliver to further areas while keeping

a low price for close-by zones. This aligns in general with customers’ price

expectation, as someone living close to the facility will not be satisfied paying

a high price for delivery, whereas a customer living far might find it accept-

able. Home delivery has the potential of integrating different socio-economic

layers in an urban context. Providing service and being present in all zones

contributes to the social well-being. Therefore, the delivery service provider

should set the service prices in such a way that at least one customer per

zone can afford the service. Hence the delivery service provider has to make

two decisions: establishing a service price per geographical zone to increase

revenue, and designing vehicles’ routing to decrease operational costs.

Notice that these two decisions have an impact on each other. If the

service price is too low, many customers will opt for the delivery and this

will increase operational costs. On the other hand, if the service price is too

high, much fewer deliveries would be planned, which keeps operational costs

low but also reduces the overall profit. Therefore, the objective is to find an
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optimal trade-off in the sense that the overall profit is maximized.

Different variants of VRP have been tackled in the literature. For in-

stance, different delivery policies have been considered. A delivery service

policy is said to be mandatory when serving all customers is obligatory. Un-

der this policy, the total revenue of the provider is fixed and therefore total

operational cost is desired to be minimized. On the other hand, the delivery

service is said to be selective when serving all customers is optional. In this

case, it is possible to focus on serving only a subset of customers to maximize

the total profit. Fischetti et al. (2007) underline that in several applications,

only a subset of nodes (customers) need to be visited and define Simple Cy-

cle Problem (SCP). They provide a list of such variant problems of SCP

and exact solution methods based on branch-and-cut. According to Archetti

et al. (2009), many articles in the literature of routing problems focus on

mandatory service whereas the extent of papers that study profits is much

more limited.

Regarding routing problems with profits, variants are divided into three

categories by Feillet et al. (2005) depending on how the profits and travel

distances/costs are managed. In prize collecting routing problems, a lower

bound is set on the amount of prize to be collected while minimizing the total

distance traveled (Balas, 1989). The orienteering problem defined by Golden

et al. (1987); Tsiligirides (1984), targets at maximizing the total collected

profit while respecting a fixed budget on the travel costs. This might be con-

sidered the most popular variant and it is also referred to as selective traveling

salesman problem (Laporte and Martello, 1990). For instance, the survey of

Vansteenwegen et al. (2011) focuses on orienteering problems inspired by a
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competition where each node has a score, and the competitors should obtain

a maximum total score within a time horizon. In their work, classical forms

and extensions such as team orienteering and orienteering with time windows

are tackled with popular solution methods. More recently, several variants

of routing problems with profits, their mathematical models and solution ap-

proaches are presented in a tutorial in (Vansteenwegen and Gunawan, 2019).

The authors also mention several interesting applications such as athlete re-

cruitment, mobile crowd sourcing problem and wildfire routing problem. In

many variants, the profit to be collected at each customer is fixed beforehand

and it has to be collected all at once. In some other cases, the collected profit

depends on the time spent on the node (Erdogan and Laporte, 2013), travel

time (Afsar and Labadie, 2013) or the position of the visited node in the

route (Reyes-Rubiano et al., 2020).

Lastly, the profitable tour problem (PTP) optimizes the combination of

collected total profit and total traveling cost (Dell’Amico et al., 1995). Jepsen

et al. (2014) recognize the capacitated version of PTP as the sub-problem

in Dantzig-Wolfe decomposition of many routing problems and propose a

branch-and-cut framework.

Liu and Chen (2011) observe the impact of the pricing decisions on de-

mand and study inventory routing and pricing in a supply chain. The authors

consider a linear relation between price and demand and propose a heuristic

strategy to maximize the total revenue in this scenario. This approach ran-

domly chooses at each iteration to improve either inventory routing solution

or pricing. Etebari and Dabiri (2016) extend this work by setting the prices

dynamically according to the period and designing a simulated annealing
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framework with five phases embedded. In this work, the relation between

price and demand is also considered as linear. Furthermore, it is assumed

that the willingness to pay for a service may be time dependent. It is argued

that for a customer, the value of seasonal goods such as perishable food or

liquefied gas, can change from season to season.

In a reverse supply chain context, Aras et al. (2011) work on a selec-

tive multi-depot vehicle routing problem in which a firm buying goods from

dealers sets a price. The purchase is done if this price is above the dealer’s

threshold and the firm decides that the deal is profitable. The authors pro-

vide two linear model formulations and a tabu search heuristic to solve this

problem.

Ahmadi-Javid and Ghandali (2014) study price-sensitive demands in a

distribution network under both mandatory and selective service policies of

all clients. In this work, a mixed integer linear programming model is solved

by a Lagrangian Relaxation procedure. The location-allocation model is then

expanded by location inventory and pricing decisions in (Ahmadi-Javid and

Hoseinpour, 2015).

More recently, a branch-and-price algorithm was used by Ahmadi-Javid

et al. (2018) to solve a location routing problem with pricing decisions where

discrete price and corresponding demand levels are considered under a se-

lective service policy. At first glance, this problem seems to be similar to

ours, but there are structural differences that differentiate the models, even

though a branch-and-price scheme is employed in both cases. Setting a price

per customer, a demand depending on the price level and non-mandatory

service conditions create serious dissimilarities in the solution of the sub-
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problem and branching schemes.

The main contributions of this work are cited below.

� We present a novel, and more realistic, version of the Vehicle Routing

Problem with price setting where the transporter sets a price for each

geographical zone rather than each customer. We consider zone-pricing

a realistic approach since most home-delivery service providers in city

logistics context tend to divide the city into concentric zones where the

depot is in the middle. It is also natural that each customer has a

threshold or a maximum price they are willing to pay for the service.

If the price is lower than their threshold, they accept the delivery, and

they opt for picking up the package themselves if it is higher. Note

that if the customer accepts the price, the deal makes it compulsory

for the transporter to deliver the goods. It is important to emphasize

that for every set of zone-pricing decisions, there is a different set of

customers to be served and hence a different VRP to solve. Since VRP

is NP-hard, so is our problem.

� We demonstrate that, although the price for each zone can take any

value, considering only customer threshold values is dominant. This

property is crucial for establishing the equivalence between the original

formulation and the one with a linearized objective function.

� We solve this problem optimally by a branch-and-price algorithm. Thanks

to the previous property, visit variables are replaced with threshold set-

ting variables. This leads us to separate price and cost calculations and

simplify the sub-problem.
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� An adequate branching scheme is applied which takes into account fleet

size, price setting and flows on arcs.

� As a result of the price setting, we propose a graph reduction which

accelerates the solution of the sub-problem.

The paper is organized as follows: the notation to be used and a formal

definition of the problem are introduced in section 2. The set packing formu-

lation, the sub-problem and the branching procedure for a branch-and-price

algorithm are given in section 3. In section 4, a numerical analysis is pre-

sented. Concluding remarks and some future research directions are provided

in section 5.

2. Problem Statement and Formulation

In this section we introduce a formal definition of the problem and a

mathematical model along with the notation.

2.1. Problem Definition

The vehicle routing problem with zone-based pricing (VRP-ZP) can be

defined on a directed complete graph G(V,A) where V represents the depot

node (0) and the potential customers (V +) considering the home delivery

service, and A the arcs connecting every pair of nodes. The set V + is divided

in p subsets representing distinct zones (V + = V1 ∪ V2 ∪ ... ∪ Vp such that

Vk ∩ Vk′ = ∅ ∀k 6= k′ and k, k′ ∈ {1, ..., p}2 ). Each customer i ∈ V + has a

demand qi to be satisfied and a threshold value thi.

A fleet of identical vehicles with a capacity of Q is located at the depot

(0) in the beginning of a working day. At the end of the working day, all
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vehicles must return to the depot. Every time a vehicle travels through an

arc ai,j ∈ A, a cost ci,j is incurred. In addition, the total amount of goods

delivered by each vehicle cannot exceed its capacity.

The transporter can define only one price pk ∈ R for each zone k, but to

ensure that no geographical zone is left without service, at least one customer

per zone has to be served so that the zone price is set. Each customer i

(i ∈ Vk) can be visited at most once and pk can be collected.

We define a function z(i) that gives the geographical zone of customer i.

z(i) = k ⇐⇒ i ∈ Vk, ∀i ∈ V +

For the sake of simplicity, the customers in each zone are sorted in an increas-

ing order of their threshold values (i < j ⇐⇒ thi < thj and z(i) = z(j)

). We define another function l(i) which returns the number of customers in

the same zone having a threshold greater than or equal to thi.

l(i) = |{j : thj ≥ thi and z(i) = z(j)}|

If the price pk proposed by the transporter for the zone that the customer i

is in exceeds threshold value of this customer, the customer refuses the home

delivery.

The objective is to maximize the total profit which is the difference be-

tween the total price paid by the customers who accept to be served and the

travel costs induced by the delivery of their goods.

In the following we show that, even if the transporter is free to choose

any value for the price pk for a zone k, in the optimal solution, that value

should be equal to the threshold value of one of the customers of this zone.
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Proposition 1. In the optimal solution, ∀k, pk ∈ {thi : i ∈ Vk}.

Proof. Let us assume that, there exists a geographical zone k where the

optimal price p∗k = p̄k is such that thi < p̄k < thi+1. As the transporter

should serve all the customers having a greater threshold value than the

price proposed, and the customers of each zone are sorted in an increasing

order of their threshold values, the total price to be collected from this zone

is P̄k = p̄k × l(i+ 1). However, if we take pk = thi+1, total price of this zone

would be ¯̄Pk = thi+1 × l(i + 1). It is trivial that ¯̄Pk > P̄k and the set of

customers to be served remains the same, therefore the travel costs are the

same as well. So, in the second case, total profit obtained is strictly greater

than the first one, which contradicts with the initial statement.

