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STT Transcription Using Neural Networks

Resumen

Este proyecto nace de la necesidad de reemplazar a servicios de transcripción
en la nube por una solución propia para una empresa de servicios informáticos. A
través de múltiples herramientas y técnicas de Machine Learning, se plantea crear un
modelo que permita la transcripción de audios de voz en español a texto.

Una de estas herramientas es el proyecto de código abierto llamado DeepSpeech,
desarrollado por Mozilla. Dicho proyecto, permite a sus usuarios entrenar modelos
de inteligencia artificial que transforman audio de cualquier idioma en texto, lo que
se conoce como Speech-To-Text en la literatura.

Gracias a un proceso compuesto de varias fases se consigue crear un modelo que
deja de manifiesto la capacidad de operación de estos sistemas y su potencial para
emular a servicios de pago existentes en el mercado actual.

Tras una breve introducción teórica al problema Speech-To-Text, este documento
explica con detalle todas las fases de dicho proceso: recolección de datos, preproce-
samiento, preparación del entrenamiento, entrenamiento, obtención de resultados y
evaluación de los mismos. Además, se incluyen también un serie de ampliaciones
posibles a todo este proceso que añaden valor y funcionalidad al producto final.

Abstract

This project arose from the need to replace cloud-based transcription services
with a proprietary solution. Through multiple Machine Learning tools and tech-
niques, the idea is to create a model that allows the transcription of audio speech in
Spanish into text.

One of these tools is the open-source project called DeepSpeech, developed by
Mozilla. This project allows its users to train Artificial Intelligence models that trans-
form audio from any language into text, known as Speech-To-Text in the literature.

By means of a process consisting of several phases, a trained model is created to
demonstrate the operational capacity of these systems and their potential to emulate
existing paid services on the current market.

After a theoretical introduction, this document explains in detail all the phases
of this process: data collection, preprocessing, training preparation, training, results
collection, and evaluation. In addition, the document includes a series of possible
extensions to this process that add value and functionality to the final product.
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1 Introduction

1.1 Motivation
Many would say that technology had its limits some years ago, yet now we have mini-

computers with us all the time in the form of mobile phones. We can also buy things with
internet money or pay with our phones or smartwatches. The world of technology is in
constant evolution.

In the fields of Machine Learning, Big Data, Human-Computer interaction, there are
countless applications to solve everyday tasks. That sometimes would defy common sense
and even make us question our purpose in our daily jobs, knowing that someday, machines
could replace us completely. Fortunately for human beings, there are still lots of things
machines can not do (yet).

In particular, Natural Language Processing (NLP) has made huge improvements over
the years with the development of newer Deep Learning techniques as well as higher
availability of data and computing power.

This work aims to contribute to this NLP world by leveraging existing technologies to
create a tool that transcribes speech into readable words of the Spanish language.

This project was initially proposed by a company centred around the world of commu-
nication, management and establishing better relationships among people. This company
is named Alisys and their objective with this project was to improve their current speech-
transcribing system and hopefully create a product of their own, without relying on the
heavy players that dominate the industry nowadays (Google or Amazon, for instance).
They did not plan to improve existing services, just to emulate them close enough for
them not to depend on other companies or services.

1.2 Speech Recognition Systems
Around the 1940s, the first computer prototypes were under construction [6]. How-

ever, these were not that powerful compared to what we have nowadays. This fact did not
stop scientists and engineers from asking questions and seeking progress.

One of the many questions they sure asked themselves was: Could we possibly mimic
human behaviour with one of these machines? And sure they could, but it was a com-
plex and ambitious task. We know for sure they were not wrong. We have made many
approximations to mimic human behaviour.

These approximations include the processing of the human language. We are talking
about Speech Recognition Systems (SRSs). The terms Speech Recognition (SR) and
Automatic Speech Recognition (ASR) are synonyms in the literature. The latter is the
most common one. This concept represents an entire subfield of Computer Science along
with Computational Linguistics. It aggregates contributions from many disciplines.

They aim to study, design, and implement SRSs that process human speech. The
objective is to make a computer "understand" and "interpret" what a human or a group of
them are saying, reacting to these stimuli in a wide range of possibilities. The basic idea
is to convert acoustic signals to words [19].

The basis of these systems is training, a process through which SRSs learn what to
look for when operating. The quality of the data used as input will determine how well
the system behaves when processing new data. During this process, the system receives
human speech as input. It is analyzed to fine-tune its perception of how human speech
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sounds. The greater the amount of data provided, the better the system will be when
generalizing new input speech, although this is not true in every scenario.

From the technological perspective, ASR has a long history that includes many major
innovations. One of these is the explosion of Big Data and Deep Learning. These two
massive interdisciplinary fields have given ASR a lot of room to expand and improve over
the last two decades, even during the late 1990s [3].

1.2.1 Some history about the evolution of SRSs

The first mechanical device that produced artificial speech was presented to the public
as far back as in the early 1780s. Its creator, Mr Wolfgang von Kempelen, made it public
during a journey through Europe where he showed yet another of his inventions called
"Mechanical chess player". On top of that, Sir Thomas Alva Edison invented the first
dictation machine around 1879 [2, 14]

Later on, between the decades of the 1950s and 1970s, this invention was followed by
"Audrey" (created by Bell laboratories in 1952), a system that could recognize a single
voice reading digits out loud. Ten years later, IBM showed its creation called "Shoebox".
This machine could understand and answer a total of 16 English words [24, 13].

After these great contributions, during the 1970s and 1980s, the ASR field saw great
advancements. These include the system "Harpy" devised in the university of Carnegie-
Mellon around 1976 capable of understanding a thousand plus words [25]. However, it
had some limitations as speakers would need to slow down their pace for the machine to
understand them. During the 1980s, IBM Tangora, described as the world’s fastest typist,
was made public. This machine could predict upcoming phonemes in the user’s speech.
It was based on Hidden Markov Models (HMM) [26]. However, as with many of these
revolutionary inventions, it had problems with fast and unclear speech and background
noise [17].

During the 1990s, as the internal machinery of computers got better and faster, several
SRSs sprouted, such as Dragon Dictate and BellSouth’s voice portal dial-in interactive
voice recognition system (VAL) [24].

The decades of the 2000s and 2010s saw great improvement over the years. First,
the National Security Agency (NSA) started using speech recognition in 2006, specif-
ically isolated word recognition [10]. Later on, in 2008, Google launched the very first
voice search app, making voice and speech recognition accessible through mobile devices
[23]. Besides, Apple released Siri in 2011 presented as the new portable digital assistant
integrated into the iPhone 4S [8].

Since 2012, the explosion of Deep Learning displaced the usage of HMM-focused
models to include newer approaches such as End-to-End models, which came in propos-
ing an all-in-one processing strategy: data came as input into the model, in this case a
neural network, and the desired output came out. This procedure has one element suscep-
tible to optimization. Whereas, in the traditional speech-processing approach, we would
need to optimize several separate steps [22].

1.2.2 Currently existing SRSs

At present, the IT market has several products that implement ASR technologies.
These products provide services spread all around and are present in our daily lives. Many
companies offer these services, either as a paid subscription or free-to-use embedded in
other products such as desktop computers, laptops, smartphones and domotics.
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Some of these below-mentioned products have been developed by the largest tech
companies in the world today. These companies include Apple, Microsoft, Alphabet
(Google) and Amazon (Largest Companies by Market Cap). Below we find a breakdown
of some products classified by owner company:

Apple

• Siri Personal Assistant
• Mac device Voice Control and Apple Dictation

Microsoft

• Windows Speech Recognition 1 and Windows Speech Recognition 2
• Azure Speech-to-Text
• Azure Text-to-Speech
• Azure Custom Speech

Google

• Google Cloud Speech-to-Text
• Google Dialogflow
• Google Assistant

Amazon

• Alexa
• Amazon Transcribe

1.2.3 Types of SRS

The human voice is a complex thing to process computer-wise. Speech Recognition
aims to transcribe speech (STT) or synthesize it (TTS). It should not be mistaken for the
same thing that is Voice Recognition. The former only processes the speech as potential
textual information or vice versa. The latter worries about identifying the speaker by the
sound of their voice.

The most common SRSs fall under one of the following categories. With regards to
the objective of the system, we have:

Speech-To-Text (STT): This approach aims to transform spoken words, commonly
known as speech, into readable text later processed by a program. Such as creating
intent-based conversational bots or virtual assistants, for example.
Text-To-Speech (TTS): The goal of this other approach is the opposite of the first
one. It aims to transform plain text into human-like speech. Comparatively, it is
harder to do this if we want to obtain a reliable system that sounds like a human
voice. Possible applications could be virtual assistants or voice emulation pro-
grams.

With regards to the context the system generates for the input speech [16]:

Isolated Word Recognition: This approach processes each word separately with-
out taking any other input into context. Applications of this approach could be
command-based applications.
Continuous Speech Recognition: This approach takes longer segments of speech
as input instead of separated words. One possible drawback to this one is that it
takes prior and following input as context to the input word. Usage of this approach
would involve conversational systems like chatbots.
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Serve as a side-note, every piece of speech is affected by many factors, often not under
control. Some of these could be background noise, the speaker’s emotional state, or voice
quality. Every one of these things can affect how the system processes input speech. The
probability that these factors manifest in continuous speech is much higher than that of
the isolated words approach.

1.2.4 Possible applications

Nowadays, we humans use our voices as the basis for our communication. Among
other features, the voice is something unique to one another. It is part of our biometrical
data. Many programs and everyday applications use this information to provide services
to us like personal assistants, on-the-fly note-taking, and many others. These are some of
the most cutting-edge applications of these systems [19]:

Automatic device control
Telephone operator’s jobs automation
Program data entry
Program interface voice control
Creating input data to Natural Language Processing systems

1.2.5 What they represent in the context of the project

This work leverages Artificial Intelligence to create a system that can transcribe audio
samples into readable text. These ASR models have introduced a new and revolutionary
era for task automation.

We have created machines that do simple things for us. The more computers devel-
oped, the harder those "simple things" could get. Such tasks are growing more complex
as we involve human end-users by processing speech. Years ago, we would not expect a
machine to "understand" words, but now it seems ordinary, and often we miss having our
phone close to read some book for us or to give us the weather forecast.

Thanks to many advanced techniques, we can now rely on computers to perform these
complex human-machine interactions to focus on other things. These interactions hence
get minimized. That allows us to optimize the time and resources needed to perform a
task and spend them elsewhere.

With these two latter resources being of the essence, I also want to stress a saying that
got to me: "If you spend 5 minutes doing something by hand, but you would take 5 hours
failing to automate it, then you should go for the second option."

On the one hand, it is clear nowadays that machines are better than us at performing
repetitive and relatively simple tasks.

On the other hand, machines are not better than humans at performing tasks that re-
quire complex decision-making or intricate human interaction.

1.3 Recurrent Neural Networks in ASR
The main purpose of this kind of Neural Network is to process sequential data. Such

data is processed one slice at a time. Naturally, this provides less knowledge than pro-
cessing the whole sequence and the context around these slices.

Natural Language Processing uses these networks to solve problems such as predictive
writing. The system needs to consider previously written words to "guess" what the user
can type next since words inside sentences are not independent.
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This problem is hard to solve using traditional neural network models because of
their topology. These are usually composed of input and output layers and optionally 1-n
hidden layers. The neurons on these layers are often fully connected to their neighbour
layers.

Neurons of a single layer in a non-RNN topology are not connected. This does happen
in RNNs. You can find neurons connected in a single layer of the network. This allows
inputs and outputs from such layer’s neurons to affect each other and thus the final output
of the recurrent layer.

The series of outputs obtained from a sequence or data slice depends on the previously
calculated output. This is what gives the name to RNNs. Some of these networks can store
previously generated data to use in further data slices of the current input sequence. The
thing is that not every network uses these devices (usually referred to as "memory" in the
literature). In this specific case, DeepSpeech architecture does not use any memory cells
inside their network [12, 4].

1.3.1 Basic elements: Recurrence and Memory in RNNs

To explain the concept of memory and recurrence, we will need to set up a small math-
ematical notation. Let us define a T length input sequence as X , where X = {x1,x2, ...,xT},
such that xt ∈RN is an input vector at time t. Now, we define the so-called "memory" that
includes up to t times (also included) as ht . Then, we can define the output ot as:

ot = f (xt ,ht−1)

where the function f maps memory and input to a single output. Memory data comes from
the time instant t−1 while input xt is from the current instant. For the initial case x1, as
there is no previous step, the memory value h0 is the null vector 0.

If we then consider that these series of outputs ot summarize the entire history of
memories ht−1 and inputs xt up to, and including t, we obtain the following equation:

ht = ot = f (xt ,ht−1)

Hence, we define the term "recurrence" as the application of the same function for
each time instance t, where the output is directly dependent on the previous result of the
function.

To apply this concept to neural networks, we need to include a couple of key elements
to these structures:

ht = f (Uxt +Wht−1)

where W and U are weight matrices W,U ∈R(NxN), and f is a non-linear function, such as
tanh, σ , or ReLU. The next figure (1) shows the structure of a series of recurrent neurons
applying these concepts [15].

The objective of this explanation is to resemble the concept of memory and recurrence
but done through equations whose outputs depend directly on all the previous outputs of
the same equation for a given sequence.
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Figure 1: Example of a recurrent neural network

1.3.2 Vanishing gradient problem and regularization

A consequence of the training of RNNs is that the backpropagation algorithm of-
ten generates an effect that is commonly known as the Vanishing Gradient Problem or
Exploding Gradient Problem. Now, this happens due to the recurrence existing in the
network and the operations performed in it.

In essence, training an AI model involves many matrix multiplications. The operations
performed by RNNs include these as well. These recurrent operations make the gradients
propagated through the network grow or shrink exponentially. So with any major or
minor irregularity in the data, the gradients will "explode" or "vanish" according to the
error calculated at each time step. The recurrent multiplication in the backpropagation
step causes an exponential effect for any irregularity. That is,

If the weights are small, the gradients will shrink exponentially.
If the weights are large, the gradients will grow exponentially.

Another relevant case scenario is when the contribution to the error is so small that
the weight update is mostly negligible and thus may lead the network to stop training.

One way to soften the impact of this effect is to initialize the weights of the network
in a controlled way. However, even with careful initialization, it can still be challenging
to deal with long-range dependencies. Zero could be a common initialization for RNNs
for the hidden state. Moreover, the performance can typically be improved by learning
this hidden state.

There are many ways to combat this problem: for instance, focusing on careful initial-
ization or controlling the size of the gradient being propagated. The way most commonly
used to combat vanishing gradients is the addition of gates to RNNs. RNN sequences
can be very long. For example, if an RNN used for speech recognition samples 20 ms
windows with a stride of 10 ms, it will produce an output sequence length of 999 time
steps for a 10-s clip (assuming no padding). Thus, the gradients can vanish/explode very
easily [15].

Serve as a sidenote, 10 second-long is the maximum length that the DeepSpeech
framework allows for input audios during training.

1.3.2.1 Gradient clipping This is the concept that aims to control the range of the
gradient during training. It is used to prevent and limit gradient explosion, forcing it to a
specific range. This limitation can solve many problems, specifically preventing overflow
errors during training [15].

The two most common ways to clip gradients are:
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L2 norm clipping with a threshold t.

∇new = ∇current ◦
t

L2(∇)

Fixed range with a maximum threshold tmax and a minimum tmin

∇new =

{
tmin if ∇ < tmin

tmax if ∇ > tmax

1.3.2.2 Backpropagation through time (BPTT) sequence length When training RNNs,
we have to bear in mind that the computation carried out highly depends on the number
of time steps in the input data. We can limit the amount of computation during training
by setting a maximum sequence length for the training procedure.

A few common ways to do this:

To pad all the training data to the longest desired length.
To truncate the number of steps that are backpropagated to the network during train-
ing.

Moreover, during the early steps of training, we can overlap sequences with truncated
backpropagation to help the network converge quicker. If we increase this overlapping
duration amidst training also helps the network to converge earlier in the training [15].

Setting a maximum sequence length can be useful in a variety of situations. For
instance:

When a static computational graph requires a fixed size input.
If the model happens to have running memory constraints.
If gradients are very large at the beginning of the training procedure.

1.3.2.3 Recurrent dropout It is well known that deep learning topologies are prone
to overfitting. These models are prepared to receive huge amounts of data for training and
are expected to output predictions for newer, unknown data.

The problem is that many times, these networks have a lot of parameters to adjust
(biases, weights, ...). These tend to fit the training data and lead to overfitting. Thus,
rendering the model useless towards new data since it will have memorized the training
and not learned how to predict new results.

Recurrent Neural Networks are not an exception to this fact. Dropout, among other
techniques, is a common regularization approach. It is also really intuitive to apply to
Recurrent Networks. The thing is that the basic idea of dropout will not suffice. It must
be tuned to work on RNNs.

If the original form of dropout is applied at each step, then the combination of masks
can cause a small amount of signal to be passed over longer sequences. Instead, we can
reuse the same mask at each step to prevent loss of information between time steps [15].

1.3.3 Basic structure of a BRNN

Generally, when predicting new outcomes for the input data, we can only expect to
know about input from the previous timesteps. Well, if we knew about both past and
future timestamps outputs, we should be able to generate better predictions for a time t
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by using more information. This is achieved thanks to Bidirectional Recurrent Neural
Networks.

This type of network is run over two opposite sequences: One of these sequences
runs in the forward direction, and the other runs in the backward direction. For an input
sequence X = {x1,x2, ...,xT}, our forward context receives the inputs in forward order
with regards to the timestamp series t = {1,2, ...,T}. However, the backward context
receives the inputs in reverse order like so: t = {T,T − 1, ...,1}. These two structures
constitute a single bidirectional layer.

Figure 2: Example of a bidirectional neural network

In figure 2, the outputs are concatenated to form a single output vector [h f
t ;hr

t ] where
t ∈ {0,1, ...,T} holding the forward and backward context. But usually, the output of the
two RNNs, h f and hr, are often joined to form a single output vector either by summing
them, concatenating, averaging or a different method [15].

This type of structure can be used in many NLP scenarios. For example, it has proven
useful when classifying phonemes in speech recognition as knowledge on future contexts
contributes with better information for newer predictions for a given time slice t.

These networks typically outperform forward-only RNNs in most tasks. Plus, this ap-
proach can be extended to other forms of recurrent networks such as bidirectional LSTMs
(BiLSTM) [15].

This comes with some limitations as to how it operates. Bidirectional RNNs must
know the full input sequence before generating predictions because the reverse RNN re-
quires xT for the first computation of the sequence. Hence, bidirectional RNNs cannot be
used for real-time applications or Just-In-Time translation. However, depending on the
requirements of the application, having a fixed buffer for the input can help cope with this
constraint.

1.4 End-to-End Speech Recognition
As mentioned in previous sections of this work, the approach followed for speech

recognition and audio transcription relied on complex engineered pipelines that processed
the data step by step. These splitting techniques generated some errors that would not be
propagated to the next steps. This rendered into sub-optimal results leading to model
sensitivity towards speaker variation and noise. With some evolution, a transition to more
complex structures took place that allowed models to learn directly from the data instead
of relying on these complicated pipelines. These end-to-end models aim to optimize the
predictions made rather than separating them into several steps.

With end-to-end modelling, the input–target pairs only need to be the speech utterance
and the linguistic representation of the transcript. We have many possible representations:
phonemes, triphones, characters, character n-grams or words. Among these, we would
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obviously choose words in ASR as it is the expected result to be extracted from the speech
utterance. Though there is a problem; We would need an enormous output layer so that
we can represent the whole vocabulary of the language. Plus, we would also need to have
training samples for all the words in the vocabulary. Hence, falling into lower accuracies
than other possible representations.

In recent times, end-to-end approaches have moved towards using characters, charac-
ter n-grams, and some word models plus enough training data. These data pairs can be
easier to produce since it is not needed to obtain data for each possible word in the target
language.

The core component of end-to-end ASR must have a way to replace the Hidden
Markov Models (HMM) with something also able to model the temporal structure of
speech. The most common methods are "CTC" or "Connectionist Temporal Classifica-
tion" and "attention" [15].

1.4.1 Connectionist Temporal Classification (CTC)

The usage of the conventional Hidden Markov Model (HMM)-based approach re-
quires data to be pairwise aligned. As in: "This subset of audio features corresponds to
this phoneme". Obtaining these alignments can get absurdly expensive for large datasets.
Ideally, these alignments would not be needed for any utterance-transcript pair. The CTC
method was introduced to help label unsegmented sequences directly. This way, we do
not need to split the process into alignment and inference.

Given an acoustic input X = [x1,x2, ...,xT ] of audio features as well as the output
sequence Y = [y1,y2, ...,yU ]. There is no certainty of obtaining an accurate alignment of
both sequences X and Y . Plus, the lengths of both can vary. Often T �U , for instance,
when there is silence in the input audio.

These alignments could be generated following a simple theoretical correspondence
(see figure 3). For each input audio feature xt , there will be exactly one character predic-
tion. There will be repetitions, but these can later be merged into one. Now, this generates
two issues:

1. In the recognized speech, we could find periods of silence that do not necessarily
correspond to any output,

2. And also, we do not allow for repeated characters in the output because repetitions
are merged.

Figure 3: A naive approach to an alignment of an input X of length 6 and an output
Y = [c,a, t]

These issues are solved by the CTC algorithm by introducing a blank token that acts
as a null delimiter. Such token is to be removed after the collapse of two-character pre-
dictions. That lets repeated sequences remain (such as the word "hello"). Plus, it creates

School of Computer Science - University of Oviedo Page 19 of 100



1 INTRODUCTION STT Transcription Using Neural Networks

a correspondence between periods of audio silence. The token ’ε’ is used for repetitions,
and the underscore "_" is used for spaces between words (see figure 4).

Figure 4: CTC alignment for an input X and output Y = [h,e, l, l,o,_,w,o,r, l,d]

This approach yields a 1:1 alignment between the elements of X and Y . On top of that,
introducing the ’ε’ character generates the chance of obtaining many predicted alignments
that lead to the same output. For example:

[f, ε , r, ε , e, ε , e] –> free
[f, r, ε , e, ε , e, ε] –> free

The CTC algorithm is "alignment-free" meaning it does not require them to function
as these are only used to calculate the probabilities of possible alignments.

Then it produces an output distribution of all possible Y s. These can be used to in-
fer the probability of some concrete output, Y . The conditioned probability, P(Y |X), is
calculated with the sum of all the possible alignments between X and Y (see figure 5).

