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I. INTRODUCTION

An electroencephalogram (EEG) is a method for measuring
and analyzing the electrical activity in the brain. The non-
invasive procedure, which consists of placing electrodes on
the scalp, has been widely used for years because it allows
measurements of the brain regions of interest to be taken
easily.

However, the EEG signals are usually contaminated by other
electrical signals originated from a variety of sources, which
can make it difficult to analyse the the real brain activity. These
signals, called artifacts, can come from non-physiological or
physiological sources:

1) The former proceed from the experimental environment,
e.g. the lightning of the room, nearby noise or vibrations,
or even the electrical connections of the measuring
device.

2) The latter proceed from the subjects themselves. These
artifacts can be caused by the heart rate (cardiac or pulse
artifacts), any muscle contraction (myogenic artifacts) or
any eye movement (ocular artifacts).

In the field of study of cognitive diseases, having clean-
up techniques that ensure the removal of these artifacts while
preserving as much brain information as possible in real time
could be crucial. The non-physiological artifacts can be easily
reduced by ensuring that the EEG recording sessions are made
under appropriate environment conditions as well as myogenic
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artifacts if the subject is in a comfortable position and without
any movement. Cardiac artifacts only occur if the sensor
is pressed on a blood vessel, but they can be filtered. The
most common artifact is the ocular one: even if the ocular
movements can be restricted, the blinks are and unavoidable.

Although the blink artifact detection and removal is a
subject that has been discussed for years and for which many
different methods have been developed, new alternatives are
still being proposed. The last year, many papers about different
ocular artifact removal procedures were published.

As can be seen below, all of the methods apply the same
kind of algorithms, but differ in the way they are combined.
Among these algorithms, the decomposition ones are the
most commonly used because they allow to limit the data to
be modified or removed and preserve as much useful brain
information as possible. For example:

1) Those applying a source decomposition belong to the
Blind Source Separation (BSS) group. The most impor-
tant algorithm is the Independent Component Analysis,
which decomposes the signal into independent sources.
Another one is the Canonical Correlation Analysis
(CCA), which extracts the uncorrelated sources.

2) Those applying a level spectral decomposition of some
kind. On the one hand, the Empirical Mode Decom-
position (EMD) extracts a set of components called
Intrinsic Mode Functions (IMFs) through upper and
lower envelopes. On the other hand, the Discrete Wavelet
Transform (DWT) applies pairs of symmetric high-pass
and low-pass filters.

Apart from that, other techniques to be mentioned use
some sort of Machine Learning algorithms in order to detect
automatically the presence of an artifact by classification.



Some of the studies, [1]–[4], try to eliminate all the ocular
artifacts in general, i.e. eye movements and blinks: the first
one applies a combination of CCA and NAPCT, a variant
of Principal Component Analysis (PCA), both of them being
BSS algorithms. The second one uses a Wiener Filter, an
adaptive filter. The third one applies a combination of SCICA,
an ICA variant, and Ensemble-Empirical Mode Decomposi-
tion (EEMD), an EMD variant. The latter one uses another
combination of ICA too, this time with DWT.

Others focus only on blink artifacts. The BSS techniques are
used in [5], where two of them are combined (PCA+ICA);
[6] uses a combination of CCA and a faster variation of
EMD; and [7] applies ICA to decompose into the sources
and a classification algorithm to detect if any of them is
contaminated by an artifact.

In [8] a combination of ICA, two Support Vector Machines
(SVM) and one Autoencoder is proposed, making a total
of three Machine Learning algorithms; and in [9], the same
authors proposed another combination, this time with DWT
and SVM.

There are other algorithms that decomposes the signal
into spectral Mode Functions as the EMD, like Multivariate
Variational Mode Decomposition [10] or Variational Mode
Extraction (VME) [11], both of them are variations of the
Variational Mode Decomposition (VMD) algorithm.

This paper proposes an automatic blink detection and
removal technique and compare it with two of the above
methods: those proposed in [11] and [6]. All of them apply
different algorithms to perform the detection and the removal
of the blinks contained in the EEG signal, so the aim of this
study is to compare the detection and elimination performance
of this recently proposed techniques. For this purpose, a blink
dataset of EEG recording sessions of healthy subjects has been
created to allow the comparison of these methods with real
blinks.