2.2. Mathematical Model

We define a binary variable xi,j taking value 1 if the arc (i, j) is traversed

by a vehicle. A real-valued variable fi corresponding to the total load de-

livered by the vehicle leaving the node i. The binary variable wi is set to 1

if the customer i accepts the service price proposed by the service provider.

In that case, the customer should be visited by a vehicle. Let us remember

that pk is the price proposed to the geographical zone k.
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max Θ =
∑
i∈V +

wi · pz(i) −
∑
i∈V

∑
j∈V

ci,j · xi,j (1)

Subject to

wi · pz(i) ≤thi ∀i ∈ V + (2)∑
i∈Vk

wi ≥1 ∀k ∈ {1, ..., p} (3)

∑
i∈V

xi,j =wj ∀j ∈ V + (4)

∑
i∈V

xi,j −
∑
i∈V

xj,i =0 ∀j ∈ V (5)

fi − fj + qj + Q̄ · xi,j ≤Q̄ ∀i ∈ V, ∀j ∈ V + (6)

fi ≤wi ·Q ∀i ∈ V + (7)

f0 =0 (8)

pk ∈R+ ∀k ∈ {1, ..., p} (9)

fi ≥0 ∀i ∈ V (10)

wi ∈{0, 1} ∀i ∈ V + (11)

xi,j ∈{0, 1} ∀(i, j) ∈ A (12)

The objective function (1) maximizes the difference between the total col-

lected price and travel costs. According to the constraints (2), the customers

accept to be served if the price proposed for their zone is less than or equal

to their threshold value. Constraints (3) force the transporter not to aban-

don entirely a geographical zone and to serve at least one customer. If a

customer agrees to be served, then a vehicle should visit him, following con-

straints (4). Constraints (5) conserve the flow. Constraints (6) eliminate the
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subtours. If customer j is served right after customer i (by the same vehicle)

the flow should change accordingly. Otherwise, fj ≥ fi + qj − Q̄ where Q̄ is

Q + max
v∈V +

qv. As fi is bounded by Q, and qj by maxv∈V + qv, this constraint

states that fi is greater than a negative value, which is always true. The total

quantity delivered on a vehicle’s route is limited by its capacity in constraints

(7). Note that constraints (6) always hold for any pair of customers i, j even

when they are not served consecutively by the same vehicle (i.e. xij = 0) due

to constraints (7). Finally, constraint (8) ensures that the total distributed

quantity is zero at the beginning of any route, and constraints (9 - 12) define

the variables’ domains.

Notice that that this mathematical model is not linear since two variables

are multiplied in the objective function and also in constraints (2). However,

proposition 1 can be exploited to linearize the model. By defining a binary

variable yi that takes value 1 iff pz(i) = thi, the objective function can be

reformulated as:

max Θ =
∑
i∈V +

yi · thi · l(i)−
∑
i∈V

∑
j∈V

ci,j · xi,j (13)

If the price of a zone k is set to the threshold value of a customer i, then the

transporter can collect thi as the price from each of the l(i) customers of this

zone. To ensure that one price is set per zone, an additional constraint has

to be added: ∑
i∈Vk

yi = 1 ∀k ∈ {1, ..., p} (14)

This constraint also ensures that at least one customer per zone is served,

thus constraint (3) is now redundant and can be removed. Finally, constraints
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(2) can be redefined by replacing wi as follows:

wi =
∑

j∈Vz(i) : thj≤thi

yj ∀i ∈ V + (15)

This constraint verifies that if the price for the zone k of customer i (k = z(i))

is set to the threshold thj of a customer such that thj < thi, then customer

i has to be visited.

Since the objective function (1) and the constraints (2) are replaced, the

variable pk is dropped as well. Despite the resulting model being linear,

it is still too complex to solve, and even small instances cannot be solved

by a commercial solver in a reasonable amount of time, which is explained

further in section 4. Therefore, we present a Set Packing formulation for this

problem in the following section.

3. Branch-and-Price Algorithm

To be able to solve the VRP-ZP, we propose a Dantzig-Wolfe decompo-

sition with an exponential number of variables (Dantzig and Wolfe (1960)).

There are several applications in the literature of Dantzig-Wolfe decomposi-

tion and its solution by Column Generation. Among others, it is applied in

Boussier et al. (2007) for team orienteering problems, in Desaulniers et al.

(2016) for electrical vehicle routing problems, in Ponboon et al. (2016) for

location routing problems or in Liu et al. (2018) for multiple repairmen prob-

lems.

More recently, Faiz et al. (2019) employ Column Generation for a vari-

ant of open VRP with time windows. With an improved branch-and-price

algorithm, Yu et al. (2019) solve a Green Vehicle Routing Problem with
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time windows and heterogeneous fleet. In the sub-problem, they evaluate

the labels for all types of vehicles and reduce considerably number of labels.

Tas (2021) applies the Column Generation to the Electric Vehicle Routing

Problem with soft time windows. If the final solution is not integer, the set

partitioning model is solved with the integrity constraints.

3.1. Master Problem

The Dantzig-Wolfe decomposition of the VRP-ZP allows us to reformulate

the previous model by a route-based presentation. Let λr be a binary variable

taking value 1 if the feasible route r ∈ Ω is in the optimal solution, where

Ω is the set of all feasible routes. Notice that the size of Ω would be too

large to be able to solve any practical instance. To overcome this, we shall

start with a restricted set Ω′ such that |Ω′| << |Ω| and dynamically add

feasible routes, and their corresponding variables, with a column generation

schema. Let Cr denote the total travel cost of a route r, and let γir count the

number of visits paid to customer i by the route r. A linear relaxation of the

restricted master problem (LRMP in short) is formulated as follows:

max Θ =
∑
i∈V +

yi · thi · l(i)−
∑
r∈Ω′

Cr · λr (16)

Subject to∑
i∈Vk

yi =1 ∀k ∈ {1, ..., p} (17)

∑
r∈Ω′

γir · λr −
∑

j∈Vz(i) : thj≤thi

yj =0 ∀i ∈ V + (18)

λr ≥0 ∀r ∈ Ω′ (19)

yi ≥0 ∀i ∈ V + (20)
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The objective function (16) of the LRMP maximizes the total profit in

the same way as the expression (13). The constraints (17) ensure that the

transporter proposes an acceptable price for at least one customer per zone

in the same way as the expression (14). According to the constraints (18), if

the price of the zone of customer i is set to a value lower than threshold of

this customer, then customer i should be served. The binary variables yi and

λr are linearly relaxed to accommodate the column generation mechanism.

3.2. Pricing Problem

Let αk and Πi be the dual variables associated with the constraints (17)

and (18), respectively.

The reduced cost of a route r is:

C̄r = −
∑
i∈V +

γir · Πi −
∑

(i,j)∈r

ci,j

Notice that there are exponentially many λr variables, one for each fea-

sible route to be precise. However, there are only |V +| many yi variables.

In other words, in the dual of non-restricted Master Problem, there are |Ω|

many dual constraints associated with variable λr, whereas there are |V +|

many constraints that correspond to primal variable yi (αz(i) − Πi · l(i) ≥

thi · l(i) ∀i ∈ V +). Therefore, in the dual of the Restricted Master Problem,

there are fewer (|Ω′| many) constraints of the first group whilst all of the

second group constraints are included. The Restricted Master Problem will

generate dual values respecting the later constraints. To check the feasibility

of the dual, it is sufficient to verify the reduced costs corresponding to λr,

i.e., C̄r.
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For any given value of (Πi)i∈V + , if there exists a route r with a reduced

cost C̄r > Π0, it should be added into Ω′. Initially Π0 is set to zero. During

the branching phase, fleet size constraints will be added to LRMP, and Π0

will aggregate the values of dual variables associated with these constraints.

If no routes with a reduced cost strictly greater than Π0 are found, the column

generation stops and the optimal solution of the LRMP is retrieved. To be

sure no such route exists, the cost of a particular elementary longest path

with resource constraints should be less than or equal to Π0.

To find such a route, the elementary longest path problem with resource

constraints is defined on a directed graph G′ = (V,A′) where the cost of any

arc (i, j) ∈ A′ is ci,j = − (Πi+Πj)

2
− ci,j and the total load of the route should

be less than or equal to Q.

At first, this problem is solved heuristically. If this strategy fails, then

an ng-relaxation is solved (Baldacci et al., 2011). In an ng-relaxation, each

partial route r ending at node i has a forbidden set of nodes (F (r, i)), such

that the path can be extended to a node j if, and only if, j /∈ F (r, i). To

define the set F (r, i), let s represent a position in route r, so r(s) is the node

in position s, s ∈ {1, ..., |r|}, then:

F (r, i) = {r(u) : r(u) ∈
|r|⋂

s=u+1

Nr(s)} ∪ {i}

where Nr(s) is the set of the closest “neighbors” of node r(s), including

itself. Due to this relation, multiple visits to a node i are allowed if there

is at least one node j such that i /∈ Nj, that is visited between the last |Ni|

successive visits (Pecin et al., 2017). Notice that since ng-relaxation will

return an upper bound to the pricing problem, a node can be potentially
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visited several times and the resulting route is not necessarily elementary.

Nevertheless these routes are added to Ω′. The non-elementary routes are

eliminated during the branching and any integral solution will be feasible,

therefore composed of elementary routes.

