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A B S T R A C T   

Background: Information about short Atrial Fibrillation (AF) episodes can be gathered from the diagnostic records 
of cardiac implantable electronic devices (CIEDs). CIEDs are not accurate when detecting short arrhythmia 
episodes. The correlation between mode switching events and AF episodes is significant for long events but prone 
to errors for short episodes. 
Methods: Expectation-maximization algorithms are used to estimate the parameters of a mathematical model 
from a list of AF episodes produced by the CIED. The durations of some of the episodes may be missing. Abnormal 
mode changes are detected and short episodes are joined into longer events when appropriate. The proposed 
method does not require that the sensitivity parameters of the device are altered. Post-processing of the data is 
limited to the detection of false negatives, thus paroxysmal arrhythmia diagnostic evaluations are safer. 
Results: A three year-long study was carried out with patients with dual-chamber pacemakers (PM) at the Hos
pital Universitario Central de Asturias (Spain) between 2012 and 2015. The number of patients in which the 
proposed algorithm altered the final histogram was 40 out of 76. On average, the algorithm removes 2.79% of 
episodes shorter than 1 min in length and finds that 1% of the previously unaccounted episodes are longer than 
30 min, of which 16% are longer than 24 h. 
Conclusion: The method is stable and guarantees that long arrhythmia episodes are never eliminated, and at the 
same time it is the most similar to the human expert in finding new long episodes.   

1. Introduction 

Atrial fibrillation (AF) is the most common permanent tachycardia in 
the adult population. The estimated prevalence of AF in adults is 2–4% 
and a 2.3-fold rise is expected [5,13]. AF can be divided into three 
categories: paroxysmal, persistent and permanent. Paroxysmal atrial 
fibrillation (PAF) episodes are self-terminating and last less than seven 
days [13]. PAF episodes can, in turn, be classified into two rhythm 
patterns: the staccato subtype, characterized by many short episodes 
with small separation, and the legato subtype, with a few, well separated 
long events [24]. There is a wide consensus about the inherent risk in the 
long episodes, but the shorter episodes have not been regarded as 
important until recent times [9]. Short episodes (less than 5 min) are 
often excluded, to avoid oversensing [15]. 

Information about short episodes can be gathered from the diag
nostic records of cardiac implantable electronic devices (CIEDs) [10,17], 
including pacemakers and implantable defibrillators. CIEDs have a bi
polar sensing lead in the atrial chamber and analyze the atrial rhythm to 
detect atrial tachycardia and, in certain cases AF, for arrhythmia 
monitoring [22]. To obtain accurate records, proper implementation 
and adjustments are required: an appropriate sensitivity and optimal 
postventricular recovery periods (post-ventricular atrial blanking and 
refractory periods). The reason is that the two periods interact. 
Furthermore, AF detection algorithms have manufacturer-dependent 
limitations [13], with false positives due to over-detection or far-field 
(FF) and false negatives due to underdetection. For appropriate deci
sion making it is critical to ascertain the duration of the AF episodes, as 
clinicians rely on duration of device-detected AF as an indicator of the 
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patient risk [23]. 
According to Refs. [16,20], Atrial Model Switching (AMS) activa

tions are generally reliable (the number of false positives is low) but 
AMS deactivations are not (high fraction of false negatives). This 
behaviour is admitted because it does not pose a risk to the patient: if a 
spurious AMS deactivation is issued while an AF episode is taking place, 
the CIED resumes the monitoring of the atrial frequency and issues a 
new AMS activation in seconds. In any case, this implies that: 

1. The registered durations of certain AF episodes (those with unreli
able AMS deactivations) are missing in the CIED register.  

2. A long episode may be perceived as a sequence of short episodes 
[16]. 

When episodes of mode switching stored in pacemaker diagnostics 
were correlated to surface ECGs and Holter monitors [20], it was found 
that, if the pacemaker operates with its standard settings, up to 17% of 
false negatives were possible (8 of 46 patients). In Ref. [16] a similar 
fraction of false negatives was obtained with 6-min episodes. Both 
studies conclude that the correlation between mode switching events 
and AF episodes is significant for long events but prone to errors for 
short episodes. 

The usefulness of CIEDs as sensors of AF in patients of the staccato 
subtype and other specific changes, such as ablation failures, is therefore 
limited. However, there are studies such as [21] showing that even 30 s 
episodes are relevant, and that small differences in the AF episode 
lengths affect the perceived incidence of AF (and AF ablation success). 
Thus, there is an interest in procedures that increase the accuracy of 
implantable electronic devices when measuring the length of short AF 
events. 

This paper presents a method for improving the accuracy of mea
surements of AF episodes obtained from CIED records. Expectation- 
maximization (EM) algorithms for coarse data are applied to post- 
process the list of AF episodes produced by the CIED. Short episodes 
are joined into longer events when appropriate. Being an ex-post pro
cedure, the existing sensitivity parameters of the CIED need not to be 
altered. Furthermore, the post-processing is safe in the sense that it is 
limited to the detection of false negatives. The mean duration of the 
postprocessed episodes will always be equal or higher than that of the 
raw episodes. This application of EM algorithms is novel for two reasons:  

1. It is stable and guarantees that long arrhythmia episodes are never 
eliminated.  

2. According to our experimentation, it is more effective than machine 
learning-based alternatives for finding long undetected episodes. 

This paper is organized as follows: The datasets used in this study are 
described in Section 2. In Section 3 a mathematical model of the CIED is 
introduced. In Section 4 an algorithm for fitting this model to a possibly 
incomplete list of AF episodes data is derived. In Section 5 an empirical 
study is carried out where the procedure is tested in simulated data with 
known properties, and in a sample of 76 patients. The outcome of the 
methodology is detailed in three representative patients. In Section 6 
concluding remarks are made and future work is suggested. 

2. Description of the datasets 

A three-year-long study was carried out with 76 patients with dual- 
chamber pacemakers (PM) at the Hospital Universitario Central de Astu
rias (Spain) between 2012 and 2015. Patients have Atrioventricular 
Block (AVB) in 57 of 76 cases and Sinus Node Disease (SND) in 19 of 76. 
Patients were checked according to the usual clinical practice of the 
hospital, which was annually unless a problem arose. Clinical data is 
downloaded from the memory of the device, which has the capacity to 
store dates and durations of the last 27 episodes. The device is capable of 
producing a histogram of the durations of the episodes and also captures 

15 second-long intracardiac electrograms (iECGs) for the stored epi
sodes. These iECGs correspond to the beginning of the arrhythmia, and 
include 10 s prior to activation. A total of 1894 events with captured 
iECG were recorded. 

3. Dynamic model of AMS activations and deactivations 

Registering a long episode as a sequence of short episodes does not 
pose any safety concerns, because the time between each AMS deacti
vation and its subsequent AMS activation is short. However, the histo
gram of durations changes when a long event is divided into short 
events. Given that these histograms are part of the diagnostic evaluation 
of PAF in relation to anticoagulation, this paper defends the view that 
uncorrected histograms may give an overly optimistic view of the pa
tient’s condition. 