Figure 5: A graph showing the valid set of paths from the target sequence to an output.
We have two possible initial states: ε or a, as well as two possible final states: ε or b [15]

This graph creates connections between the different tokens possible to be obtained in
the result and denotes the different paths that could be created towards obtaining output
from the input sequence. The ε tagged nodes should only be able to traverse to themselves
or the next character of the sequence, ’a’ in the case of the graph at x1, figure 5. The same
happens with the character ’a’ at x2, only in this case do we have 3 alternatives: travel to
itself, to ε or to the next character in the sequence, ’b’ in this case.

Taking the equations and the explanation from [15]:
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Mathematically, we can define the conditional probability of single alignment αt , as
the product of each state in the sequence:

P(α|X) =
T

∏
t=1

P(αt |X)

All paths are considered mutually exclusive, so we sum the probability of all align-
ments, giving the conditional probability for a single utterance (X , Y ):

P(Y |X) = ∑
A∈AX ,Y

T

∏
t=1

P(αt |X)

where AX ,Y is the set of valid alignments. Dynamic programming is used to improve the
computation of the CTC loss function. By supplying blank tokens around each label in
the sequence, the paths can be easily comparable and merged when they reach the same
output at the same time step.

Combining everything gives the loss function for CTC:

LCTC(X ,Y ) =− log ∑
a∈AX ,Y

T

∏
t=1

P(at |X)

The gradient for backpropagation can be computed for each time step from the prob-
abilities at each frame.

CTC assumes conditional independence between each time step in that the output at
each time step is independent of the previous time steps. Although this property allows
for frame-wise gradient propagation, it limits the ability to learn sequential dependencies.
Using a language model alleviates some of the issues by providing a word or n-gram
context.

1.5 Mozilla DeepSpeech
In 2014, a group of researchers from Baidu Research published a paper [12] propos-

ing the application of revolutionary new AI techniques to the field of Speech Recognition.
This work set the basis for the Mozilla DeepSpeech project, although the Mozilla Deep-
Speech engine currently differs in many ways from that initial document.

The described approach explains that traditional Speech Recognition Systems are
composed of intricate pipelines of components that have to be meticulously engineered.
These parts would include, among others, the following: models for background noise,
speaker voice identification, or reverberation.

Instead of using these sophisticated data processing stages, this paper describes an
end-to-end1 speech system called "DeepSpeech". This device achieves higher perfor-
mance than those preceding it while also being quite simple.

The results obtained are possible thanks to the usage of great amounts of hours of
data and a lot of processing power (specifically GPUs) for the training phase. A large
Recurrent Neural Network (RNN) (See section 1.3) is used as the basis for the trained
model.

1End-to-end means that data is not processed by a large engineered pipeline. Instead, it is the model
that analyzes the data to produce a transcription output. (Only with a few exceptions to optimizations and
output correction)
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The key here is that the model leverages deep learning algorithms. This enables the
user to process huge amounts of data while maintaining good performance and avoiding
the usage of complex data processing pipelines.

By choosing this type of Neural Network, the authors of the paper can map the training
process really well to GPUs. They also used a novel model partition scheme that helped
improve parallel execution. The paper presents a model trained with both collected and
synthesized data. This paper also proposes a process for assembling large quantities of
labelled speech data. It also protects the outcomes from the distortions present in the
data and that shall be handled by the model itself. The result from this recipe is a well-
trained system that transcribes audio to text and that is robust to realistic noise and speaker
variation, including the Lombard Effect2.

1.5.1 RNN Training Setup

As we explained earlier, the core of the DeepSpeech system is a Recurrent Neural
Network (RNN). In our case, it is not trained to ingest English audio files, but Spanish
instead. So it produces Spanish transcriptions.

Proceeding with the explanation included in the paper [12], we will describe the model
as follows: Given a training set X = {(x(1),y(1)),(x(2),y(2)), ...}, we will sample 2-tuples
containing two values: x being each utterance, and y being the label of such utterance.
Each of these x values, x(i), is a time-series of length T (i) where every time-slice is a
vector of audio features, x(i)t , with t = 1, ...,T (i). The system uses spectrograms as their
audio features, so x(i)t,p denotes the power of the p’th frequency bin in the audio frame
at time t. The objective of the proposed system is to output a sequence of character
probabilities for each single transcription y given an input x. This sequence is described
as ŷt = P(ct |x) where ct = {a, b, c, ..., z, ñ, á, é, í, ó, ú, blank,space}. This alphabet has
been expanded from the one presented in [12] as we need to include the ’ñ’ character as
well as the acute-accented vowels. Also, we do not need apostrophes.

The RNN model proposed by the paper [12] is composed of 5 layers of hidden neurons
(see figure 6). Given an input utterance x, the hidden neurons located at layer l are denoted
h(l). As a convention, h(0) is the input layer. The first three layers of the model are not
recurrent. For the first layer, at each time t, the output depends on the spectrogram frame
xt along with a context of C frames on each side (these frames represent the input audio
fragments that affect such output). The paper [12] proposes that C ∈ {5,7,9} would be
their setting for the experiments.

The remaining non-recurrent layers operate on independent data for each time step.
Thus, for each time t, the first 3 layers are computed by:

h(l)t = g(W (l)h(l−1)
t +b(l))

where g(z) = min{max{0,z},20} is the clipped rectified-linear (ReLu3) activation func-
tion and W (l),b(l) are the weight matrix and bias parameters for layer l, respectively.

Recurrency is only introduced in the fourth layer as a bi-directional recurrent layer.
This layer includes two sets of hidden units: a set with forward recurrence h( f ), and a set

2The Lombard Effect [18] is encountered in noisy environments when a speaker actively (but involun-
tarily) modifies the tone and/or pitch of their voices to overcome such background noise.

3The ReLu units are clipped to keep the activations in the recurrent layer from exploding; in practice,
the units rarely saturate at the upper bound.
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with backward recurrence h(b). Their respective outputs are calculated as follows:

h( f )
t = g(W (4)h(3)t +W ( f )

r h( f )
t−1 +b(4))

h(b)t = g(W (4)h(3)t +W (b)
r h(b)t+1 +b(4))

Due to the recurrent structure h( f ) must be computed sequentially from t = 1 to t = T (i)

for the i’th utterance, while the units h(b) must be computed sequentially in reverse order
from t = T (i) to t = 1.

The fifth layer takes both the forward and backward units as inputs h(5)t = g(W (5)h(4)t +

b(5)) where h(4)t = h( f )
t +h(b)t . The output layer is a standard softmax function that yields

the predicted character probabilities for each time slice t and character k in the alphabet:

h(6)t,k = ŷt,k ≡ P(ct = k|x) =
exp(W (6)

k h(5)t +b(6)k )

∑ j exp(W (6)
j h(5)t +b(6)j )

As soon as we have computed the character predictions, we can calculate the CTC
loss (see section 1.4.1) so we can measure the prediction error. As the training process
takes place, we can evaluate the gradient for the network outputs given the ground-truth
character sequence y (a.k.a. the label of the utterance). From this point, computing the
gradient for all of the model parameters may be done via back-propagation through the
rest of the network.

The model in the paper uses Nesterov’s Accelerated gradient method for training.
But for our specific training, we use Adam’s method. This is not my decision, it is pure
convenience. The default project training setup uses ADAM’s for optimization. The client
allows for the configuration of the optimizer, but this was left unchanged.

Figure 6: Structure of the RNN model proposed in [12]

1.5.1.1 Nesterov’s Accelerated Gradient Method This method is a variant of a Stochas-
tic Gradient Descent (SGD) optimizer based on momentum that tries to "look ahead" in
the calculations of the gradient using the accumulated gradient up to the current loca-
tion. A standard momentum takes a big jump in the direction of the updated accumulated
gradient. Whereas Nesterov’s momentum does the same thing but uses the previously
accumulated gradient. In addition, it corrects the gradient, based on where it ended up.
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1.5.1.2 Adam’s Optimization Method Deriving its name from the term Adaptive
Moment Estimation, this optimization method combines the advantages of two extensions
of the SGD method: Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square
Propagation (RMSProp). This algorithm is commonly adopted for deep learning in appli-
cations of Computer Vision or Natural Language Processing. It is also known for being
fast at obtaining results as well as memory effective.

1.5.2 Regularization

There is a problem with training almost any Machine Learning model. It is called
’Overfitting’, and it means the model has almost perfectly learned the small details of the
training data, losing its ability to generalize. It is really good at fitting the training data
but is unable to perform correctly with new, unseen data. This phenomenon is a constant
tendency of any good model trained to fit the training dataset.

To try and prevent this, the researchers apply what is known as dropout. This prevents
some of the training samples to affect the network’s weights and biases. The dropout rate
used in the paper is between 5% and 10% and it is applied to the feed-forward layers but
not to the recurrent hidden activations [12].

1.5.3 Language Model

Starting from just the RNN model, the system can already produce readable character-
level transcriptions given enough training data to start with. These predictions obtained
by the raw model are often just perfect and match the input label. However, some errors
that make the output labels inaccurate by some pronunciation errors (in English vowels
tend to be the problem). Well, these issues can be solved using a language model.

The DeepSpeech project uses an N-Gram model to enhance the predictions of the
network. These language models are relatively easy to train from unlabelled text corpora.

The project used a total of 220 million English phrases, supporting a total of 495,000
words. The language model used was trained using the KenLM toolkit [12].

Given the output of P(c|x) of the RNN a search is performed aimed at finding a se-
quence of characters c1,c2, ... that is most probable according to the RNN’s output and
the language model used. More precisely, the aim is to find a sequence c that maximizes
the combined goal:

Q(c) = log(P(c|x))+α log(Plm(c))+βword_count(c)

where α and β are tunable parameters (set by cross-validation) that control the trade-off
between the RNN, the language model constraint and the length of the sentence. The
term Plm denotes the probability of the sequence c according to the N-gram model. This
objective is maximized using a highly optimized beam search algorithm, with a typical
beam size in the range 1000-8000. Similar to the approach described by Hannun et al.
[12].

1.5.4 Optimizations

A quality-of-life feature that this model has is that it can train new models in a fast
way. This is achieved through many implementations and design decisions that make the
network amenable to high-speed execution.

School of Computer Science - University of Oviedo Page 24 of 100



1 INTRODUCTION STT Transcription Using Neural Networks

The network model is fully connected in almost every layer, thus efficient execution is
critical to make it worth using. The training is also made faster by using multiple GPUs.

On top of that, some more specifics are explained below on how this system was
optimized in the paper.

1.5.4.1 Data parallelism To process data efficiently, DeepSpeech makes the GPU
process many examples in parallel. This is done in the usual way by concatenating many
examples into a single matrix. Instead of performing single matrix-vector multiplication
in the recurrent layer, many are performed in parallel computing creating a bigger matrix
that holds several training examples. This is done because the GPUs are most efficient
when the matrices are wide enough. Up to the limits of the GPU’s memory.

1.5.4.2 Model parallelism Data parallelism yields training speedups for modest mul-
tiples of the minibatch size (e.g., 2 to 4), but faces diminishing returns as batching more
examples into a single gradient update fails to improve the training convergence rate. Sim-
ply put, if we processed double the examples on double de GPUs, we would not double
the speedup in training.

1.5.4.3 Striding DeepSpeech has worked to minimize the running time of the recur-
rent layers of the RNN model since these are the hardest to parallelize. As a final opti-
mization, the recurrent layers are shortened by taking "strides" of size 2 in the original
input so that the unrolled RNN has half as many steps.
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2 Materials and Methods
To obtain a model capable of transforming text into audio using a neural network, we

first need data. Examples that such networks will use to learn how to transcribe audio into
text.

There is a need for this data to have decent quality, otherwise, the output model will
not be as useful as expected. This means that for us to generate high-quality transcriptions,
we need to feed in high-quality audio and transcriptions into the system. This is what I
was referring to as supervised learning.

To extract knowledge from the data, we follow a process composed of a series of
stages. These can be named as:

1. Selection of necessary data for our experiment or project.
2. Cleaning. Creates a subset of the input data (optionally) transforming it in some

way like removing unwanted parts, reducing noisy parts or replacing missing data
for instance.

3. Coding. Meaning to create an organized data structure for the model to ingest.
4. Learning from the dataset to create a model that represents whatever is in our

universe of discourse.
5. Inference to generate new information based on the model and unknown data.

These activities work towards the final objective of creating new knowledge based on
the processed data.

2.1 Selection of datasets
For this project, I had been provided with a series of datasets including raw audios

and their transcriptions for me to work with. Some datasets were obtained from sources
either no longer possible to find or that are unknown to this day.

2.1.1 Summary

The charts shown in figures 7 and 8 show the number of audios in each dataset used
in the project with regards to total audio hours and the total number of elements.

In both of them, we can appreciate that the slice for CommonVoice is predominant,
being the heaviest and biggest dataset of all of them.

2.1.1.1 Hours of audio per dataset Note: For the sake of a clean-looking chart, the
amounts of hours for each dataset have been rounded to the closest unit.

2.1.1.2 Number of audio clips per dataset Note: Due to the limitations of the page
size, the number of elements is represented with a percentage and the actual number is
written beside the legend.
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Figure 7: A pie chart showing the distribution of audio hours per dataset in the training
data
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Figure 8: A pie chart showing the distribution of audio elements per dataset in the training
data

2.1.2 Details

Let us list all the datasets used in the process, some information about them and some
attribution to the creator(s) if found:

Argentinos

• Overall description of the dataset: This dataset contains mostly female
speech and includes a small portion of around 200 samples of small weather
reports.

• Audio quality: The overall quality is not optimal. Plus, there is a bit of extra
silence at the end of the clips.

• Completion/sparsity of the data: This dataset contains a total of 5919 ele-
ments. It is divided into three groups with male speakers, female speakers and
weather messages. This last one is subdivided into Castellian Spanish accent
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and Argentinian Spanish accent. Female speech is predominant in this dataset
with a total of 3800+ elements.

• total approximate duration: 8.20 hours of speech.
• Reference and attribution: None found.

Chilenos

• Overall description of the dataset: This dataset, along with some others of
this list represents a part of the Latino-American variety of accents of Spanish.
Not a very big dataset, gives us a small insight into the Chilean accent.

• Audio quality: The audio quality is not optimal. Plus the samples contain
way too much silence at the end of the clips which could lead to malfunction
of the model.

• Completion/sparsity of the data: This dataset contains a total of 4374 ele-
ments. The dataset is divided into two groups for male and female speakers.
These groups contain approximately half of the audio samples for each gender.

• total approximate duration: 7.14 hours of speech.
• Reference and attribution: None found.

Colombianos

• Overall description of the dataset: This dataset represents the Colombian
Spanish accent with clear short-sentences speech.

• Audio quality: The quality is not bad but it is not optimal. However, the
audio is clear and it seems that the samples do not contain that much silence.

• Completion/sparsity of the data: This dataset contains a total of 4903 ele-
ments. The dataset is divided into two groups for male and female speakers.
These groups contain approximately half of the audio samples for each gender.

• total approximate duration: 7.58 hours of speech.
• Reference and attribution: None found.

CommonVoice_es

• Overall description of the dataset: This dataset provides the world with
a huge open and multi-language database of voices. Anyone can use this
database to train AI models that can be used in applications that use the human
voice as an interface. This database is expanded each day and to date, it has
around 700 hours of Spanish speech (2000+ hours for English speech, for
instance) from which 380 hours have been validated by human beings. This
allows you to work with really good-quality speech transcription that helps
build good-performing AI models for SST or TTS systems. The possibilities
are limitless.

• Audio quality: The quality in this dataset is far better than the other ones.
The recordings are much clearer and do not contain static.

• Completion/sparsity of the data: This dataset contains a total of 148374
elements. Some faulty audios came corrupted from the download site and
therefore cannot be used.

• total approximate duration: 221.82 hours of speech.
• Reference and attribution: Common Voice Mozilla

LibriVox_es_1

• Overall description of the dataset: This dataset is really difficult to read
because the data is nested in a lot of folders. Difficult to organize but is quite

School of Computer Science - University of Oviedo Page 28 of 100

https://commonvoice.mozilla.org/es/datasets


2 MATERIALS AND METHODS STT Transcription Using Neural Networks

big.
• Audio quality: The audio files seem loud and clear, slowly read so every word

is distinguished. The audio quality could be better.
• Completion/sparsity of the data: The dataset includes many folder separa-

tions for various speakers and includes a pair of CSV files to separate clean
audio from the other clips. This dataset contains a total of 59297 elements.

• total approximate duration: 108.58 hours of speech.
• Reference and attribution: LibriVox, Acoustical liberation of books in the

public domain.

LibriVox_es_2

• Overall description of the dataset: This dataset features a total of 17 speak-
ers without counting the collaborative audiobooks. This audio collection has
been cut by the windows speech recognition using the source text as grammar,
then validated with the DeepSpeech Spanish model.

• Audio quality: The audio files seem loud and clear, slowly read so every word
is distinguished. The audio quality could be better.

• Completion/sparsity of the data: The dataset includes two CSV files to sep-
arate clean audio from the other clips. This dataset contains a total of 112845
elements.

• total approximate duration: 119.64 hours of speech.
• Reference and attribution: LibriVox, Acoustical liberation of books in the

public domain.

Peruanos

• Overall description of the dataset: This dataset contains Peruvian accent
speech. The speaker speaks slowly so each word gets understood clearly. It
also has the right amount of silence on both ends of the audio.

• Audio quality: Although the audio is loud and clear. The quality is not that
good.

• Completion/sparsity of the data: The dataset is divided into two groups of
men and women speech. With a total of 5447 elements with close to half the
elements for each group.

• total approximate duration: 9.22 hours of speech.
• Reference and attribution: None found.

Puerto_rico

• Overall description of the dataset: This small dataset contains short sen-
tences with a Puerto Rico accent.

• Audio quality: The quality is not that of a studio, but good enough to train for
normal phone-like speech. However, the audio clips contain excess silence at
the end that could mess with the AI model.

• Completion/sparsity of the data: The dataset is really small compared to the
other ones, containing just 617 elements.

• total approximate duration: 1 hour of speech.
• Reference and attribution: None found.

TEDx_es

• Overall description of the dataset: The dataset contains speech fragments
of lecturers speaking during TEDx locally organized events.
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• Audio quality: The audio is a little bit crunchy and its quality is not so good.
• Completion/sparsity of the data: The dataset includes a lot of speech files,

a total of 11243 elements.
• total approximate duration: 24.49 hours of speech.
• Reference and attribution: TEDx is a program of local, self-organized events

that bring people together to share a TED-like experience.

Tux_es

• Overall description of the dataset: This dataset comes from a public domain
audiobook page. It is divided into two groups: "Other" which is not validated,
and "Valid" which has been validated by Mozilla’s DeepSpeech model. It
contains audios reading sentences written in books.

• Audio quality: The audios are loud and clear. Some of them are too tightly
cut so that audio silence is not present on either end of the file.

• Completion/sparsity of the data: The "usable" data is halved since around
50h of speech are not validated. The other half is also cleaned in a CSV file
that removes around 1000 files.

• total approximate duration: 99.43 hours of speech.
• Reference and attribution: LibriVox, Acoustical liberation of books in the

public domain

Venezolanos

• Overall description of the dataset: This dataset includes audio from male
and female people with (supposedly) Venezuelan accents.

• Audio quality: The audio has not been recorded inside a studio so the quality
is not that good. They were probably recorded with a cheap microphone.

• Completion/sparsity of the data: The dataset is not that big. It includes a
total of 3357 audio files, half the files are from women and half the files are
from men.

• total approximate duration: 4.81 hours of speech.
• Reference and attribution: None found.

West Point Heroico Spanish Speech (WPHSS)

• Overall description of the dataset: This next piece of text is taken from
the website where the data is available. "This file contains documentation on
the West Point Heroico Spanish Speech, Linguistic Data Consortium (LDC)
catalogue number LDC2006S37 and isbn 1-58563-391-7. This corpus was de-
signed and collected by staff and faculty of DFL and CTELL to develop acous-
tic models for speech recognition systems. The U.S. government uses these
systems to provide speech-recognition enhanced language learning course-
ware to government linguists and students enrolled in various government
language programs. Additionally, parts of this corpus were designed to model
question/answer dialogues for use in domain-specific speech-to-speech trans-
lation systems".

• Audio quality: There were some faulty audios and some recordings contained
static. Plus, some questions are not answered by some speakers.

• Completion/sparsity of the data: Complete enough to create a solid dataset,
but complex structure when merging it into a unique dataset.

• total approximate duration: 14.82 hours of short speech fragments.
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• Reference and attribution: Linguistic Data Consortium (LDC).

2.2 Preprocessing
Cleaning and coding the datasets into a unique piece of data is a tough procedure.

Model quality depends on the way these tasks are performed.

2.2.1 Segmentation of the audio files

Based on the content laid out in section 2.1, we ended up with a large number of
datasets to process for training. Not all of these made it to the final training dataset.

As could be expected, each dataset had a specific folder structure so they could not be
processed in the same way with the same code base. To overcome this, I created a Python
script that included a class to represent each of the datasets. They were all inheriting from
a base class that implemented a set of functions to manage the data uniformly to be later
processed by another script explained in the next section (2.2.2).

This script is highly coupled to the folder structure to allow the next script to process
them using a common interface.

Plus, almost all the datasets contain data index files. These files are often tabular-
separated-values (.tsv) or comma-separated-values (.csv). Explaining the columns in the
data seem of little purpose to me since these can be read in the data files and the Python
script fragments listed below. The meaning is easy to deduce if both are consulted. Just
as a simple summary, all of them contain a column to indicate the name of the file and
often the path to the file inside the dataset folder and a column with the text label. There
are also other columns in some datasets, but these are either useless or duplicated.

The file paths were often not composed to the dataset directory and had to be created
manually through the script and scanning the folders to deduce the structure that the paths
needed to have. Doing so was necessary in the case the user decided to merge the datasets.
These would be moved to a new folder and so, the original paths to the files would break
due to the different datasets present and the new folder structure created around them.