Each partial path r ending at a node i is represented by a label L(r, i) =

(C(r, i), load(r, i), F (r, i)) where C(r, i) is the reduced cost, load(r, i) is the

total load, and F (r, i) is the forbidden set of nodes. A label L(r, i) is said to

dominate another label L(r′, i) if the following conditions are satisfied :

1. C(r, i) ≥ C(r′, i)

2. load(r, i) ≤ load(r′, i)

3. F (r, i) ⊆ F (r′, i)

Therefore, any extension from the node i to the depot that is feasible for r′

is feasible for r, and the reduced cost of the subsequent route will be higher.

While solving the pricing problem heuristically, only elementary routes

are generated and on each node, only a limited number of best labels in terms

of reduced cost are kept. A relaxed dominance rule where the last condition

is replaced by |r| ≤ |r′| is employed.

3.3. Branching Strategy

In the branch-and-price tree, the leaf with the greatest upper bound is

found. If the optimal solution it found for the LRMP is not integer, three

types of branching decisions are made.

1. If the total number of vehicles α =
∑
r∈Ω

λr is not integer, two branches
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are created by adding these respective constraints:∑
r∈Ω

λr ≤ bαc (21)

∑
r∈Ω

λr ≥ dαe (22)

It is important to remark that there may be several fleet size constraints

at any leaf of the branch-and-price tree. Π0 aggregates the dual values

of all of them for the pricing problem. These constraints have no effect

on the pricing problem, other than the value of Π0. However, in prac-

tice, when the fleet size is bounded by the constraints (21), Π0 becomes

greater and pricing problem takes longer to converge.

2. If there are any non-binary price-threshold variables, we branch on the

most fractional one yi′ by adding these constraints:

yi′ ≥ 1 (23)

yi′ ≤ 0 (24)

On the branch created by constraint (23), no customer j in the same

geographical area as i′ such that thj < thi′ will be visited. Thus the

graph can be reduced and for all i ∈ V , all arcs (i, j) and (j, i) ∈ A′ :

z(j) = z(i′) and thj < thi′ can be removed from the graph. As the

routing variables λr do not intervene in these constraints, the structure

of the reduced cost therefore the structure of the pricing problem does

not change. Since the subsequent graph becomes smaller, the pricing

problem converges faster.

3. If the fleet size and all price-threshold variables are integer but the final

solution remains fractional, the arcs with fractional flow are sought.
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The arc (i, j) with the maximum value of total flow (
∑

r∈Ω′:(i,j)∈r

λr) is

chosen to be branched on. In the two created branches, either the arc

(i, j) is forbidden and simply removed, or it is forced by removing all

outgoing arcs from i and all incoming arcs to j from A′, except (i, j).

This branching schema is a version of the branching rule proposed by

(Ryan and Foster, 1981) and it is based on two basic observations:

� In the sub-graph supported by a solution where the flow on every

arc is either 0 or 1, the degree of each node is equal to 2 (with

one incoming and one outgoing arc). In our problem, this sub-

graph does not necessarily contain every node, since some of the

customers reject the price therefore they are not visited. This

sub-graph can be partitioned into a set of disjoint routes (Feillet,

2010).

� No identical columns can exist simultaneously in the simplex tableau

of the set partitioning problem (Sarac et al., 2006).

Therefore, if all the arcs are removed or forced by this rule, in the final

solution all λr, ∀r ∈ Ω′ should take the value either 0 or 1.

As no constraints are added to or modified in LRMP, neither the dual

nor the reduced cost of a route are affected. Therefore, the general

structure of the pricing problem is intact. On the other hand, as a

result of successive branching, the subsequent graph becomes smaller

and less dense, and the convergence of the pricing accelerates.

At the end of this stage, if no more arcs with a fractional value are

found, the base solution contains only elementary routes. A non-

elementary route would contain at least one sub-tour, and at least one
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customer would be visited several times. Let j be the first customer of

the sub-tour. Then j would have at least two different incoming arcs

(i, j) and (i′, j). The value of these two arcs would be fractional since

the value of a non-elementary route should be strictly less than 1 due

the constraints (18). This would be a contradiction with the initial

hypothesis that there are no more arcs with fractional values.

4. Experimental Study

The above-mentioned method is implemented in C++ and the commer-

cial solver CPLEX 12.9 is used to solve the LRMP and the mathematical

model presented in section 2.2. All the tests are run on a PC with Intel Xeon

Gold 6132 processor at 2.6 GHz and 128 GB RAM with Linux (CentOS

v.6.10).

4.1. Data generation

Since the VRP-ZP is defined for the first time in this work, no instances

are available. For this study, we create a group of data sets derived from 14

classical CVRP instances of Christofides et al. (1979) with no route length

restriction, which are available in the repository section1. In each data set,

p geographical zones are considered and the customers are assigned to the

zones depending on their relative distance from the depot. All i ∈ V + are

assigned to a zone Vk where k ∈ {1, ..., p} as follows:

1http://di.uniovi.es/iscop
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c0,i ≤
cmax

p
=⇒ i ∈ V1

(k − 1)cmax

p
< c0,i ≤ k × cmax

p
=⇒ i ∈ Vk, ∀k ∈ {2, ..., p− 1}

(p− 1)× cmax

p
< c0,i =⇒ i ∈ Vp

where cmax = max
i∈V +
{co,i}

Three main sets are designed. For the first data set, we take three random

samples of 35 customers from each of the CVRP instances and assign them

in p = 3 zones, which yields 42 instances. Similarly, we generate larger

instances by taking 3 random samples of 50 customers from each CVRP

instance, with the exception of instances CMT1 and CMT6, which already

have 50 customers. Therefore, we obtain 38 larger instances. For the last

data set, we repeat the same process with 50 customers but assigning them

to p = 5 zones instead of 3.

Table 1 presents average number of customers in each zone as well as the

standard deviation per data set.

Table 1: Average number of customers and standard deviations per data set

Data sets Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

5 zones 50 cust.
Mean 4.45 12.20 15.39 11.74 6.21

Standard Dev. 4.40 6.39 4.61 3.03 4.45

3 zones 50 cust.
Mean 11.87 25.28 12.85

Standard Dev. 3.85 7.25 5.38

3 zones 35 cust.
Mean 7.87 17.40 9.73

Standard Dev. 2.59 5.13 3.94

20



In addition, four different variants are created out of each of the previous

instances by assigning different threshold profiles: low, medium, high and

random. For each customer, the threshold is expressed as a function of

distance of this customer from the depot (thi = βi × c0,i) that depends on

the threshold profile:

� Low threshold corresponds to the case where customers are not willing

to pay much for a home delivery (βi ∈ [0.8, 1.0], ∀i ∈ V +)

� Medium threshold corresponds to the case where the customers are

willing to pay a price slightly above the cost of a direct trajectory

(βi ∈ [1.0, 1.4], ∀i ∈ V +).

� High threshold corresponds to the case where the customers can pay

significantly more for a home delivery (βi ∈ [1.6, 2.0], ∀i ∈ V +).

� Random threshold corresponds to the case where the customers have

a mixed profile in terms of willingness to pay for home delivery (βi ∈

[0.8, 2.0], ∀i ∈ V +).

In total we have 168 small sized instances and 304 larger sized ones. As

mentioned before, the customers of each geographical zone are sorted in an

increasing order of their threshold values.

4.2. Numerical Results

The Mixed Integer Linear Model presented in section 2.2 is tested on

the smallest instances: the data set with 3 zones and 35 customers, using

CPLEX. The average results per threshold profile are presented in Table 2.
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Table 2: Average results of instances with 35 customers

Threshold nb OPT GAP(%) Time(s)

Low 4 28.69 944.2

Medium 3 14.41 1378.7

High 2 7.31 2325.1

Random 10 8.59 3721.7

Column nb OPT gives the number of optimally solved instances out of

42 in each threshold profile. In a total of 168 instances, only 19 optimal

solutions could be found for the MIP in less than 10000 seconds. Column

GAP contains the average gap between the best integer solutions and upper

bounds of the instances for which no optimal solution is found within the

time limit. Finally, column Time reports the average run time elapsed on

the instances for which the optimum was found. That is, the instances for

which the time limit is reached are not taken into account in the average run

time. These results clearly indicate the difficulty of solving VRP-ZP with a

Mixed Integer Linear Program.

In the following, we provide numerical results obtained by the branch-and-

price algorithm with the instances introduced above. The algorithm is left

to run until the optimal solution is found or a specific time limit restriction

is met: at each leaf of the branch-and-price tree, if the total time elapsed

is more than 10000 seconds, the algorithm stops. Otherwise, it continues

branching as explained in the previous section.

Table 3 reports the results obtained on the instances with 35 customers

grouped by threshold profile: low, medium, high and random (except one of

the CMT2 instances with random threshold profile that could not be solved
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within the time limit). For each group, the average values of the optimal

profit are shown. The gap column contains the average gap between the

optimal solution and the upper bound of the total profit found on the root

(ΘUB−Θ∗

ΘUB
× 100). It measures the tightness of the linear relaxation of the

Master Problem. The average of the total revenue of the optimal solution,

number of visited customers and number of vehicles used are also presented.

Finally, the branch-and-price tree size and the elapsed CPU time in seconds

are shown as performance indicators.

Table 3: Average results of instances with 35 customers

Threshold Profit GAP(%) Revenue #Cust. #Veh. Tree size Time(s)

Low 198.05 4.23 569.52 28.22 2.89 86.22 1767.78

Medium 382.21 2.47 761.30 28.92 2.92 107.61 1698.69

High 779.84 1.51 1174.23 30.64 3.22 59.83 1604.04

Random 436.29 1.35 787.28 26.00 2.60 34.89 449.07

Instances derived from the classical instances CMT11 and CMT13 present

a very different behavior, and therefore, they are not included in the table.