A dynamical model of AMS activations and deactivations is adopted 
that considers the probability that the CIED detection algorithm gener
ates false negatives [6]. The parameters defining the model will be 
estimated by an algorithm that maximizes the likelihood of the 
measured AF episode lengths (see Section 4). Each of the AMS changes 
will be labelled as “normal” or “artifact”, so artifacts can be removed and 
chains of AF episodes with removed AMSs are joined into a single 
episode. 

Fig. 1 depicts the states and transitions of the proposed model. This is 
a continuous time Markov model [18] with three states: (1) True 
Negative (no arrhythmia), (2) Positive (AF episode) and (3) False 
Negative (artifact). The third state is associated with those cases where 
the CIED has detected a non-existent end of the AF episode and an AMS 
deactivation/AMS activation pair is issued. 

There are AMS events (activations) in transitions from True and False 
Negatives to Positive. Times at states “Positive”, “False Negative” and 
“True Negative” follow exponential distributions with parameters λ ​ A, 
λ ​ GA and λ ​ NA, respectively. The probability that a transition happens 
between states “Positive” and “False Negative” is p ​ AG, and the proba
bility of a transition between “Positive” and “True Negative” is p ​ AN =

1 − p ​ AG. In the following we will assume that the time it takes for the 
algorithm to re-detect an arrhythmia after a premature exit is negligible: 

(H1) :
1

λ ​ GA
≈ 0. (1) 

Therefore, the time between any two consecutive AMS activations 
belongs to one of the following alternatives:  

• Positive → True Negative → Positive (T1). The expected time lapse 
between two AMS events is 

1
λ ​ AN

+
1

λ ​ NA
. (2)   

Fig. 1. State diagram of the dynamical model of the beginning of the CIED 
detection algorithm [6]. 
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• Positive → False Negative → Positive, that will be simplified to 
Positive → Positive (T2), with expected duration 

1
λ ​ AG

, (3)  

where λ ​ AN = λ ​ A⋅p ​ AN and λ ​ AG = λ ​ A⋅p ​ AG. 

4. Proposed methodology 

The purpose of the methodology introduced in this section is to 
separate the time intervals between AMS activations into two categories: 
full AF episodes (T1, alternative “Positive” to “True Negative”) and false 
short episodes (T2, alternative “Positive” to “Positive”), in order to 
remove this second type of AMS events from the sequence and recal
culate the histogram of durations. 

The parameters of the model are estimated with an Expectation- 
Maximization algorithm [3]. Intervals are labelled as ordinary (type 
T1) or artifacts (T2) according to the posterior likelihood of either 
alternative. There is a very extensive literature about parameter esti
mation in Markov models (see Ref. [19] for a recent review) but it must 
be said that this is not a conventional problem because transitions from 
“Positive” to “True Negative” and “False Negative” may not be logged in 
the CIED record. The model parameters must be estimated with partially 
missing or coarse data [7,11,12,14], consisting of a mixture of either the 
sum of the times of two transitions (T1) or one transition plus a negli
gible time (T2). A specific estimation methodology will be developed in 
the remainder of this section. 

4.1. Probability distribution of the intervals 

According to the proposed model, there are two possible paths be
tween AMS activations (recall Fig. 1): (T1) Positive →  True Negative →  
Positive and (T2) Positive → False Negative → Positive. The time spent 
on the path (T1) is the sum of two random variables with exponential 
probability distributions, which is a hypoexponential distribution. The 
time spent on the path (T2) can be approximated by an exponential 
distribution, because the transition from False Negative to Positive is 
very fast. 

The hypoexponential distribution depends on two parameters, λ ​ AN 
and λ ​ NA. The exponential distribution depends on one parameter, λ ​ AG. 
Estimating λ ​ AN, λ ​ NA and λ ​ AG from data is not trivial if some of the 
durations of the AF episodes are not registered by the CIED (that is, 
when some of the measurements of the times between the states “Posi
tive” and “True Negative” are missing). 

We will denote by f(t|λ) the probability density function of an 
exponential distribution with rate parameter λ. f(t|λ1, λ2) is the proba
bility density function of a hypoexponential distribution with rates λ1 
and λ2. The probability distribution of the time between two episodes is 
a weighted combination of the respective distributions of the elapsed 
times in paths (T1) or (T2), and these weights are the probabilities of 
taking each path (see Appendix A for the derivation of this formula): 

fT(t)= p ​ AGf (t|λ ​ A)+ p ​ ANf (t|λ ​ A, λ ​ NA) (4)  

4.2. Numerical algorithm 

The parameters defining the probability distribution in Eq. (4), are 
p ​ AG, p ​ AN, λ ​ A and λ ​ NA, with λ ​ AN = λ ​ A⋅p ​ AN, λ ​ AG = λ ​ A⋅p ​ AG and 
p ​ AN = 1 − p ​ AG. Once these parameters are estimated, the probabilities 
that an interval between two episodes matches paths (T1) or (T2) are 
inmediately obtained. If the probability of path (T2) is greater than that 
of path (T1), then the first AF episode is spurious and can be eliminated. 

If this estimate could be solved by finding the global minimum of the 
likelihood function (e.g., by a descent algorithm) it would not be 
necessary to develop an algorithm of our own. In Appendix B we show 
that this is not possible, since the likelihood function has several minima 

even in the particular case where all paths are of type (T1) and all du
rations are unknown. For this reason, we propose to solve the optimi
zation problem using an EM algorithm. In Appendix E we define such an 
algorithm for the same simplified case in which all paths are of type (T1) 
and the durations of all episodes are unknown, and in Appendix F we 
derive the algorithm for the general case in which part of the durations 
are known and part are unknown. In Appendix I we show that the 
proposed algorithm converges to the desired solution. 

A pseudocode summarizing all the steps of the proposed algorithm is 
shown in Fig. 2. The inputs to the algorithm are the times between 
episode onsets (Δ), the initial estimates of λ ​ A, λ ​ NA and p ​ AN obtained 
using the heuristic in Appendix J, and the episode durations. The results 
of the algorithm are the final estimates of λ ​ A, λ ​ NA and p ​ AN, and a 
vector Γ1. The interval between two episodes is marked as spurious (T2) 
when the corresponding component of the vector Γ1 is greater than 0.5. 
The Python source code of this algorithm can be downloaded from the 
“Mendeley Data” dataset indicated in the body of reference [8]. 

5. Empirical study 

This section contain two sets of empirical studies, serving two pur
poses: (a) validating the methodology in datasets with known properties 
and (b) illustrating the behaviour of the algorithm in representative 
cases, with emphasis in the changes in the diagnostic evaluation of PAF. 