2.2.1.1 Adapter Design Pattern Figure 9 is an image of the Adapter Design Pattern
represented using UML taken from [11], that sums up the basic structure of the pattern.

adaptee->SpecificRequest()
Adapter

Request()

Adaptee

SpecificRequest()Client

Target

Request()

adaptee

Figure 9: A UML class diagram showing the relationships between the participants in the
Adapter or Wrapper Design Pattern
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«Interface»
Filesystem

WPHSSES

+ format_data()

Venezolano

+ format_data()

TUXES

+ format_data()

TEDxES

+ format_data()

PuertoRico

+ format_data()

Peruano

+ format_data()

LibriVoxES2

+ format_data()

LibriVoxES1

+ format_data()

CommonVoiceES

+ format_data()

Colombiano

+ format_data()

Chileno

+ format_data()

Argentino

+ format_data()

Defaultrun.py

DatasetWrapper (Base)

+ OUTPUT_FOLDER: string
+ DATASET_FOLDER: string
+ COL_NAMES: string[]
+ full_dataframe: pandas.DataFrame

+ __init__()
+ _load_from_tsv()
+ _append()
+ _merge_dataframes_rec()
+ _clean_line()
+ _remove_rubbish_from_file()
+ «abstract» format_data()

usesuses

{1..*}

Figure 10: A UML class diagram showing the participants in the implementation of the
Adapter Design Pattern applied to the project

All the subclasses implementing the DatasetWrapper class shown in figure 10 are
also implementing the format_data() function. In essence, with the arrows pointing to
the Filesystem Interface, I mean that each of the classes interfaces the filesystem in a
specific way the dataset needs. Meaning these load the data from the index files (*.tsv)
or manipulate it as needed, so the rest of the functions work decoupled from this mess of
files and folder juggling.

It also means that, if a new dataset is added in the future, nothing needs to be changed.
We just need a new subclass, make it implement the format_data() and call its constructor
from the main script.
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2.2.1.2 Adapter classes in the script Now, we will explain the Python classes that
implement each interface to the filesystem to read the training files for each dataset.
This process will include segments of the whole ’datasets.py’ script under ’final-degree-
project/code_repos/recogida-audios/dataset-processing’.

2.2.1.2.1 General knowledge about the script To work efficiently with all the
tuples in the training files, we used the Data Science library ’pandas’. This library allows
us to use an object named DataFrame which has powerful functions to manage row-like
data.

Moreover, I am aware that coupling the filesystem paths and the script was not a good
idea. Knowing this, an improved and uncoupled solution could be crafted using os.walk()
and adapting the folder structure by hand. I opted out of those two solutions. Either two
would require almost the same time as following the coupled approach. Anyways, if the
project folder structure remains the same when executing the script, there should be no
problem.

2.2.1.2.2 Base Adapter class This part of the script includes the definition of the
base class that implements general-use functions to manipulate the datasets. Here is a
breakdown of the functions implemented by the class:

__init__(): The object constructor. Receives a parameter ’folder_name’ that con-
tains the name of the folder that contains the dataset this class instance represents.
_load_from_tsv(): This function is in charge of reading the contents of the dataset
index files into a pandas DataFrame object. These files are often ending in .tsv
(meaning values are separated by a tabular char ’\t’). These could also be .csv files
(the value-separating character is a comma ’,’). Let us briefly explain the parameters
of the function:

• tsv_file_path: The path leading to the data index file.
• path_prefix: The path prefix to access the folder.
• override_names=True: If this is set to true, the function will generate a

DataFrame with a custom list of headers rather than the default one. This
list of headers is set when instantiating the class (will be overridden by child
classes).

• separator=’\t’: The character separating data in the files in case it is changed.
Defaults for tabular character for .tsv files.

• skip_rows=0: A number of rows to skip reading from the file, in case it is
needed.

• path_suffix=".wav": The extension suffix of the audio files, in case it needs
to be changed.

_append(): Receives two datasets as input and appends the first to the second,
ignoring indices to not break data structure and continuing the numbered series.
_merge_dataframes_rec(): This function merges recursively all the DataFrame
objects found in the ’dataframes’ parameter into a single one.

• dataframes: Expects a list of DataFrame objects to merge all of them recur-
sively into a single one.

• current_index: A parameter to traverse the list and the variable used for the
recursion stopping condition.
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_clean_line(): This function removes some characters from the input string and
returns the clean string.
_remove_rubbish_from_file(): This function cleans the lines from the input file
using the clean_line function.
@abstractmethod format_data(): This abstract method is to be implemented by
the child classes because it is the part that adapts the interface of the class to the
specific dataset we are working with. Here we should import each data index file
and manipulate it so all are merged into one.

1 class Base(ABC):
2 def __init__(self , folder_name):
3 super ().__init__ ()
4 self.OUTPUT_FOLDER = path.join("/", "home", "danifinca", "

stt", "data", folder_name)
5 self.DATASET_FOLDER = path.join(STT_DATASETS_FOLDER ,

folder_name)
6 self.COL_NAMES = ["path", "sentence"]
7 self.full_dataframe = None
8

9 def _load_from_tsv(self , tsv_file_path , path_prefix ,
override_names=True ,

10 separator="\t", skip_rows=0, path_suffix=".wav"):
11 tsv_file_path = self._remove_rubbish_from_file(

tsv_file_path , separator)
12 if override_names:
13 dataframe = pd.read_csv(
14 tsv_file_path ,
15 sep=separator ,
16 skiprows=skip_rows ,
17 names=self.COL_NAMES ,
18 dtype ={ col_name: str for col_name in self.COL_NAMES

}
19 )
20 else:
21 dataframe = pd.read_csv(
22 tsv_file_path ,
23 sep=separator ,
24 dtype ={ col_name: str for col_name in self.COL_NAMES

}
25 )
26 dataframe["path"] = path.join(
27 self.DATASET_FOLDER , "clips", path_prefix
28 ) + dataframe["path"] + path_suffix
29 dataframe["client_id"] = [uuid4() for i in range(dataframe.

shape [0])]
30 dataframe = dataframe [["client_id", "path", "sentence"]]
31 return dataframe
32

33 def _append(self , dataframe1 , dataframe2):
34 return dataframe1.append(
35 dataframe2 ,
36 ignore_index=True ,
37 verify_integrity=True ,
38 sort=True
39 )
40

41 def _merge_dataframes_rec(self , dataframes , current_index):
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42 if len(dataframes) < 1:
43 raise ValueError("No dataframes were provided to merge"

)
44 if len(dataframes) == 1:
45 return dataframes [0]
46

47 last_two_dfs = current_index == len(dataframes) - 2
48 return (self._append(
49 dataframes[current_index],
50 dataframes[current_index + 1]
51 if last_two_dfs
52 else self._merge_dataframes_rec(dataframes ,

current_index + 1)
53 )
54 )
55

56 def _clean_line(self , line , separator):
57 return re.sub("¾½ºª°'[\"\ '?!]", "", line)
58

59 def _remove_rubbish_from_file(self , tsv_file_path , separator):
60 clean_filename = path.splitext(tsv_file_path)
61 clean_filename = clean_filename [0] + "_clean" +

clean_filename [1]
62 lines = []
63 with open(tsv_file_path , "r") as input_file:
64 lines = input_file.readlines ()
65 lines = [
66 self._clean_line(line , separator)
67 for line
68 in lines
69 ]
70 with open(clean_filename , "w") as output_file:
71 output_file.writelines(lines)
72 return clean_filename
73

74 @abstractmethod
75 def format_data(self):
76 raise NotImplementedError ((
77 "You cannot call this method because this is a base

class"
78 " for constructing dataset readers."
79 ))

Listing 1: A fragment of the datasets.py script featuring the base class for the adapter

2.2.1.2.3 Default Adapter class This class was created to allow the main prepro-
cessing script to merge all datasets into one. This one receives an extra parameter in
its constructor for the client to give it a specific name. It does not represent any input
dataset. It translates into the output dataset if the user instructs the main script to merge
the datasets.

1 ¾½ºª°'
2 class Default(Base):
3 def __init__(self , folder_name):
4 super ().__init__(folder_name)
5 self.DATASET_FOLDER = path.join(STT_DATASETS_FOLDER ,

folder_name)
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6 self.COL_NAMES = ["path", "sentence"]
7

8 def format_data(self):
9 self.full_dataframe = pd.DataFrame ()

10 return self.full_dataframe

Listing 2: A fragment of the datasets.py script featuring the Default class for the adapter

2.2.1.2.4 Argentino Adapter class One of the multiple datasets that include spe-
cific accent audio files. Initializing the folder name to ’argentinos’, this dataset is com-
posed of 4 separate index files.

weather_es_ar, audio files in a weather-related context with Argentinian accent,
weather_es_es, same as weather_es_ar but this time is Castillian accent,
line_index_female, audio files of female speakers,
line_index_male, audio files of male speakers.

1 ¾½ºª°'
2 class Argentino(Base):
3 def __init__(self):
4 super ().__init__("argentinos")
5

6 def format_data(self):
7 weather_es_ar = self._load_from_tsv(
8 path.join(self.DATASET_FOLDER , "

es_ar_line_index_weather.tsv"),
9 path.join("es_weather_messages", "es-ar") + path.sep

10 )
11 weather_es_es = self._load_from_tsv(
12 path.join(self.DATASET_FOLDER , "

es_es_line_index_weather.tsv"),
13 path.join("es_weather_messages", "es-es") + path.sep
14 )
15 line_index_female = self._load_from_tsv(
16 path.join(self.DATASET_FOLDER , "line_index_female.tsv")

,
17 "es_ar_female" + path.sep
18 )
19 line_index_male = self._load_from_tsv(
20 path.join(self.DATASET_FOLDER , "line_index_male.tsv"),
21 "es_ar_male" + path.sep
22 )
23 self.full_dataframe = self._merge_dataframes_rec ([
24 weather_es_ar , weather_es_es , line_index_female ,

line_index_male
25 ], 0)
26 return self.full_dataframe

Listing 3: A fragment of the datasets.py script featuring the Argentino class for the adapter

1 -> line_index_female.tsv
2 [...]
3 arf_05679_01463815283 Para la ícada del cabello , tengo un nuevo

úchamp
4 arf_05223_00524892324 Los áhmsters comen zanahorias
5 arf_07973_01243309438 ¾Me épods mandar fotos de la pileta?
6 [...]
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7

8 -> line_index_male.tsv
9 [...]

10 arm_09697_00831674848 Para la ícada del cabello , tengo un nuevo
ójabn

11 arm_01523_01987826609 ¾éQu color favorito es el áms popular?
12 arm_08784_00917516295 Las ámquinas de escribir antiguas pueden ser

muy caras.
13 [...]
14

15 -> es_ar_line_index_weather.tsv
16 [...]
17 arf_02485_00047151674 Hace doce grados con sol
18 arf_02485_00146903919 Hace trece grados con sol
19 arf_02485_00204623004 Hace doce grados y áest nublado
20 [...]
21

22 -> es_es_line_index_weather.tsv
23 [...]
24 esw_03397_00872842342 Hay diecisiete grados con sol
25 esw_02484_00327933988 Hay quince grados y llueve
26 esw_03397_01885457045 Hay diecinueve grados y áest nublado
27 [...]

Listing 4: Small sample of the rows contained in the input data index files of the Argentino
dataset

2.2.1.2.5 Chileno Adapter class This other Spanish accent variant contained just
two files. One referenced audio files from women and the other referenced audio files
from men.

1 ¾½ºª°'
2 class Chileno(Base):
3 def __init__(self):
4 super ().__init__("chilenos")
5

6 def format_data(self):
7 line_index_female = self._load_from_tsv(
8 path.join(self.DATASET_FOLDER , "line_index_female.tsv")

,
9 "es_cl_female" + path.sep

10 )
11 line_index_male = self._load_from_tsv(
12 path.join(self.DATASET_FOLDER , "line_index_male.tsv"),
13 "es_cl_male" + path.sep
14 )
15 self.full_dataframe = self._merge_dataframes_rec ([
16 line_index_female , line_index_male
17 ], 0)
18 return self.full_dataframe

Listing 5: A fragment of the datasets.py script featuring the Chileno class for the adapter

1 -> line_index_female.tsv
2 [...]
3 clf_09334_01278378087 La vigencia de tu tarjeta es de ocho meses
4 clf_09697_00015596584 Tranquilo va a estar todo bien
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5 clf_09697_01505655474 Me gusta mucho caminar por el campo y tomarle
fotos a la naturaleza

6 [...]
7

8 -> line_index_male.tsv
9 [...]

10 clm_08421_01719502739 Es un viaje de negocios solamente voy por una
noche

11 clm_02436_02011517900 Se usa para incitar a alguien a sacar el
mayor provecho del dia presente

12 clm_09697_00628052255 Los ñnios tienen mucha óimaginacin
13 [...]

Listing 6: Small sample of the rows contained in the input data index files of the Chileno
dataset

2.2.1.2.6 Colombiano Adapter class This dataset contained two files, men and
women audio files, respectively.

1 ¾½ºª°'
2 class Colombiano(Base):
3 def __init__(self):
4 super ().__init__("colombianos")
5

6 def format_data(self):
7 line_index_female = self._load_from_tsv(
8 path.join(self.DATASET_FOLDER , "line_index_female.tsv")

,
9 "es_co_female" + path.sep

10 )
11 line_index_male = self._load_from_tsv(
12 path.join(self.DATASET_FOLDER , "line_index_male.tsv"),
13 "es_co_male" + path.sep
14 )
15 self.full_dataframe = self._merge_dataframes_rec ([
16 line_index_female , line_index_male
17 ], 0)
18 return self.full_dataframe

Listing 7: A fragment of the datasets.py script featuring the Colombiano class for the
adapter

1 -> line_index_female.tsv
2 [...]
3 cof_02436_01372133479 Quiero saber équ áest pasando en Veracruz.
4 cof_03397_01983407356 ¾Puedes revisar si hay alguna tienda departo

cerca de la casa de mis ápaps?
5 cof_07508_01601808212 ¾Quieres que revise tu ónmina y los ódepsitos

que han hecho en el último mes?
6 [...]
7

8 -> line_index_male.tsv
9 [...]

10 com_03349_00001764679 El íjeroglfico tiene un pez amarillo
11 com_07508_02061155104 ¾Hay úalgn trabajo en particular que le haya

dado como el salto a la fama por ías decirlo?
12 com_02121_01523018450 Los zapatos se estropearon con la lluvia

torrencial de ayer
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13 [...]

Listing 8: Small sample of the rows contained in the input data index files of the
Colombiano dataset

2.2.1.2.7 CommonVoiceES Adapter class This dataset was the one with the best
quality and number of files. This one is an ever-growing dataset, so as of today, this
version we are using is probably only a subset of the current release. Moreover, this
dataset’s files contain more columns than needed for this project. There are columns
such as down_votes or up_votes that are not needed. Neither is the client_id column, but
this one needs to be present in the output format because the import script to run before
training expects this column in the input data. There are also columns with missing data,
but as these are not needed, we are not affected by this issue in the data.

This dataset contains several index files:

dev: Audio files to use for validation,
invalidated: Audio files invalidated by the community. Meaning the label associated
with the audio does not correspond with what the speaker says,
other,
test: Audio files to use for testing,
train: Audio files to use for training,
validated: Audio files validated by the community. That is, the audio label and the
speaker’s speech correspond.

This file separation is convenient because this dataset is already prepared to be used
as-is for training DeepSpeech. In fact, this dataset is used in the engine’s documentation
when creating an example of commands to execute.

1 ¾½ºª°'
2 class CommonVoiceES(Base):
3 def __init__(self):
4 super ().__init__("cv_es")
5

6 def _factor_load(self , filename):
7 return self._load_from_tsv(
8 path.join(self.DATASET_FOLDER , filename),
9 "",

10 override_names=False ,
11 path_suffix=""
12 )
13

14 def format_data(self):
15 dev = self._factor_load("dev.tsv")
16 # Not included: They were invalidated for a reason
17 # invalidated = self._factor_load (" invalidated.tsv")
18 other = self._factor_load("other.tsv")
19 test = self._factor_load("test.tsv")
20 train = self._factor_load("train.tsv")
21 validated = self._factor_load("validated.tsv")
22

23 self.full_dataframe = self._merge_dataframes_rec ([
24 dev , other , test , train , validated
25 ], 0)
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26 return self.full_dataframe

Listing 9: A fragment of the datasets.py script featuring the CommonVoiceES class for
the adapter

1 Note: Some data fields have been trimmed for the sake of
readability (client_id , i.e. 553951... b9)

2

3 Columns:
4 client_id path sentence up_votes down_votes age gender accent
5

6 -> dev.tsv
7 [...]
8 553951... b9 common_voice_es_19746113.mp3 Su auge se dio con el

cambio de siglo. 2 0
9 553951... b9 common_voice_es_19746114.mp3 Es originario del oeste

de África tropical y de Borneo. 2 1
10 553951... b9 common_voice_es_19746115.mp3 Actualmente milita en el

club Oriente Petrolero de la Primera Division de Bolivia. 2 0

11 [...]
12

13 -> invalidated.tsv
14 [...]
15 5d616f ...bb common_voice_es_18306564.mp3 La plaza estaba muy

concurrida 0 3 thirties male nortepeninsular
16 5d616f ...bb common_voice_es_18306845.mp3 en el fin del mundo es

como regalarte la vida . 0 2 thirties male nortepeninsular
17 5d616f ...bb common_voice_es_18306846.mp3 ½ Oye ! ½ áest enferma !

½ no , no lo áest ! 0 2 thirties male nortepeninsular
18 [...]
19

20 -> other.tsv
21 [...]
22 3cc1ab ...1b common_voice_es_19592285.mp3 Esta historia transcurre

en la ciudad portuaria de Libra. 0 0 twenties male rioplatense
23 3cc1ab ...1b common_voice_es_19592327.mp3 Ninguno de los pasajeros

ósobrevivi al accidente. 1 0 twenties male rioplatense
24 3cc1ab ...1b common_voice_es_19594287.mp3 En todas las versiones ,

Sugimura muere casi al final de la historia. 1 0 sixties male
surpeninsular

25 [...]
26

27 -> test.tsv
28 [...]
29 0003b9...5d common_voice_es_19698530.mp3 Habita en aguas poco

profundas y rocosas. 2 1 thirties male mexicano
30 0003b9...5d common_voice_es_19987333.mp3 Opera principalmente

vuelos de cabotaje y regionales de carga. 2 1
31 0003b9...5d common_voice_es_19691402.mp3 Para visitar contactar

primero con la ódireccin. 2 0
32 [...]
33

34 -> train.tsv
35 [...]
36 434506... c2 common_voice_es_19742144.mp3 Tras su lanzamiento ha

recibido positivas ñreseas por parte de la ícrtica especializada
. 2 1 thirties male chileno
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37 434506... c2 common_voice_es_19742146.mp3 Las hojas se secan a la
sombra , en un lugar aireado. 2 1 thirties male chileno

38 434506... c2 common_voice_es_19742323.mp3 Por este motivo no pudo
integrar la óseleccin de su ípas. 2 0 thirties male chileno

39 [...]
40

41 -> validated.tsv
42 [...]
43 0003b9...5d common_voice_es_19698530.mp3 Habita en aguas poco

profundas y rocosas. 2 1 thirties male mexicano
44 009891...11 common_voice_es_19987333.mp3 Opera principalmente

vuelos de cabotaje y regionales de carga. 2 1
45 00b0a5 ...aa common_voice_es_19691402.mp3 Para visitar contactar

primero con la ódireccin. 2 0
46 [...]

Listing 10: Small sample of the rows contained in the input data index files of the
CommonVoiceES dataset

2.2.1.2.8 LibriVoxES1 Adapter class This dataset was a bit complex to interface,
it contains speech from male and female separated but also a part with mixed speech. The
female part corresponds only to a single person speaking (so-called Karen Savage). The
column names need to be overridden, as well as the filenames for they were .csv files.
The separator used in these files was the pipe character ’|’. It contains several folders for
each speaker, reading books. For brevity, only some of them are included in the example
below.

1 ¾½ºª°'
2 class LibriVoxES1(Base):
3 def __init__(self):
4 super ().__init__("librivox_es_1")
5 self.COL_NAMES = ["path", "sentence", "rep_sentence"]
6 self.CSV_FILENAME = "metadata.csv"
7 self.AUDIO_FOLDER_NAME = "wavs"
8

9 def _find_csv_folders(self):
10 csv_folder_paths = []
11 for root , dirs , files in walk(self.DATASET_FOLDER , topdown=

True):
12 for name in dirs:
13 if name.split("/")[-1] == self.AUDIO_FOLDER_NAME:
14 full_path = path.join(root , name).split("/")
15 path_from_clips = "/".join(
16 full_path[full_path.index("clips") + 1 :

-1]
17 )
18 csv_folder_paths.append(path_from_clips)
19 return csv_folder_paths
20

21 def format_data(self):
22 csv_folders = self._find_csv_folders ()
23 dataframes = []
24 for csv_folder_path in csv_folders:
25 try:
26 dataframes.append(self._load_from_tsv(
27 path.join(
28 self.DATASET_FOLDER , "clips",
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29 csv_folder_path , self.CSV_FILENAME
30 ),
31 path.join(csv_folder_path , self.

AUDIO_FOLDER_NAME) + "/",
32 separator="|",
33 path_suffix=".wav"
34 ))
35 except:
36 print("[ERROR] -- There was a problem with dataset

on {}"
37 .format(csv_folder_path), end=" --> ")
38 print("Ommiting dataset")
39

40 self.full_dataframe = self._merge_dataframes_rec(dataframes
, 0)

41 return self.full_dataframe

Listing 11: A fragment of the datasets.py script featuring the LibriVoxES1 class for the
adapter

1 -> karen_savage/angelina/metadata.csv
2 [...]
3 angelina_00_delgado_f000001|CAPITULO UNO.| CAPITULO UNO.
4 angelina_00_delgado_f000002|RAFAEL DELGADO Y SU NOVELA ANGELINA .|

RAFAEL DELGADO Y SU NOVELA ANGELINA.
5 angelina_00_delgado_f000003|Con este libro obtuvo el gran novelista

mexicano el áms sonado éxito;|Con este libro obtuvo el gran
novelista mexicano el áms sonado éxito;

6 [...]
7

8 -> male/tux/el_19_de_marzo_y_el_2_de_nayo/metadata.csv
9 [...]

10 el19demarzoyel2demayo_01_perezgaldos_f000001|íCaptulo Primero .|
íCaptulo Primero.

11 el19demarzoyel2demayo_01_perezgaldos_f000002|El Diecinueve de Marzo
y el Dos de Mayo de Benito éPrez óGalds.|El Diecinueve de Marzo
y el Dos de Mayo de Benito éPrez óGalds.