The main difference on these data sets is the location of the depot. In all

data sets but these two, the depot is approximately in the center of the map,

while on these two instances the depot is situated at the far left side. Their

average results are presented in Table 4, with the exception of one of the

CMT11 instances with low threshold value and one of the CMT11 instances

with random threshold values, which could not be solved within the time

limit.

The results in Table 3 show that as the threshold values increase from

low to high, total profit, number of visited customers and fleet size increase
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as well. This is very clear in the case of total profit, which almost doubles

every time that the thresholds increase. It is interesting however, that the

increase in the number of served customers and fleet size is not as obvious

as the increase in profit, especially when the threshold profile changes from

low to medium. This is no surprise if we take into account that even if the

number of visited customers remains constant, higher thresholds allow for

higher prices and therefore higher profit. Regarding the routing costs, that

is, the difference between the revenue and the profit, they also increase with

the threshold value which is consistent with the increase in the number of

visited customers. In the case of random thresholds, although the revenue is

similar to the medium case, the overall profit is higher since fewer customers

are visited using fewer vehicles. In other words, when the threshold values

have a large spread, it is possible to focus on visiting customers with higher

thresholds and thus reducing cost and increasing profit. Finally, we can

observe that the gap between the upper bound computed at the root node

and the optimal solution is below 5% for all threshold profiles, which shows

that the relaxation at the root node provides a good starting point.

Table 4: Average results of instances derived from CMT11 and CMT13 with 35 customers

Threshold Profit GAP(%) Revenue #Cust. #Veh. Tree size Time(s)

Low 966.79 3.78 1439.29 31.00 2.00 2.60 37895.18

Medium 1373.56 1.37 1831.27 32.00 2.00 1.80 18742.74

High 2435.53 1.34 2909.89 32.60 2.00 2.20 14965.79

Random 1231.70 1.93 1671.69 28.25 2.00 2.50 11514.87

In Table 4, the total profit and the number of visited customers increase

significantly in comparison with Table 3. Since in CMT11 and CMT13, the
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depot is located at far left side, the customers are situated in a half circle

and somewhat more clustered, hence the increase in the number of visited

customers. The fleet size is the same for all threshold profiles, whereas the

number of visited customers increase with the threshold value as it happened

in the previous table. In the case of random threshold, once again the number

of visited customers is lower than the others. It is important to underline

that, these solutions are obtained at the end of the time limit and therefore

sub-optimal. The gaps between the best feasible solution and the upper

bound are provided.

Table 5: Average results of instances with 50 customers

Thres. Zone Profit GAP(%) Revenue #Cust #Veh Tree size Time(s)

Low 3 344.51 4.28 820.18 42.56 4.09 120.94 3854.04

Med. 3 599.04 2.49 1063.98 41.09 3.97 74.88 2597.93

High 3 1164.08 1.48 1652.98 43.75 4.38 35.63 2171.16

Rand. 3 681.00 2.15 1110.26 36.44 3.56 74.38 2519.21

Low 5 421.44 3.43 908.51 43.91 4.34 86.19 2796.63

Med. 5 690.62 2.02 1182.84 44.61 4.48 87.52 2844.09

High 5 1358.51 1.27 1866.24 46.63 4.75 36.19 3114.76

Rand. 5 757.28 1.73 1195.78 38.32 3.84 73.77 2747.18

The results for the instances with 50 customers are reported in Table

5. As in Table 3, the instances derived from CMT11 and CMT13 are not

included. Since the instance size is larger, the branch-and-price tree size and

the average execution time increase as expected. However, the gap between

upper bound found at the root and the optimal solution is still under 5% for

all threshold values, illustrating that the relaxation at the root node provides
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a good starting point independently on the instance size.

Contrary to what happened in Table 3, in the case of 3 zones, the routing

cost and the number of visited customers are now higher in the low threshold

instances than in the medium threshold ones. Although one may consider

that the rise in customer thresholds would imply visiting more customers,

it might not be always the case. A customer that has the highest threshold

value in their zone in the low threshold profile instance may have the lowest

value in the medium threshold case and hence, may not be visited in the

optimal solution. In other words, the set of visited nodes on the optimal

solution of a low threshold instance is not a subset of the set of visited nodes

on the optimal solution of the medium threshold profile. What remains a

fact in Table 5 is that increasing the thresholds increases the total profit, as

expected. Regarding the random threshold profile, there are no significant

changes with respect to Table 3. That is, the revenue is similar to the medium

threshold profile but visiting fewer customers and therefore reducing costs.

This happens as well when considering 5 zones. In that case, the profit,

revenue, number of vehicles and visited customers are larger than in the 3-

zone case. Comparing the tree size, run time and gap values of 3 and 5 zones,

we can observe that increasing the number of zones does not necessarily make

the problem more difficult to solve.

Table 6 contains the results of the instances derived from CMT11 and

CMT13 with 50 customers. As before, one instance with 3 zones and a

low threshold profile is omitted due to the column generation procedure not

finalizing at the root node within the time limit of 10000 seconds. When

5 zones are considered, one of the instances derived from CMT13 is also
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Table 6: Average results of instances derived from CMT11 and CMT13 with 50 customers

Thres. Zone Profit GAP(%) Revenue #Cust #Veh Tree size Time(s)

Low 3 1185.07 4.37 1759.91 39.20 2.80 1.40 35456.18

Med. 3 1769.20 3.01 2364.33 43.67 3.33 1.67 39677.93

High 3 3124.39 1.70 3725.14 43.67 3.17 1.00 46331.87

Rand. 3 1829.52 1.29 2351.71 38.50 2.67 1.67 18586.40

Low 5 1389.41 2.36 1980.48 43.60 3.00 1.40 40359.14

Med. 5 1918.32 1.80 2511.04 43.20 3.00 1.40 42395.38

High 5 3.380.83 0.82 3972.74 44.20 3.00 1.00 45703.92

Rand. 5 1950.92 1.08 2443.03 38.00 2.67 1.00 30720.72

omitted for low, medium, and high thresholds because of the same reason.

The profit, routing cost and revenue values are higher compared to the

rest of the instances with 50 customers. The much higher average run times

and smaller average number of explored branch-and-price tree nodes reflect

the difficulty of these instances. However, the average gap values between

the best feasible solution found at the end of the time limit and the upper

bound found at the root node are still less than 5% in all profiles.

5. Conclusion and Perspectives

In this paper we introduced the Vehicle Routing Problem with Zone-

Based Pricing. The key feature being that customers decide whether or

not they accept to pay the proposed price with respect to a given personal

threshold value. Once the price is accepted, the transporter has the obligation

of serving them. This problem integrates the very complex task of setting

zone prices into the transportation problem. In fact, the results show that
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even when thresholds are high and the customers are willing to pay more,

the best pricing strategy is not to meet the threshold of all customers.

We have formalized the problem and proposed an exact solution approach

based on branch-and-price method. To test it, we have designed data sets

with different number of customers and threshold profiles. The results have

shown that the method is particularly efficient when the depot is located

at the central region of the map, producing optimal solutions for all these

instances in relatively short amount of time for all sizes and thresholds.

In accordance with the few recent articles addressing the pricing and rout-

ing problems jointly, we assume the relation between the price and demand

behavior to be known in advance. In our case, customers accept to be served

if the price proposed by the transporter is less than their threshold values.

We are aware that it may not be realistic to know the exact threshold val-

ues in advance. The numerical tests indicate that, even in the simpler case

where thresholds are known, the problem remains extremely difficult. Nev-

ertheless, our future works shall include a stochastic or fuzzy modeling of

customer behavior up against a price proposal.
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Appendix A. Detailed numerical results

In Tables A.7 to A.10 the results of all instances with 35 customers and

low/medium/high/random threshold profiles are presented respectively. Col-

umn “Revenue” shows the total collected price of the optimal solution, while

column “Opt.” shows the optimal profit. The gap between the optimal solu-

tion and the upper bound at the root is also reported. Columns “#Cust” and

“#Veh” contain the number of visited customers in the optimal solution and

the fleet size, respectively. Finally, the branch-and-price tree size is reported

together with the CPU time in seconds used by the solving method. The

column generation procedure does not finalize at the root node in less than

10000 seconds when the thresholds are low for instance vrpnc11 2, and when

they are random for instances vrpnc02 3 and vrpnc11 3, thus these instances

are not reported in the corresponding table.