5.1. Simulated data with known properties 

Wineiger’s work [24] was taken as a reference for choosing the pa
rameters of the simulations. A database comprising 13,000 patients and 
more than 1 million of AF episodes was studied, and it was found that 
the median of the number of episodes per day is 1.21 and the mean 
duration of an episode is 16.6 min. According to our own experience, 
each patient will be associated with a list comprising between 100 and 
500 CIED logs. The model parameters needed for reproducing Wine
iger’s statistics are therefore 

1
λ ​ AN

= 16.6 ​ minutes = 996 ​ seconds.

1
λ ​ NA

=
24∗60

log(2)∗1.21
≈ 1717 ​ minutes.

The input to the EM algorithm is a Monte Carlo generated list of 
“AMS” events and a fraction f of the “END AF” events, using the 
mentioned parameters. The initial coefficients for starting the EM al
gorithm are obtained by means of a heuristic that is described in Ap
pendix J. The EM algorithm is stopped after 500 generations. 

From a statistical point of view, the simulations are compatible with 
the experimental measurements of the duration and distance between 
events that are shown in the next section. The simulated data are rele
vant because, unlike the case of the real data, the parameters p ​ AG, p ​ AN, 
λ ​ A and λ ​ NA are known and therefore we can check that the algorithm 
has converged to the correct solution. Furthermore, we can introduce 
different percentages of missing durations and check to what extent the 
limits of the CIED storage capacity affect its usefulness as a diagnostic 
tool. In this sense, the results shown in this section are an optimistic 
estimate of the possibilities of the proposed methodology: in real pa
tients the fit of the data to the model will not be perfect and therefore to 
the estimation errors shown in this section the effect of discrepancies 
between reality and the model must be added. 

Note that the Wineinger data are obtained by automatic procedures 
and for this reason the number of short AF episodes is probably down
ward biased, as is the case with our own data. This should not affect the 
conclusions of the simulation, because in the synthetic data it is known 
when the event is spurious and when it is real. In any case, the per
centages shown in the tables discussed below could be subject to vari
ations if the values of λ ​ AN y λ ​ NA had been chosen differently. 
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Simulation results are shown in Tables 1–4. The purpose of the 
simulations is to test the best-case behavior of the proposed algorithm 
under different conditions. First, the combined effects of insufficient 
CIED storage capacity (parameter f) with the unreliability of detecting 
the output of an episode (parameter τ), for patients with a short history 
(100 episodes), are shown. Second, the experiments are repeated five 
times, for the same value of τ, to check the variance of the results. Both 
tables are repeated for long histories (500 episodes). 

Row labels f = 0, f = 0.2, f = 0.4, f = 0.6, f = 0.8 and f = 1 indi
cate the fraction of coarse data (missing AF episode lengths). Column 
labels τ = 0, τ = 0.2, τ = 0.4, τ = 0.6 and τ = 0.8 indicate the fraction of 

false negatives, τ = 0 being the least favourable case (i.e τ = 0 means 
that none of the AF episode lengths are available). Each cell in the tables 
contains two numbers: the estimation in seconds of the duration of an AF 
episode and the relative error of the estimation with respect to the 
sample values. Tables 1 and 2 are results for simulated CIED records 
comprise 100 samples, and Tables 3 and 4 are estimations for 500 
samples. 

It must be noted that the EM algorithm does not converge to popu
lation values, but to sample values, that is to the sample means when f =

Fig. 2. Pseudocode of the proposed algorithm. The 
inputs to the EM function are the times between 
episode onsets (Δ), the initial estimates of λ1, λ2 

and τ obtained using the heuristic in Appendix J, 
and the episode durations (unknown durations are 
represented by the value 0). The results of the al
gorithm are the final estimates of λ1, λ2 and τ, and 
the vectors β1, β2, Γ1 and Γ2. The interval between 
two episodes is marked as spurious (T2) when the 
corresponding component of the vector Γ1 is 
greater than 0.5.   

Table 1 
Simulations with simulated data comprising 100 episodes. Rows: proportion f of 
coarse data. Columns: proportion τ of false negatives (premature detections of 
the end of AF episodes). Each cell contains the estimated AF episode length (in 
seconds) and the relative error percentage with respect to sample values.  

100 
samples 

τ = 0  τ = 0.2  τ = 0.4  τ = 0.6  τ = 0.8  

f = 0  964 1024 874 1312 813 
f = 0.2  942 [1%]  988 [4%]  901 

[3%]  
1345 [2%]  824 

[1%]  
f = 0.4  977 [1%]  1015 [1%]  892 

[2%]  
1285 [2%]  813 

[0%]  
f = 0.6  936 [3%]  1203 

[17%]  
891 
[2%]  

1389 [6%]  824 
[1%]  

f = 0.8  821 
[14%]  

1022 [0% ]  881 
[1%]  

1416 [8%]  821 
[1%]  

f = 1  No 601 [41%]  820 
[6%]  

1581 
[20%]  

812 
[0%]   

Table 2 
Variability associated to sampling: First row: sample values (estimations without 
coarse data) for five different simulated samples comprising 100 episodes each 
and τ = 0.4. Rows second to sixth: EM estimations on the same samples and a 
fraction f of coarse data. Each cell contains the estimated AF episode length and 
the relative error percentage with respect to sample values. All times are 
measured in seconds.  

100 
samples 

Sample 
#1 

Sample #2 Sample 
#3 

Sample 
#4 

Sample 
#5 

f = 0  962 1339 1029 983 1083 
f = 0.2  936 [3%]  1228 [4%]  967 [6%]  1030 

[5%]  
1053 
[3%]  

f = 0.4  982 [2%]  1258 [6%]  924 
[10%]  

989 [1%]  982 [9%]  

f = 0.6  930 [3%]  1327 [1%]  921 
[10%]  

797 
[19%]  

1000 
[8%]  

f = 0.8  937 [3%]  1376 [3%]  851 
[17%]  

814 
[17%]  

1035 
[4%]  

f = 1  844 
[12%]  

1094 
[18%]  

903 
[12%]  

824 
[16%]  

923 
[15%]   
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0. This is demonstrated in Appendix I, where it is shown that the critical 
points of the likelihood function fulfill that 1

λ1
+ 1− τ

λ2 
coincide with the 

sample mean, which is not the population mean. 
For large samples, the proportion of false negatives, the average 

length of an AF episode and the average delay between the end of an 
episode and the next AMS event will be near the theoretical (population) 
values τ, 1

λ ​ AN 
and 1

λ ​ NA 
respectively, but the differences may be of 

importance for small samples. According to our experimentation, for 
simulations comprising 100 events, the differences between the theo
retical times and the Monte Carlo simulated times can as high as 30%. 
For simulations of size 500, these differences differ at most by 10%. We 
may reduce these differences by increasing the sample size, but that 
would not be realistic because we rarely find CIED records longer than 
500 episodes. 

It must be noted that the errors in the EM estimation are expected to 
be of the same order as the variability associated with sampling. This 
variability is illustrated in Table 2. The first row contains sample values 
(estimations without coarse data) for five different simulated samples 
comprising 100 episodes each and τ = 0.4. The other rows in the table 
are EM estimations on the same samples when there is a fraction f of 
coarse data, showing a good resilience for samples with a high per
centage of missing AF episode lengths. 