12 el19demarzoyel2demayo_01_perezgaldos_f000003|En Marzo de mil
ochocientos ocho , y cuando íhaban transcurrido cuatro meses
desde que éempec a trabajar en el oficio de cajista , ya ícompona
con mediana destreza , y ganaba tres reales por ciento de ílneas
en la imprenta del Diario de Madrid .|En Marzo de mil

ochocientos ocho , y cuando íhaban transcurrido cuatro meses
desde que éempec a trabajar en el oficio de cajista , ya ícompona
con mediana destreza , y ganaba tres reales por ciento de ílneas
en la imprenta del Diario de Madrid.

13 [...]
14

15 -> male/victor_villarraza/cuentos_clasicos_del_norte/metadata.csv
16 [...]
17 cuentosclasicosprimera_00_poe_f000001|ÓINTRODUCCIN .|ÓINTRODUCCIN.
18 cuentosclasicosprimera_00_poe_f000002|Los cuatro escritores cuyas

obras áestn representadas en esta ócoleccin son idealistas en
uno u otro sentido .|Los cuatro escritores cuyas obras áestn
representadas en esta ócoleccin son idealistas en uno u otro
sentido.

19 cuentosclasicosprimera_00_poe_f000003|La literatura áclsica de los
Estados Unidos no tiene realistas|La literatura áclsica de los
Estados Unidos no tiene realistas
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20 [...]
21

22 -> mix/la_condenada/metadata.csv
23 [...]
24 lacondenada_01_blasco_f000001|LA CONDENADA .|LA CONDENADA.
25 lacondenada_01_blasco_f000002|Catorce meses llevaba Rafael en la

estrecha celda .| Catorce meses llevaba Rafael en la estrecha
celda.

26 lacondenada_01_blasco_f000003|íTena por mundo aquellas cuatro
paredes , de un triste blanco de hueso , cuyas grietas y
desconchaduras se ísaba de memoria ;|íTena por mundo aquellas
cuatro paredes , de un triste blanco de hueso , cuyas grietas y
desconchaduras se ísaba de memoria;

27 [...]

Listing 12: Small sample of the rows contained in the input data index files of the
LibriVoxES1 dataset

2.2.1.2.9 LibriVoxES2 Adapter class Taken from the Librivox source, this dataset
contains a total of 17 speakers. The data is all referenced from a single file. Only in this
case, we needed to override the names and order of the columns and also the name of the
file. In this case, we found a .csv file.

1 ¾½ºª°'
2 class LibriVoxES2(Base):
3 def __init__(self):
4 super ().__init__("librivox_es_2")
5 self.COL_NAMES = ["path", "wav_filesize", "sentence"]
6 self.CSV_FILENAME = "files.csv"
7

8 def format_data(self):
9 self.full_dataframe = self._load_from_tsv(

10 path.join(self.DATASET_FOLDER , self.CSV_FILENAME),
11 "",
12 separator=",",
13 skip_rows =1,
14 path_suffix=""
15 )
16 return self.full_dataframe

Listing 13: A fragment of the datasets.py script featuring the LibriVoxES2 class for the
adapter

1 Columns:
2 wav_filename ,wav_filesize ,transcript
3

4 -> files.csv
5 [...]
6 audios /4da6b70e -0108 -4f75 -80ae -3 d71f1dd2c2b.wav ,219064 ,y íaqu en

dos palotadas hemos encontrado robustas columnas donde apoyar la
grandiosa áfbrica de su alcurnia

7 audios /8c2ab30b -0fd4 -41c3 -9724 -3 b15f2ee2c27.wav ,271910 , cuando los
consejeros escucharon aquello quedaron estremecidos y se dijeron
dios ha prohibido que padres se casen con sus hijas

8 audios/ca73c951 -c62a -41fe-a953 -9871514151 f2.wav ,64520 ,su mujer con
la cara entre las manos

School of Computer Science - University of Oviedo Page 43 of 100



2 MATERIALS AND METHODS STT Transcription Using Neural Networks

9 [...]

Listing 14: Small sample of the rows contained in the input data index files of the
LibriVoxES2 dataset

2.2.1.2.10 Peruano Adapter class The Peruvian accent is represented in this dataset
with a total of two files. Male and female speakers, one for each file.

1 ¾½ºª°'
2 class Peruano(Base):
3 def __init__(self):
4 super ().__init__("peruanos")
5

6 def format_data(self):
7 line_index_female = self._load_from_tsv(
8 path.join(self.DATASET_FOLDER , "line_index_female.tsv")

,
9 "es_pe_female" + path.sep

10 )
11 line_index_male = self._load_from_tsv(
12 path.join(self.DATASET_FOLDER , "line_index_male.tsv"),
13 "es_pe_male" + path.sep
14 )
15 self.full_dataframe = self._merge_dataframes_rec ([
16 line_index_female , line_index_male
17 ], 0)
18 return self.full_dataframe

Listing 15: A fragment of the datasets.py script featuring the Peruano class for the adapter

1 -> line_index_female.tsv
2 [...]
3 pef_02436_00866988356 En el canal cien hay programas para ñnios

entre cinco y nueve ñaos.
4 pef_09334_01927629957 La tienda de jabones y perfumes finos tienen

regalos para el ída de las madres.
5 pef_09697_01394303270 ¾Sabe usted ácuntos estadios de úftbol

profesional hay áac?
6 [...]
7

8 -> line_index_male.tsv
9 [...]

10 pem_01208_01446525215 Tocar el óxilfono es mi hobby favorito
11 pem_01523_01928013518 Inmediatamente te íenvo toda la óinformacin a

tu correo
12 pem_03034_01073545033 ¾Es la violencia innata al ser humano?
13 [...]

Listing 16: Small sample of the rows contained in the input data index files of the Peruano
dataset

2.2.1.2.11 PuertoRico Adapter class Another Spanish accent dataset, only in this
case there is only a single file referencing audios from female speakers.

1 ¾½ºª°'
2 class PuertoRico(Base):
3 def __init__(self):
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4 super ().__init__("puerto_rico")
5

6 def format_data(self):
7 self.full_dataframe = self._load_from_tsv(
8 path.join(self.DATASET_FOLDER , "line_index_female.tsv")

,
9 "es_pr_female" + path.sep

10 )
11 return self.full_dataframe

Listing 17: A fragment of the datasets.py script featuring the PuertoRico class for the
adapter

1 -> line_index_female.tsv
2 [...]
3 prf_06136_00202343619 Para lo que tu haces necesitas una

computadora Apple
4 prf_06136_00990637626 El Llano de Llamas es un áclsico de Juan

Rulfo
5 prf_04310_02013160949 Ahora mismo hay una oferta de mil trescientos

ódlares americanos
6 [...]

Listing 18: Small sample of the rows contained in the input data index files of the
PuertoRico dataset

2.2.1.2.12 TEDxES Adapter class This dataset comes from transcribed TEDx in-
dependent events. It includes a file named ’TEDx_Spanish.transcription’ that has the sen-
tence label and the filename of the audio it corresponds to separated by blank spaces. This
one needed to be reconstructed into the needed format.

1 ¾½ºª°'
2 class TEDxES(Base):
3 def __init__(self):
4 super ().__init__("tedx_es")
5 self.PATHS_FILE_PATH = "files/TEDx_Spanish.paths"
6 self.TRANSCRIPTIONS_FILE_PATH = "files/TEDx_Spanish.

transcription"
7

8 def _compose_data(self):
9 paths = None

10 transcriptions = None
11 with open(
12 path.join(self.DATASET_FOLDER , self.PATHS_FILE_PATH), "

rt"
13 ) as paths_file:
14 paths = paths_file.readlines ()
15 with open(
16 path.join(self.DATASET_FOLDER , self.

TRANSCRIPTIONS_FILE_PATH), "rt"
17 ) as transcriptions_file:
18 transcriptions = transcriptions_file.readlines ()
19

20 dataframe = {"client_id": [], "path": [], "sentence": []}
21 for p_line , t_line in zip(paths , transcriptions):
22 relative_path = "/".join(p_line.split("/")[1:]).strip ()
23 transcript = " ".join(t_line.split(" ")[:-1]).strip()
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24 dataframe["client_id"]. append(str(uuid4 ()))
25 dataframe["path"]. append(path.join(self.DATASET_FOLDER ,

"clips",relative_path))
26 dataframe["sentence"]. append(transcript)
27 return pd.DataFrame(dataframe)
28

29 def format_data(self):
30 self.full_dataframe = self._compose_data ()
31 return self.full_dataframe

Listing 19: A fragment of the datasets.py script featuring the TEDxES class for the
adapter

1 -> TEDx_Spanish.paths
2 [...]
3 ./ speech/TEDX_F_001_SPA_0001.wav
4 ./ speech/TEDX_F_001_SPA_0002.wav
5 ./ speech/TEDX_F_001_SPA_0003.wav
6 [...]
7

8 -> TEDx_Spanish.transcription
9 [...]

10 y eso se para ím se se puede reducir en équ en un des pertar de la
conciencia humana gracias TEDX_F_001_SPA_0001

11 bueno e les voy a platicar una una historia y ella es yamila
TEDX_F_001_SPA_0002

12 si les ponen a una mujer ías enfrente y les dicen éñensale a leer y
a escribir TEDX_F_001_SPA_0003

13 [...]

Listing 20: Small sample of the rows contained in the input data index files of the TEDxES
dataset

2.2.1.2.13 TUXES Adapter class This dataset contained two sub-datasets each
with a ’metadata.csv’ file that referenced the audio files using a pipe character as the
separator ’|’.

1 ¾½ºª°'
2 class TUXES(Base):
3 def __init__(self):
4 super ().__init__("tux_es")
5 self.COL_NAMES = ["path", "sentence", "rep_sentence"]
6 self.CSV_FILENAME = "metadata.csv"
7 self.AUDIO_FOLDER = "wavs"
8

9 def format_data(self):
10 other = self._load_from_tsv(
11 path.join(self.DATASET_FOLDER , "clips", "other", self.

CSV_FILENAME),
12 path.join("other", self.AUDIO_FOLDER) + path.sep ,
13 separator="|"
14 )
15 valid = self._load_from_tsv(
16 path.join(self.DATASET_FOLDER , "clips", "valid", self.

CSV_FILENAME),
17 path.join("valid", self.AUDIO_FOLDER) + path.sep ,
18 separator="|"
19 )
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20 self.full_dataframe = self._merge_dataframes_rec ([
21 other , valid
22 ], 0)
23 return self.full_dataframe

Listing 21: A fragment of the datasets.py script featuring the TUXES class for the adapter

1 -> clips/other/metadata.csv
2 [...]
3 0| Mirad que os afusilamos si no ídecs la verdad|mirad que os

afusilamos si no ídecs la verdad
4 1|éEsprese un poco ícarsimo maestro y ácapelln|éesprese un poco

ícarsimo maestro y ácapelln
5 2|Por si algo pudiera valer , íhaba entregado al comendador la

correspondencia de entrambos personajes , en que su trama estaba
de manifiesto , pero no óconsigui por esto dar treguas a su pesar
|por si algo pudiera valer , íhaba entregado al comendador la
correspondencia de entrambos personajes , en que su trama estaba
de manifiesto , pero no óconsigui por esto dar treguas a su pesar

6 [...]
7

8 -> clips/valid/metadata.csv
9 [...]

10 0|no soy el Pedro Hillo de antes , de tantos ñaos ípacficos y
obscuros dentro de la paz sacerdotal|no soy el pedro hillo de
antes , de tantos ñaos ípacficos y obscuros dentro de la paz
sacerdotal

11 1|Y otros muchos sujetos muy dignos de hacer ómencin de ellos|y
otros muchos sujetos muy dignos de hacer ómencin de ellos

12 2|Y esperaban que el jefe lo diera todo hecho|y esperaban que el
jefe lo diera todo hecho

13 [...]

Listing 22: Small sample of the rows contained in the input data index files of the TUXES
dataset

2.2.1.2.14 Venezolano Adapter class This dataset includes audio files from speak-
ers with Venezuelan accents. In this case, we also have two files, one for male and one
for female speakers.

1 ¾½ºª°'
2 class Venezolano(Base):
3 def __init__(self):
4 super ().__init__("venezolanos")
5

6 def format_data(self):
7 line_index_female = self._load_from_tsv(
8 path.join(self.DATASET_FOLDER , "line_index_female.tsv")

,
9 "es_ve_female" + path.sep

10 )
11 line_index_male = self._load_from_tsv(
12 path.join(self.DATASET_FOLDER , "line_index_male.tsv"),
13 "es_ve_male" + path.sep
14 )
15 self.full_dataframe = self._merge_dataframes_rec ([
16 line_index_female , line_index_male
17 ], 0)
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18 return self.full_dataframe

Listing 23: A fragment of the datasets.py script featuring the Venezolano class for the
adapter

1 -> line_index_female.tsv
2 [...]
3 vef_02484_01513680092 ¾Ya sabes ácunto van a_letter costar las

entradas?
4 vef_06136_01246918517 ¾Usted áest interesado en las olimpiadas

o_letter en en el mundial de gimnasia que menciono édespus?
5 vef_07508_01579674640 ¾Puedes ayudarme a meditar?
6 [...]
7

8 -> line_index_male.tsv
9 [...]

10 vem_05223_00896110924 Los corazones de pollo son una delicia
11 vem_04310_01196944169 Es un plato muy nutritivo
12 vem_02484_00854567505 En este momento estoy enviando a sus mails

unos links de unas meditaciones en You Tube
13 [...]

Listing 24: Small sample of the rows contained in the input data index files of the
Venezolano dataset

2.2.1.2.15 WPHSSES Adapter class This dataset was by far the most difficult to
process. There were several reasons as to why it was left out of the training samples:

Too complex folder structure,
The input files were scattered into questions, answers, prompts and recordings. This
way it was really difficult to grasp how the dataset was built,
The files contained missing characters lost by the file encoding. We made an at-
tempt at recovering them using a Spanish dictionary, string manipulation and the
fuzzywuzzy module to look for good word replacements, but we were not success-
ful,

In the end, the dataset wasn’t big enough for us to invest the time needed to make the
interface work, so it was removed from the main script.

1 ¾½ºª°'
2 class WPHSSES(Base):
3 # Useless (?)
4 def __init__(self):
5 super ().__init__("wphss_es")
6

7 def _clean_data(self):
8 with open(path.join(self.DATASET_FOLDER , "questions.txt"))

as filecontents:
9 lines = filecontents.readlines ()

10 # Recover the initial question mark
11 lines = [
12 line.strip().replace("?", "¾", 1)
13 for line
14 in filter(
15 lambda line: len(line.strip().replace("?", "¾",

1)) > 0, lines
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16 )
17 ]
18 # Get the individual tokens that contain missing

characters
19 tokens = []
20 temp = [line.split(".")[-1]. strip ()[1: -1] for line in

lines]
21 for line in temp:
22 split_lines = line.split(" ")
23 for token in split_lines:
24 if "?" in token:
25 tokens.append(token)
26 tokens = list(dict.fromkeys(tokens))
27 # Load spanish dictionary to look for comparison with

missing words
28 spanish_tokens = None
29 with open("/stt/recogida -audios/audio -processing/

espanol.txt", "rt") as dictionary:
30 spanish_tokens = dictionary.readlines ()
31 spanish_tokens = [
32 spanish_token.strip()
33 for spanish_token
34 in spanish_tokens
35 if any([
36 diacritic in spanish_token.strip()
37 for diacritic
38 in ["á", "é", "í", "ó", "ú", "ñ"]
39 ])
40 ]
41 # Look for a good replacement using fuzzywuzzy
42 print ((
43 "[INFO] -[ (1/4) ]- "
44 "Looking for best matches on missing diacritic

characters"
45 ))
46 pbar = tqdm(tokens)
47 extractions = []
48 for token in pbar:
49 pbar.set_description(token)
50 extractions.append(process.extractOne(token ,

spanish_tokens))
51 # Replace damaged tokens with best approximation
52 print ((
53 "[INFO] -[ (1/4) ]- "
54 "Replacing missing diacritic characters found by

fuzzywuzzy"
55 ))
56 pbar2 = tqdm(zip(tokens , extractions))
57 for token , replacement in pbar2:
58 pbar2.set_description(token)
59 for line in lines:
60 if token in line:
61 print(line)
62 line = line.replace(token , replacement [0])
63 print(line)
64

65 def format_data(self):
66 self._clean_data ()
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67 return pd.DataFrame ()

Listing 25: A fragment of the datasets.py script featuring the WPHSSES class for the
adapter

1 Note: These are scattered files. Not included in the final training
dataset

2

3 -> heroico -recordings.txt
4 [...]
5 1 iturbide se auto ónombr ígeneralsimo de mar y tierra
6 2 alarmado chile le ópidi al úper que declarara su neutralidad
7 3 anastasio somoza se órefugi primero en los estados unidos y

édespus en paraguay
8 [...]
9

10 -> questions.txt
11 [...]
12 1. ?Cu?ndo fue la ?ltima vez que usted vio esta persona?
13 2. ?En qu? lugares se ha encontrado usted con esta persona?
14 3. ?Usted conoce bien a esta persona?
15 [...]
16 20. ?Cu?l es su nacionalidad?
17 21. ?Cu?l es su religi?n?
18 22. ?A qu? partido pol?tico pertenece?
19 [...]
20

21 -> usma -prompts.txt
22 [...]
23 s1 vivo en una casa
24 s2 ódnde vives tu
25 s3 eres de los estados unidos verdad
26 [...]
27

28 -> heroico -answers.txt
29 [...]
30 100/10 no ella no tiene barba ni bigote
31 100/11 de ni un color
32 100/12 negro
33 [...]

Listing 26: Small sample of the rows contained in the input data index files of the
WPHSSES dataset

2.2.2 Splitting the dataset

The next step of the preprocessing is related to generating partitions of the data to
train the model. We need data for three training phases: training, validation and testing.

2.2.2.1 The run.py script This partitioning was done using a script created by me for
this purpose. Named as run.py and included under ’final-degree-project/code_repos/recogida-
audios/dataset-processing’, this script manages all the partitioning of the data and has
more functionalities. Here is a breakdown of the parameters it accepts:

–merge-datasets: Indicates whether or not the datasets should be merged into one
before splitting,
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–shuffle: Makes the program shuffle the data before any splitting or export,
–no-split (MUTEX with –data-split): Makes the program leave the data unsplit-
ted,
–data-split (MUTEX with –no-split): Expects a set of three integer values used
to split data into three subsets. The values in the tuple, separated by blank space
follow this correspondence: training, validation, testing.

Moreover, the procedure applied by this script is described as so, by the UML Activity
diagram displayed in figure 11.

Split datasets
Export any
generated
datasets

Shuffle data
rows

Remove
duplicates

Merge
datasets

Format data
from

datasets

Instantiate
Dataset 

Wrappers

[--shuffle
not
present]

[--no-split 
present]

[--split x y z
present]

[--shuffle
present]

[--merge-datasets 
not present]

[--merge-datasets 
present]

Figure 11: A UML Activity Diagram laying out the procedure followed by the run.py
script used to split the training data before actually training the model
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2.2.2.2 Executing the script This script allows you to generate different sets of train-
ing files. You could use –merge-datasets if you have plenty of datasets but only want to
use a file with all the samples. Also, using the –shuffle flag is recommended if –merge-
datasets and –split are present to make a homogeneous split of data. This way, it is highly
probable that all datasets have a percentage of representation in all the data splits. Not
using –shuffle is also acceptable, but output datasets will probably be heterogeneous con-
taining a lot of samples from a dataset and none from others.

Taking advantage of this script’s design, a series of approaches were explored, only
eventually, the homogeneous shuffled merge was the best option:

For the final training session, we used the run.py script to create 3 data partitions. The
command used was:

1 ~/stt$ python recogida -audios/dataset -processing/run.py \
2 --merge -datasets \
3 --shuffle \
4 --split 89 10 1

Listing 27: Bash command to run the Python script used to split the datasets before
training

2.2.2.3 Why did we use 89 10 1? Having a total of 395087 samples in the merged
dataset, the chosen split is:

89% of training data with a total of 351651 samples,
10% of validation data with a total of 39481 samples,
1% of test data with a total of 3955 samples of data.

Let us explain these quantities:

Training data: The training data is used as the basis for learning. It should be ob-
vious to know that the more data used for training, the better. 89% is the maximum
available data taking into account the other two partitions.
Validation data: During this phase, the model will attempt to perform inference on
a subset of samples to test its ability. We do not need a big set of samples but using
too few could give biased results. As will do if we took samples from the training
dataset. 10% of the full dataset represents enough samples for this phase.
Test data: This phase is the final one after all the Training-Validation Epochs. At
this time in training, the model is assessed to see how well it performs with never-
seen data. Metrics used to evaluate the results are calculated. We only need a few
samples to obtain the best, and worst results. For this reason, 1% of the dataset is
representative enough.

2.2.3 Handling noise

In this section, we have included a couple of items that attempted to remove noise
from the dataset in the form of corrupted or unusable samples and silence periods in the
audio files.

2.2.3.1 Trying to remove silence from the training samples Indeed, silence is part
of the speech we produce every day, but it is not so great when used as input to the model.
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It introduces extra size in the files, resulting in fewer samples per training batch, ending
with larger training times.

This kind of preprocessing was not present in the final iteration of the training data.
Some attempts were made to minimize noise in the datasets by removing as much silence
as possible from the audio files. This proposal was quickly discontinued since the results
were far from acceptable. Moreover, the process of researching an efficient and lossless
way of doing this would take up a lot of time.

Below we can see a script featuring the final test at removing the noise from the audio
files.