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 1 548.26 204.08 1.64% 26 3 3 189.86

vrpnc01 2 535.11 151.85 3.50% 30 3 3 191.17

vrpnc01 3 497.15 155.45 2.56% 26 3 7 43.64

vrpnc02 1 430.53 111.71 15.79% 22 3 91 2556.84

vrpnc02 2 577.78 153.31 3.33% 29 4 73 2538.74

vrpnc02 3 598.12 196.67 0.48% 32 4 3 11.37

vrpnc03 1 522.45 190.16 3.02% 26 2 95 2844.43
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vrpnc03 2 662.75 299.20 0.00% 30 2 1 490.58

vrpnc03 3 525.59 197.28 4.43% 27 2 117 3177.44

vrpnc04 1 525.61 204.21 5.54% 25 2 373 3914.75

vrpnc04 2 521.13 215.69 1.40% 23 2 7 1483.78

vrpnc04 3 502.77 190.24 0.31% 27 2 3 142.14

vrpnc05 1 559.31 192.49 5.71% 30 3 203 2910.62

vrpnc05 2 495.31 167.75 1.13% 27 2 27 844.78

vrpnc05 3 531.53 164.07 4.81% 29 3 257 2158.28

vrpnc06 1 654.70 233.99 7.23% 33 4 55 2478.29

vrpnc06 2 496.50 196.00 1.48% 22 2 5 396.80

vrpnc06 3 583.20 223.08 3.68% 28 3 49 615.99

vrpnc07 1 513.66 110.27 4.33% 26 4 71 1924.13

vrpnc07 2 611.01 155.40 7.91% 30 4 115 2593.25

vrpnc07 3 611.01 183.41 5.62% 31 4 67 2349.67

vrpnc08 1 638.08 233.99 4.35% 30 3 3 611.11

vrpnc08 2 556.77 228.41 5.89% 28 3 115 4983.99

vrpnc08 3 500.04 150.62 0.00% 23 2 1 119.02

vrpnc09 1 586.48 185.43 5.63% 30 3 13 407.87

vrpnc09 2 510.53 170.47 0.00% 27 2 1 277.89

vrpnc09 3 598.56 212.66 6.60% 32 3 289 3259.81

vrpnc10 1 575.98 268.95 0.82% 27 2 3 437.28

vrpnc10 2 538.08 181.10 12.21% 29 3 171 3229.02

vrpnc10 3 619.78 218.30 2.58% 31 3 3 220.76

vrpnc11 1 1353.26 884.58 2.72% 33 2 3 52959.30

vrpnc11 3 1388.34 928.88 1.55% 32 2 3 38316.90

vrpnc12 1 651.98 207.69 8.85% 34 4 73 2413.55

vrpnc12 2 615.07 195.15 5.62% 32 3 263 3356.50

vrpnc12 3 668.85 208.51 6.38% 32 3 75 2306.82

vrpnc13 1 1387.20 905.75 4.88% 32 2 1 19351.30

vrpnc13 2 1490.34 1023.27 2.89% 30 2 3 19679.60
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vrpnc13 3 1577.33 1091.47 6.87% 28 2 3 59168.80

vrpnc14 1 634.36 215.70 0.42% 29 3 41 930.06

vrpnc14 2 628.30 275.36 4.17% 28 3 361 4920.69

vrpnc14 3 676.36 281.25 4.99% 25 3 71 2309.23

Table A.7: Detailed results on instances with 35 customers and low threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 1 746.45 393.48 2.55% 27 3 161 2843.01

vrpnc01 2 733.61 341.75 0.59% 30 3 3 36.90

vrpnc01 3 745.43 376.63 1.55% 29 3 117 1061.39

vrpnc02 1 688.16 285.39 7.68% 30 4 25 2466.84

vrpnc02 2 681.97 269.01 1.16% 30 4 31 353.37

vrpnc02 3 718.46 323.47 3.92% 28 4 125 1647.83

vrpnc03 1 684.47 351.16 3.74% 26 2 185 3565.66

vrpnc03 2 923.02 521.42 3.05% 34 2 111 5968.63

vrpnc03 3 692.78 343.83 0.35% 30 2 29 3723.46

vrpnc04 1 720.20 367.32 4.63% 30 3 367 3417.52

vrpnc04 2 683.40 362.82 0.94% 26 2 3 60.43

vrpnc04 3 666.95 357.05 0.00% 27 2 1 124.02

vrpnc05 1 774.39 388.63 4.82% 32 4 153 2767.80

vrpnc05 2 651.04 316.94 1.00% 28 2 69 2269.90

vrpnc05 3 733.51 333.23 1.81% 34 3 441 3655.19

vrpnc06 1 842.14 441.31 0.67% 31 3 121 897.07

vrpnc06 2 753.39 385.67 0.00% 30 3 1 30.82

vrpnc06 3 734.64 368.80 0.73% 30 3 5 138.08

vrpnc07 1 634.61 255.06 6.55% 22 4 95 1020.41

vrpnc07 2 699.76 322.02 1.63% 23 3 13 43.82

vrpnc07 3 805.87 369.07 2.01% 32 4 117 1453.24

vrpnc08 1 784.33 391.72 2.81% 27 3 3 157.24

vrpnc08 2 757.86 410.15 3.59% 30 3 241 2305.97
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vrpnc08 3 707.03 329.80 0.00% 29 2 1 3082.78

vrpnc09 1 746.32 382.38 3.76% 26 2 203 1483.91

vrpnc09 2 648.18 305.86 0.99% 25 2 5 155.15

vrpnc09 3 832.48 446.27 3.73% 30 3 45 1258.53

vrpnc10 1 722.32 432.09 3.39% 23 2 17 3584.57

vrpnc10 2 725.90 362.71 3.26% 33 3 397 2866.40

vrpnc10 3 856.96 466.87 2.32% 27 3 3 223.04

vrpnc11 1 1591.94 1169.26 0.58% 30 2 3 32057.90

vrpnc11 2 1746.77 1283.02 3.16% 29 2 3 18476.00

vrpnc11 3 1723.23 1288.19 0.20% 31 2 1 10263.50

vrpnc12 1 886.99 447.83 3.56% 33 4 201 2846.99

vrpnc12 2 811.29 408.25 1.93% 30 3 17 253.20

vrpnc12 3 860.22 401.86 2.93% 31 3 105 1807.97

vrpnc13 1 1821.71 1352.09 1.32% 35 2 1 17925.60

vrpnc13 2 2036.72 1571.49 0.89% 32 2 3 21032.80

vrpnc13 3 1982.76 1486.78 3.87% 32 2 1 12433.90

vrpnc14 1 890.41 459.70 0.00% 30 3 1 93.65

vrpnc14 2 947.19 560.59 2.62% 29 3 335 1701.43

vrpnc14 3 914.92 479.26 4.74% 29 3 127 1786.71

Table A.8: Detailed results on instances with 35 customers and medium threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 1 1099.82 740.54 0.28% 29 3 5 350.33

vrpnc01 2 1099.18 713.97 0.53% 30 3 3 16.78

vrpnc01 3 1120.66 722.60 0.00% 33 4 1 22.60

vrpnc02 1 1045.75 639.90 2.96% 31 4 19 1119.36

vrpnc02 2 1144.47 707.59 1.51% 31 4 27 202.97

vrpnc02 3 1178.52 774.61 1.16% 31 4 31 171.40

vrpnc03 1 1082.31 742.28 0.90% 27 2 21 4241.47

vrpnc03 2 1369.04 1005.49 0.40% 30 2 11 6968.16
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vrpnc03 3 1037.34 704.30 0.84% 25 2 3 8424.42

vrpnc04 1 1183.91 800.30 2.19% 32 3 481 3795.29

vrpnc04 2 1087.20 729.22 2.44% 30 3 39 3297.15

vrpnc04 3 976.77 666.60 0.00% 26 2 1 33.67

vrpnc05 1 1111.40 711.27 3.24% 33 4 171 1580.42

vrpnc05 2 1076.43 711.76 0.94% 33 3 3 1112.21

vrpnc05 3 1171.00 781.19 1.09% 31 3 17 195.17

vrpnc06 1 1213.55 800.76 2.02% 30 3 71 1842.19

vrpnc06 2 1179.03 772.86 1.70% 33 4 21 187.65

vrpnc06 3 1103.14 736.75 0.00% 30 3 1 43.68

vrpnc07 1 1101.96 684.18 1.72% 29 5 31 1281.00

vrpnc07 2 1202.44 746.84 0.88% 30 4 19 127.60

vrpnc07 3 1216.03 787.20 2.22% 31 4 45 841.32

vrpnc08 1 1250.95 839.17 1.44% 30 3 11 1103.30

vrpnc08 2 1093.07 760.44 2.38% 27 3 107 1085.31

vrpnc08 3 1108.32 687.66 1.19% 34 3 21 398.31

vrpnc09 1 1188.34 788.42 1.54% 29 3 3 406.78

vrpnc09 2 1109.75 719.06 2.02% 33 3 87 5378.51

vrpnc09 3 1203.12 829.52 3.03% 28 3 49 1271.45

vrpnc10 1 1127.27 808.72 2.56% 27 2 49 1549.44

vrpnc10 2 1084.01 721.97 1.53% 32 3 121 5127.01

vrpnc10 3 1234.51 833.03 0.00% 31 3 1 48.29

vrpnc11 1 2625.38 2166.70 1.07% 31 2 3 23351.20

vrpnc11 2 2712.86 2218.43 1.72% 35 3 3 17303.30

vrpnc11 3 2997.39 2532.60 0.27% 35 2 3 8717.39

vrpnc12 1 1328.77 884.48 2.01% 34 4 221 1425.32

vrpnc12 2 1286.26 878.24 0.69% 31 3 3 210.32

vrpnc12 3 1312.60 852.60 1.97% 32 3 395 2314.27

vrpnc13 1 2769.06 2281.62 2.40% 33 2 3 9593.58

vrpnc13 2 3041.44 2569.87 1.31% 31 2 3 18439.90
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vrpnc13 3 3116.19 2626.87 1.65% 33 2 1 14726.90

vrpnc14 1 1322.64 905.87 1.49% 31 3 5 172.54

vrpnc14 2 1403.76 941.62 1.55% 35 4 5 157.43

vrpnc14 3 1419.14 943.35 2.67% 34 4 55 1242.47

Table A.9: Detailed results on instances with 35 customers and high threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 1 822.89 446.45 3.33% 29 3 171 1098.46

