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A B S T R A C T   

Collusion is an illegal practice by which some competing companies secretly agree on the prices (bids) they will 
submit to a future auction. Worldwide, collusion is a pervasive phenomenon in public sector procurement. It 
undermines the benefits of a competitive marketplace and wastes taxpayers’ money. More often than not, 
contracting authorities cannot identify non-competitive bids and frequently award contracts at higher prices than 
they would have in collusion’s absence. This paper tests the accuracy of eleven Machine Learning (ML) algo
rithms for detecting collusion using collusive datasets obtained from Brazil, Italy, Japan, Switzerland and the 
United States. While the use of ML in public procurement remains largely unexplored, its potential use to identify 
collusion are promising. ML algorithms are quite information-intensive (they need a substantial number of 
historical auctions to be calibrated), but they are also highly flexible tools, producing reasonable detection rates 
even with a minimal amount of information.   

1. Introduction 

Public procurement is a common form of public spending whose 
purpose is to provide works, goods or services to a purchasing entity [1]. 
Within the context of procuring capital works, companies compete to be 
awarded a contract to build, improve or maintain a capital asset. Such 
contracts can vary in nature and may require the construction of new 
civil (e.g., roads and bridges) and social (e.g., schools and hospitals) 
infrastructures, the modification of existing assets or require mainte
nance [2]. 

Public procurement can be an intensive and complex process and 
thus can consume significant resources. For example, the European 
Union spends around 16% of its Gross Domestic Product on public 
procurement [3]. Collusion in these auctions (also called bid-rigging) 
refers to various illegal agreements among competing firms that aim 
to increase their profit margins. These collusive practices usually take 
the form of coordinated (non-competitive) price increases that are set 

between the companies (commonly referred to as cartels) [4]. Collusion 
is a recurring problem confronting the public sector, particularly when 
procuring capital works, with some being the most expensive items to be 
acquired [4]. Criminal investigations are regularly initiated to combat 
collusive activity, but being able to prosecute and obtain a conviction is 
challenging [5]. 

A major issue that stymies public institutions (e.g. contracting au
thorities, police bodies, competition commissions and courts of justice) 
from obtaining a conviction is detecting and proving that collusion has 
occurred [6]. However, the secrecy surrounding illegal agreements be
tween firms tends to be underpinned by a carefully coordinated and 
sophisticated strategy, which is difficult to expose. In stark contrast, 
procurement authorities adhere to transparent and relatively stable 
purchasing patterns whereby they reuse awarding procedures, purchase 
standard products, resort to similar service specifications and the like. 
The predictability of such procurement practices can facilitate illicit 
market sharing and coordinated action among collusive firms [7–9]. 

; ML, Machine Learning; PTE, Pre Tender Estimate; ABA, Average Bid Auction; SV, Screening Variables; CV, Coefficient of variation; SPD, Spread; DIFFP, 
Difference between the two lowest bids; RD, Relative distance; SKEW, Skewness statistic; KSTEST, Kolmogorov–Smirnov test. 
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Against this contextual backdrop, it can be said that a reliable method 
for detecting the presence of collusion in public procurement auctions 
would significantly help procurement authorities and other institutions 
mitigate the adverse economic and social effects of collusion. 

A plethora of models for detecting collusion has been propagated in 
the normative literature. In this paper, the most relevant models, which 
we will review, have proven to flag long term collusive patterns among 
bidding cartels [10]. They have also helped in discover how these cartels 
dissuade companies from submitting competitive bids in markets 
dominated by them [11,12]. However, while the models have been able 
to detect collusion, their accuracy often comes into question as to the 
data that underpins them can contain noise or insufficient detail. It is 
common, for example, for developed models to rely on information from 
the bidder’s (private) costs structures and/or pre-tender cost estimates 
(PTE), though such information is generally confidential (and collusive 
firms are obviously not willing to share it) or simply does not exist 
[13,14]. 

Machine Learning (ML), a branch of artificial intelligence that fo
cuses on building an application that can automatically learn and 
improve from experience, analyze and draw patterns of inference from 
auction information, even when it is scant (i.e., just the bid values and 
winning bidder from each auction) [15–17]. Yet, ML algorithms usually 
require a significant amount of reliable information obtained from 
previous auctions to calibrate them [16]. 

