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Performing proteomic studies on non-model organisms with little or no genomic

information is still difficult. However, many specific processes and biochemical pathways

occur only in species that are poorly characterized at the genomic level. For example,

many plants can reproduce both sexually and asexually, the first one allowing the

generation of new genotypes and the latter their fixation. Thus, both modes of

reproduction are of great agronomic value. However, the molecular basis of asexual

reproduction is not well understood in any plant. In ferns, it combines the production

of unreduced spores (diplospory) and the formation of sporophytes from somatic cells

(apogamy). To set the basis to study these processes, we performed transcriptomics

by next-generation sequencing (NGS) and shotgun proteomics by tandem mass

spectrometry in the apogamous fern D. affinis ssp. affinis. For protein identification

we used the public viridiplantae database (VPDB) to identify orthologous proteins from

other plant species and new transcriptomics data to generate a “species-specific

transcriptome database” (SSTDB). In total 1,397 protein clusters with 5,865 unique

peptide sequences were identified (13 decoy proteins out of 1,410, protFDR 0.93% on

protein cluster level). We show that using the SSTDB for protein identification increases

the number of identified peptides almost four times compared to using only the publically

available VPDB. We identified homologs of proteins involved in reproduction of higher

plants, including proteins with a potential role in apogamy. With the increasing availability

of genomic data from non-model species, similar proteogenomics approaches will

improve the sensitivity in protein identification for species only distantly related to models.
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INTRODUCTION

Most angiosperms reproduce sexually through seeds, but there
are examples of asexual seed formation (apomixis), where seeds
form without meiosis and fertilization (Figure 1). Apomictic
plants produce clonal embryos by sporophytic or gametophytic
apomixis (Nogler, 1984; Koltunow and Grossniklaus, 2003).
In sporophytic apomixis, the embryo forms directly from
the somatic diploid ovule tissue (nucellus or integument).
In gametophytic apomixis, the multicellular embryo sac may
originate from two different cellular lineages leading to a broad
categorization of this developmental program into diplospory
and apospory. In diplospory, the embryo sac originates from
the megaspore mother cell, either directly by mitosis or after
restitution during meiosis, while in apospory the embryo sac
originates from nucellar cells. In both cases, the asexual embryo
develops from the unreduced egg cell without fertilization
(parthenogenesis). Because apomixis allows the fixation of
complex genotypes, including that of highly productive F1
hybrids, many researchers have extolled the tremendous potential
that apomixis holds for plant improvement (Spillane et al.,
2004). In apogamy, somatic cells of the gametophyte are
reprogrammed to start the sporophytic developmental program.
Apogamy does not occur naturally in angiosperms but is
frequent in ferns (Yang and Zhou, 1992; Okano et al., 2009).
Apogamy may be obligate, when gametophytes produce non-
functional gametes, facultative, or induced by exogenous factors
(Fernández et al., 1996; Menéndez et al., 2006a; Cordle et al.,
2007). In obligate apogamy, endomitosis prior to meiosis
serves to maintain the sporophytic chromosome number
throughout the life cycle (Manton, 1950; Sheffield et al.,
1983).

Over the last decade, several studies focusing on apomixis
in model species of angiosperms concluded that sexual and
apomictic pathways share gene expression profiles and, thus,
common molecular regulatory features, indicating that they
are not distinct pathways (Grossniklaus et al., 2001; Tucker
et al., 2003). However, how somatic cells, either of sporophytic
or gametophytic (apogamy) origin, become embryogenic is
unknown. Apogamy in ferns is easy to observe and the
gametophyte of apogamous ferns can be useful for comparison
with the gametophytic events in angiosperms (Cordle et al.,
2010). Although ferns receive comparatively little attention and
genome sequences of ferns are, so far, unavailable, it is accepted
that we need to extend our analyses to more phylogenetic
branches (Barker and Wolf, 2010). To date, only few fern species
have been used to study developmental processes (Whittier, 1971;
Wen et al., 1999; Salmi et al., 2005, 2010; Kaźmierczak, 2010;
Lopez and Renzaglia, 2014; Valledor et al., 2014; de Vries et al.,
2015).

Abbreviations: AA, amino acid; 1D, one dimensional; DB, data base; FDR, false
discovery rate; Gln, glutamine; Glu, glutamic acid; ID, identity; Ile, isoleucine;
LC, liquid chromatography; Leu, leucine; MS, Murashige and Skoog (culture
medium); MS/MS, tandem mass spectrometry; NGS, next generation sequencing;
PSM, peptide spectrum match; RT, room temperature; SSTDB, species-specific
transcriptome database; TPM, transcripts per million; VPDB, viridiplantae
database.