vrpnc01 2 707.56 356.91 0.91% 25 3 3 18.07

vrpnc01 3 767.64 400.72 1.52% 26 3 7 21.90

vrpnc02 1 759.73 428.56 1.01% 23 3 7 57.63

vrpnc02 2 663.12 313.28 1.85% 22 3 3 15.46

vrpnc03 1 712.23 402.25 1.03% 26 2 13 233.73

vrpnc03 2 828.94 507.99 1.68% 20 2 31 513.95

vrpnc03 3 737.32 380.94 0.38% 29 2 3 37.64

vrpnc04 1 710.98 389.77 0.53% 25 2 29 1059.94

vrpnc04 2 869.51 495.52 0.00% 31 3 1 63.17

vrpnc04 3 762.79 415.16 4.59% 27 3 145 1582.18

vrpnc05 1 731.20 406.67 3.14% 23 2 153 1151.02

vrpnc05 2 760.27 352.89 0.68% 28 3 11 336.34

vrpnc05 3 928.09 587.15 0.00% 26 2 1 11.85

vrpnc06 1 742.83 394.18 3.83% 25 3 111 818.51

vrpnc06 2 816.75 476.19 1.17% 27 3 5 151.34

vrpnc06 3 792.89 453.83 0.96% 26 3 45 312.22

vrpnc07 1 851.08 472.76 0.78% 26 4 31 554.48

vrpnc07 2 631.50 316.59 2.69% 21 3 15 369.95

vrpnc07 3 849.10 401.36 1.78% 30 4 107 1653.68

vrpnc08 1 802.51 472.71 0.88% 25 2 3 770.77

vrpnc08 2 744.81 403.60 0.00% 27 2 1 80.59

vrpnc08 3 699.50 399.50 0.34% 24 2 1 5.6
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vrpnc09 1 794.10 452.30 0.98% 26 2 5 1095.97

vrpnc09 2 697.94 409.25 0.00% 25 2 1 49.36

vrpnc09 3 673.55 328.24 0.85% 25 2 13 321.99

vrpnc10 1 711.24 356.50 1.93% 29 3 3 170.03

vrpnc10 2 833.35 474.33 1.69% 27 2 83 1177.25

vrpnc10 3 709.89 409.28 0.00% 27 2 1 85.86

vrpnc11 1 1529.37 1120.73 0.36% 26 2 3 178.27

vrpnc11 2 1926.66 1474.23 0.92% 31 2 1 21636.14

vrpnc12 1 924.79 539.58 0.4% 32 3 5 280.2

vrpnc12 2 967.90 553.26 2.67% 30 3 175 905.96

vrpnc12 3 828.67 477.85 1.2% 24 2 15 541.51

vrpnc13 1 1972.63 1545.80 2.94% 28 2 1 12267.32

vrpnc13 2 1408.74 937.81 0.79% 31 2 5 1765.93

vrpnc13 3 1776.02 1322.47 3.64% 28 2 3 31848.32

vrpnc14 1 928.24 534.05 1.75% 24 3 19 128.34

vrpnc14 2 907.15 583.30 0.45% 23 2 3 27.91

vrpnc14 3 884.66 477.27 1.53% 27 3 3 14.53

Table A.10: Detailed results on instances with 35 customers and random threshold

Tables A.11 to A.14 present results of the instances with 50 customers distributed in

3 zones and different threshold profiles. For instance vrpnc13 2, derived from CMT13, the

column generation procedure does not finalize at the root node in less than 10000 when

thresholds are low, thus this instance is not reported in the corresponding table.

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 764.61 296.16 5.20% 41 4 101 2805.05

vrpnc02 1 858.35 328.55 1.65% 41 5 33 2569.61

vrpnc02 2 783.03 248.47 5.68% 38 5 117 2965.47

vrpnc02 3 789.77 257.43 9.73% 39 5 51 1618.86

vrpnc03 1 821.00 386.94 2.24% 49 4 21 4084.86

vrpnc03 2 845.65 356.91 2.97% 46 4 87 8353.51
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vrpnc03 3 812.91 332.93 4.55% 42 4 41 1968.22

vrpnc04 1 827.19 350.89 3.87% 48 4 377 6263.46

vrpnc04 2 757.51 298.13 6.45% 45 4 219 6379.79

vrpnc04 3 733.55 323.57 4.43% 38 3 373 4029.31

vrpnc05 1 789.78 336.47 9.00% 40 4 165 5077.48

vrpnc05 2 768.64 356.64 3.32% 40 4 137 5102.58

vrpnc05 3 803.61 423.64 1.09% 41 3 11 1664.83

vrpnc06 763.05 310.78 1.47% 39 4 91 1498.92

vrpnc07 1 904.52 334.11 9.12% 41 6 69 3024.01

vrpnc07 2 818.70 312.09 6.31% 40 5 239 3974.87

vrpnc07 3 783.85 263.52 5.83% 38 5 25 1556.57

vrpnc08 1 782.44 357.13 0.19% 39 3 3 339.61

vrpnc08 2 772.16 319.90 2.15% 47 4 3 3111.04

vrpnc08 3 791.28 297.11 9.27% 45 4 59 2274.14

vrpnc09 1 864.60 406.57 6.21% 42 3 9 3607.95

vrpnc09 2 868.51 376.57 4.66% 47 4 59 6524.54

vrpnc09 3 723.43 322.36 1.21% 41 3 3 1748.82

vrpnc10 1 689.78 292.12 2.79% 36 3 257 4250.31

vrpnc10 2 785.86 332.69 2.53% 43 4 81 4608.67

vrpnc10 3 793.27 312.39 1.59% 45 4 3 573.09

vrpnc11 1 1796.41 1194.94 3.62% 39 3 3 31839.30

vrpnc11 2 1603.59 1038.74 5.84% 35 3 1 18537.70

vrpnc11 3 1619.67 1029.81 5.84% 44 3 1 26369.10

vrpnc12 1 824.93 329.31 7.46% 44 4 57 4252.01

vrpnc12 2 1063.73 529.29 3.83% 47 5 143 6480.76

vrpnc12 3 979.14 468.88 2.08% 45 4 437 8361.16

vrpnc13 1 2104.48 1494.17 4.82% 44 3 1 75485.30

vrpnc13 3 1675.38 1167.70 1.74% 34 2 1 25049.50

vrpnc14 1 915.94 374.62 4.74% 47 5 481 5575.74

vrpnc14 2 934.49 440.10 1.12% 44 4 103 4683.28
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vrpnc14 3 830.46 347.92 4.21% 44 4 17 4000.85

Table A.11: Detailed results on instances with 50 nodes, 3 zones and low threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 909.37 505.35 3.13% 31 3 105 2958.98

vrpnc02 1 1140.38 609.57 0.12% 40 5 1 60.38

vrpnc02 2 1050.98 514.68 2.26% 42 6 49 1697.17

vrpnc02 3 958.14 454.35 5.82% 36 5 19 1722.32

vrpnc03 1 1054.22 613.74 2.51% 49 4 35 3734.37

vrpnc03 2 1105.16 678.44 2.03% 36 3 29 4224.25

vrpnc03 3 1145.41 636.23 1.66% 47 4 155 4158.66

vrpnc04 1 1061.24 625.20 1.28% 41 3 31 3838.83

vrpnc04 2 1068.40 608.60 2.57% 48 4 3 2986.48

vrpnc04 3 984.36 595.53 2.03% 40 3 3 1211.45

vrpnc05 1 988.60 516.86 5.39% 41 4 225 3741.39

vrpnc05 2 1075.00 639.74 1.24% 45 4 19 1048.78

vrpnc05 3 1033.28 661.34 0.59% 40 3 3 2909.70

vrpnc06 1020.54 556.60 2.32% 39 4 105 2898.48

vrpnc07 1 1124.30 537.88 7.18% 42 6 35 1517.39

vrpnc07 2 1121.35 567.13 5.26% 44 6 73 1850.08

vrpnc07 3 954.00 477.40 4.05% 33 5 65 1890.62

vrpnc08 1 1007.83 563.82 2.83% 43 3 89 4078.95

vrpnc08 2 1050.61 605.81 1.10% 44 4 3 1970.91

vrpnc08 3 989.13 546.13 2.48% 39 3 55 2554.86

vrpnc09 1 1145.75 647.37 4.39% 48 4 213 9042.35

vrpnc09 2 1085.69 644.18 2.48% 38 3 497 6248.84

vrpnc09 3 967.77 560.26 1.13% 43 3 17 2502.78

vrpnc10 1 867.77 495.56 1.81% 30 3 15 633.95

vrpnc10 2 978.10 513.25 2.71% 44 4 25 2122.59

vrpnc10 3 1003.77 553.35 1.29% 43 4 3 1273.37
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vrpnc11 1 2305.27 1679.15 3.57% 42 4 3 26712.80

vrpnc11 2 2145.83 1587.21 1.59% 41 3 3 23205.50

vrpnc11 3 2147.84 1531.69 4.87% 45 3 1 14222.50

vrpnc12 1 1118.43 632.40 1.46% 43 4 73 1344.65

vrpnc12 2 1274.86 783.33 1.94% 40 4 13 1347.97

vrpnc12 3 1205.21 720.22 0.00% 44 4 1 696.89

vrpnc13 1 2672.72 2071.34 2.92% 46 3 1 60475.50

vrpnc13 2 2713.13 2090.93 3.34% 45 4 1 92381.80

vrpnc13 3 2201.19 1654.89 1.75% 43 3 1 21069.50

vrpnc14 1 1156.73 683.29 3.00% 34 4 371 3798.26

vrpnc14 2 1268.62 790.64 0.02% 43 4 1 367.87

vrpnc14 3 1132.31 630.98 3.62% 45 4 65 2700.19

Table A.12: Detailed results on instances with 50 nodes, 3 zones and medium threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 1628.11 1144.88 1.05% 42 4 203 3223.96