Lastly, in Table 4 the least favourable case is depicted: a sample 
without premature ends of AF episodes (τ = 0) and 500 events is 
analyzed. Although the approximation is good when the number of 

coarse intervals is moderately high (f = 0.6), the last row of this table 
shows that the algorithm does not converge to the desired values when 
none of the AF episode lengths and at the same time none of the episode 
lengths are available. In this particular case, the specific EM algorithm 
for the hypoexponential case (see Section E) should be used. 

5.2. Comparison with other methods 

In order to compare the proposed method with different alternatives 
in the literature, an expert has examined the iECGs of the episodes of 76 
patients and manually labelled the false arrhythmia episodes. The raw 
histograms downloaded from the PMs have been compared with the 
manually corrected histograms in the first place, then with histograms 
processed by the proposed method and finally with histograms corrected 
by a selection of machine learning algorithms that have been employed 
in the literature to process digital cardiac arrhythmia data [2]. 

The means of the bar heights of the raw PM histograms, the expert 
corrections to these values and the results of four different machine 
learning algorithms are shown in Table 5. There are two numbers in 
each cell of the table. The first number is the mean height of each bar of 
the corrected histogram for each of the studied corrections. The second 
number (in parentheses) is the difference between the corrected value 
and the raw PM value. Anomalous numbers have been marked in bold. 
These numbers are downward corrections of the fraction of arrhythmias 
with clinical interest; that is, the methods with bold values produced a 
potentially unsafe correction of some patients’ histograms. SVC is a 
support vector machine, MLP is a neural network, KNN is the k-nearest 
neighbour algorithm and ADA is the Adaboost classifier [1]. The input 
variables of the training sets of the classifiers comprise the episode 
length and the time between the current episode and the preceding one. 
The outputs are the labels provided by the expert for each episode. 
Columns SVC, MLP, KNN and ADA contain test results obtained by 
10-fold cross validation: each classifier was trained on 90% of the data 
and evaluated on the remaining 10%, and the process was repeated 10 
times for each method. It is important to say that the proposed method 
does not use human-labelled training data and relies solely in the dy
namic model introduced before. 

Note that the expert has labelled a high number of short episodes 
(less than 1 min) as false negatives. He has also combined the episodes 
before and after these false negatives, so that the fraction of long ar
rhythmias (greater than 12 h) is higher. In some cases, he has also 
detected that an apparently long arrhythmia is a false episode because of 
far-field problems, so some arrhythmia episodes with duration between 
6 and 12 h were removed. The proposed method is stable and will not 
remove these long episodes, because it is ensured that the mean duration 
of the processed episodes must be equal to or greater than the original 
mean duration. Despite this, the number of post-processed arrhythmias 
lasting 24 h or more is higher than the alternatives. Finally, let us note 
that neither statistical classifiers nor those based on machine learning 
maintain this stability property, i.e., it is possible that the modified 
histogram may have a shorter mean arrhythmia duration than the 
original histogram. 

5.3. Representative cases 

The data described in Section 2 have been analyzed by a technical 
specialist in the diagnosis of arrhythmia, who has selected three repre
sentative patients for a detailed explanation. In the first of the selected 
cases, the post-processed episodes do not alter the original measurement 
of the PM. In the other two cases the algorithm has made a correction 
with possible diagnostic significance. 

It must be pointed out that the number of patients in which the 
proposed algorithm altered the final histogram was 40 out of 76. This 
means that, in the conditions of this study, PMs histograms of durations 
are not reliable in more than half (53%) of cases, underlining the 
importance of this study. 

Table 3 
Simulations with simulated data comprising 500 episodes. Rows: proportion f of 
coarse data. Columns: proportion τ of false negatives (premature detections of 
the end of AF episodes). Each cell contains the estimated AF episode length and 
the relative error percentage with respect to sample values. All times are 
measured in seconds.  

500 
samples 

τ = 0  τ = 0.2  τ = 0.4  τ = 0.6  τ = 0.8  

f = 0  1018 968 1028 875 1060 
f = 0.2  985 [3%]  959 [1%]  1033 

[0%]  
889 [2%]  1057 

[0%]  
f = 0.4  966 [5%]  953 [2%]  1026 

[0%]  
892 [2%]  1081 

[2%]  
f = 0.6  947 [7%]  930 [4%]  1022 

[1%]  
904 [3%]  1096 

[3%]  
f = 0.8  914 [10%]  898 [7%]  1016 

[1%]  
936 [7%]  1092 

[3%]  
f = 1  4525 

[340%]  
791 
[18%]  

1093 
[6%]  

971 
[11%]  

1118 
[5%]   

Table 4 
Variability associated with sampling: First row: sample values (estimations 
without coarse data) for five different simulated samples comprising 500 epi
sodes each and τ = 0. Rows second to sixth: EM estimations on the same samples 
and a fraction f of coarse data. Each cell contains the estimated AF episode 
length and the relative error percentage with respect to sample values. All times 
are measured in seconds.  

500 
samples 

Sample #1 Sample #2 Sample #3 Sample #4 Sample 
#5 

f = 0  1057 1000 889 1068 1007 
f = 0.2  1070 [1%]  1022 [2%]  876 [1%]  1073 [0%]  1025 

[2%]  
f = 0.4  1076 [2%]  1033 [3%]  848 [5%]  1114 [4%]  981 [3%]  
f = 0.6  1142 [8%]  1043 [4%]  871 [2%]  1140 [7%]  1027 

[2%]  
f = 0.8  1196 

[13%]  
1006 [1%]  851 [4%]  1252 

[17%]  
1048 
[4%]  

f = 1  1057 
[85%]  

4356 
[335%]  

1446 
[62%]  

668 [37%]  599 
[40%]   
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5.3.1. Patient A: unaltered histogram 
This patient (see Fig. 3) is representative because the expert did not 

detect inconsistencies in the raw durations (blue histogram). The post
processed durations (orange histogram) evince that the algorithm is safe 
in terms of the correct diagnosis of paroxysmal atrial fibrillation, 
because the post-processed episodes have durations equal to or greater 
than the raw episodes. 

5.3.2. Patient B: false negatives 
There is a high number of false negatives in Patient B, and also a high 

number of episodes without attributed duration. The iECG of one of 
these false negatives is depicted in Fig. 4. The PM has detected a spurious 
end of the AF episode (red vertical line, pacing in dual chamber or DDD 
mode) and a new AF event was issued 7 s later (blue vertical line, change 
to atrioventricular sequential dual-chamber inhibited rate-responsive 
nontracking but atrial sensing mode or DDIR pacing). The post- 
processed histogram (see Fig. 5) shows that these false negatives have 
been correctly identified and removed, thus the bar in 0–1 min disap
pears and the mode of the post-processed distribution becomes 1–5 min. 