Dryopteris affinis (Lowe) Fraser-Jenkins ssp. affinis (Western
scaly male fern) is a diploid, apomictic fern, which originated
from a cross between the sexual ancestor of the extant apomict
D. wallichiana (Wallich’s wood fern) and the sexual D. oreades
(mountain male fern; Fraser-Jenkins, 1986). The gametophyte
of this species forms male but no female reproductive organs
and, when cultured in vitro, reproduces by apogamy. Once
the gametophyte becomes heart-shaped, a brown organization
center develops near to the apical indentation that directly
forms an apogamous embryo sporophyte (Fernández et al., 1996;
Menéndez et al., 2006a).

An alternative for examining gene expression in species
without a genome sequence is to study its end products, the
proteins (Miernyk et al., 2011). Moreover, RNA and protein
profiling technologies have recently been applied in parallel to
improve protein identification in proteomic studies (Desgagne-
Penix et al., 2010; Lundberg et al., 2010). This has led to
an emerging field of biological research at the intersection
of proteomics and genomics referred to as proteogenomics,
which can be used to either refine genome annotation in
order to identify novel translated products or to assign and
identify more spectra and, therefore, identify more proteins
(Ansong et al., 2008). During the last years novel sequencing
technologies, such as RNA-seq, besides high-throughput MS–
based proteomics have sped-up proteogenomic research (Helmy
et al., 2012). However, there is no available public web resource
for mining the genomic and transcriptomic data of fern (Aya
et al., 2015).

The goal of the present study is to create an extensive protein
resource for the gametophyte of D. affinis spp. affinis that will be
used to gain insights into the molecular basis of apogamy. Our
proteogenomic approach, using a species lacking an annotated
genome, increased four times the number of indentified peptides
as compared to using only publicly available data bases and
allowed us to identify a total of 1,397 protein clusters with 5,865
unique peptide sequences. All the raw RNA sequencing files in
fastq format and the de novo transctipome assembly in fasta
format have been deposited at the European Nucleotide Archive
(ENA), accession number PRJEB18522, and all proteomics raw
data and the relevant derived files have been deposited at
ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifier PXD005423.

MATERIALS AND METHODS

In vitro Culture of Spores and
Gametophytes
Spores of D. affinis ssp. affinis obtained from sporophytes
growing in the forest of Turón (Asturias, Spain) were soaked
in water for 2 h and then washed for 10 min with a solution
of NaClO (0.5%) containing Tween 20 (0.1%). Then, they
were rinsed three times with sterile distilled water. Spores were
centrifuged at 1,300 g for 3 min between rinses, and then
cultured in 500-ml Erlenmeyer flasks containing 100 mL of
Murashige and Skoog (MS) medium (Murashige and Skoog,
1962), supplemented with 2% sucrose (w/v), pH 5.7.
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FIGURE 1 | Types of apomixis in higher plants (top) and ferns (botton). EC, egg cell; ES, embryo sac; MMC, megaspore mother cell; OT, other tissues such as

nucellus or integuments; Bar 1 mm. (Photograph by Helena Fernández).

Gametophytes at three developmental stages—filamentous,
spatula, and heart (in the last stage with visible signs of
an evolving apogamic center)—were collected to carry out
the molecular analyses (Figure 2). Cultures of filamentous
gametophytes were obtained by maintaining the spores in liquid
cultures placed on a gyratory shaker (75 rpm) for 50 days.
Cultures of spatula and heart stage gametophytes were cultured
in Petri dishes with 25 mL of MS medium containing 2%
sucrose (w/v) and 0.7% agar, pH 5.7, for 65 days. All cultures
were maintained at 25◦C under cool-white fluorescent light
(40µmolm−2s−1) with a 16-h photoperiod. For RNA extraction,
100mg of fresh plant material was weighed, immediately frozen
in liquid nitrogen, and kept at −80◦C until use. For proteomic
analyses, gametophytes were lyophilized and kept at−20◦C until
use. Three biological replicates were used for RNA sequencing
and two biological replicates were used for proteomics.

RNA Extraction
Plant material, 100mg of gametophytes at specific stages, was
homogenized by adding glass beads to an Eppendorf tube and
shaking with a Silamat S5 shaker (Ivoclar Vivadent, Schaan,
Liechtenstein) twice during 10 and 5 s, respectively. Total
RNA was isolated using the SpectrumTM Plant Total RNA kit
(Sigma-Aldrich, Buchs, Switzerland). DNA was removed using

the TURBODNA-free kit (Life Technologies, Carlsbad, CA), and
checked to determine quality using the Bioanalyser Agilent RNA
6000 Pico Kit (Agilent Technologies, Waldbronn, Germany).