vrpnc02 1 1737.74 1158.69 1.59% 46 6 45 2163.93

vrpnc02 2 1653.87 1073.89 2.16% 42 6 21 1135.80

vrpnc02 3 1595.69 1048.35 2.78% 40 5 21 1125.73

vrpnc03 1 1570.63 1148.60 1.45% 45 4 11 4783.97

vrpnc03 2 1714.49 1228.02 0.74% 44 4 3 864.46

vrpnc03 3 1674.26 1198.05 0.81% 44 4 3 1595.71

vrpnc04 1 1558.75 1100.84 1.19% 44 4 41 3074.34

vrpnc04 2 1541.53 1080.61 1.29% 47 4 3 5482.99

vrpnc04 3 1604.66 1143.46 1.23% 46 4 29 3790.55

vrpnc05 1 1556.65 1083.68 2.11% 41 4 109 4107.15

vrpnc05 2 1488.53 1101.47 0.00% 38 3 1 105.71

vrpnc05 3 1551.20 1176.84 0.00% 40 3 1 139.24

vrpnc06 1609.59 1105.89 1.70% 44 5 67 1288.08

vrpnc07 1 1750.31 1141.36 2.89% 47 7 17 2186.42
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vrpnc07 2 1709.81 1140.44 2.61% 42 6 19 1349.21

vrpnc07 3 1573.66 996.59 4.30% 43 6 55 1723.48

vrpnc08 1 1586.94 1118.71 1.55% 45 4 3 2735.27

vrpnc08 2 1599.00 1147.94 0.87% 45 4 3 3102.02

vrpnc08 3 1620.77 1119.40 2.61% 46 4 11 2497.35

vrpnc09 1 1694.54 1252.77 1.36% 41 3 23 2872.91

vrpnc09 2 1743.62 1255.36 2.01% 43 4 137 3219.58

vrpnc09 3 1498.99 1095.59 0.00% 43 3 1 570.89

vrpnc10 1 1403.62 977.14 1.38% 42 4 35 1117.29

vrpnc10 2 1545.89 1081.87 0.99% 45 4 99 3371.52

vrpnc10 3 1626.56 1157.80 0.97% 43 4 3 471.61

vrpnc11 1 3865.12 3265.67 1.06% 42 3 1 17874.30

vrpnc11 2 3485.87 2887.37 1.21% 45 3 1 17350.40

vrpnc11 3 3357.75 2720.49 3.19% 46 4 1 16888.30

vrpnc12 1 1679.09 1183.01 0.80% 46 4 13 1993.64

vrpnc12 2 1994.38 1459.55 1.53% 47 5 45 3279.61

vrpnc12 3 1982.86 1445.96 1.66% 47 5 3 606.03

vrpnc13 1 4186.09 3588.82 1.84% 43 3 1 79960.00

vrpnc13 2 4130.05 3512.95 1.69% 43 3 1 133526.00

vrpnc13 3 3325.94 2771.02 1.21% 43 3 1 12392.20

vrpnc14 1 1855.91 1316.67 1.86% 44 5 81 2837.83

vrpnc14 2 1793.51 1299.76 0.56% 45 4 3 283.41

vrpnc14 3 1750.08 1267.49 0.86% 43 4 31 2377.32

Table A.13: Detailed results on instances with 50 nodes, 3 zones and high threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 945.455 567.451 2.44% 31 3 15 904.13

vrpnc02 1 1049.22 651.075 1.79% 31 4 49 1476.61

vrpnc02 2 963.829 552.337 4.13% 26 4 47 1246.36

vrpnc02 3 1118.1 633.86 1.43% 39 5 73 1696.73
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vrpnc03 1 1165.45 728.528 2.59% 39 3 17 4446.29

vrpnc03 2 1335.17 859.319 1.80% 42 3 7 7962.48

vrpnc03 3 1062.88 634.574 2.24% 36 3 17 3788.78

vrpnc04 1 1170.15 733.58 1.00% 39 3 5 6963.56

vrpnc04 2 881.527 568.391 4.38% 27 2 3 10582.12

vrpnc04 3 1003.68 593.537 0.69% 38 3 117 2154.21

vrpnc05 1 972.445 588.737 1.32% 38 3 15 3560.11

vrpnc05 2 979.068 589.815 2.77% 35 3 187 6259.77

vrpnc05 3 1086.08 701.774 1.63% 36 3 37 1503.04

vrpnc06 989.306 532.401 4.08% 40 4 51 760.00

vrpnc07 1 1168.73 692.927 3.38% 38 5 57 1705.48

vrpnc07 2 1041.26 579.74 1.95% 34 5 83 431.93

vrpnc07 3 1054.89 614.465 3.23% 32 5 81 1176.27

vrpnc08 1 1062.98 628.355 3.61% 34 3 53 2421.42

vrpnc08 2 1032.11 604.037 2.41% 36 3 201 2451.24

vrpnc08 3 1010.86 614.079 1.51% 39 3 7 1099.81

vrpnc09 1 1099.54 655.519 3.09% 36 4 199 1945.26

vrpnc09 2 1057.87 621.55 0.81% 42 3 49 3337.87

vrpnc09 3 1123.63 740.877 0.92% 33 3 5 208.42

vrpnc10 1 1062.66 683.73 2.09% 33 3 389 3527.59

vrpnc10 2 1077.9 736.744 1.74% 32 3 311 2228.45

vrpnc10 3 1157.41 722.116 1.95% 44 4 3 1199.47

vrpnc11 1 2653.24 2179.62 0.22% 36 2 1 29310.93

vrpnc11 2 2043.45 1516.04 2.27% 41 3 1 16912.23

vrpnc11 3 2649.43 2050.89 1.27% 44 3 1 26013.84

vrpnc12 1 1176.36 683.917 3.65% 38 4 141 1892.90

vrpnc12 2 1417.08 940.666 0.00% 42 4 1 91.39

vrpnc12 3 1434.24 949.919 1.68% 39 4 121 2270.69

vrpnc13 1 2296.98 1769.01 1.10% 39 3 1 16380.90

vrpnc13 2 2315.66 1804.62 1.09% 35 3 3 13767.20
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vrpnc13 3 2151.52 1656.95 1.81% 36 2 3 9133.40

vrpnc14 1 1249.54 759.891 1.27% 36 4 9 379.85

vrpnc14 2 1293.92 818.754 0.51% 42 4 3 212.70

vrpnc14 3 1284.94 809.24 2.39% 39 4 27 729.97

Table A.14: Detailed results on instances with 50 nodes, 3 zones and random threshold

Tables A.15 to A.18 present results of the instances with 50 customers distributed in

5 zones and different threshold profiles. For the instance vrpnc13 1, derived from CMT13,

the column generation procedure does not finalize at the root node in less than 10000 when

thresholds are low, medium or high, thus this instance is not reported in the corresponding

table. It is also the case of instance vrpnc03 3 with average threshold profile.

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 886.92 379.26 4.75% 45 5 39 2273.19

vrpnc02 1 917.84 334.36 4.34% 46 6 17 1747.76

vrpnc02 2 934.74 361.69 6.81% 44 6 15 1949.33

vrpnc02 3 892.09 338.26 4.20% 46 6 21 1877.46

vrpnc03 1 881.84 380.65 2.99% 48 4 87 3114.07

vrpnc03 2 938.60 457.76 3.22% 46 3 23 6089.08

vrpnc03 3 833.52 376.95 4.31% 44 4 141 3651.48

vrpnc04 1 914.47 423.72 6.72% 43 4 31 5066.10

vrpnc04 2 817.05 367.60 4.70% 45 4 21 2506.23

vrpnc04 3 758.25 378.16 3.60% 39 3 237 5866.36

vrpnc05 1 847.97 420.03 2.54% 43 4 77 2819.32

vrpnc05 2 765.90 377.72 3.45% 37 3 81 2338.12

vrpnc05 3 1000.50 506.91 3.82% 46 4 141 3044.63

vrpnc06 875.09 403.65 2.18% 40 4 15 2069.36

vrpnc07 1 822.79 279.41 1.98% 43 6 27 1940.11

vrpnc07 2 872.63 307.30 2.01% 43 6 51 1684.87

vrpnc07 3 798.54 262.68 7.54% 42 6 59 1850.35

vrpnc08 1 931.53 458.84 2.19% 46 4 129 6142.59
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vrpnc08 2 912.31 408.67 1.62% 45 4 17 998.57

vrpnc08 3 887.42 401.93 3.54% 46 4 121 3723.84

vrpnc09 1 861.10 391.80 2.91% 46 4 47 2537.22

vrpnc09 2 966.90 535.61 2.95% 44 4 43 2392.72

vrpnc09 3 1030.92 544.85 2.42% 46 4 71 2932.67

vrpnc10 1 856.79 379.13 6.88% 41 4 17 2562.41

vrpnc10 2 883.64 442.04 4.02% 47 5 191 4986.41

vrpnc10 3 852.31 426.43 4.86% 41 4 203 2332.11

vrpnc11 1 1981.45 1372.96 1.74% 42 3 3 29511.10

vrpnc11 2 2007.42 1434.94 2.63% 42 3 1 46867.70

vrpnc11 3 1888.80 1319.06 2.47% 40 3 1 35108.00

vrpnc12 1 1015.78 514.12 2.79% 43 4 641 4336.87

vrpnc12 2 1047.77 560.28 0.26% 44 4 7 527.21

vrpnc12 3 1114.37 598.04 4.12% 43 4 59 2420.27

vrpnc13 2 1997.25 1404.54 2.00% 46 3 1 41879.80

vrpnc13 3 2027.47 1415.53 2.96% 48 3 1 48429.10

vrpnc14 1 978.53 490.72 1.05% 47 4 3 613.37

vrpnc14 2 998.53 505.76 0.00% 41 4 1 92.51

vrpnc14 3 975.57 471.71 0.87% 45 4 125 3005.56

Table A.15: Detailed results on instances with 50 nodes, 5 zones and low threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 1117.48 641.41 1.39% 43 4 11 1227.97