5.3.3. Patient C: wrong maximum duration 
Patient C (see Fig. 6) is representative because the raw data indicates 

that the longest AF events are of 5–15 min, which is wrong. The reasons 
can be explained with the help of the iECG in Fig. 7. The PM correctly 
activates the AMS (first vertical blue line) when it detects a high atrial 

Table 5 
Comparison of different arrhythmia histogram correction strategies. All values in the table are percentages. The second column comprises the raw PM percentages and 
the following columns are, respectively, the corrections applied by an expert, the automatic method proposed in this work and a selection of statistical and artificial 
intelligence-based classifiers: SVC is a Support Vector Classifier, MLP is a three layer Neural Network, KNN is the k-nearest neighbours algorithm and ADA is an 
Adaboost ensemble of classifiers. There are two numbers in each cell of these last columns. The first number is the mean height of each bar of the corrected histogram 
for each of the studied corrections. The second number (in parentheses) is the difference between the corrected value and the raw PM value. The proposed method is 
stable and ensures that long arrhythmia episodes are never removed, and at the same time is the nearest to the human expert in long episodes. The methods with bold 
values produced a potentially unsafe correction of some patients’ histograms.  

Length PM Expert This method SVC MLP KNN ADA 

0–1 min 61.77 52.44 (− 9.33) 58.97 (− 2.79) 61.42 (− 0.35) 61.07 (− 0.69) 61.57 (− 0.19) 61.17 (− 0.60) 
1–5 min 14.66 13.94 (− 0.72) 15.95 (+1.29) 14.53 (-0.13) 15.10 (+0.44) 14.51 (-0.16) 14.98 (+0.32) 
5–15 min 5.99 5.15 (− 0.84) 6.26 (+0.27) 6.15 (+0.16) 5.96 (-0.03) 6.22 (+0.23) 6.11 (+0.12) 
15–30 min 4.02 3.21 (− 0.81) 4.23 (+0.21) 4.12 (+0.10) 4.11 (+0.09) 4.04 (+0.02) 4.11 (+0.09) 
30 min - 1 h 3.25 8.95 (+5.70) 3.94 (+0.69) 3.31 (+0.06) 3.29 (+0.05) 3.37 (+0.12) 3.28 (+0.03) 
1 h–3 h 3.54 5.09 (+1.55) 3.65 (+0.10) 3.55 (+0.00) 3.59 (+0.05) 3.57 (+0.02) 3.56 (+0.02) 
3 h–6 h 1.75 4.02 (+2.27) 1.78 (+0.03) 1.77 (+0.02) 1.68 (-0.07) 1.71 (-0.04) 1.65 (-0.10) 
6 h–9 h 0.81 0.66 (− 0.15) 0.82 (+0.02) 0.86 (+0.05) 0.90 (+0.09) 0.74 (-0.06) 0.71 (-0.10) 
9 h–12 h 0.22 0.15 (− 0.07) 0.23 (+0.01) 0.26 (+0.04) 0.23 (+0.01) 0.23 (+0.01) 0.26 (+0.04) 
12 h–24 h 0.98 1.07 (+0.09) 1.00 (+0.02) 0.94 (-0.04) 1.01 (+0.04) 0.94 (-0.03) 1.05 (+0.07) 
> 24 h  3.02 5.33 (+2.31) 3.17 (+0.16) 3.10 (+0.08) 3.05 (+0.04) 3.10 (+0.08) 3.12 (+0.11)  

Fig. 3. Patient A: unaltered histogram. Durations are 0–1 min, 1–5 min, 5–15 
min, 15–30 min, 30min-1h, 1–3 h, 3–6 h, 6–9 h, 9–12 h, 12–24 h and greater 
than 24 h. 

Fig. 4. Patient B: iECG of a false negative. The PM has detected an spurious end 
of the AF episode that has been followed by a reentrance 7 s later. Blue channel: 
atrium. Orange channel: ventricle. Red vertical line: DDD pacing. Blue vertical 
line: DDIR pacing. 

Fig. 5. Patient B. The histogram is altered by the removal of the short episodes 
(bar in 0–1 min). Durations are 0–1 min, 1–5 min, 5–15 min, 15–30 min, 
30min-1h, 1–3 h, 3–6 h, 6–9 h, 9–12 h, 12–24 h and greater than 24 h. 

J. Fernández et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 134 (2021) 104480

7

frequency, but after a few seconds it is deactivated (vertical red line), 
although the arrhythmia is still in progress. A few seconds later the AF 
episode it is detected again (second blue line) as if it was a new event. 
After processing, the number of long episodes is higher because some 
episodes were fused and some short episodes (0–1min) were removed. 
Note that, unlike patient B, in this case a new bar appears in the duration 
15–30 min, where there were no previously recorded events. This new 
bar could be diagnostically relevant. 

6. Concluding remarks and future work 

Given the storage limitations of the CIEDs, it is not always possible to 
verify the stored duration of an AF episode with its corresponding iECG. 
There are cases in which the histogram of durations of a patient is the 
only available information. However, episode lengths were shown to be 
unreliable: the histograms were overly optimistic in more than half of 
the cases in this study. And even if EGM are available for visual analysis 
and review, this could be very tedious in clinical practice if the number 
of episodes is large. So, automatic algorithms providing reliable metrics 
and histograms on AF duration are clearly desirable from a clinical 
perspective. 

A method has been proposed to post-process these histograms, 
removing false negatives and fusing short episodes together. The 
methodology consists in fitting a mathematical model to the list of the 
dates of the AF events and at the same time to a partially incomplete list 
of episode durations. A new expectation-maximization algorithm for 
coarse data was developed, and it was shown that the proposed algo
rithm converges to the desired solution in a wide range of conditions. 
The proposed method does not require altering the functioning 

parameters of the CIED, and post-processed histograms have an 
increased average episode length. The properties of the proposed pro
cedure have been demonstrated first, validated with simulated data with 
known properties in the second place, and applied to data collected in a 
three-year long study finally. 