Library Preparation
The quality of the isolated RNA was determined with a Qubit R©

(1.0) Fluorometer (Life Technologies, California, USA) and a
Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Germany).
Only those samples with a 260/280 nm ratio between 1.8–2.1 and
a 28/18S ratio within 1.5–2.0 were further processed. The TruSeq
RNA Sample Prep Kit v2 (Illumina, San Diego, CA) was used
in successive steps. Briefly, total RNA samples (100–1,000 ng)
were enriched for polyA RNA and then reverse-transcribed into
double-stranded cDNA. The cDNA samples were fragmented,
end-repaired, and polyadenylated before ligation of TruSeq
adapters (Table S1) containing the index for multiplexing.
Fragments containing TruSeq adapters on both ends were
selectively enriched with PCR. The quality and quantity of the
enriched libraries were validated using Qubit R© (1.0) Fluorometer
and the Caliper GX LabChip R© GX (Caliper Life Sciences,
Hopkinton, MA). The products resulted in a smear with an
average fragment size of approximately 260 bp. The libraries
were normalized to 10 nM in Tris-Cl 10 mM, pH8.5, with 0.1%
Tween 20.
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FIGURE 2 | Gametophytes of Dryopteris affinis ssp. affinis cultured on MS medium, at different developmental stages: (A) filamentous, (B) spatula, and

(C) heart-shaped. (D) Heart-shaped prothallium with an apogamic center (indicated by the arrow). Bar 1 mm (Photograph by Helena Fernández).

Cluster Generation, Sequencing, De Novo
Assembly, Transcriptome Coverage, and
Data Quality
Each of the six samples (filamentous and heart tissues, three
samples each) was sequenced on the Illumina HiSeq 2000
employing a 2 × 100 bp protocol. The number of raw reads
generated was in the range 70–92 M. The fastq files were
preprocessed using far (https://wiki.gacrc.uga.edu/wiki/FAR), the
predecessor to flexbar (http://sourceforge.net/projects/flexbar/).
Theminimum length was set to 50 bp and adapters were trimmed
as long as they would overlap 5 bases with the read. The reads
passing these filters were then joined using fastqjoin (https://
pods.iplantcollaborative.org/wiki/display/DEapps/Fastq-Join) so
to maximize the length of the reads prior to the transcriptome
assembly.

The joined reads were then passed onto Trinity (version
2013-02-25, http://trinityrnaseq.sourceforge.net) for the de novo
transcriptome assembly with default settings.

The total number of putative transcripts generated by Trinity
was 436,707.

Relative abundances of the transcripts originating from the
different samples were estimated using RSEM (http://www.
biomedcentral.com/1471-2105/12/323) by mapping to the newly
generated transcriptome and differential expression, both at

isoform and gene level, was measured with EBseq (http://www.
biostat.wisc.edu/~kendzior/EBSEQ/).

The putative 436,707 transcripts as generated by Trinity were
6-frame translated using six pack (http://emboss.sourceforge.
net/apps/release/6.6/emboss/apps/sixpack.html). 330,049 amino
acid (AA) sequences longer than 60 AA were kept in the NGS
database (DB). To add some minimal annotation to our NGS
DB sequences, each was blasted (blastp) against the Swissprot
DB, a well curated multi-species database where most of the
proteins have an associated function. The description line of the
corresponding SSTDB entry was extended if the best scoring
BLAST hit was found with an e-value of 1E-4 or smaller. This
cross species annotation of the closest BLAST hit should be
seen dynamic (while the actual sequences are rather static): since
databases get better curated overtime, there might be better
homologs to annotate our sequences in the future.

Protein Extraction
From each of the four samples (filamentous and heart tissues,
two samples each) an amount of 20mg dry weight of plant
gametophytes were homogenized using a Silamat S5 shaker
(Ivoclar Vivadent, Schaan, Liechtenstein). Homogenized samples
were solubilized in 800µL of buffer A [0.5 M Tris-HCL
pH 8.0, 5mM EDTA, 0.1 M Hepes-KOH, 4 mM DTT,
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15 mM EGTA, 1mM PMSF, 0.5% PVP and 1 × protease
inhibitor cocktail (Roche, Rotkreuz, Switzerland)] using a Potter
homogenizer (Thermo Fisher Scientific, Bremen, Germany).
Proteins were extracted in two steps: first, the homogenate
was subjected to centrifugation at 16,200 g for 10 min at 4◦C
on a tabletop centrifuge and, second, the supernatant was
subjected to ultracentrifugation at 117–124 kPa (∼100,000 g)
for 45 min at 4◦C. Post-ultracentrifugation the supernatant
contained the soluble protein fraction. The pellet from the
first ultracentrifugation was re-dissolved in 200µL of buffer
B (40 mM Tris base, 40 mM DTT, 4% SDS, 1 × protease
inhibitor cocktail (Roche, Rotkreuz, Switzerland) to extract
membrane proteins using the ultracentrifuge as described
before. The supernatant after the second ultracentrifugation step
contained the membrane protein fraction. Ultracentrifugation
was performed using an Airfuge (Beckman Coulter, Pasadena,
CA). Protein concentrations were determined using a Qubit
Fluorometer (Invitrogen, Carlsbad, CA).