1 from os import listdir
2 from os.path import isfile , join , dirname
3 import numpy as np
4 import os
5

6 from pyAudioAnalysis import audioSegmentation as aS
7 from pyAudioAnalysis import audioBasicIO
8 import scipy.io.wavfile as wavfile
9

10 from pydub import AudioSegment
11

12 import warnings
13 warnings.filterwarnings("ignore")
14

15 def _remove_silences_from_audio(inputFile , outputFile ,
smoothingWindow =1.5, weight =0.3, plot=False):

16 if not isfile(inputFile):
17 raise Exception("Input audio file not found!")
18 # Read audio file to look for silence fragments
19 [fs, x] = audioBasicIO.read_audio_file(inputFile)
20 segmentLimits = aS.silence_removal(x, fs , 0.05, 0.05,
21 smoothingWindow , weight ,

plot)
22 # Export each non -silent fragment to a wav file
23 fragment_filenames = []
24 for i, s in enumerate(segmentLimits):
25 strOut = "{0:s}_{1:.3f} -{2:.3f}.wav".format(outputFile

[0:-4], s[0], s[1])
26 fragment_filenames.append(strOut)
27 if not os.path.exists(dirname(outputFile)):
28 os.makedirs(dirname(outputFile))
29 wavfile.write(strOut , fs, x[int(fs * s[0]):int(fs * s[1])])
30 # Merge the individual non -silent fragments into a new wav file
31 fragments = [AudioSegment.from_wav(fragment) for fragment in

fragment_filenames]
32 output_wav_file = AudioSegment.empty()
33 for fragment in fragments:
34 output_wav_file = output_wav_file + fragment
35 output_wav_file.export(outputFile , format="wav")
36 # Remove the intermediate fragment wav files , not necessary

anymore
37 for temp_file in fragment_filenames:
38 os.remove(temp_file)
39

40

41 # For testing purposes only
42 if __name__ == "__main__":
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43 mypath = "/stt/recogida -audios/dataset -processing/tests"
44 onlyfiles = [join(mypath , f) for f in listdir(mypath) if isfile

(join(mypath , f))]
45 for filename in onlyfiles:
46 _remove_silences_from_audio(
47 filename ,
48 join(dirname(filename), "output", filename.split("/")

[-1])
49 )

Listing 28: audio_processor.py located under ’final-degree-project/code_repos/recogida-
audios/dataset-processing’. Tries to remove silences from audio files

This script is trying to use the pyAudioAnalysis python package (See pyAudioAnalysis).
We tried to remove the silence parts from the audio files one by one by segmenting them,
writing these parts to files and then merging them without the silences. Simply put, it did
not work.

On the one hand, this approach was very promising and feasible had we found a
straightforward way to solve this problem.

On the other hand, the output files were worse than before because the library used
in the above script was cutting too much audio. It was removing the silence but also
trimming important audio containing speech. Several smoothing window values were
tested; none of them gave significant differences from the original file.

After many trials and errors, this approach to remove silence from the audio files was
abandoned.

2.2.3.2 Removing faulty or damaged audios from the training dataset During the
first executions of the engine, we had runtime errors due to some audios not being acces-
sible, corrupted, not found or any other reason as to being unable to use a sample.

To overcome this issue during the preprocessing phase, the files were programmati-
cally opened one by one to see if they were readable, accessible on their path and checked
whether they were really audio files in the specified format. If something failed, such a
file’s path was added to a file to be later excluded from the training datasets.

2.2.4 Exporting the dataset to the CommonVoice format

To conclude this section, we now explain the last step before training the model with
the processed data.

2.2.4.1 Requirements of the my_import_cv script The DeepSpeech engine requires
the data to be in a specific format. The data index files need to follow the next require-
ments:

Only one file is allowed for each phase of the training process: Training per se,
validation, and testing,
Data rows need to have the following columns:

• wav_filename: in my case, the filesystem path leading to the file represented
in the current row,

• wav_filesize: the size of the target file in Bytes,
• transcript: the transcript label corresponding to the speech included in the

audio in ’path’.
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Audio files must be in .wav format,
Audio files must be at most 10 seconds long. Made to create reasonable size training
batches,
Audio files must be sampled at 16kHz. This can be tweaked in the script but it also
constraints the training procedure. The engine needs to know what sample rate the
audios use. It assumes 16kHz.

The original version of the script was taken from the DeepSpeech repo. I have tweaked
its functionality to my personal needs of directory input, output, etc. Rather than leaving
it as an open script and not really coupled with anything else, I have coupled it to the
filesystem since it was not going to change for the duration of the experiment.

I just modified a couple of directory routes and paths to fit my dataset processing steps
of merging several into the CommonVoice format so that this script was helpful enough
for me not to create it from scratch.

Broadly speaking, this script takes the audio downloaded from Common Voice for a
certain language, in addition to the *.tsv files output by CorporaCreator, and the script
formats the data and transcripts to be in a state usable by DeepSpeech.py

2.2.4.2 Running the script With this command, we execute the script to generate the
final dataset:

1 ~/stt$ python recogida -audios/dataset -processing/my_import_cv2.py \
2 --filter_alphabet DeepSpeech/data/alphabet.txt
3 data/default

Listing 29: Bash command used to run the Python script my_import_cv2.py to generate
the training datasets

The script will look for any .tsv files in the directory passed as a positional parameter.
In this case, we don’t need to specify the directory of the audios since the path are already
included in each of the data rows. Moreover, the script looks for just files with one of the
following names: test.tsv, dev.tsv,train.tsv, validated.tsv, other.tsv or full.tsv. Once found,
loads the rows and tries to convert the audio file found at the path included in the data row
to .wav. Then writes the path, the sentence transcript and the filesize in the new row to
include in a .csv file with the same name.

For the final iteration of the training files, a total of three separate .tsv files were
generated: train.tsv for the training phase, test.tsv for the testing phase and dev.tsv for
validation phase.

These are examples of the files before and after the script is run:
1 -> dev.tsv (Before)
2 [...]
3 client_id path sentence
4 0 179c906f -6c75 -482f-addc -f02a51365232 /home/danifinca/stt/raw/stt

/cv_es/clips/common_voice_es_19133840.mp3 El sobrino y su
familia prosperaron en la óregin de Moss Vale.

5 1 0de67af7 -a87a -447c-a1f1 -0 f07a128151c /home/danifinca/stt/raw/stt
/cv_es/clips/common_voice_es_19743833.mp3 Se encuentra en las
Islas Canarias en Gomera.

6 2 ad8774cd -fdd2 -47f4-b7e8 -18 f4aa4e51a9 /home/danifinca/stt/raw/stt
/cv_es/clips/common_voice_es_18474260.mp3 Pasaremos unos ídas
en el balneario , Marta

7 [...]
8
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9 -> dev.csv (After)
10 [...]
11 wav_filename ,wav_filesize ,transcript
12 ../ cv_es/clips/common_voice_es_19133840.wav ,202796 ,el sobrino y su

familia prosperaron en la óregin de moss vale
13 ../ cv_es/clips/common_voice_es_18801584.wav ,99884 , iremos juntos

hacia lleida
14 ../ cv_es/clips/common_voice_es_18474260.wav ,166700 , pasaremos unos

ídas en el balneario marta
15 [...]

Listing 30: Fragments of the data index dev.tsv file before and after the my_import_cv2.py
was run on the training datasets

2.3 Hyperparameter setup
In this section, we will take a look at the concept of hyperparameters. Moreover, we

will also present the use of a technique called ’grid search’ used to decide which values
are the best to assign to these hyperparameters before training the model.

2.3.1 Definition of hyperparameters

A Machine Learning model depends on a great number of values that determine its
accuracy when performing inference. We have simple parameters like weights and biases,
for instance, and hyperparameters that are external to the model and do not change during
training. If the training checkpoints are to be used in the future to fine-tune an existing
model, these should be recorded somewhere. Some of them may require keeping their
value when loading training checkpoints.

These parameters change depending on the model topology, but the ones interesting
for us in DeepSpeech are:

Geometry of the network (–n_hidden): This value controls the width of the Neu-
ral Network layers. It is advisable to use values which are powers of 2,
Learning Rate (–learning_rate): This value controls the pace (or magnitude) at
which parameters from the network are modified using the error propagated through
the layers,
Dropout (–dropout_rate): This value controls the percentage of updates done by
backpropagation through the feed-forward layers. This prevents early overfitting
during training.

2.3.2 Grid search for hyperparameter values

This approach is based on combinations of hyperparameters values. It is used to find
a suitable combination of values to train the model and obtain better results.

The chosen values for each of the hyperparameters described above are:

–n_hidden: 1024 and 2048,
–learning_rate: 10−2 and 10−4,
–dropout_rate: 0.3, 0.4, 0.5 and 0.6.

We could have added more, but taking into account that, with each added value the
number of combinations grows exponentially, it is better to test with a few of them. This
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set of values combined generates a total of 16 combinations with each combination need-
ing three DeepSpeech executions (later explained in 2.6).

This script was used to generate a bash script that would train a new model with
each combination of the values and store the results, model output, checkpoints, and all
generated files.

1 import itertools
2 import os
3

4 NEURONS = [1024, 2048]
5 LEARNING_RATE = [10**-2, 10** -4]
6 DROPOUT_RATE = [0.3, 0.4, 0.5, 0.6]
7

8 template_command = """ python -u DeepSpeech.py \
9 --train_files /data/default/train.csv \

10 --test_files /data/default/test.csv \
11 --dev_files /data/default/dev.csv \
12 --train_batch_size 32 \
13 --dev_batch_size 32 \
14 --test_batch_size 32 \
15 --learning_rate %f \
16 --dropout_rate %f \
17 --n_hidden %d \
18 --epochs 125 \
19 --export_dir /exports \
20 --early_stop True \
21 --es_epochs 5 \
22 --checkpoint_dir /checkpoints \
23 --summary_dir /summaries \
24 "$@" | tee /summaries/session_%d_log.txt
25 """
26

27 export_commands = """ DIRNAME=$(date +"%F_%H.%M.%S")
28 mkdir /helpers/$DIRNAME
29 cp -R -v /checkpoints /helpers/$DIRNAME/
30 cp -R -v /summaries /helpers/$DIRNAME/
31 cp -R -v /exports /helpers/$DIRNAME/
32 """
33

34 clean_up_commands = """rm -rf /checkpoints
35 rm -rf /summaries
36 rm -rf /exports
37 """
38

39 bash_exec = []
40

41 for xs in itertools.product(NEURONS , LEARNING_RATE , DROPOUT_RATE):
42 for divisor , iteration in zip([1, 10, 20], [1, 2, 3]):
43 bash_exec.append(template_command % (xs[1] / divisor , xs

[2], xs[0], iteration))
44 bash_exec.append(export_commands)
45 bash_exec.append("\n")
46 bash_exec.append(clean_up_commands)
47 bash_exec.append("\n")
48

49 with open(os.path.dirname(__file__) + "/run -grid -search.sh", "w")
as bash_out:

50 for line in bash_exec:
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51 bash_out.write(line)
52

53 print(bash_exec)

Listing 31: Python script used to generate a bash script with DeepSpeech invocations to
apply grid search to the model’s hyperparameters

The python script writes to a file the enormous list of combinations and training com-
mands to be used in the training environment. All the output files are moved in-between
training sessions to keep a history of the whole process.

2.3.2.1 Final values obtained from grid search I created another script to parse all
the training folder contents generated from the execution of the grid search bash script.
This script generated an output ’summary.json’ located under ’final-degree-project/
code_repos/recogida-audios/scripts/reports’. It contains a list of JSON objects, each one
representing each folder generated for a training session (meaning a combination from
the grid search in conjunction with a number for the iterations of training).

The JSON file also contains all test phrases for each of the folders, with the values
obtained for the metrics and all the list of JSON objects is sorted ascendingly by the value
of the loss function, also present in each object.

The final result obtained from the grid search algorithm was:
1 [
2 [...]
3 {
4 "folder_path ": "/data/gs -history /2020 -09 -18 _15 .51.53" ,
5 "parameters ": {
6 "dropout_rate ": 0.4,
7 "epochs ": 125,
8 "learning_rate ": 1e-05,
9 "n_hidden ": 2048

10 },
11 "log_file_data ": {
12 "filename ": "session_2_log.txt",
13 "file_length ": 96892,
14 "epochs_done ": 7,
15 "test_metrics ": {
16 "WER": 0.252777 ,
17 "CER": 0.07204 ,
18 "loss": 16.600187
19 },
20 "results ": {
21 "Best WER:": [
22 {
23 "metrics ": {
24 "WER": 0.0,
25 "CER": 0.107143 ,
26 "loss": 18.997168
27 },
28 "source_wav_file ": "file :/// data/default

/../ cv_es/clips/common_voice_es_18473718.wav",
29 "actual_transcription ": "'uno dos tres

cuatro cinco '",
30 "result_transcription ": "'uno dos tres

cuatro cinco '"
31 },
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32 {
33 "metrics ": {
34 "WER": 0.0,
35 "CER": 0.0,
36 "loss": 5.131769
37 },
38 "source_wav_file ": "file :/// data/default

/../ librivox_es_1/clips/male/tux/la_batalla_de_los_arapiles/wavs
/arapiles_16_perezgaldos_f000118.wav",

39 "actual_transcription ": "'la óproteccin de
jean jean era desinteresada o significaba un nuevo peligro mayor
que los anteriores '",

40 "result_transcription ": "'la óproteccin de
jean jean era desinteresada o significaba un nuevo peligro mayor
que los anteriores '"

41 },
42 {
43 "metrics ": {
44 "WER": 0.0,
45 "CER": 0.033333 ,
46 "loss": 4.34259
47 },
48 "source_wav_file ": "file :/// data/default

/../ librivox_es_2/clips/audios /8cfe5b8f -0e9f -4e24 -a62d -1
d713218e8a2.wav",

49 "actual_transcription ": "'vete hija ya debe
de ser tarde '",

50 "result_transcription ": "'vete hija ya
debe de ser tarde '"

51 },
52 {
53 "metrics ": {
54 "WER": 0.0,
55 "CER": 0.0,
56 "loss": 4.097859
57 },
58 "source_wav_file ": "file :/// data/default

/../ librivox_es_2/clips/audios /7a8a222b -5c82 -40e2-bb2a -2
a34e680ab47.wav",

59 "actual_transcription ": "'a la cama un
soplo '",

60 "result_transcription ": "'a la cama un
soplo '"

61 },
62 {
63 "metrics ": {
64 "WER": 0.0,
65 "CER": 0.0,
66 "loss": 3.845566
67 },
68 "source_wav_file ": "file :/// data/default

/../ cv_es/clips/common_voice_es_19843048.wav",
69 "actual_transcription ": "'las tres cadenas

ñmontaosas de los montes de crimea áestn representadas en
sebastopol '",

70 "result_transcription ": "'las tres cadenas
ñmontaosas de los montes de crimea áestn representadas en
sebastopol '"
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71 }
72 ],
73 "Median WER:": [
74 {
75 "metrics ": {
76 "WER": 0.2,
77 "CER": 0.041667 ,
78 "loss": 2.415637
79 },
80 "source_wav_file ": "file :/// data/default

/../ librivox_es_2/clips/audios/f8bc417d -565f-4d91 -a4b7 -
ffbba0f9bdea.wav",

81 "actual_transcription ": "'cuando se óindign
al ver '",

82 "result_transcription ": "'cuando se óindin
al ver '"

83 },
84 {
85 "metrics ": {
86 "WER": 0.2,
87 "CER": 0.058824 ,
88 "loss": 2.314881
89 },
90 "source_wav_file ": "file :/// data/default

/../ argentinos/clips/es_ar_female/arf_02436_01375746332.wav",
91 "actual_transcription ": "'étens alguna

preferencia de precio '",
92 "result_transcription ": "'étens alguna

presperencia de precio '"
93 },
94 {
95 "metrics ": {
96 "WER": 0.2,
97 "CER": 0.022727 ,
98 "loss": 2.163583
99 },

100 "source_wav_file ": "file :/// data/default
/../ cv_es/clips/common_voice_es_18357059.wav",

101 "actual_transcription ": "'amor por éinters
se acaba en un dos por tres '",

102 "result_transcription ": "'amor por éinters
se acaba en un dos portres '"

103 },
104 {
105 "metrics ": {
106 "WER": 0.2,
107 "CER": 0.026316 ,
108 "loss": 2.159589
109 },
110 "source_wav_file ": "file :/// data/default

/../ librivox_es_2/clips/audios /9f35bb64 -8aef -4912 -8857 -
b111bd0506d1.wav",

111 "actual_transcription ": "'su aspecto
general resultaba repelente '",

112 "result_transcription ": "'su especto
general resultaba repelente '"

113 },
114 {
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115 "metrics ": {
116 "WER": 0.2,
117 "CER": 0.038462 ,
118 "loss": 2.151875
119 },
120 "source_wav_file ": "file :/// data/default

/../ chilenos/clips/es_cl_male/clm_03034_00459022978.wav",
121 "actual_transcription ": "'aproveche su ída

al ámximo '",
122 "result_transcription ": "'aproveche su ída

el ámximo '"
123 }
124 ]
125 }
126 }
127 },
128 [...]
129 ]

Listing 32: A small fragment of the JSON file containing the results from the grid search
algorithm sorted by loss function value

Hence for the final training, the values used were:

Geometry of the network (–n_hidden): 2048 neurons per layer,
Learning Rate (–learning_rate): 10−4 that is divided by 10 for the second session
and by 20 for the third session,
Dropout (–dropout_rate): 0.4.

2.4 Language model
The language model provides an additional layer of precision because it predicts

which words are more likely to follow each other based on a vocabulary. It contains
two sub-components, a KenLM Language Model and a trie data structure containing all
words in the vocabulary.

The DeepSpeech’s documentation calls this device a scorer, and it is used during the
inference phase to improve model output. Refer to 1.5.3 for a more theoretical explana-
tion.

Such documentation [21] indicates a series of steps to follow to create a new scorer
from scratch:

1. Look for a corpus with enough size to contain roughly every word in the target
vocabulary. To accomplish this, I made a Google search for Spanish text data
corpus and found some resources. Most of them ended up being of no use since
these were not correctly formatted, incomplete or contained corrupt characters due
to accented vowels being in the alphabet. The resource from which I took the
Spanish data corpus with which I created the scorer was SBWCE1.

2. Ensure the corpus includes one sentence per line only with words from the
vocabulary and with characters from the alphabet. After a scan through the
corpus and gathering information about the problems I could have while creating
the scorer, I created a Python script that would transform the input raw corpus into

1Cristian Cardellino: Spanish Billion Words Corpus and Embeddings (August 2019),
https://crscardellino.github.io/SBWCE/
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the correct shape needed to create the scorer file. There were some things I had to
change or remove:

Punctuation symbols were removed,
Digits included were also erased,
And any other character that was not included in our alphabet made that en-
tire sentence be removed. In this group, I include words that, due to the file
encoding, were not recognized as vowel-accented characters.

To help manage the raw data file a little bit more (12GB text file was hard to manage
as a whole), it was segmented into parts using Ubuntu’s command-line utility ’split’.
We used it to cut the file into several parts, each containing 2500000 lines.
The following Python script was the one used to process the compressed text file
containing the raw corpus downloaded from the cited resource. And it was invoked
using this command:

1 ~/ deepspeech -scorer$ python cleaner.py sbwce.clean.part*
2

Listing 33: Bash command used to execute the cleaner script for the Spanish data corpus
input to the scorer file creation phase

1 from os import path , linesep
2 from sys import argv
3 from tqdm import tqdm
4 import re
5

6 BAD_SENTENCES_FILENAME = "rejected.txt"
7

8 parent_dir = path.dirname(path.abspath(__file__))
9 txt_files = [path.join(parent_dir , filename) for filename in

sorted(argv [1:])]
10

11 if len(txt_files) < 1:
12 print("[ERROR] - No files were provided")
13 exit (0)
14

15 print(f"[INFO] - Found a total of {len(txt_files)} file(s)")
16 txt_files_progress_bar = tqdm(txt_files , desc="File: ")
17 for file_part_path in txt_files_progress_bar:
18 txt_files_progress_bar.set_description(path.basename(

file_part_path))
19 input_file = file_part_path
20 output_file = input_file.replace(".txt", ".out.txt")
21 with open(path.join(parent_dir , BAD_SENTENCES_FILENAME), "w

") as eliminated_lines_it:
22 eliminated_lines = 0
23 with open(input_file , "r") as input_file_it , \
24 open(output_file , "w") as output_file_it:
25 appended_lines = 0
26 for line in input_file_it:
27 # Remove new line character
28 line = line.strip()
29 # RegExp to match numbers and other not needed

characters
30 useless_chars = re.compile(r"

¾½[0 -9. ,:;?!+\ -*/|()¿[\]{}$%&#@<>=]")
31 line = re.sub(useless_chars , "", line)
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32 # RegExp to match lines with a capital I
instead of an l (error)

33 wrong_I_instead_of_l = re.compile(r"\b\w+I\w+\b
")

34 is_wrong_sentence = wrong_I_instead_of_l.
findall(line)

35 # RegExp to check for foreign characters other
than our alphabet

36 alphabet_negated_re = re.compile(r"[^a-zA -
áéíóúÁÉÍÓÚñüZ ]")

37 matches = alphabet_negated_re.findall(line)
38 if matches or is_wrong_sentence:
39 eliminated_lines += 1
40 eliminated_lines_it.write(f"{line}{ linesep}

")
41 else:
42 appended_lines += 1
43 output_file_it.write(f"{line.upper()}{

linesep}")
44

45 print(f"[INFO] - Eliminated a total of {
eliminated_lines} line(s)")

46 print(f"[INFO] - Kept a total of {appended_lines}
line(s)")

47 print(f"[INFO] - Processed a total of {
appended_lines + eliminated_lines} line(s)")

48

Listing 34: cleaner.py Python script located under ’final-
degree-project/code_repos/recogida-audios/scripts’. This script cleans the input Spanish
text corpus removing specific sentences from the text containing problems

The script left out of the ’final.txt’ file those sentences marked as not valid by the
RegExp included in the script. Here is a short section of the file to see the kind of
filter we applied to the data:

1 Hay mucho papeIeo que hacer
2 Un Ioco frustrado anda sueIto
3 Creo que tienes úItimo ída itis
4 EI tipo no ítena un bate sino una boIsa de deporte IIena de

armasí
5 Queras saber Io que IIevaba
6 Los chicos iguaI me organizan aIgo
7 Mientras út áests jugando a ípoIicas yo estoy en casa pIaneando

tu retiro
8 Te odio pero no éTambin te jubiIas
9

10 [...]ó
11

12 Decisin BCE el Bulgarian National Bank y la Banca µ Naional a
âRomniei deben transferir al BCE los importes que ñacompaan
a sus nombres en el cuadro del íartculo de dicha óDecisin

13

14 [...]Ã
15

16 As pues los productos esperados son tres Ã©homopolipptidos
diferentes

17 Los enlaces triples aparecen muy raramente en Ã©biomolcuLas
18 Algunas Ãprotenas contienen Ãms de un grupo Ã©prosttico
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19 El ciclo de el Ãcido Ãctrico tiene ocho pasos
20 Facilitar la Ã³informacin que el Parlamento solicite a el

Gobierno
21 El acuerdo Ãser notificado a la Entidad deudora
22 Turkel Ã³critic este estudio porque a el parecer no Ãreproduca

correctamente su Ã©mtodo Ã©teraputico
23 En el patio juega animadamente y corre con un grupo de Ã±nios
24

Listing 35: A couple of fragments from the file that recorded the sentences that did not
make it into the final corpus to create the scorer file

3. Generate the trie binary file (’lm.binary’) using KenLM tools and DeepSpeech’s
python scripts. Following the documentation, I cloned the KenLM repository and
executed the Python script called ’generate_lm.py’ included in the DeepSpeech
repository under ’/DeepSpeech/data/lm/’. The executed command is:

1 ~/ deepspeech_scorer$ python DeepSpeech/data/lm/generate_lm.py \
2 --input_txt ../ sbwce/sbwce.clean.txt.gz \
3 --output_dir . \
4 --top_k 500000 \
5 --kenlm_bins kenlm/build/bin \
6 --arpa_order 5 \
7 --max_arpa_memory "85%" \
8 --arpa_prune "0|0|1" \
9 --binary_a_bits 255 \

10 --binary_q_bits 8 \
11 --binary_type trie \
12 | tee -a generate_lm.py.log
13

Listing 36: Bash command used to execute the generation script of the lm.binary file
needed to create the Spanish scorer file

This command generates the ’lm.binary’ trie file and a ’vocab-500000.txt’ file. The
former represents the trie data structure mentioned above, and the latter contains the
500000 most used words in the input corpus .txt file. These are sorted from more
to less common.