The structure of this work is as follows. Firstly, the next
section (II) explains in detail the different techniques for the
automatic identification and removal of blink artifacts to be
compared and mentioned in the previous paragraph. Section
III describes the conditions under which the dataset used was
recorded and the implementation of each of the algorithms,
while Section IV presents the results of each experiment,
followed by a discussion on the obtained results. Finally, the
conclusions are drawn.

II. BLINK DETECTION AND REMOVAL TECHNIQUES

The first study to be compared, developed by [11], presents a
technique where the blink detection phase is performed by the
Variational Mode Extraction (VME) algorithm and the removal
phase is carried out by applying the Discret Wavelet Transform
(DWT). Both algorithms perform a frequency decomposition
of the signal:

• The VME algorithm receive an input signal and extract
the component of a certain frequency band, called Band
Limited Intrinsic Mode Function (BLIMF). It is deter-
mined by two parameters: the value of the center fre-

quency (ωc) and the compactness coefficient (α), which
regularizes the bandwidth around (ωc).

• The DWT algorithm decomposes the input signal in
frequency components by applying pairs of symmetrical
low-pass and high-pass filters consecutively until a certain
level is reached. In each level, the component of high
frequency is preserved while the next filter pair is applied
to the low frequency component.

Secondly, the study presented by [6] applies an unsupervised
correlation-based blink detection method that uses a blink
template created from the EEG signal itself through a variant
of the Empirical Mode Decomposition (EMD) algorithm and
then employs the Canonical Correlation Analysis (CCA) to
remove the blink component within the signal.

• The EMD algorithm receive an input signal and extract
the components, called Intrinsic Mode Functions (IMFs),
using the upper and lower envelopes of the signal until
a certain level is reached. Because of this, each new
level represents activity of the original signal of lower
frequency than the following one.

• The CCA algorithm is a Blind Source Separation (BSS)
technique that decomposes the input signal into its un-
correlated sources. All the BSS algorithms work under
the assumption that the original signal is formed by the
linear combination of these sources.

The third method was proposed in a previous paper, [12],
and employs a dynamic threshold technique for the detec-
tion of the blink artifacts and a combination of CCA and
Ensembled-EMD (EEMD) for the removal stage.

• The Dynamic Threshold technique is based on the method
proposed by [13]: a normal template is created with non-
artifactual contamination EEG windows and a distance
metric is used to compute all the distances between all
the templates in order to calculate a normal threshold
value. Then, the maximun distance between the template
windows and a raw EEG window are used to determine
if the raw window is contaminated or not.

• The combined method CCA+EEMD method is the one
proposed by [14]: firstly, CCA algorithm is applied to an
EEG window to decompose it in its uncorrelated sources;
then, the blink component is detected and EEMD is used
to decompose it in its IMFs; finally, the blink IMFs are
detected and removed. This procedure allows to remove
the blink contamination and preserving as much brain
information as possible.

All these algorithms will be explained in the subsections be-
low separating them into Detection and Removal Techniques.

A. Blink Detection Techniques
1) Using VME and Peak Detection: VME is a variant of

the VMD (Variational Mode Decomposition) algorithm: this
technique receive an input signal and extract all possible com-
ponents, the BLIMFs, each one centered around a frequency
value.

Unlike VMD, the VME algorithm decomposes the original
signal into the desired mode u(n) centered around a certain



frequency value ωd and the residual signal r(n). In order to
extract only the desired frequency component, this method has
to minimize:

• The bandwidth around the center frequency:

J1 =

∥∥∥∥∂n [(δ(n) + j

nπ

)
∗ u(n)

]
e−jωdn

∥∥∥∥2
2

(1)

where δ(n) is the Dirac distribution and[(
δ(n) + j

nπ

)
∗ u(n)

]
is the Hilbert transform.

• The spectral overlap of the component and the residue.
The following filter must be applied to extract the com-
ponent of the desired frequency band:

β(ω) =
1

α(ω − ωd)2
(2)

where (α) is the compactness coefficient which regular-
izes the bandwidth. The minimization of the overlapping
can be solved by the following penalty equation:

J2 = ‖β(n) ∗ r(n)‖22 (3)

where β(n) is the impulse response of the filter βω
Finally, the desired mode can be extracted by minimizing

the criterion:

min
ωd,u(n),r(n)

{αJ1 + J2} (4)

subject to the sum of the desired mode extracted and the
residual must reconstruct the original signal.