1D Gel Electrophoresis
Approximately 1mg protein per each soluble and membrane
fraction was loaded separately onto a 0.75 mm tick, 12% SDS-
PAGE mini-gel. Samples were treated with sample loading buffer
and 2 M DTT, heated at 99◦C for 5 min, followed by a
short cooling period on ice, and loaded onto the gel. 1D gel
electrophoresis was performed at 150 V and 250 mA for 1 h in
1X Running Buffer.

Protein Separation and In-Gel Digestion
After 1D SDS-PAGE each gel lane was cut into six 0.4 cm wide
sections using a custom-made gel cutter, resulting in 48 slices.
These slices were further fragmented into smaller pieces and
subjected to 10 mM DTT (in 25 mM AmBic pH8) for 45 min
at 56◦C and 50 mM Iodoacetamide for 1 h at RT in the dark
prior to trypsin digestion at 37◦C overnight (Baerenfaller et al.,
2008). The small pieces were washed twice with 100µl of 100
mM NH4HCO3/50% acetonitrile, and washed once with 50µl
acetonitrile. All three supernatants were discarded and peptides
digested with 20µl trypsin (5 ng/µl in 10 mM Tris/2 mM CaCl2,
pH 8.2) and 50µl buffer (10 mM Tris/2 mM CaCl2, pH 8.2).
After microwave-heating for 30 min at 60◦C, the supernatant
was removed and gel pieces extracted once with 150µl 0.1%
TFA/50% acetonitrile. All supernatants were combined and
dried, and samples were then dissolved in 15µl 0.1% formic
acid/3% acetonitrile and transferred to auto-sampler vials for
liquid chromatography (LC)-MS/MS where 5µl were injected.

Mass Spectrometry and Peptide
Identification (Orbitrap XL)
The samples were analyzed on a LTQOrbitrapmass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) coupled to an
Eksigent Nano HPLC system (Eksigent Technologies, Dublin,
CA). Solvent composition of buffer A was 0.2% formic acid/1%
acetonitrile, and of buffer B 0.2% formic acid/99.8% acetonitrile.
Samples were dissolved in 3% acetonitrile/0.1% formic acid.
Peptides were loaded onto a self-made tip column (75µm × 80
mm) packed with reverse phase C18 material (AQ, particle

size 3µm, 200 Å) (Bischoff GmbH, Leonberg, Germany) and
eluted at a flow rate of 200 nL per min. The following LC
gradient was applied: 0 min: 5% buffer B, 56 min: 40% B, 60
min: 47% B, 64 min: 97% B, 71 min: 97% B. Mass spectra
were acquired in the m/z range 300–2000 in the Orbitrap
mass analyzer at a resolution of 60,000 at m/z 400. MS/MS
spectra were acquired in a data-dependent manner from the
five most intense signals in the ion trap, using 28% normalized
collision energy and an activation time of 30 ms. The precursor
ion isolation width was set to m/z 3.0. Charge state screening
was enabled, and singly charged precursor ions and ions with
undefined charge states were excluded. Precursor masses already
selected for MS/MS acquisition were excluded from further
selection for 120 s. MS/MS spectra were converted to the
Mascot generic format (.mgf) using MascotDistiller 2.3.2 and
the parameters recommended for Orbitrap instruments. These
.mgf files were submitted to Mascot (Matrix Science, London
UK; version 2.4.01) for searching. Trypsin was selected as the
proteolytic enzyme, Mascot was set up to search against the in-
house generated SSTDB (forward entries: 330,049) combined
with the publicly available VPDB (forward entries: 1,031,407,
downloaded from uniprot.org in March 2012), and a set of
260 known mass spectrometry contaminants in a target-decoy
strategy (using reversed protein sequences). The concatenated
DB is available online (http://fgcz-r-021.uzh.ch/fasta/p1222_
combo_NGS_n_Viridi_20160205.fasta). Data was searched with
a fragment ion mass tolerance of ± 0.6 Da and a precursor
mass tolerance of ±10 ppm. A maximum of 2 missed cleavages
were allowed. Carbamidomethylation of cysteine was specified as
a fixed modification, and deamidation (N, Q), Gln->pyro-Glu
(N-term Q), oxidation (M) were specified in Mascot as variable
modifications.