vrpnc02 1 1203.85 629.09 1.52% 46 6 25 1507.70

vrpnc02 2 1227.81 647.97 2.95% 45 6 17 1521.23

vrpnc02 3 1147.17 589.86 2.37% 46 6 47 1125.64

vrpnc03 1 1182.01 686.93 2.06% 46 4 47 2369.73

vrpnc03 2 1209.97 726.74 0.60% 48 3 15 3673.79

vrpnc04 1 1186.05 699.76 3.46% 42 4 251 3446.88

vrpnc04 2 1042.52 593.07 2.40% 45 4 251 2876.03
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vrpnc04 3 1070.05 635.86 1.67% 48 4 49 5986.10

vrpnc05 1 1048.38 629.04 1.46% 42 4 5 1142.46

vrpnc05 2 1032.12 602.64 2.94% 43 4 55 2267.04

vrpnc05 3 1347.21 849.10 0.79% 47 4 49 3382.90

vrpnc06 1087.86 624.79 3.05% 41 4 29 1693.15

vrpnc07 1 1147.64 543.04 3.66% 47 7 49 1377.34

vrpnc07 2 1167.77 541.71 4.49% 46 7 13 1492.71

vrpnc07 3 1058.45 506.37 1.47% 44 6 57 1677.78

vrpnc08 1 1132.48 691.13 1.29% 42 3 63 8872.39

vrpnc08 2 1171.07 703.38 1.57% 43 4 31 2891.77

vrpnc08 3 1167.29 689.82 1.64% 44 4 285 6256.96

vrpnc09 1 1116.33 655.93 1.79% 44 4 35 5260.58

vrpnc09 2 1213.62 778.33 2.21% 45 4 51 4370.18

vrpnc09 3 1264.82 809.02 1.10% 44 4 23 2509.81

vrpnc10 1 1198.74 708.23 2.52% 44 4 19 2623.47

vrpnc10 2 1133.92 693.07 1.67% 48 4 209 5187.59

vrpnc10 3 1075.81 663.66 1.02% 39 4 7 530.20

vrpnc11 1 2445.26 1841.48 1.29% 42 3 3 35346.20

vrpnc11 2 2666.22 2075.67 1.70% 43 3 1 28419.30

vrpnc11 3 2442.21 1872.61 1.61% 41 3 1 51501.30

vrpnc12 1 1270.01 777.85 1.72% 42 4 49 1786.09

vrpnc12 2 1320.65 833.81 0.00% 44 4 1 130.67

vrpnc12 3 1417.28 887.83 2.82% 46 5 551 4315.75

vrpnc13 2 2485.93 1877.24 2.54% 44 3 1 29035.00

vrpnc13 3 2515.58 1924.58 1.83% 46 3 1 67675.10

vrpnc14 1 1224.80 747.24 1.28% 45 4 5 1291.74

vrpnc14 2 1358.71 830.91 2.68% 46 5 333 2417.86

vrpnc14 3 1326.27 791.67 2.66% 48 5 81 2953.33

Table A.16: Detailed results on instances with 50 nodes, 5 zones and medium threshold
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Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 1735.83 1216.65 1.48% 47 5 37 1436.72

vrpnc02 1 1883.03 1300.92 1.59% 46 6 27 1295.73

vrpnc02 2 1864.07 1236.23 2.68% 50 7 11 1412.56

vrpnc02 3 1732.48 1172.42 1.64% 46 7 83 1156.70

vrpnc03 1 1795.05 1270.64 1.16% 50 4 21 3311.59

vrpnc03 2 1887.01 1414.88 1.42% 45 3 3 13508.80

vrpnc04 1 1917.54 1382.19 2.64% 49 5 5 3400.37

vrpnc04 2 1690.19 1227.08 1.07% 49 4 13 6532.18

vrpnc04 3 1670.62 1236.93 1.04% 47 4 45 5643.26

vrpnc05 1 1704.47 1276.21 0.57% 43 4 3 2158.46

vrpnc05 2 1726.49 1284.48 1.06% 47 4 47 4622.29

vrpnc05 3 2111.45 1605.86 0.61% 48 4 15 4575.92

vrpnc06 1781.35 1267.16 0.85% 46 5 21 1452.63

vrpnc07 1 1747.07 1146.86 1.64% 47 7 23 1154.16

vrpnc07 2 1833.61 1194.98 1.94% 47 7 13 1014.64

vrpnc07 3 1666.47 1098.95 2.14% 45 7 19 1291.19

vrpnc08 1 1840.53 1366.51 0.94% 47 4 87 5709.34

vrpnc08 2 1812.13 1308.61 0.87% 44 4 5 1641.45

vrpnc08 3 1881.25 1392.34 1.17% 45 4 31 4154.06

vrpnc09 1 1793.38 1324.09 1.14% 45 4 21 2970.37

vrpnc09 2 1982.69 1526.36 1.63% 47 4 51 4645.72

vrpnc09 3 2007.23 1514.74 0.52% 48 4 3 2655.09

vrpnc10 1 1770.97 1293.17 1.17% 43 4 21 2820.73

vrpnc10 2 1718.29 1289.77 1.02% 45 4 111 8110.22

vrpnc10 3 1804.63 1324.93 1.51% 49 5 119 3623.69

vrpnc11 1 3904.13 3294.62 0.16% 45 3 1 17669.40

vrpnc11 2 4225.44 3629.89 0.91% 44 3 1 26374.40

vrpnc11 3 3708.67 3133.03 1.15% 42 3 1 82861.30

vrpnc12 1 2033.79 1542.05 0.00% 44 4 1 137.95
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vrpnc12 2 2154.93 1632.98 0.94% 48 5 3 308.21

vrpnc12 3 2203.42 1666.79 1.58% 47 5 231 2193.98

vrpnc13 2 4051.38 3455.40 0.90% 45 3 1 72349.30

vrpnc13 3 3974.08 3391.20 0.96% 45 3 1 29265.20

vrpnc14 1 2026.76 1539.98 0.77% 46 4 3 1654.68

vrpnc14 2 2144.53 1612.91 0.77% 48 5 3 471.55

vrpnc14 3 2084.19 1548.29 1.42% 48 5 9 821.62

Table A.17: Detailed results on instances with 50 nodes, 5 zones and high threshold

Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s)

vrpnc01 v 1111.19 655.03 0.69% 40 4 113 980.19

vrpnc02 1 1223.28 711.84 1.15% 42 6 23 2720.55

vrpnc02 2 998.91 586.60 1.17% 34 5 77 934.35

vrpnc02 3 1126.76 702.74 2.07% 37 5 39 2412.58

vrpnc03 1 1283.90 828.78 3.74% 38 3 19 9243.06

vrpnc03 2 1220.36 799.77 0.80% 39 3 33 5825.25

vrpnc04 1 1081.00 693.27 1.36% 37 3 9 1683.72

vrpnc04 2 1325.18 859.24 1.31% 42 4 461 5399.19

vrpnc04 3 1050.22 673.76 0.92% 34 3 11 2576.94

vrpnc05 1 971.95 601.28 5.95% 31 3 31 3756.26

vrpnc05 2 1162.66 779.49 1.28% 38 3 3 689.62

vrpnc05 3 1227.15 771.26 1.96% 40 4 311 2406.59

vrpnc06 v 1045.94 612.53 1.84% 35 4 177 1206.72

vrpnc07 1 1076.82 614.88 1.75% 35 5 37 2175.81

vrpnc07 2 1174.65 657.87 1.14% 40 5 21 2590.32

vrpnc07 3 1205.77 759.09 0.33% 36 5 3 37.63

vrpnc08 1 1161.43 772.78 0.68% 35 3 3 3331.44

vrpnc08 2 1199.81 745.56 1.04% 40 3 33 4813.20

vrpnc08 3 1196.53 761.80 0.00% 39 3 1 69.98

vrpnc09 1 1116.79 713.10 2.79% 38 3 365 5174.93
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vrpnc09 2 1160.82 740.73 2.78% 45 4 19 6287.07

vrpnc09 3 1237.96 888.35 2.17% 30 2 93 2610.84

vrpnc10 1 1081.89 653.05 4.05% 41 4 71 3724.04

vrpnc10 2 1221.36 831.50 0.95% 33 3 49 3533.71

vrpnc10 3 1132.34 711.13 0.00% 43 4 1 115.52

vrpnc11 1 2353.40 1878.49 0.93% 37 3 1 22744.10

vrpnc11 2 2182.67 1683.78 1.01% 34 3 3 13854.90

vrpnc11 3 2596.47 2059.58 1.94% 41 3 1 36217.50

vrpnc12 1 1435.97 936.94 0.62% 40 4 3 113.93

vrpnc12 2 1689.50 1196.51 0.13% 45 4 5 468.43

vrpnc12 3 1371.77 887.64 0.51% 41 4 3 163.42

vrpnc13 2 2330.15 1876.91 0.96% 38 2 1 15921.30

vrpnc13 3 2721.26 2265.19 0.27% 36 2 1 33049.20

vrpnc14 1 1297.25 786.29 2.75% 46 5 33 976.58

vrpnc14 2 1298.55 767.82 3.21% 42 5 137 3116.25

vrpnc14 3 1264.82 806.35 3.10% 39 4 35 3486.75

Table A.18: Detailed results on instances with 50 nodes, 5 zones and random threshold
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