The VME detection process applied by [11] is explained
below:

Given a window taken from the blink-contaminated EEG
signal (Xi), firstly it is checked for any blink artifact using
the VME algorithm: on the one hand, since the approximate
frequency range of the eye blinks is 0.5Hz - 7.5Hz, the center
frequency ωc is fixed to 3Hz; on the other hand, higher values
of the coefficient α ensure that the extracted mode corresponds
to the selected ωc value, but smaller α values allow to extract
the blink components in its frequency band despite the overlap
with the brain activity, so α is finally set to 3000. VME
is applied to the window Xi with these parameters and the
desired mode m(t) is calculated.

The Universal Threshold is calculated for each mode m(t)
of each window Xi as follows:

θ =
median(|m(t)|)

0.6745
∗
√
2 ∗ Log(N) (5)

where N is the number of samples of the mode signal.
The local maxima samples of m(t) are located and those

that are higher than the threshold θ are classified as a blink
artifact peak. These peak samples are searched for in the
original window Xi and smaller windows of 500 ms centered
in them are extracted. The onset of these windows is fs / 8
samples pre-peak and the offset is 3fs / 8 samples post-peak,
where fs is the sample rate of the signal. The blink window
created starts 125 ms before the peak and ends 375 ms after

it. Only blink intervals extracted this way are processed in the
removal stage: if there is no sample higher than the threshold
in the initial window Xi, it is preserved.

2) Correlation-based Detection: EMD is a decomposition
algorithm that receives a single input signal Xi and extracts a
certain number of components called IMFs. In each level of
decomposition, one IMF is calculated from the previous signal
by following these steps:

1) Compute the upper and lower envelopes (ue, le) of the
signal by a Cubic Spline Interpolation passing through
local maxima and minima.

2) The possible IMF ha is the difference between the initial
signal and the average of the two envelopes.

a =
ue+ le

2
→ ha = Xi − a (6)

Check the following conditions:
a) The number of extrema must be the same as the

number of zero crossings or differ by one.
b) The mean value of the two envelopes must be zero

at all samples.
3) If ha hold these criteria, it is an actual IMF. Otherwise,

it is used as the new initial signal and the first two steps
are repeated until an IMF is obtained.

4) Generate the residue as the difference between the initial
signal and the IMF. It is used as the new initial signal and
all the steps are repeated until the desired decomposition
level is reached.

ra = Xi − ha (7)

Another criterion to check whether ha is an actual IMF is
to calculate its standard derivation and check if it is in the
range [0.2, 0.3].

The original signal can be reconstructed by the sum of all
the IMFs and the last residue.

A variant of the EMD algorithm, called Fast-EMD, is
applied in [6]. It uses the Akima Spline Interpolation algorithm
to calculate the upper and lower envelopes of the signal in the
EMD process instead of the Cubic Spline, which is the most
commonly used in the basic EMD algorithm, because Akima is
quicker and requires lower computational cost. The correlation
with Fast-EMD process applied by them is explained below:

From the original EEG signal, the channels Fp1 and Fp2,
which correspond to the electrodes nearest to the left and
the right eye respectively, are extracted and the correlation
between them are calculated in 500 samples1 windows. This
is because the correlation coefficient between the channels
Fp1 and Fp2 increase when a blink occurs: the blink-free
segments generate a correlation lower than 0.7 while the blink-
contaminated ones generate a correlation higher than 0.9.

If a window produces a correlation coefficient between
channels Fp1 and Fp2 higher than 0.85, there is blink con-
tamination. Due to the amplitude of a blink is greater than
the EEG signal, a threshold based on the displacement of the



amplitude in Fp1 channel is used: the displacement calculates
the absolute difference between the signal and its mean, as
expressed in Eq.8. If blink artifacts have higher amplitude,
they will produce higher displacement. Then, the threshold
is calculated with Eq.9 only for this particular window, i.e.,
every window with blink contamination will have their own
displacement distribution and threshold value.

disp(t) = |XFp1(t)− µ| (8)

where µ is the mean of the channel Fp1 EEG window.

threshold = µdisp + 2 ∗ σdisp (9)

where µdisp and σdisp are the mean and the standard derivation
of the displacement of the window.