Protein Identification, Verification, and
Bioinformatic Downstream Analysis
Scaffold software (version Scaffold 4.2.1, Proteome Software Inc.,
Portland, OR) was used to validate MS/MS-based peptide and
protein identifications. Mascot results were analyzed together
using the MudPIT option. Peptide identifications were accepted
if they scored better than 95.0% probability as specified by
the PeptideProphet algorithm with delta mass correction, and
protein identifications were accepted if the ProteinProphet
probability was above 95%. Proteins that contained same
peptides and could not be differentiated based on MS/MS
alone were grouped to satisfy the principles of parsimony using
scaffolds cluster analysis option. Only proteins that met the
above criteria were considered positively identified for further
analysis. The amount of random matches was evaluated by
performing the Mascot searches against a database containing
decoy entries and checking how many decoy entries (proteins
or peptides) passed the applied quality filters. The peptide FDR
and protein FDR was estimated at 0.21 and 0.93% respectively,
indicating the stringency of the analysis. A total of 2,525
unique proteins were assembled into 1,397 protein clusters
using Scaffold. The Spectrum Report from Scaffold satisfying the
criteria mentioned above was exported and for each identified
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peptide-spectrum-match (PSM) and each peptide, the origin of
the DB (being either from the VPDB, the SSTDB, or identified
in both DBs) was evaluated. PSMs for which more than one
hit was generated with exactly the same score but a different
peptide sequence were considered as conflicts and omitted from
subsequent analyses. These are cases where the AA composition
of the two assignments are the same but the first two or three
residues are permutated or represent Leu/Ile switches as these
are isobaric AAs. All proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifier PXD005423 (Vizcaíno et al., 2016).

RESULTS

Using a De Novo Generated SSTDB Greatly
Improves Peptide Identification in the
Proteome of D. affinis
The gametophytic tissue of the fernD. affiniswas used to generate
its proteomic profile by using LC-MS/MS. The spectra were
searched against a concatenated VPDB in addition to the new
protein DB that was created based on transcriptomic datasets
obtained in the present study (SSTDB) in order to identify PSMs
from any of the two databases. This search database is large
for a single organism and, therefore, probably redundant and
biased to an inherent problem of the proteogenomic approach
where some transcripts may not be completely assembled and,
therefore, result in shorter sequences in general. To back-up this
observation, we compared sequence lengths in SSTDB to VPDB
and other organism-specific databases (Figure S1). It can be seen
that on average the sequences in the SSTDB are clearly shorter.
The large size of the SSTDB is also a result of the six-frame
translation where usually only one of the six translations is
correct.

Because of the lack of a completely species-specific annotated
genome, we used the concatenated SSTDB and VPDB, which
increases the chance for randommatching due to the large search
space generated. Thus, higher scores are required for individual
PSMs compared to searching smaller databases. Here, we did
not want to omit the full VPDB but accepted the loss of some
peptide/protein identifications.

As expected, proteins were more easily detected if they are
more abundant (assuming correlation of transcript and protein
abundance; Figure 3). The combination of both transcriptome
and proteome methodologies yielded a total 1,397 true forward
protein clusters with 5,865 unique peptide sequences identified
(protFDR 0.93%; Table S2). The strategy of searching against
an orthologue DB (VPDB) concatenated to a newly generated
protein DB derived from species-specific transcriptome data
(SSTDB) dramatically improved protein identification. Of
all uniquely identified peptide sequences, more than 77.8%
were exclusively matched in the SSTDB, while only about
15.7% were exclusively matched in the VPDB (Table 1).
The intersection of peptides identified in both DBs was
ca 6% after removing conflicting assignments. This is also
obvious at the protein cluster level: more than 1,068 clusters
(76.45%) were exclusively identified in the SSTDB, while
only 329 clusters (23.55%) would have been identified if
we had searched only against the VPDB. The intersection
revealed 167 clusters (11.95%), which leaves only 162 clusters
(11.6%) that are exclusively identified in the VPDB. This
represents about 3.8 times more peptide sequences that
could be identified using this proteogenomics approach as
compared to using VPDB alone. The overview of the full
experiment workflow is illustrated in Figure 4. A list of all
proteins identified in this study is provided in Table S2 or the
Scaffold file (.sf3), which can be downloaded from the PRIDE
repository.

FIGURE 3 | Distribution for RNA-Seq counts (TPM) and RNA-expression values of the identified proteins in the gametophyte of Dryopteris affinis ssp.

affinis. F, filamentous; H, heart stage; PrX, proteomics; TPM, transcripts per million.
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TABLE 1 | Occurrence of assigned peptide-spectrum-matches (PSM) and

unique peptide sequences.

Assigned PSM Identified unique peptides

(Peptide-spectrum-

matches)

(Conflicts removed)

Total assignments (%) 22,905 (100%) 5,865 (100%)

Conflicting (%) 1,075 (4.69%)

Assigned with VPDB and

SSTDB—no conflicts (%)

2,227 (9.72%) 376 (6.41%)

Conflicting (%) 719 (3.14%)

Assigned ONLY with

SSTDB—no conflicts (%)

14,222 (62.09%) 4,566 (77.85%)

Conflicting (%) 140 (0.61%)

Assigned ONLY with

VPDB -no conflicts (%)

5,381 (23.49%) 923 (15.74%)

Conflicting (%) 216 (0.94%)

The source of the identification i.e. the newly generated SSTDB or the publicly available

VPDB, is depicted for each case. The conflicting PSM (different sequences which score

exactly the same due to e.g. isobaric amino acid switches, Leu/Ile, or permutations in the

first two or three residues) are indicated in italics.