In future studies we intend to extend this analysis to the investigation 
of the long-term evolution from paroxysmal to permanent arrhythmia. 
In its current state, the algorithm assumes that the parameters defining 
the duration of the arrhythmia have not changed during the study, and 
also that the arrhythmia is of the paroxysmal type. However, it is 
possible to extend the model so that the parameters λ ​ NA and λ ​ AN are 
functions of time. In this case, the extended algorithm could detect the 
point of change between the conditions that in clinical practice are 
associated with paroxysmal and permanent arrhythmias. The cases 
where this future EM algorithm would converge to the desired solution 
in the time-varying model will be established in future studies. 
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Appendix A. Probability density of the time between two events 

The density function fT(t) of the time t elapsed between two events marked as arrhythmia by the system is derived in this appendix. Recall that we 
denote by f(t|λ) the probability density function of an exponential distribution with rate parameter λ. f(t|λ1, λ2) is the probability density function of a 
hypoexponential distribution with rates λ1 and λ2, 

P(TAN > t)=
∫ ∞

t
f (s|λ ​ AN)ds (5) 

Let us assume, temporarily, that λ ​ AN + λ ​ AG ∕= λ ​ NA. The probability distribution of the time between two events depends on the probability 
distributions of the elapsed time on each path, as follows: 

fT(t)= f (t|λ ​ AG)P(TAN > t) +
∫ t

0
f (s|λ ​ AN)f (t − s|λ ​ NA)P(T ​ AG > s)ds (6) 

Fig. 6. Patient C. The histogram is altered by the removal of the short episodes 
(bar in 0–1 min) and a new bar appears for duration 15–30 which may be 
relevant for the diagnostic. Durations are 0–1 min, 1–5 min, 5–15 min, 15–30 
min, 30min-1h, 1–3 h, 3–6 h, 6–9 h, 9–12 h, 12–24 h and greater than 24 h. Fig. 7. Patient C. The PM correctly activates the AMS (first vertical blue line) 

when it detects a high atrial frequency, but after a few seconds it is deactivated 
(vertical red line), although the arrhythmia continues to be in progress. A few 
seconds later is detected again (second blue line). Blue channel: atrium. Orange 
channel: ventricle. Red vertical line: DDD pacing. Blue vertical line: 
DDIR pacing. 
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Replacing the expressions of the density functions of the exponential densities and solving the integrals, we obtain that 

fT(t) = λ ​ AGe− λ ​ AG te− λ ​ AN t +

∫ t

0
λ ​ ANe− λ ​ ANsλ ​ NAe− λ ​ NA(t− s)e− λ ​ AGsds == λ ​ AGe− λ ​ AG te− λ ​ AN t + λ ​ ANλ ​ NAe− λ ​ NA t

∫ t

0
e(λ ​ NA − λ ​ AN − λ ​ AG)sds == λ ​ AGe− λ ​ AG te− λ ​ AN t 

+
λ ​ ANλ ​ NA

λ ​ NA − (λ ​ AN + λ ​ AG)
e− λ ​ NA t(e(λ ​ NA − λ ​ AN − λ ​ AG)t − 1) == λ ​ AGe− (λ ​ AG+λ ​ AN)t +

λ ​ ANλ ​ NA

λ ​ NA − (λ ​ AN + λ ​ AG)
(e− (λ ​ AN+λ ​ AG)t − e− λ ​ NA t) =

=
λ ​ AG

λ ​ AN + λ ​ AG
(λ ​ AN + λ ​ AG)e− (λ ​ AG+λ ​ AN)t +

λ ​ AN

λ ​ AN + λ ​ AG

(λ ​ AN + λ ​ AG)λ ​ NA

λ ​ NA − (λ ​ AN + λ ​ AG)
⋅ ⋅(e− (λ ​ AN+λ ​ AG)t − e− λ ​ NA t)

(7)  

and observing that λ ​ A = λ ​ AN + λ ​ AG, we conclude that the probability distribution of the time between two episodes is 

fT(t)= p ​ AGf (t|λ ​ A)+ p ​ ANf (t|λ ​ A, λ ​ NA) (8) 

In the particular case that λ ​ A = λ ​ NA (see Ref. [4]): 

f (t|λ ​ A, λ ​ A)= erlang(t|λ ​ A)= λ2
​ Ate− λ ​ A t. (9)  

Appendix B. Critical points of the likelihood function 

Before studying the maximum likelihood estimate of the probability distribution in Eq. (8), we will study the case in which all the durations of the 
AF episodes are missing and all the paths are of type (T1), with no spurious exits. The solution of this particular case shows us that the likelihood 
function of the problem has more than one maximum and, therefore, it is necessary to resort to heuristics to initialize the EM algorithm. The general 
problem will be presented as a mixture of two distributions sharing a parameter. 

The mean and the variance of a hypoexponential distribution with parameters λ1, λ2 are (see Ref. [4]): 

μ=
1
λ1

+
1
λ2
, σ2 =

1
λ2

1
+

1
λ2

2
(10)  

and so, we have: 

σ2

μ2 ∈

[
1
2
, 1
]

(11) 

Suppose that ti (i = 1, 2...,n), are i.i.d. with p.d.f. 

fhypo
(
t
⃒
⃒λ∗1, λ

∗
2

)
=

λ∗1λ∗2
λ∗2 − λ∗1

(
e− λ∗1 t − e− λ∗2 t) (12)  

we define the empirical log-likelihood function 

L n(λ1, λ2)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n(log(λ1) + log(λ2)

− log

(

λ1 − λ2

))

+
∑n

i=1
log

(

e− λ1 ti − e− λ2 ti

)

if ​ λ1 ∕= ​ λ2

2nλ1 +
∑n

i=1
log(ti) − λ1ti if ​ λ1 = λ2

(13) 

In the case λ1 ∕= λ2, the necessary condition of a critical point is determined by: 

0=
∂L n

∂λ1
(λ1, λ2)=

n
λ1

+
n

λ2 − λ1
+
∑n

i=1

− tie− λ1 ti

e− λ1 ti − e− λ2 ti
(14)  

0=
∂L n

∂λ2
(λ1, λ2)=

n
λ2

−
n

λ2 − λ1
+
∑n

i=1

tie− λ2 ti

e− λ1 ti − e− λ2 ti
(15) 

Adding (14) and (15), we have: 

1
λ1

+
1
λ2

=

∑n
i=1ti

n
= μn→n→∞ μ∗ (16) 

This equality implies that any critical point belongs to a curve. Furthermore, the symmetry of the hypoexponential distribution implies that we 

always have a critical point in 1
λ1

= 1
λ2

=

∑n
i=1

ti
2n . A direct computation implies that this point is a local maximum in the case σ2

n <
μ2

n
2 where σ2

n denotes the 

empirical variance. This symmetrical critical point is a saddle point in the more natural case σ2
n >

μ2
n
2 (see Appendix C). Therefore, in this simplified 

problem, it is expected that the empirical log-likelihood function will have more than one critical point. 
We have not been able to prove the existence of two symmetric global maximums of the empirical log-likelihood function, but the numerical 

simulations indicate that, on the restriction given by (16), we have two local maximums that converge to the two symmetrical theoretical values when 
the number of samples is large enough. 
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It must be said that the symmetry of the p.d.f. of the hypoexponential distribution implies that we cannot use the usual arguments of consistency of 
the maximum likelihood estimator because we have an identification problem (see Appendix D). The possible existence of more than one critical point 
of the empirical log-likelihood with finite-sized samples, induces us to use a heuristic algorithm to find a starting point at which to apply the method of 
expectation maximization in order to estimate the parameters of the distribution. 

An EM algorithm is defined In Appendix E for the particular case where all durations are unknown and all paths are of type (T1), with no spurious 
exits, as mentioned above. The solution of the general case is addressed in Appendix F. 