The first sample of the current window exceeding the
threshold is located because it is considered the starting point
of the blink, and a blink window is created around it: the onset
of the window is set 100 samples1 pre-start and the offset is
set 1 second post-start.

Once all the blink windows are extracted from all the
starting points detected in the current 500-samples1 window,
move on to the next one.

In order to create the blink template, each new blink window
extracted is compared with all the previous one through the
correlation between them until one pair has a correlation
coefficient higher than 0.8. Then, the Fast-EMD variant is
applied to these two blink segments.

The EMD algorithm performs the decomposition of the two
blink windows up to level 5. Each level represents the activity
of a lower frequency than the following ones, so the brain
oscillations will be retained in the first IMFs while the next
ones represents the blink contamination. Thus, the two blink
signals are reconstructed from their respectively third IMF
onwards. Finally, the blink template is created as the mean
of the two blink signals.

In the detection phase, a sliding window of the same size
as the template is used throughout the raw EEG signal. The
correlation between the EEG window and the blink template
is computed and the window is classified as contaminated if
this coefficient is higher than 0.5.

3) Threshold-based Detection: The threshold detection pro-
cess applied in a previous paper, [12], and based in the method
proposed by [13] is explained below:

Firstly, a template of EEG windows with normal activity,
i.e. without blink artifact contamination, is created.

Given an EEG window (Xi), its 0-50 Hz PSD (p) is com-
puted. Then it is compared using the Bhattacharyya Distance
with the PSD (q) from each of the available templates. The
distance is computed using Eq. 10 and 11, where p(k) and
q(k) are the kth sample of the p and q window of K size and
sBD is the similarity value, which inverse dBD is the distance

1The number of samples chosen for the window sizes depends on the
sampling rate. Their study was carried out using a sampling rate of 256Hz.

value. Therefore, we compare the current EEG window to each
of those included in the template set.

sBD = −ln(
K∑
k=1

(
√
p(k) ∗ q(k))) (10)

dBD =
1

sBD
(11)

Once the threshold values are obtained, the current EEG
window is compared with each of the normal windows of the
template computing the distance between them. The highest
distance is extracted: this value represents the lowest similarity
between the EEG window and the signals considered normal
(no blink artifact presence).

However, determining thresholds represents a challenge
itself as they suffer variability from one participant to other
and also the amount of signal might vary for the same
participant along the test. To minimize these drawbacks, this
paper proposes to use the Empirical Rule -a.k.a. 68–95–99.7
rule- to determine whether a point represents an outlier.

Let µ and σ be the mean and the standard derivation of
the distances between all the normal template signals. These
values are calculated once at the beginning and are constant
throughout the process.

In this study, whenever the maximum distance among
the current EEG window and a normal template holds the
condition in Eq. 12, the window is labelled as contaminated
with a blink artifact. In Eq. 12, µ and σ are the mean and the
standard derivation of the distances between normal templates,
respectively, while dmax(Xi) is the highest distance between
the current EEG window Xi and a normal template.

dmax(Xi)− µ > 3 ∗ σ (12)

B. Methods for Blink Removal

1) DWT-based Blink Removal: DWT is a decomposition
algorithm that receives a single input signal and extracts its
components by sequentially dividing the continuous spectrum:
each component corresponds to a different frequency band.

In each level of decomposition, the initial signal is passed
through two symmetric filters: a low-pass filter and a high-
pass filter at a certain frequency value. The former one ex-
tracts the low frequency component, called the approximation
component, which will be the new initial signal in the next
level until the desired decomposition level is reached; and the
latter one extracts the high frequency component, called the
detail component. Each component can be represented by a
approximation or a detail component respectively.

These filters are designed according to the discrete variant
of the mother wavelet function chosen.