4. Use the native client binary executables from the DeepSpeech repo to gener-
ate the scorer file. These binaries are found under the releases tree of the GitHub
repository. The project version I used for this work corresponds to git history tag
v0.8.0. The necessary file for a 64-bit CPU, Windows OS is obtained from this
link: native_client.amd64.cpu.win.tar.xz. Inside this compressed file, we find sev-
eral files. For this step, we need the one called ’generate_scorer_package’. It is a
console application built for Windows but depending on the compressed file used,
this changes depending on the OS and CPU architecture. The command needed to
create the .scorer file is the following:

1 C:\Users\danal >./ generate_scorer_package ^
2 --alphabet ../ alphabet.txt ^
3 --lm lm.binary ^
4 --vocab vocab -500000. txt ^
5 --package kenlm.scorer ^
6 --default_alpha 0.931289039105002 ^
7 --default_beta 1.1834137581510284
8

Listing 37: Bash command used to execute the native client binary to generate the scorer
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package out of the lm.binary and vocab-500000.txt files

To this command, I have inputted the output from the previous step and added de-
fault values for alpha and ’beta’. These correspond to the language model equation
presented in section 1.5.3. The floats included in the command are the ones sup-
plied by DeepSpeech’s docs. The next steps show how to obtain an appropriate pair
for our scorer. Plus, ’package.scorer’ will be the output name of our scorer file.

5. Use the scorer with alpha and beta, and some test files to calculate an optimized
pair of values. Note2. To achieve this, we need to execute yet another Python
script. This time it is located under the root of the repo ’/DeepSpeech/’, named
’lm_optimizer.py’. Following the documentation, this script should be executed
using the set of checkpoints obtained from the training session of the model. The
command would be invoked using this command:

1 ~/ DeepSpeech$ python lm_optimizer.py \
2 --test_files speech_data/example_folder/test.csv \
3 --checkpoint_dir deepspeech -data/checkpoints
4

Listing 38: Bash command used to invoke the Python script that would use the training
environment to calculate appropriate parameters alpha and beta to optimize the scorer’s
performance

It is important to know that, in the case of executing this with a different NN ar-
chitecture, we need to include the specific changes to such architecture in this com-
mand. For instance, if we changed the –n_hidden parameter for the training, we
need to specify that change here. If not done, the checkpoints will not be loaded
and the program will crash. This would be the normal output of the script as ex-
plained in [20]:

1 # lm_optimizer.py will create a new study
2 [I 2021 -03 -05 02:04:23 ,041] A new study created in memory with

name: no -name -38c8e8cb -0cc2 -4f53 -af0e -7 a7bd3bc5159
3

4 [...]
5

6 # It will then run testing and output a trial score.
7 [I 2021 -03 -02 12:48:15 ,336] Trial 0 finished with value: 1.0

and parameters: {'lm_alpha ': 1.0381777700987271 , 'lm_beta ':
0.02094605391055826}. Best is trial 0 with value: 1.0.

8

9 [...]
10

11 # By default , lm_optimizer.py will run 6 trials , and identify
the trial with the most optimal parameters.

12 [I 2021 -03 -02 17:50:00 ,662] Trial 6 finished with value: 1.0
and parameters: {'lm_alpha ': 3.1660260368070423 , 'lm_beta ':
4.7438794403688735}. Best is trial 0 with value: 1.0.

13

Listing 39: Expected output from the script that guesses the best values for alpha and beta
when optimizing the scorer’s operation

2This step could not be replicated in my experiment environment because at the time this was done, the
computing resources used for the training process were no longer at my disposal.
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6. Create a new scorer package with the optimized values. Once these values are
obtained, we need to execute ’generate_scorer_package’ again to regenerate the
scorer package, this time using the alpha and beta values obtained in the previous
step. This way, we end up with an optimized scorer for our target language and
vocabulary.

2.5 Experimental setup
At first, the system had a Proxmox host installed that served as a virtualization plat-

form to create both Virtual Machines and Containers. It was really hard to set up docker
with all the requirements. On top of this, the platform was not configured to be able to
use any graphics cards (GPUs). This was a major issue since Tensorflow uses NVIDIA’s
GPUs to speed up the process of calculating massive tensor multiplications.

I tried to enable what is known as "PCI-Passthrough", a setting that makes the PCI
devices and hardware available to the guests created on top of the Proxmox environment.
I finally achieved it, but the performance was affected by the extra layer of abstraction
between the model training engine and the host managing the GPU, so in the end, we
prepared a new host machine with a Ubuntu Server - Linux OS.

Apart from having the drivers of the GPU up-to-date and docker installed, we needed
to install special extensions to make docker work with the GPU. Here is a list of links to
pages with documentation or files I needed to use to make the machine work:

CUDA ToolKit Documentation
CUDA ToolKit 10.0 Archive
DockerHub - TensorFlow:1.15.2-py3-jupyter
TensorFlow Docs - About Docker
Docker Docs - Install Docker in Ubuntu
GitHub Repo - NVIDIA Docker

2.5.1 Dockerfile for training

All the training processes took place inside Docker containers. This way, the training
could be developed in a controlled environment, be repeatable and easy to configure.

The DeepSpeech repository contains a template makefile to generate base Dockerfiles
for training. This saved a lot of time in creating it, figuring out the needed dependencies,
and fixing any compatibility issue that might have arisen.

This is the Dockerfile that was generated by the template:
1 # Please refer to the TRAINING documentation , "Basic Dockerfile for

training"
2

3 FROM tensorflow/tensorflow :1.15.2 -gpu -py3
4 ENV DEBIAN_FRONTEND=noninteractive
5

6 ENV DEEPSPEECH_REPO=https :// github.com/mozilla/DeepSpeech.git
7 ENV DEEPSPEECH_SHA=f56b07dab4542eecfb72e059079db6c2603cc0ee
8

9 RUN apt -get update && apt -get install -y --no -install -recommends \
10 apt -utils \
11 bash -completion \
12 build -essential \
13 cmake \

School of Computer Science - University of Oviedo Page 66 of 100

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-installation
https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=debnetwork
https://hub.docker.com/layers/tensorflow/tensorflow/1.15.2-gpu-py3-jupyter/images/sha256-2c2ddc9780724ee528757f44beb16dac302a09ee7eb4e333b7dd85404597fdd9
https://www.tensorflow.org/install/docker
https://docs.docker.com/engine/install/ubuntu/
https://github.com/NVIDIA/nvidia-docker


2 MATERIALS AND METHODS STT Transcription Using Neural Networks

14 curl \
15 git \
16 libboost -all -dev \
17 libbz2 -dev \
18 locales \
19 python3 -venv \
20 unzip \
21 wget
22

23 # We need to remove it because it 's breaking deepspeech install
later with

24 # weird errors about setuptools
25 RUN apt -get purge -y python3 -xdg
26

27 # Install dependencies for audio augmentation
28 RUN apt -get install -y --no -install -recommends libopus0 libsndfile1
29

30 # Try and free some space
31 RUN rm -rf /var/lib/apt/lists /*
32

33 WORKDIR /
34 RUN curl -s https :// packagecloud.io/install/repositories/github/git

-lfs/script.deb.sh | bash
35 RUN apt -get install git -lfs
36 RUN git lfs install
37 RUN git clone $DEEPSPEECH_REPO
38

39 WORKDIR /DeepSpeech
40 RUN git checkout $DEEPSPEECH_SHA
41

42 # Build CTC decoder first , to avoid clashes on incompatible
versions upgrades

43 RUN cd native_client/ctcdecode && make NUM_PROCESSES=$(nproc)
bindings

44 RUN pip3 install --upgrade native_client/ctcdecode/dist /*.whl
45

46 # Prepare deps
47 RUN pip3 install --upgrade pip ==20.0.2 wheel ==0.34.2 setuptools

==46.1.3
48

49 # Install DeepSpeech
50 # - No need for the decoder since we did it earlier
51 # - There is already correct TensorFlow GPU installed on the base

image ,
52 # we don 't want to break that
53 RUN DS_NODECODER=y DS_NOTENSORFLOW=y pip3 install --upgrade -e .
54

55 # Tool to convert output graph for inference
56 RUN python3 util/taskcluster.py --source tensorflow --branch r1.15

\
57 --artifact convert_graphdef_memmapped_format --target .
58

59 # Build KenLM to generate new scorers
60 WORKDIR /DeepSpeech/native_client
61 RUN rm -rf kenlm && \
62 git clone https :// github.com/kpu/kenlm && \
63 cd kenlm && \
64 git checkout 87 e85e66c99ceff1fab2500a7c60c01da7315eec && \
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65 mkdir -p build && \
66 cd build && \
67 cmake .. && \
68 make -j $(nproc)
69

70 WORKDIR /DeepSpeech
71

72 EXPOSE 8080
73

74 COPY ./data/alphabet.txt /DeepSpeech/data/
75 COPY ./ training/deepspeech_training/evaluate.py /DeepSpeech/

training/deepspeech_training/evaluate.py
76 COPY ./ training/deepspeech_training/train.py /DeepSpeech/training/

deepspeech_training/train.py
77 COPY ./bin/run -ES -ds.sh /DeepSpeech/bin/
78 RUN chmod +x /DeepSpeech/bin/run -ES-ds.sh

Listing 40: Contents of the Dockerfile used to create containers in which we could train
the model

In the previous file, we see that the container is setup with all the necessary dependen-
cies and that the DeepSpeech repo is cloned and checked out to the concrete tag needed
for this version of the engine. Moreover, this file also instructs the container to build the
KenLM tools, the CTC decoder and Python-required tools to execute the engine.

To run the container, we needed to set up shared volumes for the training process to
save output files such as log files or checkpoints to disk. These were the commands used
to run docker when creating training containers:

1 #!/bin/bash
2

3 cd /home/danifinca/stt/DeepSpeech
4 sudo docker stop ds -gpu -training
5 sudo docker rm ds -gpu -training
6 sudo docker build -t ds -gpu -image -f Dockerfile.train .
7 sudo docker run -it -d --name ds-gpu -training \
8 --gpus all \
9 -p 0.0.0.0:8089:8080 \

10 -v /home/danifinca/stt/data:/data \
11 -v /home/danifinca/stt/checkpoints :/ checkpoints \
12 -v /home/danifinca/stt/summaries :/ summaries \
13 -v /home/danifinca/stt/history :/ helpers \
14 -v /home/danifinca/stt/exports :/ exports \
15 ds-gpu -image
16 sudo docker exec -it ds -gpu -training bash

Listing 41: Bash shell script used to run the docker containers created for training with
DeepSpeech

2.6 Model training
2.6.1 Training parameters

Model training, and many other processes performed by the DeepSpeech engine, are
managed through the command line using (mostly) the DeepSpeech.py script. This script,
located under ’/DeepSpeech/’, can receive a lot of flags to configure its operation. In this
section of its documentation, we can see the definition of all of these flags, a small text
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indicating help about each flag, and the semantic group to which they belong. See section
FLAGS in [21].

For easy reference, here is a detailed explanation of each of the flags that are relevant
to our case study:

–train_files: A comma-separated list of paths indicating where to find the dataset
index files used for training. If more than one is included, these will be merged and
if none are supplied, the engine doesn’t start training,
–test_files: Works in the same way as –train_files, but this time applies for the data
index files used for testing,
–dev_files: Works in the same way as –train_files, but this time applies for the data
index files used for validation,
–train_batch_size: Indicates the number of samples to use per batch during the
training phase. This value needs to be fine-tuned to adapt to the memory available
in the GPUs. It is better kept at values close to powers of 2,
–dev_batch_size: Indicates the number of samples to use per batch during the
validation phase. This value needs to be fine-tuned to adapt to the memory available
in the GPUs. It is better kept at values close to powers of 2,
–test_batch_size: Indicates the number of samples to use per batch during the
testing phase. This value needs to be fine-tuned to adapt to the memory available in
the GPUs. It is better kept at values close to powers of 2,
–learning_rate: A double value indicating the learning rate of the ADAM opti-
mizer. That is, the magnitude by which the optimizer incorporates new error cor-
rections into the parameters of the network,
–dropout_rate: A double value indicating the dropout rate of the feedforward lay-
ers. This value can be different for each layer using flags: ’–dropout_rateX’ with X
being a number between 2 and 6 included,
–n_hidden: The number of neurons in the hidden layers of the network. Defines
its width and its used at Network’s initialization,
–epochs: The number of times the data will be swept through to train the model
following the pattern: Training-Validation*Epochs then Testing*1,
–export_dir: The path to a directory where the output model is to be stored when
training finishes,
–early_stop: A boolean value indicating the engine whether early stop should be
activated. This strategy stops the training process automatically after ’–es_epochs’
epochs if the increment of the loss function value during the Validation phase does
not improve (after not changing for ’–es_epochs’ epochs),
–es_epochs: The number of epochs to watch the Validation phase loss-function
value for changes. If it does not improve during this time and ’–early_stop’ is
enabled, training is stopped,
–checkpoint_dir: The path of the directory where the training checkpoints should
be extracted,
–summary_dir: This directory is used by Tensorflow to store TensorBoard sum-
mary files.

These are the flags that have been used for the final training of the model.
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2.6.2 Running training

2.6.2.1 The training script The following script was the one used to train the final
model inside the Docker container created from the Dockerfile.train template provided by
DeepSpeech’s repo.

1 #!/bin/sh
2 set -xe
3 if [ ! -f DeepSpeech.py ]; then
4 echo "Please make sure you run this from DeepSpeech 's top

level directory."
5 exit 1
6 fi;
7

8 # Force only one visible device because we have a single -sample
dataset

9 # and when trying to run on multiple devices (like GPUs), this
will break

10 export CUDA_VISIBLE_DEVICES =0
11

12 python -u DeepSpeech.py \
13 --train_files /data/default/train.csv \
14 --test_files /data/default/test.csv \
15 --dev_files /data/default/dev.csv \
16 --train_batch_size 32 \
17 --dev_batch_size 32 \
18 --test_batch_size 32 \
19 --learning_rate 0.0001 \
20 --dropout_rate 0.60 \
21 --n_hidden 2048 \
22 --epochs 125 \
23 --export_dir /exports \
24 --early_stop True \
25 --es_epochs 5 \
26 --checkpoint_dir /checkpoints \
27 --summary_dir /summaries \
28 "$@" | tee /summaries/session_1_log.txt
29

30 DIRNAME=$(date +"%F_%H.%M.%S")
31 mkdir /helpers/$DIRNAME
32 cp -R /checkpoints /helpers/$DIRNAME/
33 cp -R /summaries /helpers/$DIRNAME/
34 cp -R /exports /helpers/$DIRNAME/
35

36 python -u DeepSpeech.py \
37 --train_files /data/default/train.csv \
38 --test_files /data/default/test.csv \
39 --dev_files /data/default/dev.csv \
40 --train_batch_size 32 \
41 --dev_batch_size 32 \
42 --test_batch_size 32 \
43 --learning_rate 0.00001 \
44 --dropout_rate 0.60 \
45 --n_hidden 2048 \
46 --epochs 100 \
47 --export_dir /exports \
48 --early_stop True \
49 --es_epochs 5 \
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50 --checkpoint_dir /checkpoints \
51 --summary_dir /summaries \
52 "$@" | tee /summaries/session_2_log.txt
53

54 DIRNAME=$(date +"%F_%H.%M.%S")
55 mkdir /helpers/$DIRNAME
56 cp -R /checkpoints /helpers/$DIRNAME/
57 cp -R /summaries /helpers/$DIRNAME/
58 cp -R /exports /helpers/$DIRNAME/
59

60 python -u DeepSpeech.py \
61 --train_files /data/default/train.csv \
62 --test_files /data/default/test.csv \
63 --dev_files /data/default/dev.csv \
64 --train_batch_size 32 \
65 --dev_batch_size 32 \
66 --test_batch_size 32 \
67 --learning_rate 0.000005 \
68 --dropout_rate 0.60 \
69 --n_hidden 2048 \
70 --epochs 100 \
71 --export_dir /exports \
72 --early_stop True \
73 --es_epochs 5 \
74 --checkpoint_dir /checkpoints \
75 --summary_dir /summaries \
76 "$@" | tee /summaries/session_3_log.txt
77

78 DIRNAME=$(date +"%F_%H.%M.%S")
79 mkdir /helpers/$DIRNAME
80 cp -R /checkpoints /helpers/$DIRNAME/
81 cp -R /summaries /helpers/$DIRNAME/
82 cp -R /exports /helpers/$DIRNAME/

Listing 42: The Bash script used to train the final STT model inside a Docker container
created from DeepSpeech’s repo

2.6.2.2 Why three training steps? The above script includes three executions of the
DeepSpeech.py script for training. This decision was made based on the official releases
page of DeepSpeech’s repo. The development team wrote a section about how they trained
their release models [21].

In that section, the team explains that they ran training over the training set three times.
Each training session had the learning rate reduced as well as the training epochs. That
made the engine fine-tune well their release model.

In our case, the training process followed their directives. In this case, we did not
have the computing power of 8 GPUs as stated on the page, so we had to adapt the training
parameters to our system’s constraints. Adapting the batch size was already enough. Plus,
early stopping was enabled with five stop epochs since our dataset was not big enough to
train for 125 epochs. Most of our training sessions in the final model and during Grid
Search execution took no longer than 25-30 epochs.
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2.6.3 Training monitoring

This part of the training was crucial. It allowed us to know whether the model was
improving its predictions over time. We used TensorBoard, which is a visualization toolkit
complement to TensorFlow.

This tool allows us to deploy a Dashboard to monitor the training in real-time. It has
this appearance:

Figure 12: An example of the dashboard shown in TensorBoard monitoring toolkit

Using this command below, we can host our copy of TensorBoard for monitoring
purposes:

1 tensorboard --logdir /summaries/ --port <PORT > --host 0.0.0.0

Listing 43: Bash command to self-host a tensorboard dashboard to monitor the scalars
folder of a model training sessions

2.6.3.1 Upload of the training sessions scalars This tool can also be used in the
cloud without any installation or private hosting. This service can be used by linking
one’s Google Account to upload the scalars.

With this command, we can upload a training session’s data to the service and later
consult the data in the same way as depicted in 12:

1 tensorboard dev upload --logdir 2020 -08 -19 _05 .36.16/ --name "
2020 -08 -19 _05 .36.16 Session" --description "Log events from a
training session of a Spanish STT model"

Listing 44: TensorBoard command used to upload the scalars of a training session to
TensorBoard.dev

Here there is a couple of example training sessions to look at inside the monitor dash-
board provided by TensorBoard.dev (associated with my Google Account):

STT Session with almost 360k data points,
Another STT Session this time with fewer data points; around 250k,
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Test run with 8k data points used to test the platform and the grid search algorithm.

Disclaimer: These URLs are publicly accessible. Anyone with the link can read the
charts and download the information and data points hosted on the platform.

2.6.4 Model exports

The training engine allows the user to export the resulting weights and network config-
uration to a binary file usually referred to as "the model". It is just composed of numbers:
weights and biases to configure the network when performing inference.

We have a couple of options for exporting this model:

We can create a model.pb file. If the training command included the ’–export_dir’
flag, the engine will export the network’s state to a .pb file,
We can also export this same file in a format compatible with TensorFlow Lite, or
tflite for short. In this case, we need to include the ’–export_tflite’ flag.

2.6.4.1 Transforming the exported model into an mmap-able model The file ex-
ported from the training engine is loaded into memory when performing inference. This
consumes a lot of memory and execution time. A way to avoid this, is to read data directly
from the disk.

Following the project’s documentation [21], we can use a tool included in the Deep-
Speech’s repo to upgrade this model file into a .pbmm file, allowing us to achieve faster
loading times and inference.

Use these commands:
1 python3 util/taskcluster.py --source tensorflow --artifact

convert_graphdef_memmapped_format --branch r1.15 --target .
2

3 [...]
4

5 convert_graphdef_memmapped_format --in_graph=output_graph.pb --
out_graph=output_graph.pbmm

Listing 45: Bash commands to transform a .pb model file into a memory-mapped version
.pbmm for better performance

2.7 Backend implementation prototype
I have created an API as a proof of concept to work with the trained models, send

audios and test the accuracy. This backend is implemented in JavaScript using Node.js
and Express.js.

It only includes one endpoint to send audio files in .wav format for the model to
transcribe. It may introduce some overhead in systems that may use this API, but the
objective is to test if the models worked as intended. From then on, this backend could be
upgraded and extended to feature more endpoints with greater capabilities.

2.7.1 Project file structure

The project folder’s structure (see figure 13) is composed of several items needed for
the app to function:
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models/: In this folder, you will find the different models exported from the training
environment for the backend to use.
node_modules/: This folder contains the dependencies of the project needed to
execute the API. It is a really heavy object.
scorers/: This folder contains the scorer files used as language models for the in-
ference phase.
src/: In this folder, we can find the JavaScript source files that implement the sys-
tem.
uploads/: This directory is created at runtime and stores the files sent by the clients
in the server to be processed by the model.
app.js: This file is the entry point of the application, contains many imports of the
dependencies, creates the server which exposes the API and manages the different
routes the API supports.
package.json: This file contains information about the repo, the project, the creator,
and the dependencies of the project.
package-lock.json: This file is created whenever we perform ’npm install’ on the
system and contains the complete tree of dependencies apart from the ones included
in package.json.