Appendix C. Critical point character in the hypoexponential case 

The symmetrical critical point is a saddle point in the more natural case σ2
n >

μ2
n

2 : 

∂2

∂λ2
1
L n(λ, λ)=

∂2

∂λ2
1
L n(λ, λ)= −

1
λ2 +

1
12n

∑n

i=1
x2

i (17)  

∂2

∂λ1∂λ2
L n(λ, λ)= −

1
12n

∑n

i=1
x2

i (18)  

and the Hessian: 

HL n(λ, λ)= −
1
λ4 +

1
6λ2n

∑n

i=1
x2

i (19) 

If λ = 2
μn 

then 

HL n(λ, λ) > 0 ⇔
∑n

i=1x2
i

nμ2
n

>
3
2

⇔
σ2

n

μ2
n
>

1
2

(20)  

Appendix D. Consistency of the estimation in the hypoexponential case 

Adding equation (14) multiplied by 1
λ1 

and equation (15) multiplied by 1
λ2

, we have: 

1
λ2

1
+

1
λ2

2
+

1
λ1λ2

=
1
n
∑n

i=1

1
λ1

tie− λ1 ti − 1
λ2

tie− λ2 ti

e− λ1 ti − e− λ2 ti
(21) 

The right hand side of (21) is not equal to σ2
n +

1
λ1λ2

. But if we evaluate (21) in the theoretical values (λ∗1,λ
∗
2), the law of large numbers implies that the 

right hand side in (21) converges when the size of the sample incresases, to: 
∫ ∞

0
t
(

1
λ∗1

te− λ∗1 t −
1
λ∗2

tie− λ∗2 t
)

λ∗1λ∗2
λ∗2 − λ∗1

e− λ∗1 t − e− λ∗2 t

e− λ∗1 t − e− λ∗2 t dt=

=
1

λ∗2
1
+

1
λ∗2

2
+

1
λ∗1λ∗2

(22)  

so 

lim
n→∞

∂L n

∂λi

(
λ∗1, λ

∗
2

)
= 0, i= 1, 2 (23)  

which implies the consistency of the estimation. 

Appendix E. Expectation-maximization estimation in the hypoexponential distribution 

In this case, the observed values are ti, the sum of the intermediate times. We will consider the first intermediate time xi as the hidden variable and 
θ = (λ1, λ2) as the parameters. 

We denote by 

L
(m)

n (θ) =
1
n

∑n

i=1

∫ ti

0
f (x|ti, θ(m))log(f (x, ti|θ))dt (24)  

where θ = (λ1,λ2), 

f (x, ti|θ)= λ1e− λ1xλ2e− λ2(ti − x) (25)  

f (x|ti, θ)=
f (x, ti|θ)
fhypo(ti|θ)

(26) 
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In the Expectation-Maximization algorithm (EM), for any m, we obtain new parameters θ(m+1) = (λ(m+1)
1 , λ(m+1)

2 ) that maximize the concave function 
L

(m+1)
n . 
If we define: 

β(m)

i1 =
1

fhypo(ti|θ(m))

∫ ti

0
e− λ(m)

1 xe− λ(m)

2 (ti − x)xdx (27)  

and 

β(m)

i2 =
1

fhypo(ti|θ(m))

∫ ti

0
e− λ(m)

1 xe− λ(m)

2 (ti − x)(ti − x)dx (28)  

then the algorithm consists in computing, from the given initial values θ(0) = (λ(0)1 , λ(0)2 ) and for any m: 

1
λ(m+1)

1

=
1
n
∑n

i=1
β(m)

i1 (29)  

1
λ(m+1)

2

=
1
n
∑n

i=1
β(m)

i2 (30) 

It is not feasible to make a strong imputation of the value of the intermediate time for a given final time because 

∂log(f (x, ti|θ))
∂x

= λ2 − λ1 (31)  

and therefore an intermediate time could not be selected. 

Appendix F. Expected maximization estimation in the general case 

The density function is: 

f (t|τ, λ1, λ2)=

= τfexp
(
t|λ1)+ (1 − τ)fhypo(t|λ1, λ2

)
=

= τλ1e− λ1 t +(1 − τ) λ1λ2

λ2 − λ1
(e− λ1 t − e− λ2 t)

(32)  

if λ1 ∕= λ2. In the other case, we must replace the hypoexponential distribution for the Erlang distribution. This distribution can be interpreted as the 
mixture of an exponential distribution and a hypoexponential distribution with a shared parameter. 

In order to apply the EM algorithm to estimate the parameters of this distribution, we will consider as hidden variables:  

• times ti in the sample, that can be of types T1 or T2 (recall Eqs. (2) and (3)).  
• the AF episode length, when ti comes from the hypoexponential distribution. 

The parameters are θ = (τ,λ1,λ2). We define the functions that follow: 

L
(m)

n (τ, λ1, λ2) =

1
n
∑n

i=1

(

p

(

zi = 1|ti, θ(m))log(f (zi = 1, ti|θ

)

++

∫ ti

0
f
(

zi = 2, x|ti, θ(m))log(f (zi = 2, x, ti|θ
))

dt
) (33)  

where 

p(zi = 1|ti, θ(m)) =

f (zi = 1, ti|θ(m))

f (ti|θ(m))
=

τfexp
(
ti
⃒
⃒θ(m)

))

τ(m)fexp
(
ti
⃒
⃒θ(m)

))
+ (1 − τ(m))fhypo(ti|θ(m))

:= Γ(m)

i1

(34)  

and 
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f (zi = 2, x|ti, θ(m)) =

f (zi = 2, x, ti|θ(m))

f (ti|θ(m))
=

(
1 − τ(m)

)
fexp
(
x
⃒
⃒λ(m)

1
)
fexp
(
ti − x

⃒
⃒ ​ λ(m)

2
)

τ(m)fexp
(
ti
⃒
⃒θ(m)

))
+
(
1 − τ(m)

)
fhypo

(
ti
⃒
⃒θ(m)

) := γ(m)

i2

(

x

)

(35) 

Finally, 

log(f (zi = 1, ti|θ))= log(τ) + log(λ1) − λ1ti (36)  

and 

log(f (zi = 2, x, ti|θ)) =
log(1 − τ) + log(λ1) − λ1ti + log(λ2) − λ2(ti − x) (37)  

satisfying 

Γ(m)

i1 +

∫ ti

0
γ(m)

i2 (x)dx := Γ(m)

i1 + Γ(m)

i2 = 1. (38) 

Functions L (m)

n are concave and therefore have a single maximum (See Appendix G). 
If we define: 

β(m)

i1 =

∫ ti

0
γ(m)

i2 (x)xdx, (39)  

β(m)

i2 =

∫ ti

0
γ(m)

i2 (x)(ti − x)dx (40)  

then the algorithm consists in computing, from the given initial values θ(0) = (τ(0), λ(0)1 , λ(0)2 ) and for any m: 

1
λ(m+1)