Functional Annotation Reveals a High
Metabolic Activity of D. affinis
Gametophytes
To gain information about possible functions of the proteins
identified within VPDB, we assigned them to gene ontology
(GO) functional categories (“biological process,” “molecular
function,” “cellular component”). Our data reveal the usual
behavior in a shotgun proteomics approach, in which proteins
of high abundance are predominantly identified; however, some
interesting categories that emphasize the nature of the tissue
under investigation were also observed.

Under “biological process” the GO categories include “cellular
processes” and “development and differentiation” as expected
for developing gametophytes. The proteome of D. affinis
gametophytes is dominated by processes that indicate a high
metabolic activity. In addition, proteins involved in “regulation,”
“defense,” “response to stimulus,” and “signaling,” reflect the
intensive interactions of free living gametophytes with their
environment.

Under “molecular functions” three GO categories dominate,
namely “ion binding,” “enzyme activity,” and “nucleotide
binding,” while under “cellular components” we mostly found
proteins localized to “plastids” and “cytoplasm,” but also to
the “nucleus” and “membrane” compartments. Proteins from
virtually all cellular compartments as well as the extracellular cell
wall were identified (data not shown).

Finally, we also identified proteins without a GO annotation,
among others the Coiled-coil domain-containing protein 18,
Elicitor-responsive protein 3, GEM-like protein 1, LEA1,
UPF0763 protein NAMH 0545, and the B2 protein.

D. affinis Gametophytes Contain Proteins
with Similarity to Plant, Animal, and Fungal
Proteins
More than half of all identifiedD. affinis proteins had BLAST hits
to proteins from higher plants, followed by hits from animals,

not mapped entries, and lower plants and algae as the most
abundant (Figure 5). Table 2 shows the best species match for
proteins identified within the VPDB or the species used to extend
the description with useful annotation from SSTDB for up to a
cumulative 70% of all identified proteins. For proteins identified
within the SSTDB, we indicate the category and e-value for the
BLAST annotation. Interestingly, for the identified proteins most
of the BLAST hits were found with small e-values (e < 1E-20). In
contrast to the complete database where most of the BLAST hits
were found with an e-value above 1E-6 (Table S3).

Most hits had similarity to proteins encoded by the best-
annotated genomes of higher plants, namelyArabidopsis thaliana
(mouse ear cress) and the monocot Oryza sativa (rice; Table 2).
However, there might be a bias here because, as the best
annotated plant species, those are the ones with most entries
in the swissprot DB. Surprisingly, in an identification based on
the SSTDB entry instead of the VPDB entry, they were not
followed by other plants with well-annotated genomes, including
Solanum lycopersicum (tomato) and Vitis vinifera (grape), but
rather by Homo sapiens (human), Bos taurus (cattle), and
Mus musculus (mouse). Apart from these animals and several
additional plant species, hits were also identified to proteins from
the protozoon Dictyostelium discoideum (slime mold) and the
fungus Schizosacharomyces pombe (fission yeast; Table 2).

Figure S2 shows pairwise alignments for proteins discussed
here, which were identified within the SSTDB and had an
annotation from BLAST. Figure S3 provides annotated PSMs for
proteins for which the basis of identification is a single confident
peptide sequence.

Using the Scaffold software and the file provided in the PRIDE
repository, GO categories can be visualized for each protein or
also compared across samples, and blastp searches can directly
be launched at the NCBI homepage.

DISCUSSION

Plant reproduction is key to understanding plant development
but our knowledge on the molecular basis behind asexual
reproduction or apomictic developmental programs is scarce.
Ferns are frequent apogamous species and as such they can
provide valuable information. Studies with an “omics” approach
are scarce in ferns due to their complex, large genomes and
low agronomic value (Bona et al., 2010; Der et al., 2011; Cordle
et al., 2012; Shen et al., 2014; Aya et al., 2015; de Vries et al.,
2015). This paper reports the first protein resource for a fern
gametophyte, namely the apogamous gametophyte of D. affinis
ssp. affinis. Although no genome sequence is yet available for this
non-model species, it could prove useful for future research into
the basic principles of apogamy, a process of great importance to
agriculture (Spillane et al., 2004).