The application of the DWT algorithm for blink removal
proposed by [11] is explained below:

Given a blink window, it is processed by applying the
DWT algorithm: Daubechies-4 (db4) is chosen as the mother
wavelet function because its morphology is very similar to the



blink one. In terms of the level of decomposition, a skewness-
value method is applied: as said before, blink artifact affects
low frequencies ranges, so the skewness of the approximation
component is calculated in each level of decomposition and
compared with the previous one. High absolute values of
skewness indicates blink presence in the component due to
its larger amplitude than the EEG. If the difference between
two consecutive skewness values are greater than a threshold,
the maximum level of decomposition has been reached.

To conclude, the approximation component of the last level
is removed and the clean EEG window is reconstructed from
all the detail components.

2) CCA Blink Removal: CCA algorithm belongs to the
group of BSS techniques, which assume that these signals are
formed by the linear combination of their sources:

X = A ∗ S → A =W−1 → S =W ∗X (13)

where X is the measured signals, S is the sources and A and
W are the mixing matrix and its inverse, the unmixing matrix,
respectively.

All BSS methods try to estimate the unmixing matrix and,
therefore, the sources that compose the measured signals, in
different ways.

Thus, CCA is a decomposition algorithm that receives a set
of n input signals and extracts their uncorrelated sources with
the autocorrelated values maximized.

The removal process based on the CCA algorithm proposed
by [6] is very simple and it is applied as follows: the algorithm
is executed to the blink window and the first component com-
puted, which usually corresponds to the artifact, are removed.
Then, the EEG window is reconstructed from the remaining
components.

3) Combined CCA-EEMD Blink Removal: Since EMD
suffers with mixing and aliasing problems despite performing
well, another variant is presented: EEMD is more noise-robust
than the basic EMD algorithm. This method adds white noises
of different amplitudes to the original signal in a way that each
noise signal is applied individually creating different noisy
variations of the original. Then, noisy IMFs are extracted from
each noisy variation until the chosen level of decomposition
is reached. Finally, each ith real IMF of the original signal is
calculated as the average of all the iths noisy IMFs.

The combined CCA+EEMD removal technique used in the
previous paper [12] and presented in [14] is explained below:

CCA is applied to separate the uncorrelated source signals
and ordered according to their kurtosis value. The artifact
component is identified as the source with the highest kurtosis.
Then, EEMD is applied only to that component to compute
its IMFs and the blink components are identified again by the
same method: IMFs are sorted by kurtosis value. The higher
ones corresponded to artifacts components. These artifact
signals are removed and the rest of the IMFs are preserved
to rebuild the CCA component and then all the sources are
combined again to reconstruct the EEG signal, now clean and
free of artifacts. The algorithm is outlined as follows:

If a blink is detected in the current window:
1) CCA algorithm is applied to the current window, extract-

ing the uncorrelated sources and sorting them by their
kurtosis value. The highest kurtosis corresponds to the
blink component.

2) EEMD algorithm is applied to that component, com-
puting the IMFs and sorting them using the kurtosis
value. The blink data contamination corresponds to
components with high kurtosis.

3) Dismiss the IMFs from the blink -i.e., the two IMFs
with the highest kurtosis- and reconstruct the component
using the remaining IMFS.

4) Reconstruct the free-from-blink EEG window from the
components.

III. MATERIALS AND METHODS

This section describes the recording of dataset used and the
experiments carried out.

A. Data Set Description

The EEG dataset used in this paper was collected specifi-
cally for this study, but it will be useful for future projects.
These EEG signals were recorded with the Ultracortex Mark
IV helmet manufactured by OpenBCI, which has 16 electrodes
that can be controlled by their combined Cyton-Daisy Board.

As shown in Fig.1, the 16 channels that have been used to
create this dataset are placed following the 10-20 international
standardization: Fp1, Fp2, F3, F4, F7, F8, T7, T8, C3, C4, P3,
P4, P7, P8, O1 and O2. The channels A1 and A2 are used as
the reference of all EEG electrodes.

The EEG signals were collected from 13 healthy partici-
pants. Each participants had 2 recording sessions. Each session
consisted of a 5-minutes continuous recording. The subject

Fig. 1. Position of the 16 channels using the 10-20 system.



was seated comfortably in front of a screen. In the first 5
seconds, the subject had to blink quickly to set a mark of the
start of the trial in the EEG. Then, the subject had to keep
their eyes open and blink naturally for 30 seconds, followed
by another 30 seconds with their eyes closed. These two
phases were repeated 5 times in total. The screen showed a
presentation indicating the current phase and beeped at each
phase change. In addition to the EEG recording, the subject’s
face was also recorded throughout the session in order to be
able to see the eye blinks.