It is important to note that there needs to be at least one model file present. Other-
wise, the API will crash at startup. The scorer is recommended to improve the model’s
transcriptions, but it is not mandatory.

Figure 13: An image of the contents of the backend project folder as described above

2.7.2 API documentation

UML diagrams are really useful to document the API and represent its architecture
and functionality. We can find a couple of these diagrams below to help explain the
backend structure.
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FileObject refers to the 
object that encapsulates any 
file uploaded to the backend.
It contains the buffer of data
needed to transcribe

JSONObjectFailure

- errorMessage: string

JSONObjectSuccess

- transcript: string
- audioLength: floatJSONObject

«Abstract»

- audioFile: string
- successful: boolean

POST Response

-JSONObject[1..*]

Returns a list of JSON objects,
each containing information about the 
success or failure on transcribing each
audio file included in the request

POST Body

- audio_files: FileObject[1..*]

Returns an HTML 
document with a simple 
form to send audio files 
to the service

«Endpoint»

+ «POST» post()

«Endpoint»

+ «GET» get()

«Application»
DeepSpeech Transcription

1..n

1

1

1

1

«ActionPath»
/transcribe

«ResourcePath»
/

Figure 14: Simple UML diagram to represent the path structure of the API with the
available endpoints

In figure 14, we can see the two endpoints available for the clients. The root path ’/’
(using GET) only returns an HTML form that allows the upload of audio files. The other
endpoint with path ’/transcribe’ (using POST) receives a list of audio files and returns a
list of JSON objects containing information about each audio file. If the API is successful
at transcribing the audio, the associated JSON object will contain the transcript and audio
length. Otherwise, an error message is received.
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Transcription process

Describes the series of events that take place while transcribing a set of audios sent from the client

 Received request
from client to
'/transcribe'

 transcribe()

 loadModel()
 «create»

 loadScorer()

 enable
External
Scorer()

alt

transcribeSingleAudio()

sample
Rate()

check
Sample
Rate()

create
Conversion
Stream()

stt()

mapFilesToPromises

«callback»
addTranscription

Result
(promise.value)

«callback»
addTranscription

Result
(promise.reason)

checkPromiseStatus

composeJSONObjects

Free
Model()

«callback»
transcription
Success()

Server (app.js) transcriptor.js

[scorerPath != null]

[else]

[for file
in requestBody]

[for promise
in mappedList]

[promise.status
===

"fulfilled"]

[else]

:DeepSpeech.Model

Figure 15: A UML Sequence Diagram showcasing the series of tasks performed by the
backend service from receiving a request up to sending the response back

Figure 15, shows the overall function of the transcribe functionality. It explains the
sequence of operations performed over the DeepSpeech Model object, as well as the in-
termediate functions that are executed in the transcriptor.js lifeline.

The series of files received by the client are put into separate threads, one for each
file to be processed. This is done through the "Promise.allSettled" function. It creates a
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new flow of execution per received file and waits for the model to transcribe it. Then this
promise is resolved or rejected (based on each case). However, the model only allows
for sequential execution. Without having checked the implementation, it is known to
use a lock-based approach (MUTEX) to prevent concurrent access to the model. This
was discovered on accident by trying to implement the very same functionality I later
discovered was already at play, so an extra implementation was not necessary at all.

After this execution, the list of Promises, whether they are rejected or fulfilled, are
transformed into their respective output; value if fulfilled, reason of rejection otherwise.
These get sent by a callback function to the app.js module that adds each of them to a list.
Then, when every file is processed, another callback function is invoked to signal app.js
to send the response with the list of configured JSON objects.

2.7.3 Use case scenarios

2.7.3.1 No files sent In figure 16, we can see a screenshot of the form used to send
audios to the backend.

Figure 16: A screenshot of the form sent to the backend with no files attached

The backend returned the following response:
1 {"errorMessage":"No files provided"}

Listing 46: Expected message from the backend if no files are sent in the request

2.7.3.2 One file sent In figure 17, we can see a screenshot of the form used to send
audios to the backend.

Figure 17: A screenshot of the form sent to the backend with one file attached

The backend returned the following response:
1 [{"audioFile":"TEDX_F_001_SPA_0004.wav","successful":true ,"

transcript":"sin empezar digo pues no le van mimarte las manos y
los ojos no y despues","audioLength":6.8325000000000005}]

Listing 47: Expected shape of the response when sending a file to the backend. A list of
JSON objects containing just one instance corresponding to the audio sent
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2.7.3.3 Several files sent In figure 18, we can see a screenshot of the form used to
send audios to the backend. In theory, there is no limit to the maximum amount of files
that can be sent to the server. This could be set easily. One must note that the more files
are sent to be transcribed at once, the longer the server takes to respond because these are
processed sequentially.

Figure 18: A screenshot of the form sent to the backend with several files attached

The backend returned the following response:
1 [{"audioFile":"TEDX_F_001_SPA_0001.wav","successful":true ,"

transcript":"y eso se para ím se se puede reducir en que en un
despertar de la conciencia humana gracia","audioLength"
:7.7598125} ,{"audioFile":"TEDX_F_001_SPA_0002.wav","successful":
true ,"transcript":"bueno les voy a cantar una de historia y ella
es la vela","audioLength":6.0010625} ,{"audioFile":"

TEDX_F_001_SPA_0003.wav","successful":true ,"transcript":"si les
ponen a una mujer al seenfrenta y le dicen el ñsealero escribir"
,"audioLength":7.695875} ,{"audioFile":"TEDX_F_001_SPA_0004.wav",
"successful":true ,"transcript":"sin empezar digo pues no le van
mimarte las manos y los ojos no y despues","audioLength"
:6.8325000000000005} ,{"audioFile":"TEDX_F_001_SPA_0005.wav","
successful":true ,"transcript":"yo no tengo nada en úcomn no
nicotra e idioma este","audioLength":7.8238125} ,{"audioFile":"
TEDX_F_001_SPA_0006.wav","successful":true ,"transcript":"
absolutamente nada es que somos mujeres somos seres humanos y
entonces","audioLength":5.9264375000000005} ,{"audioFile":"
TEDX_F_001_SPA_0007.wav","successful":true ,"transcript":"me pone
enfrente de ella en un mes entonces estaba trabajando en una

organizacion internacional","audioLength":6.1396250000000006} ,{"
audioFile":"TEDX_F_001_SPA_0008.wav","successful":true ,"
transcript":"e donde habiamos refugiados y ella es una de las
refugiadas que estaba en el campo y es la caleta","audioLength"
:8.164875} ,{"audioFile":"TEDX_F_001_SPA_0009.wav","successful":
true ,"transcript":"y entonces me pone en un grupo de ganas y yo
como la maestra no","audioLength":5.8091875} ,{"audioFile":"
TEDX_F_001_SPA_0010.wav","successful":true ,"transcript":"cuando
me doy cuenta y me enfrento que tus no sabia absolutamente nada
y todo lo que habia aprendido","audioLength"
:6.1290000000000004}]

Listing 48: Expected shape of the response when sending several files to the backend. A
list of JSON objects containing n instances as many as audio files sent
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3 Results

3.1 Metrics used to evaluate the results (WER and CER)
The CER and WER metrics are used to identify how closely a prediction resembles

its target. These are easy to compute and give a summary of the quality of the recognition
system [15].

3.1.1 Word Error Rate (WER)

Among others, the Word Error Rate metric, or WER for short, is used in speech recog-
nition to measure the edit distance between the prediction and the target. It does that by
considering the number of insertions, deletions, and substitutions, using the Levenshtein
distance measure.

The WER metric is defined as follows:

WER = 100∗ I +D+S
N

where

I is the number of word insertions,
D is the number of word deletions,
S is the number of word substitutions, and
N is the total number of words in the target.

3.1.2 Character Error Rate (CER)

When we manage character-based models for character-based languages, the error
metrics tend to focus more on a character level. This is where we apply the Character
Error Rate metric or CER for short. This is also referred to as Letter Error Rate or LER.

This CER metric is defined as follows:

CER = 100∗ I +D+S
N

where

I is the number of character insertions,
D is the number of character deletions,
S is the number of character substitutions, and
N is the total number of characters in the target.

3.1.3 The issue with these metrics

WER and CER are useful to know how accurate our models are. The problem is that
these do not provide any information on what the error was. Measuring specific types of
errors would require conducting additional research to improve the models. An example
of this would be Salient Word Error Rate, or SWER for short.
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3.2 Training a Spanish model from scratch
The data used was taken from the West-Point Heroico Spanish dataset that did not

make it into training. Plus, I added five samples of my creation, recording and introducing
them into the dataset.

We performed a series of steps to create a testing batch for the final model:

In a Windows machine, we created an anaconda Python virtual environment,
We installed the DeepSpeech dependencies from the source code using the ’setup.py’
script located in the root of the repository. This was performed using:

1 (deepspeech_test_phase) C:\ Users\danal\git\DeepSpeech >python3 -
m pip install .

2

Listing 49: Windows CMD command used to install DeepSpeech dependencies from the
source into the Python venv

We manually generated a small testing dataset with samples from the unused WPHSS_ES
dataset and 5 samples created by me. We created the sample .csv file with the
necessary format to be used by the engine. The file can be found under ’result-
s/test_audios’ named ’labels_sample.csv’. Here is a sample from that file:

1 wav_filename ,wav_filesize ,transcript
2 answers_99_92.wav ,65512 ,no estoy sangrando
3 answers_99_91.wav ,66952 ,no no tengo ninguna herida
4 [...]
5 usma_prompts_mexico_s9.wav ,83220 ,ódnde áest el aeropuerto
6 usma_prompts_mexico_s10.wav ,80024 ,ódnde áest la óestacin de

tren
7 usma_prompts_nonnative_s198.wav ,26170 ,ácul es su nombre
8 usma_prompts_nonnative_s199.wav ,27554 ,ócmo se llama usted
9 [...]

10 custom_sample_01.wav ,391280 , esto es una prueba para el modelo
de ótranscripcin

11 custom_sample_02.wav ,315508 , los resultados no tienen por équ
ser buenos

12 custom_sample_03.wav ,405620 ,étambin tiene problemas con acentos
concretos del ñespaol

13

Listing 50: A sample from the testing dataset used to run the testing phase

We ran the model from the existing checkpoints of the best model and instructed
the engine to do only a test phase with our test sample dataset:

1 python3 DeepSpeech.py ^
2 --n_hidden 2048 ^
3 --alphabet_config_path "F:\ OneDrive - Universidad de Oviedo

\TFG\deepspeech_scorer\language_model\alphabet.txt" ^
4 --test_files "F:/ OneDrive - Universidad de Oviedo/TFG/

results/test_audios/labels_sample.csv" ^
5 --checkpoint_dir "F:/ OneDrive - Universidad de Oviedo/TFG/

ai_models/stt/checkpoints/" ^
6 --scorer_path "F:/ OneDrive - Universidad de Oviedo/TFG/

deepspeech_scorer/esp_no_optimize.scorer" ^
7 --test_batch_size 1 ^
8 --test_output_file "F:/ OneDrive - Universidad de Oviedo/TFG

/results/test_phase_log.json" ^
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9 --report_count 10
10

Listing 51: Command used to run DeepSpeech only to do a testing phase over the existing
model using the small data sample provided

Note that we must pass some settings as parameters to make this work: The same
network geometry with ’–n_hidden’ and the alphabet the model was trained with
so the output layer has the same dimensions as that saved in the checkpoints (’–
alphabet_config_path’),
The engine generates a log file with data from the results obtained in the testing
phase. This file can be found under ’results’ named ’test_phase_log.json’. Here is
a sample from that file:

1 [
2 {
3 "wav_filename ": "F:\\ OneDrive - Universidad de Oviedo \\

TFG\\ results \\ test_audios \\ usma_prompts_nonnative_s203.wav
",

4 "src": "busca alrededor de la mesa",
5 "res": "busca alrededor de la mesa",
6 "loss": 24.437515258789062 ,
7 "char_distance ": 0,
8 "char_length ": 26,
9 "word_distance ": 0,

10 "word_length ": 5,
11 "cer": 0.0,
12 "wer": 0.0
13 },
14 {
15 "wav_filename ": "F:\\ OneDrive - Universidad de Oviedo \\

TFG\\ results \\ test_audios \\ usma_prompts_mexico_s3.wav",
16 "src": "eres de los estados unidos verdad",
17 "res": "eres de los estados unidos verdad",
18 "loss": 8.334741592407227 ,
19 "char_distance ": 0,
20 "char_length ": 33,
21 "word_distance ": 0,
22 "word_length ": 6,
23 "cer": 0.0,
24 "wer": 0.0
25 },
26 [...]
27

Listing 52: A sample from the .json log file created by the training engine after finishing
the test phase to obtain results

To perform this test phase using the trained model’s checkpoints, we had to modify
the checkpoint files to fix the file paths:

1 -> F:\ OneDrive - Universidad de Oviedo\TFG\ai_models\stt\
checkpoints\best_dev_checkpoint

2 FROM:
3 model_checkpoint_path: "/ checkpoints/best_dev -329670"
4 all_model_checkpoint_paths: "/ checkpoints/best_dev -329670"
5

6 TO:
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7 model_checkpoint_path: "./ best_dev -329670"
8 all_model_checkpoint_paths: "./ best_dev -329670"
9

10 -> F:\ OneDrive - Universidad de Oviedo\TFG\ai_models\stt\
checkpoints\checkpoint

11 FROM:
12 model_checkpoint_path: "/ checkpoints/train -344775"
13 all_model_checkpoint_paths: "/ checkpoints/train -339851"
14 all_model_checkpoint_paths: "/ checkpoints/train -340509"
15 all_model_checkpoint_paths: "/ checkpoints/train -340659"
16 all_model_checkpoint_paths: "/ checkpoints/train -343129"
17 all_model_checkpoint_paths: "/ checkpoints/train -344775"
18

19 TO:
20 model_checkpoint_path: "./train -344775"
21 all_model_checkpoint_paths: "./train -339851"
22 all_model_checkpoint_paths: "./train -340509"
23 all_model_checkpoint_paths: "./train -340659"
24 all_model_checkpoint_paths: "./train -343129"
25 all_model_checkpoint_paths: "./train -344775"

Listing 53: STT Training checkpoint index files modifications to work with the testing
phase in Windows host

3.2.1 Results obtained without a scorer file

These results are obtained from the test phase of the model not using a scorer file. That
is, the model is transcribing the test audio files using only the acoustic model. Lacking
some capacity to improve the results based on the language model, not accessible during
this testing phase. Look at table 1 to see the results.

3.2.2 Results obtained with an English scorer file

To stress the relevancy of using a scorer made from a corpus from the target language,
we have run the same testing phase, but this time we will use the English scorer file pro-
vided by the DeepSpeech engine in their releases page for tag 0.8.0: deepspeech-0.8.0-models.scorer.
Look at table 2 to see the results.

3.2.3 Results obtained with our Spanish scorer file

These results are obtained using the created scorer file, which improves the model’s
ability to transcribe and adjust the output of the acoustic model. Look at table 3 to see the
results.
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WAV Filename Source transcript Result transcript WER CER

usma_prompts_mexico_s7.wav buena suerte buena suerte 0.0 0.0

usma_prompts_mexico_s1.wav vivo en una casa vivo en una casa 0.0 0.0

answers_96_27.wav el tono de su voz es muy
grave

el tono de su boz es muy
grave

0.125 0.033

usma_prompts_mexico_s3.wav eres de los estados unidos
verdad

eres de los estados unidos no-
erdad

0.167 0.061

answers_98_61.wav aproximadamente unas tres
horas y media

de aproximadamente unas
tres horas y media

0.167 0.077

answers_99_91.wav no no tengo ninguna herida o no tengo ninguna herida 0.2 0.038

usma_prompts_mexico_s6.wav qué le vaya bien que le vaya bien 0.25 0.062

answers_98_58.wav claro me esperan mis famil-
iares ahí es donde voy a
hospedarme

claro me esperan mis amil-
iares ahó es donde voy a os-
pedarme

0.273 0.049

usma_prompts_mexico_s9.wav dónde está el aeropuerto tonde esté el aeropuerto 0.5 0.125

usma_prompts_nonnative_s205.wav me da lo mismo pecra lo mismo 0.5 0.214

usma_prompts_mexico_s10.wav dónde está la estación de tren tonde esté a istaciún de tren 0.667 0.2

usma_prompts_nonnative_s201.wav viven aquí desde los años se-
tenta

i gre quite es los años setenta 0.667 0.364

usma_prompts_mexico_s4.wav soy de méxico soy demíxico 0.667 0.154

usma_prompts_nonnative_s198.wav cuál es su nombre cual es un obre 0.75 0.294

usma_prompts_nonnative_s203.wav busca alrededor de la mesa posca a redededor de la pesa 0.8 0.231

usma_prompts_nonnative_s200.wav cuál es su numero de teléfono cuando su numoro dicelafoo 0.833 0.379

usma_prompts_nonnative_s206.wav a qué hora es el examen aqullahor es la elica 0.833 0.522

custom_sample_04.wav cómo se comportará con al-
guna pregunta

omosecon porana con ra por-
dado pero

1.0 0.605

custom_sample_05.wav sin embargo los resultados
son más que aceptables

enra bar o lstatos surmrmas
quea eltals

1.0 0.51

custom_sample_02.wav los resultados no tienen por
qué ser buenos

grs fortadas e nor enean por
ese recoal

1.0 0.558

usma_prompts_mexico_s8.wav dónde está el banco donde estoy nanco 1.0 0.316

usma_prompts_nonnative_s199.wav cómo se llama usted como soylamos 1.0 0.526

usma_prompts_mexico_s2.wav dónde vives tu todnde vive est 1.0 0.5

answers_96_70.wav mis pasajeros extraviaron sus
carnet de identidad

mi s pasajeros estraavieron su
carneter intidad

1.0 0.204

usma_prompts_nonnative_s202.wav hazme reír hasta re 1.0 0.6

usma_prompts_mexico_s5.wav de dónde es usted ela nesusted 1.0 0.471

usma_prompts_nonnative_s204.wav enrique canta mal querrique y cantama 1.0 0.412

answers_99_92.wav no estoy sangrando no esto es angrando 1.0 0.167

custom_sample_01.wav esto es una prueba para el
modelo de transcripción

es tradaves ona propea ga
para lar el mordrel nao de
teral que sieran

1.222 0.64

custom_sample_03.wav también tiene problemas con
acentos concretos del español

tarmpiern ueendertura orle
mas corrads e ntdos conn gr-
ertos de espaenia

1.375 0.526

Table 1: Contains the results from running a test phase using no scorer file over the small
testing dataset
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WAV Filename Source transcript Result transcript WER CER

usma_prompts_mexico_s7.wav buena suerte buena suerte 0.0 0.0

usma_prompts_mexico_s1.wav vivo en una casa vivo en una casa 0.0 0.0

answers_96_27.wav el tono de su voz es muy
grave

el toro de su voz es muy grave 0.125 0.033

usma_prompts_mexico_s3.wav eres de los estados unidos
verdad

eres de los estados unidos
nordad

0.167 0.061

answers_99_91.wav no no tengo ninguna herida no tengo ninguna herida 0.2 0.115

answers_98_58.wav claro me esperan mis famil-
iares ahí es donde voy a
hospedarme

claro me espera mis famil-
iares ae es donde voy a speare

0.273 0.115

usma_prompts_mexico_s4.wav soy de méxico soy de mexico 0.333 0.077

usma_prompts_nonnative_s199.wav cómo se llama usted como se llama 0.5 0.316

usma_prompts_mexico_s6.wav qué le vaya bien que le va bien 0.5 0.188

usma_prompts_nonnative_s203.wav busca alrededor de la mesa scared trode la mesa 0.6 0.346

usma_prompts_mexico_s10.wav dónde está la estación de tren donde esta estacion de tren 0.667 0.167

usma_prompts_nonnative_s204.wav enrique canta mal queried canta 0.667 0.588

answers_98_61.wav aproximadamente unas tres
horas y media

a proxima mente unas tres ho-
ras media

0.667 0.128

answers_96_70.wav mis pasajeros extraviaron sus
carnet de identidad

mis pasagero savaron su
carne terentia

0.857 0.306

custom_sample_01.wav esto es una prueba para el
modelo de transcripción

es trades on proper are more
nateral question

0.889 0.58

custom_sample_04.wav cómo se comportará con al-
guna pregunta

a nasconora concord 1.0 0.711

custom_sample_05.wav sin embargo los resultados
son más que aceptables

erostratos masquerades 1.0 0.653

custom_sample_03.wav también tiene problemas con
acentos concretos del español

amintor lamas orlandos con-
gresses

1.0 0.561

custom_sample_02.wav los resultados no tienen por
qué ser buenos

as for cards or near sea 1.0 0.721

usma_prompts_nonnative_s200.wav cuál es su numero de teléfono no sun nor disease 1.0 0.724

usma_prompts_mexico_s8.wav dónde está el banco donde esta manco 1.0 0.316

usma_prompts_mexico_s9.wav dónde está el aeropuerto donde esta el aero puerto 1.0 0.125

usma_prompts_nonnative_s198.wav cuál es su nombre jules nor 1.0 0.529

usma_prompts_nonnative_s201.wav viven aquí desde los años se-
tenta

i requite gosos tent 1.0 0.576

usma_prompts_nonnative_s206.wav a qué hora es el examen clare a la 1.0 0.783

usma_prompts_mexico_s2.wav dónde vives tu donde divest 1.0 0.286

usma_prompts_nonnative_s202.wav hazme reír are 1.0 0.7

usma_prompts_mexico_s5.wav de dónde es usted e a nested 1.0 0.529

answers_99_92.wav no estoy sangrando no esto es agrando 1.0 0.222

usma_prompts_nonnative_s205.wav me da lo mismo taoism 1.0 0.643

Table 2: Contains the results from running a test phase using the DeepSpeech releases
scorer file over the small testing dataset
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WAV Filename Source transcript Result transcript WER CER

usma_prompts_nonnative_s203.wav busca alrededor de la mesa busca alrededor de la mesa 0.0 0.0

usma_prompts_mexico_s3.wav eres de los estados unidos
verdad

eres de los estados unidos
verdad

0.0 0.0

answers_96_27.wav el tono de su voz es muy
grave

el tono de su voz es muy
grave

0.0 0.0

usma_prompts_mexico_s7.wav buena suerte buena suerte 0.0 0.0

usma_prompts_mexico_s1.wav vivo en una casa vivo en una casa 0.0 0.0

answers_98_58.wav claro me esperan mis famil-
iares ahí es donde voy a
hospedarme

claro me esperan mis famil-
iares ahi es donde voy a
hospedarme

0.091 0.016

answers_98_61.wav aproximadamente unas tres
horas y media

de aproximadamente unas
tres horas y media

0.167 0.077

answers_99_91.wav no no tengo ninguna herida no tengo ninguna herida 0.2 0.115

usma_prompts_mexico_s6.wav qué le vaya bien que le vaya bien 0.25 0.062

usma_prompts_mexico_s4.wav soy de méxico soy de mexico 0.333 0.077

answers_96_70.wav mis pasajeros extraviaron sus
carnet de identidad

mis pasajeros estuvieron su
carnet de entidad

0.429 0.143

usma_prompts_mexico_s10.wav dónde está la estación de tren donde esta la estacion de tren 0.5 0.1

usma_prompts_mexico_s9.wav dónde está el aeropuerto donde esta el aeropuerto 0.5 0.083

usma_prompts_nonnative_s199.wav cómo se llama usted como se llama 0.5 0.316

usma_prompts_nonnative_s201.wav viven aquí desde los años se-
tenta

si requieres los años setenta 0.5 0.333

custom_sample_01.wav esto es una prueba para el
modelo de transcripción

es es una propiedad para el
modelo de el que era

0.556 0.4

usma_prompts_nonnative_s200.wav cuál es su numero de teléfono cuando su numero dice las 0.667 0.483

usma_prompts_mexico_s2.wav dónde vives tu donde vives 0.667 0.286

answers_99_92.wav no estoy sangrando no esto es sangrando 0.667 0.167

usma_prompts_mexico_s8.wav dónde está el banco donde este banco 0.75 0.211

usma_prompts_nonnative_s198.wav cuál es su nombre cual es una obra 0.75 0.412

usma_prompts_mexico_s5.wav de dónde es usted era un usted 0.75 0.529

custom_sample_04.wav cómo se comportará con al-
guna pregunta

mascarada con acordado pero 0.833 0.658

custom_sample_03.wav también tiene problemas con
acentos concretos del español

tarentola lemas corramos con
restos de esta

0.875 0.456

custom_sample_05.wav sin embargo los resultados
son más que aceptables

en otras subastas 1.0 0.735

custom_sample_02.wav los resultados no tienen por
qué ser buenos

portadas de empresas 1.0 0.698

usma_prompts_nonnative_s206.wav a qué hora es el examen aclare la alicia 1.0 0.739

usma_prompts_nonnative_s202.wav hazme reír hasta 1.0 0.7

usma_prompts_nonnative_s204.wav enrique canta mal queria cantaba 1.0 0.529

usma_prompts_nonnative_s205.wav me da lo mismo mecanismo 1.0 0.5

Table 3: Contains the results from running a test phase using our Spanish scorer file over
the small testing dataset