Proteogenomics is a Powerful Approach to
Identify Proteins in Proteomic Studies of
Non-Model Species
Identifying peptides and proteins from non-sequenced
organisms has already been examined before. This is always
possible based on completely identical peptide sequences
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FIGURE 4 | Workflow showing the steps and the importance to make a transcriptome database for the non-sequenced species Dryopteris affinis ssp.

affinis, in contrast to only using public resources. The criteria for protein identification and definition of conflicts are laid out under “Experimental Procedures.”

between the species under investigation and the species in the
search database. This only becomes problematic if the species
under investigation is very distantly related to species where
protein sequences are available in the search database. In these
cases, peptide and protein identification can be performed
by estimating the quality of a tandem mass spectrum, and if
the quality is sufficient, de-novo sequencing followed by MS
homology searching (Siddique et al., 2006; Grossmann et al.,
2007; Vertommen et al., 2011). The major advantage of first
generating a SSTDB is usually the increased sensitivity in the
number of protein identifications as well as the number of
peptides identified per protein.

In this study, we identified four-timesmore peptides with high
confidence using a SSTDB concatenated with the VPDB than
with the public VPDB alone. Although the concatenation of these

databases results in a very large database with many homologous
entries, our results demonstrate that the combination of
proteomic and transcriptomic resources is essential to make
adequate biological interpretations. In agreement with previous
studies, we show that the sole use of the VPDB—or any
other publicly available database for protein identification—
is inefficient in non-model species, since they are under-
represented in most databases, resulting in poor identification
rates (Romero-Rodríguez et al., 2014).

As a result of searching SSTDB concatenated with the VPDB,
we could identify about 1,400 protein clusters from gametophytic
tissue ofD. affinis. According to their assignedGO category under
“biological process,” and according to the functions of mapped
orthologous proteins, many proteins are associated with a high
metabolic activity in agreement with the free-living nature of
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FIGURE 5 | Number of protein clusters obtained from gametophytes of Dryopteris affinis ssp. affinis with the best hits to species belonging to the

phylogenetic groups indicated.

fern gametophytes that are photosynthetically active and thus
autotroph (Der et al., 2011; Cordle et al., 2012). Similar to
what was found in the transcriptomes of the MMC and female
gametophyte of the flowering plant A. thaliana (Wuest et al.,
2010), proteins involved in RNAmetabolism and translation also
feature prominently in the D. affinis proteome.

D. affinis Proteins are Homologs to
Proteins Involved in Reproduction of
Higher Plants
Among the identified proteins, those related to the biology of fern
gametophytes are of special relevance to understand apogamy
and the molecular basis of asexual reproduction (Table 3). As
a reproductive structure, the gametophyte of ferns could be
expected to be equivalent to the tissues giving rise to male
(pollen) and female gametophytes (embryo sacs) in flowering
plants. In line with this, in silica expression of the apogamy library
Arabidopsis homologs, enriched in flower and seed structures,
was reported for the apogamous gametophyte of Ceratopteris
richardii (Cordle et al., 2012). Hence, despite the rapid evolution
of reproductive proteins (Swanson andVacquier, 2002), we found
several homologs of proteins implicated in the reproduction of
higher plants in the proteome of D. affinis gametophytes. In fact,
many of the genes involved in development of the flower, for
example, have homologs in non-flowering clades, illustrating the
importance of examining the basic biology of taxa other than
model organisms (Hasebe, 1999). Several proteins identified from
the apogamous gametophyte of D. affinis have been implicated
in embryo development of higher plants (Table 3). Among them
are members of the LATE EMBRYOGENESIS ABUNDANT
(LEA) type 1 family: embryonic protein DC-8, LEA1, the zygotic

DNA replication licensing factor MCM6-A, some receptor-like
kinases (RLKs), and the GEM-like protein 1 (Table 3). RLKs,
such as those of the SOMATIC EMBRYOGENESIS RECEPTOR
KINASE (SERK) subfamily, play a role in the acquisition of
embryogenic competence (Hecht et al., 2001; Albertini et al.,
2005). We also identified homologs of the leucine-rich repeat
(LRR)-RLK GASSHO1, which exhibits uniform expression in
the embryo from the globular to the mature stage (Tsuwamoto
et al., 2008; Table 3). In addition, proteins involved in plant
reproduction were identified, such as the pollen-expressed RLK
ligand LAT52 (Tang et al., 2002) and the ubiquitin receptor
DA1, controlling seed and organ size through the maternal
sporophyte by restricting the period of cell proliferation (Li
et al., 2008; Table 3). Furthermore, we identified homologs of
animal proteins, such as Janus-B, which regulates somatic sex
differentiation in Drosophila melanogaster (fruit fly; Yanicostas
et al., 1989) and Radial Spoke Head 1 (RSPH1), required for
sperm motility in humans (Table 3; Onoufriadis et al., 2014).