All the EEG signals were recorded at a sampling rate of
125Hz and were filtered using a Notch filter with a 50Hz null
frequency and a Band-Pass filter with with 1Hz to 50Hz cut
off frequencies using the OpenBCI GUI application.

For this study, 10 open-eyed segments were extracted from
all the dataset and the windows were manually labeled as clean
or blink for the evaluation of each of the algorithms. Each
segment is 3750 samples length (30seconds ∗ 125Hz).

B. Experimentation Design

The experimentation is split in two stages: the former
compares the three techniques for blink detection, while the
latter focuses on the comparison of the three techniques for
blink removal. The removal algorithms are applied after using
the best performing detection method.

1) Experiment I: Comparison of Blink Detection Algo-
rithms: The aim of the first experiment is to compare the
three different blink detection techniques described in Section
II: VME, Correlation-based and Dynamic Threshold.

• The VME algorithm was implemented in MATLAB 2.
A few small changes were added to the code to make
it more generic. Since a 2-seconds sliding-window with
no overlapping was applied to the EEG signals, a first
manual labelling was performed to all the signals follow-
ing these conditions. This algorithm requires no initial
training, so it can be applied online.

• The Correlation-based one was implemented in Python. It
requires an initial pass over the signal in order to extract
the blink template, so two passes are considered for each
subject: the first one through a previous test signal to
extract the subject’s pattern and the second one through
the actual EEG recording for online detection.

• The Dynamic Threshold algorithm was implemented in
Python. For each of the 10 target EEG segments, a normal
template of blink-free windows is created by extracting
these windows from all the other 9 EEG segments, i.e.,
each EEG signal is being compared with the normal
activity of all the other signals, which means that each
subject signal has its own normal template and, therefore,
its own dynamic threshold value created from signals
from other subjects. Since a 1-second sliding-window
with 50% overlapping was applied to the EEG signals,
another manual labelling was performed following these

2The MATLAB code is available on GitHub with repository name:
VMEDWT-Eyeblink-Elimination

new conditions. Due to a certain template is created
before running the algorithm on the corresponding subject
signal and its threshold value is constant, it only needs to
be calculated once, and the detection can be performed
online. Tabla de media+varianza+umbral de cada plantilla

The detection performance of all methods is being compared
by three statistics: Accuracy, Sensitivity and Specifity. These
values are calculated for each algorithm and each one of the 10
target EEG signals. The Mean, the Median and the Standard
Derivation of each statistic are also calculated.

2) Experiment II: Comparison of Blink Removal Algo-
rithms: The aim of this experiment is to compare the three
different blink removal techniques described in Section ??

IV. RESULTS AND DISCUSSION

A. Comparison of detection methods
B. Comparison of removal techniques

Comparativa de metodos de removal

V. CONCLUSIONS
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VME Correlation Dynamic Threshold
Fold Acc Sens Spec Acc Sens Spec Acc Sens Spec

1 0.9333 1.0000 0.9000 0.9600 1.0000 0.9592 0.7458 1.0000 0.6939
2 0.8667 0.8000 0.9000 0.9057 1.0000 0.9029 0.6779 1.0000 0.5957
3 0.5333 0.7143 0.3750 0.9114 1.0000 0.9086 0.5254 1.0000 0.3636
4 0.8667 0.8571 0.8750 0.8486 1.0000 0.8452 0.4068 1.0000 0.1463
5 0.7333 0.5000 1.0000 0.9543 1.0000 0.9525 0.4407 1.0000 0.1750
6 0.7333 0.5000 1.0000 0.9429 1.0000 0.9399 0.9153 0.8235 0.9524
7 0.5333 0.3333 0.8333 0.9629 1.0000 0.9614 0.8305 0.5909 0.9730
8 0.6667 0.4444 1.0000 0.9514 1.0000 0.9500 0.8644 0.6111 0.9756
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