1

=
1
n
∑n

i=1
Γ(m)

i1 ti + β(m)

i1 (41)  

1
λ(m+1)

2

=

∑n
i=1β(m)

i2
∑n

i=1Γ(m)

i2

(42)  

τ =
1∑n

i=1
Γ(m)

i2
1∑n

i=1
Γ(m)

i1
+ 1∑n

i=1
Γ(m)

i2

(43) 

In the case where there is an AF episode length for an interval ti, we can replace the corresponding terms in the EM estimations. 
Observe also that when the duration xi equals the time interval ti, then we have a false exit and have to consider the values: 

Γ(m)

i1 = 1, Γ(m)

i2 = β(m)

i1 = β(m)

i2 = 0. (44)  

if the duration is shorter than the time interval, then we impose the values 

Γ(m)

i1 = 0, Γ(m)

i2 = 1, β(m)

i1 = xi, β(m)

i2 = ti − xi. (45)   

F.1 Local convergence of the EM algorithm 

In [25] the authors prove that under some conditions the EM algorithm converges to a critical point of the empirical likelihood and if the unique 
critical point is a global maximum the algorithm converges to this maximum. 

In our case it is impossible to be certain that the empirical likelihood function has a unique critical point. The existence of the unique maximum is a 
consequence of the identification property (See Appendix H). 

Appendix G. Concavity of L (m)
n in the interior of the domain 

Observe that 
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∂2

∂τ2L
(m)

n (τ, λ1, λ2)=

−
1

nτ2

∑n

i=1
Γ(m)

i1 −
1

n(1 − τ)2

∑n

i=1
Γ(m)

i2

(46)  

∂2

∂λ2
1
L

(m)

n (τ, λ1, λ2)= −
1
λ2

1
(47)  

∂2

∂λ2
2
L

(m)

n (τ, λ1, λ2)= −
1

nλ2
2

∑n

i=1
Γ(m)

i2 (48)  

and the mixed partial derivatives are zero. 

Appendix H. Identification of the distribution in the general case 

Given 

f (τ, λ1, λ2) =

(1 − τ)e− λ1x + τ λ1λ2

λ2 − λ1
(e− λ1x − eλ2x)

(49)  

we want to prove that there are no two parameters τ′ , λ1
′ , λ2

′ with the same value functions: 

f (τ, λ1, λ2)= f (τ′

, λ1
′

, λ2
′

) (50) 

The independence of exponential functions indicates that the only two possibilities are:  

1. λ1 = λ1
′ , λ2 = λ2

′

2. λ1 = λ2
′ , λ2 = λ1

′

In the first case, clearly τ = τ′ . In the second case, given the antisymmetry of λ1λ2
λ2 − λ1 

and using the notation λ = λ1λ2
λ2 − λ1 

we see that: 

(1 − τ)+ τλ= τ′ λ (51)  

− τλ = 1 − τ′

− τ′ λ (52) 

The determinant of the system of equations with variables τ, τ′ is 
⃒
⃒
⃒
⃒

λ − 1 − λ
− λ 1 + λ

⃒
⃒
⃒
⃒= − 1 (53)  

and their solutions are unique τ = τ′

= 1, so we have the hypoexponential case. 

Appendix I. Local Convergence 

Considering the auxiliary function fi(λ1 − λ2) = 1
λ2 − λ1

(1 − e(λ1− λ2)ti ), the partial derivatives of the likelihood function are: 

0=
∂L n

∂τ (τ, λ1, λ2)=
∑n

i=1

1 − λ2fi(λ1 − λ2)

τ + (1 − τ)λ2fi(λ1 − λ2)
(54)  

0=
∂L n

∂λ1
(τ, λ1, λ2)=

=
n
λ1

+
∑n

i=1
ti +

∑n

i=1

(1 − τ)λ2fi
′

(λ1 − λ2)

τ + (1 − τ)λ2fi(λ1 − λ2)

(55)  

0=
∑n

i=1

(1 − τ)( − λ2fi
′

(λ1 − λ2) + fi((λ1 − λ2))

τ + (1 − τ)λ2fi(λ1 − λ2)
(56) 

From (54) we can define 

μ : =
∑n

i=1

1
τ + (1 − τ)λ2fi(λ1 − λ2)

=

=
∑n

i=1

λ2fi(λ1 − λ2)

τ + (1 − τ)λ2fi(λ1 − λ2)

(57)  

however, 
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μ= τμ+(1 − τ)μ=

=
∑n

i=1

τ
τ + (1 − τ)λ2fi(λ1 − λ2)

+

+
∑n

i=1

(1 − τ)λ2fi(λ1 − λ2)

τ + (1 − τ)λ2fi(λ1 − λ2)
= n

(58) 

thus, 

1
n
∑n

i=1

fi(λ1 − λ2)

τ + (1 − τ)λ2fi(λ1 − λ2)
=

1
λ2

(59) 

Finally, summing (55) and (56) and using (59) we obtain that the mean of the maximum likelihood distribution is equal to the sample mean: 

1
λ2

+(1 − τ) 1
λ2

=
1
n
∑n

i=1
ti (60)  

Appendix J. Heuristics for initializing the EM algorithm 

The EM algorithm has local convergence to one of the critical points but we cannot guarantee the existence of a unique critical point that is a global 
maximum. The EM must be started from a set of coefficients that allow a strong imputation of the interval type for each of the sample intervals. Two 
different initializations are considered: 

J.1 Heuristic without durations 

This initializacion consists in a simplified likelihood function where τ is a variable. The intervals are sorted first, according to their lengths. For each 
value of τ the sorted list is divided into two groups. The mean of the durations of the group with shorter lengths is used to obtain an initial value for 1

λ1 
and the mean of the remaining data is used for estimating 1

λ1+
1
λ2. The value of τ that maximizes the likelihood of these two assignments is chosen. 

J.2 Heuristic with durations 

The intervals between two AMS events are categorized as follows:  

1. Intervals whose length is much lower than the AF episode length. These intervals are assigned the type T1 (Positive → True Negative →  Positive).  
2. Intervals whose length is of the same order as the AF episode. These episodes are assigned the type T2 (Positive → Positive)  
3. Intervals without known AF episode length: these episodes are sorted and a duration d is selected. Intervals shorter than d are imputed as type T2 

and intervals longer than d are imputed as type T1. 

For each value of d, λ1 and λ2 are estimated for the three categories:  

1. Type T1 with AF duration: the mean of the durations is an estimation of 1
λ1 

and the mean of the interval lengths minus the AF length is an estimation 
of 1

λ2
.  

2. Type T2 with AF duration: the mean of the interval lengths is an estimation of 1
λ1

.  
3. Intervals without AF duration: the heuristic without durations mentioned before is applied 

The initial estimation of 1
λ1 

and 1
λ2 

is obtained as a weighted mean of the different estimations, with weights proportional to the number of samples 
involved at each estimation. The value of d that maximizes the posterior likelihood is chosen. 
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