Identification of Proteins with a Potential
Role in Apogamy
In both apomixis and apogamy, unreduced cells form an embryo
without fertilization and, thus, they share some common features.
Moreover, the mechanism of asexual reproduction in lower
and higher plants appears to be controlled by overlapping sets
of genes (Cordle et al., 2012). ARGONAUTE (AGO) proteins
play important roles in RNA-mediated silencing during plant
development, including reproduction (Olmedo-Monfil et al.,
2014). In this study, we identified a fern protein homologous to
ARGONAUTE10/PINHEAD/ZWILLE (AGO10; Table 3), which
represses cell entry into sexual reproduction and contributes
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to the maintenance of the shoot apical meristem and the
establishment of leaf polarity by repressing miR165/166 in
A. thaliana (Liu et al., 2009). Similarly to AGO proteins, the
A. thaliana SERRATE (SE) RNA effector protein, a homolog
of which was also identified here (Table 3), acts as a regulator
of meristem activity and leaf polarity via the miRNA pathway
(Prigge andWagner, 2001). These proteins could potentially play
a role in the meristematic activity of the incipient apogamic
embryo or unknown roles in the switch between sexual and
asexual reproduction. We speculate that SE and some AGO
family proteins may be involved in the regulation of apogamy in
ferns.

Previous reports in grasses described proteins associated with
apomixis and the regulation of ploidy regulation suggesting that
these are inter-related phenomena (Albertini et al., 2004). In this
study, we found fern homologs of some of the described proteins,
such as the Ras-related proteins, 4 DNAJ domain-containing
proteins, cytochrome P450, several LRR-proteins, and proteins
involved in gene silencing.

Finally, an important group of proteins identified in this
study play a role in cell wall modifications, including glucanases,
glycosyltransferases, and pectinases, (Table 3). Consistent with
the presence of proteins associated with pectin catabolism, it
has previously been reported that pectins are present in lower
concentrations in ferns than in higher plants (Silva et al.,
2011). Recently, gene expression in enlarging aposporous initial
cells and early aposporous embryo sacs was compared to that
in surrounding cells during apomictic initiation in Hiercium
praealtum (tall hawkweed) and, interestingly, pectinecterases and
other cell wall-modifying enzymes were identified, consistent
with a role of cell wall modifications in apomixis and apogamy
(Li et al., 2011).

Identification of Proteins Involved in
Phytohormone Signaling
The sessile lifestyle of plants requires a continuous
crosstalk between the plant and its immediate environment.
Phytohormones are of prime importance in this dynamic
interaction to regulate and integrate overall plant growth
and development. In D. affinis, auxins and gibberellins play
a stimulatory role during the induction and differentiation of
apogamous embryos, but phytohormones are also important
for the vegetative development of the gametophyte (Menéndez
et al., 2006b, 2009). In this study, we found several proteins
related to the action of the classical phytohormones auxin,
cytokinin, ethylene, and abscisic acid, as well as brassinosteroids,
jasmonic acid, and polyamines. The above mentioned proteins
may potentially participate in key aspects of vegetative and
reproductive gametophyte development in ferns.

Identification of Proteins Involved in Stress
Responses
A particularity of the gametophyte of ferns is its vulnerability to
stress. Hence, many proteins identified in this study are related to
responses to biotic or abiotic stimuli. Regarding abiotic stress, we
identified several heat-shock proteins (70, 90, 105, and hsc70), the

glutathione-S-transferase protein F10/EARLY RESPONSE TO
DEHYDRATION13, homologs of the desiccation-related protein
PCC13-62 from Craterostigma plantagineum (resurrection plant;
Piatkowski et al., 1990), and many other proteins known to
participate in ABA-mediated stress responses. We also found
proteins involved in cellular responses to toxic substances,
including PLANT CADMIUM RESISTANCE3 (Song et al.,
2004). Regarding proteins involved in biotic stress responses, we
identified homologs of Virginiamycin B lyase, which is involved
in antibiotic resistance, Nectarin 1, which may interact with
bacterial adhesins and may protect frommicrobial attack (Carter
et al., 1999), and proteins related to the cytochrome P450 family
that, in the fern species Polypodium vulgare (common polypody),
are associated with ecdysteroids, which are also present in plants
(phytoecdysteroids) and suggested to participate in the defense
against non-adapted phytophagous invertebrates (Canals et al.,
2005). It has been suggested that an increase in metabolic activity
and stress responses together induce the developmental switch
to apogamy (Cordlel et al., 2012). Accordingly, the in vitro
conditions that induce apogamous sporophytes in angiosperms
from pollen or embryo sacs, universally include a stress treatment
(Shariatpanahi et al., 2006).

The combination of different “omics” approaches is a
promising way to obtain a comprehensive picture of regulatory
processes. By integrating reference transcriptome and proteome
analyses, we greatly improved protein identification in a non-
model species, providing an important basis to gain further
insights into apogamy in D. affinis ssp. affinis. Studying
the molecular mechanisms of asexual reproduction, i.e., the
generation of clonal offspring, is an important topic aiming at
the introduction of self-sustainable hybrids in agriculture. Hence,
the introduction of apomixis has a tremendous potential for
crop improvement, and extending our analyses to phylogenetic
branches other than those of model species may help to unravel
underlying processes common to a broad range of organisms.
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