Now, here is a plot of the results obtained in the three testing sessions shown using
boxplots:
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No scorer English scorer Spanish scorer
Session
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Values of the WER metric for each testing session

Figure 19: A boxplot showing the values obtained for the WER metric used to test the
model against a small dataset containing 30 samples

No scorer English scorer Spanish scorer
Session

0.0
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0.2
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CE
R

Values of the CER metric for each testing session

Figure 20: A boxplot showing the values obtained for the CER metric used to test the
model against a small dataset containing 30 samples

The values shown in figure 19 correspond to the WER metric from the testing phase
for each testing session. The same is included for the CER metric in figure 20.
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4 Discussion of the results
The whole process described in this work has many steps. Each of them has suffered

from a lot of things related to the learning process. Overall knowledge of the project was
a major issue during this undertaking. The results are enough to demonstrate the potential
of this framework, given good-quality data and meticulous cleaning steps.

The results are kind of mediocre with new speech. This should not come as a surprise
to the reader as this document resembles the first contact with any machine learning pro-
cess or framework ever. However, the process has created a deeper understanding of the
engine, and it would be easier to perform the training process again, should the resources
be available or newer iterations needed.

As shown in the previous section (see section 3.2), the results obtained from the three
testing phases we performed showed the performance of the model under several circum-
stances. All the data used for testing was new, unseen data by the model.

4.1 Evaluating our model results
Table 4 shows the average values of WER and CER metrics obtained for each test

performed.

Avg. WER Avg. CER

No scorer 0.700 0.295

English scorer 0.715 0.370

Spanish scorer 0.533 0.294

Table 4: Contains the WER and CER average values obtained from the different testing
sessions performed

Although it can be easily understood from the data, it is of utmost importance to use
a well-trained scorer for the target language. The acoustic model on its own might not be
enough to create good-quality transcriptions.

Now that we have obtained a set of results from the model, we can assess its quality
by following the criteria from Microsoft [9].

A WER value of up to 10% provides evidence that the model has good-quality and
that it is ready to be implemented into the target system or application,
A WER value ranging between 10% and 20% is acceptable, but this suggests that
some extra training might be needed,
A WER value higher than 20% yields a faulty model with poor quality. This sug-
gests that we need more data or that we need to train the model for longer periods
of time.

Following the guidelines of the mentioned page, and looking at results of our model
in table 4, we have to say that our model is not fit for general use in the target domain due
to being of poor quality with an average WER value of 53%.

However, this is biased by the number of samples and audio files used in the testing
phase.

School of Computer Science - University of Oviedo Page 87 of 100



4 DISCUSSION OF THE RESULTS STT Transcription Using Neural Networks

4.2 Ways to improve this results
The results can be improved using the following means [5], we can list the components

needed to obtain models with better quality:

Increase the size of the dataset: This kind of software is based around supervised
and autonomous learning. Meaning the model will use input training data to learn
how to perform the task at hand (STT in this case). Simply put, the more samples
it has to work with, the better it gets when making predictions. With lots of data
comes the necessity for computing power to process all the data in a rather short
amount of time,
Improve data balance: Meaning we need to represent our universe of discourse
in the training datasets. If we aim to transcribe audios in noisy environments, we
should train with noisy data to show the model how to generalize those samples in
real transcription scenarios. For a general-purpose transcriptor, we need to input
both women and men training samples, various language accents and several voice
pitches and timbres,
Increase the variety of environmental conditions of the dataset: The model
needs to be trained and tested around various and controlled acoustic conditions
to ensure that it has a stable performance with new input data obtained from differ-
ent recording sources.
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5 Future work
Now that the project has been almost completely explained, here are some ideas that

were devised to extend the functionality of the project. These ideas were meant to be
implemented on-site, something that was not possible due to time and resource-bound
constraints.

Bear in mind that, in most sections, there are diagrams included to gain insight into
the solutions proposed, and to support the explanations provided in the text.

Firstly, a Machine Learning training technique called Transfer Learning is applied
to the project. This section explains how to achieve this and how to configure the
DeepSpeech engine to perform this alternate training mode.
Secondly, we explain the approach we would follow to generate more training data,
should the opportunity had been available. With a diagram, we explain the different
cases we can operate on and the techniques used to approach this solution.
In addition, a third section featuring an extension to the STT backend is proposed
using WebSockets. This extension would be crucial to projects that need a real-time
transcription.
Last but not least, in the Online Learning section, we will present a small and rather
simple architecture of microservices to train new models from gathered data auto-
matically.

5.1 Transfer learning from English to Spanish
This technique called Transfer Learning is an alternative to training a model from

scratch since it allows the user to continue training a model based on the training process
of an existing one just adjusting the parameters related to (usually) the output layer. The
rest of the architecture of the NN would remain the same, as well as the existing fine-tuned
parameters (weights, biases, ...). The rest of the parameters would be corrected during the
transfer-learning process thanks to backpropagation. This is also a convenient alternative
if we want to train a model for a language with a different alphabet than the one used as a
transfer-learning base. In this case, we present a change from English to Spanish. These
two have different alphabets, so the output layer does not match our target language.

Should it be needed, the engine accepts the drop of n layers in the range of 1 to 5. The
most sensible value should be one, so just the output layer is dropped, but it is configurable
through the ’–drop_source_layers [VALUE]’ flag.

For this process to take place, we need the following:

The set of checkpoints from the release model we want to resume training from,
In this case, these checkpoints can be downloaded from the releases page of the
DeepSpeech repository on GitHub. Simply browse the specific version of the en-
gine we want to use and download the following file: deepspeech-0.8.0-checkpoint.tar.gz.
A place to store the new checkpoints of the final model,
A .txt file containing the new alphabet, one character per line as in the following
example (alphabet.txt file located under /DeepSpeech/data/alphabet.txt)

1 # Each line in this file represents the Unicode codepoint (UTF
-8 encoded)

2 # associated with a numeric label.
3 # A line that starts with # is a comment. You can escape it

with \# if you wish
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4 # to use '#' as a label.
5

6 a
7 b
8 c
9 d

10 e
11 f
12 g
13 h
14 i
15 j
16 k
17 l
18 m
19 n
20 o
21 p
22 q
23 r
24 s
25 t
26 u
27 v
28 w
29 x
30 y
31 z
32 '
33 # The last (non -comment) line needs to end with a new line.
34

Listing 54: alphabet.txt this file contains the alphabet with which the model is going to
be trained

Once we have a hold of these resources, we can prepare for training the model. Fol-
lowing the project’s documentation [21], we can train a new model following this ap-
proach using this command:

1 ~/ DeepSpeech$ python DeepSpeech.py \
2 --drop_source_layers 1 \
3 --alphabet_config_path my-new -language -alphabet.txt \
4 --save_checkpoint_dir path/to/output -checkpoint/folder \
5 --load_checkpoint_dir path/to/release -checkpoint/folder \
6 --train_files my -new -language -train.csv \
7 --dev_files my -new -language -dev.csv \
8 --test_files my -new -language -test.csv

Listing 55: Bash command used to execute the training engine following a Transfer
learning approach also loading resources from the checkpoints directory to load the
previous training progress

We can list several benefits from following this approach:

Training time is significantly reduced,
Not that much data needed as if we trained the model from scratch,
If the checkpoints used as a base are from training a model with decent accuracy,
our target model is likely to be accurate if we use high-quality and sanitized data,
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Also, resource constraints should not be a problem since the engine is built and
has been tested to work in ranges from high computing power servers to just a
Raspberry Pi 4.

5.2 Data augmentation on the training data
Data augmentation is often used when there is not enough data to train a model. The

basis is to combine, modify or adapt the existing data to generate more samples to train
the model. Depending on the universe of discourse this can be challenging. In this case,
we are managing audio files. The representations are sound-wave-based.

5.2.1 Custom-made approach

As this is not something implemented into this work, this section is more of an
untested hypothesis than an actual proof-of-concept. At first, this approach is simple
enough to be feasible, but there can always be technicalities that make it hard. So here are
a couple of ideas to generate new samples to engorge the training datasets:

1. We would generate pairs of audio files by checking their duration. These audios
should be close to the same duration, or one of them is longer than the other.

2. Having these pairs set up, we lower the volume of one of the audios to around 50%
or less so that it behaves as noise on top of the "actual" target audio. The idea is to
lower the volume of the shorter one (in case these are not the same duration).

3. We now label the new pair with the original label from the longer audio (or the one
with the original volume, if they are not the same duration).

Now, this can work both ways if the audios are close to the same duration. So we can
double the amount of data by performing these steps over the two audios in each pair. In
case there is a pair of audios that is unmatched in duration, we can simply cut the longer
audio to match the target audio. In this case, losing information on the cut audio does not
matter because it behaves as noise, and therefore is not bound to any target label.

A very similar approach could be to use several audios with very low volume acting
as noise on top of another audio, this being the target to transcribe. This way, using file
combinations, we can create a massive dataset just with a couple of thousands of audio
files.

The summary of this idea is to generate combinations of audios, playing with noise-
acting and target-acting, volumes of the tracks, and manage the labels correctly. This
would help the model build resistance towards noisy environments. Which, in most cases,
is the needed result. It is hard to use a model that requires a silent environment or good
audio quality. See figure 21 for a more visual explanation.

This image shows the four cases that could apply to the pairs of audios created from
the datasets. The ranges of volumes set for each audio are merely arbitrary. With some
testing, this value could be fine-tuned to approximate the audio to be just noise and not
confuse the model. To explain the image:

The coloured rectangles in the image represent each audio of the pair.

• A red background colour means the audio is meant to act as noise.
• A green background colour means the audio is meant to act as the actual train-

ing audio with its true label attached.
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The black-bordered rectangles represent each of the cases we can find within the
dataset.
The duration of each audio is represented as the width of its respective box. Again,
this is completely arbitrary and it is used as a means to communicate the approach.
In reality, there could be the case where no two audios have the same length or that
all of them are the same length.

Audio A (100% volume)

Audio B (50% or less volume)

Audio A (100% volume)

Audio B (50% or less volume)

Audio A (50% or less volume)

Audio B (100% volume)

Audio A (50% or less volume)

Audio B (100% volume)

New data augmented training samples

Figure 21: A simple diagram showing the four possible cases of data augmentation de-
pending on the duration of the two audios in each pair.

5.2.2 DeepSpeech engine augment approach

The DeepSpeech command line also has a tool to generate in-place data augmentation
following several augmentation types.

These augments are added to the training pipeline by using the ’–augment’ flag as
follows:

1 [...]
2 --augment augmentation_type1[param1=value1 ,param2=value2 ,...]
3 --augment augmentation_type2[param1=value1 ,param2=value2 ,...]
4 [...]

Listing 56: Bash flag used to add data augment phases to the training data using the
DeepSpeech.py script

For instance, using the example in the documentation, one can add an overlay to the
training audio samples by adding this flag to the training command:

1 --augment overlay[p=0.1, source =/path/to/audio.sdb ,snr =20.0] ...

Listing 57: Bash flag used to add an overlay augment to the input data of the
DeepSpeech.py script

However, this type of data augmentation is complicated and would require separate
research to analyze which are the best augments to apply to the input data.

There are several upgrades we can make, like pre-creating the augmented set and
then training with that new set. Plus, the values in the ’–augment’ flag’s syntax can take
different formats to specify ranges, simple values, and a combination of both.
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5.3 Extension to the backend prototype using WebSockets
This model we have created can be used through the command line with the deep-

speech utility or a package API. This last option was used to implement the backend
explained in section 2.7.

Taking advantage of these APIs available for many programming languages, and read-
ing the documentation, we can see that the Model object works with audio streams. Now,
what if we wanted to do a real-time transcription through this same backend?

In figure 22, we can see a sequence diagram showcasing how the Client would interact
with our server through the WebSocket technology. As these allow for binary data trans-
port, we can use them to send the recorded buffers to the server so they can be processed
by our existing transcription module.

The WebSockets are an event-based tool that allows for the bidirectional communi-
cation between two parties that exchange data through the network using the "ws://" (not
cyphered) or "wss://" (cyphered) protocols. It is widely used by many web applications
all across the internet and is supported by most web browsers.

Some execution flows in the diagram are executed when specific events are fired.
These arrows should be supposed to have an event attached (we assume an event fired
them). Moreover, to simplify the diagram, any error handling has been omitted, but these
should be in place if the feature described was to be implemented.

Client-side operations would follow this process:

1. User requests the page from the server that holds the real-time transcription feature,
2. User asks the page to start a new STT session (i.e. clicking a button),
3. The page shows some indication that the recording of live audio has started and

shows an empty text area to write the transcription on,
4. Behind the scenes, we request the server for an upgraded connection to use Web-

Sockets,
5. Now, with an established connection, the recording audio is being written onto a

buffer,
6. Each second of recorded audio (arbitrary quantity), the buffer is written onto the

WebSocket object created during the handshake for the server to process,
7. Once the server is finished transcribing the buffer, a new message should be sent

into the WebSocket for us to process,
8. We then append the message’s contents (transcript) to the text area showing on the

screen for the user to see,
9. Repeat the process from the 5th step until the user finishes the STT session (i.e.

clicking a button),
10. The process is finished and the socket object is closed and released,
11. The user may now start a new session by repeating this process from step 2.

Server-side operations would follow this process:

1. The server awaits requests from the client,
2. Receives a request for the real-time transcription page and sends the necessary re-

sources for rendering it in the client,
3. The server now receives a request for an upgraded HTTP connection to use Web-

Sockets,
4. Connection established and channel created,
5. The socket fires an event indicating a new message has been received,
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6. The server sends the buffer contained in the message to the transcription module,
7. The transcription module then saves the content into a file and transcribes it using

the transcribe() function explained in this section: 2.7.2 with the sequence diagram
shown in figure 15,

8. Once the transcriptor module is finished, the data is sent back through a callback
function to the server,

9. The server then writes the contents of the transcription into the socket for the client
to process,

10. Repeat this process for every new message from the 5th step.

WebSocket backend extension

Real time Client-Server STT transcription using WebSockets

GET /realTimeSTT

HTML, CSS, JS

 startSTTSession()

Request
WebSocket HTTP upgrade

HTTP Response 101

Bidirectional
communication channel

Recording audio
buffer

socket.send(accBuffer)

transcribeBuffer(socketMessage)

writeToFile(buffer)

transcribe(savedFile)

«callback»

«callback»
socket.send(transcribedBuffer)

readResult()

appendContent
toScreen()

Data Buffer Context

socket.close()

OK
Connection closed

STT session

Client

[for every second of new recorded audio]

Server transcriptor.js

Figure 22: A UML Sequence Diagram showing how Clients would interact with the server
when using the real-time transcription feature

5.4 Integration into a CI/CD pipeline for online learning
Online Training is a technique used in Machine Learning to fine-tune already trained

models using new data. This technique is limited to some ML techniques. To the scope
of this project, Neural Networks can be Online Trained given some conditions.
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This approach is possible thanks to the implementation of the DeepSpeech engine.
The main training program saves training checkpoints during the process. This allows us
to continue training from these checkpoint files should anything happen to the system,
runtime errors or decide to manually stop early, for instance. In our case, we simply want
to resume the training process without losing the time invested to get to that point.

We assume that the new data that comes into the Platform is provided by pairs of audio
utterances and labels attached to each of them. These audios represent the new training
content.

Logging

Data Bucket

DeepSpeech 
Trainer

«Entry point»
Online Learning

Platform

«execution environment»
Docker Host

Online Learning Docker Platform

Figure 23: A UML deployment diagram to show the different components that would
compose the proposed Online Learning Platform

This proposal is nothing but a complement to what has been stated previously in this
document. Taking advantage of technologies such as Docker, Kubernetes and Docker
Swarm, we can implement a system that could be integrated into a CI/CD pipeline and
perform Online Training to continuously deploy new models with each session. For ref-
erence, see diagram 23 to see the structure of the Online Training Platform (OTP). We
would describe this pipeline as follows:

1. We assume there is a service gathering audio files and labelling them using a third-
party service or software such as Google Cloud’s,

2. This service should be sending audio batches periodically to the OTP,
3. The OTP then answers by triggering the sequence of tasks described in the diagram

shown in figure 24. To serve as a summary (assuming logging is in place, hence
omitting that part):

a) Receive new files from external service,
b) Store these files in the data bucket component,
c) Signal training module new files have been received.
d) Check if we can start a new training session. If so, continue, else, jump to the

last step
e) Run data preprocessing on the input data,
f ) Run the training engine from the previous checkpoint,
g) When the engine has finished training: store output model, checkpoints, log

files,
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h) Notify the OTP that the training session has finished,
i) Finished interaction with the OTP.

4. If the training component trained a new model and finished successfully, the OTP
component will be notified. This message will then be relayed to any observer
informing that a new model release is available, optionally deploying it in any STT
environment, should it be needed.

Online Learning Docker Platform

Describes the process that takes place to perform online learning using the DeepSpeech engine

Received a batch of
audio files (1..*)

Log file reception

 Save files in persistent storage

Log files saved

Maybe start training session

Log training session started

Get new training files

Log training files sent

Preprocess
training
data

Start the
training
process

Store output model, checkpoints and training logs

Log training results, logs, models,
checkpoints

Notify training finished

Notify observers that
a new model release

is available

DeepSpeech Training Session

Platform Trainer

[enough samples to train
&&

not currently training]

[else]

Logging Data Bucket

Figure 24: A UML Sequence diagram showing the planned process to follow when new
files are sent to the Online Training Platform

School of Computer Science - University of Oviedo Page 96 of 100



6 CONCLUSIONS STT Transcription Using Neural Networks

6 Conclusions
This project arose from the need to replace cloud-based transcription services with a

proprietary solution. The outcomes of this project have been quite insightful as they have
provided great amounts of knowledge in the NLP and STT Machine Learning worlds.

In addition, among the contributions made by this undertaking to my personal experi-
ence, I can point out:

I obtained new and exciting knowledge on Artificial Intelligence procedures, which
brought a more open-minded setup to facing the problems that arose during this
project and those to come,
Also, I have improved my ability to walk through pages of documentation, forums,
and comments on public repositories of an open-source project. Moreover, the
Mozilla Discourse forum was a key piece to this massive puzzle that is this project,
Plus, I have consolidated my abilities with Linux-based Operating systems, as well
as with Docker and Python as the main technologies used for this project,
And last but not least, I have learned the utmost importance of writing documenta-
tion for the things you do, no matter what they are or the relevance they have in the
project. As this project has spanned almost two years, the things I did at the start
are very vague in one’s memory. So having to write this very document was a huge
effort.

Although the results are not great (with a 53% WER), they resemble the potential of
this project. We have explained every step followed from the data collection, preprocess-
ing, training up to results obtention, and model assessment. This is not only a success but
a fulfillment of the original objective of this project.

However, we need to make clear that there is a long way to go at improving the
procedures followed, the scripts used, and the data used as input. And, even knowing that,
as of today, the DeepSpeech project is partially discontinued [7], we have laid the basis
to creating an STT system more than capable of performing Spanish speech transcription,
given the necessary adjustments.
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7 Annex I: Complementary files
I provide a link to a OneDrive Cloud Storage folder that contains several files and

folders. These contents serve as aid in the understanding of all the items explained in this
document and as proof for the tasks mentioned previously.

Inside the folder, I have included a ’README.txt’ file that explains the contents in
more detail.

https://unioviedo-my.sharepoint.com/:f:/g/personal/uo264469_uniovi_es/

Egs0tHl1WkZLj6XJeD_o_LUBYiJp-Y7equSy7b67ldEBpA?e=wH8WQt

The files included in such folders are referenced throughout this document using rel-
ative paths to the mentioned directory.
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