This paper aims to examine the ability of various ML algorithms to 
detect collusive auctions accurately. Each algorithm is tested under 
different conditions (e.g., with access to more or less information and 
with/without the input of Screening Variables, SV). We refer to SV as 
those statistical indices (directly calculated from the bid values) whose 
preprocessing may help ML algorithms to increase their level of detec
tion [17]. 

To test the performance of ML algorithms, we will analyze six pro
curement datasets from five different countries (i.e., Brazil, Italy, Japan, 
Switzerland and the United States, US). Access to such auction data is 
generally unavailable to researchers as it is deemed sensitive (e.g., 
contract cost estimates) [18], but access and permission have been given 
for the collusion detection research presented in this paper. Thus, our 
research demonstrates that ML algorithms can detect collusion and 
produce representative performance results by applying them to a wide 
variety of datasets from different countries boasting different types of 
data. To the best of the authors’ knowledge, this is the first time a 
transversal study of this nature has been undertaken in the domain of 
collusion detection. 

The paper commences reviewing the literature and identifying the 
research gap to be examined (Section 2). Then, the procurement data
sets, the screening variables, the ML algorithms being compared and the 
error metrics adopted are described (Section 3). We next summarize the 
major quantitative results of the experimental analysis for identifying 
collusive auctions (Section 4). This summary is followed by identifying 
the significance and contribution of our study (Section 5). Finally, we 
conclude this paper by explicitly identifying the limitations and avenues 
for future research (Section 6). 

2. Literature review 

Many studies in auction theory have proven that bidders’ cost 
structures strongly condition their competitive and/or collusive strate
gies [1,10,19–22]. McAfee and McMillan [23] were the first to analyze 
collusion in static bid rotation schemes when no compensation pay
ments existed between cartel members. In McAfee and McMillan’s [23] 
auction model, the awardee is independent of previous (past) auctions. 
Building on the work of McAfee and McMillian [23], Aoyagi [24] and 
Skrzypacz and Hopenhayn [25] extended their model by considering 
repeated collusion in dynamic bid rotation schemes. 

Studies have also analyzed collusion’s occurrence and effect in real 
procurement auctions [26,27]. However, empirical-based collusion 

detection models are limited. One of the first attempts to develop an 
empirically-based model was Porter and Zona’s [19], who sought to 
measure the probability of a bidder winning when some observable cost 
factors are known. However, that model aimed not to determine collu
sion, per se, but rather to anticipate the range of prices of future 
(competitive) bids. Other empirical-based models have been proposed 
since the propagation of Porter and Zona’s [19] work. We will now 
summarize the four most relevant models in the remainder of this 
section. 

The first seminal model in collusion detection is also known as 
econometric screening and was proposed by Bajari and Ye [28]. This 
model attempts to anticipate how a standard (competitive) distribution 
of bids should look based on the participating bidders’ cost parameters. 
Unfortunately, these cost parameters constitute private data, which is 
generally difficult to gather and often disclosed by the bidders them
selves. As a result, most data needs to be directly inferred by industry 
experts, resulting in a loss in accuracy. Bajari and Ye’s [28] model does 
flag systematic deviations from a reference scenario. In this instance, the 
industry experts have to anticipate the reference scenario as they can 
assume the bidders submitting competitive bids want to be awarded the 
contract and will not cooperate with the cartel. 

Bajari and Ye [29] model was initially tested in highway repair 
contract auctions in the US Midwest in 1994–1998. It was implemented 
as a functional reduced-form of linear regression where additional 
pieces of information such as bidders’ past bidding history and pre- 
tender cost estimates (PTE) were needed (besides bidders’ financial 
data). As a result of including this additional information, Bajari and Ye 
[28] could make valid comparisons with the reference scenario. How
ever, Bajari and Ye’s [28] model also has some important limitations:  

• over-reliance on the functional form chosen when implementing the 
regression analysis;  

• high sensitivity to missing information; and 
• it is easy to cheat when the cartel knows ‘how’ it works (e.g., coor

dinated cover bids). 

Considering the limitations above, the most important is the need for 
detailed data from each bidder and auction. The absence of such data 
precludes the model from being applicable in real bidding contexts. 
Fortunately, since Bajary and Ye’s [28] study, more public data is 
available on public contracts and competitors, which can be used in the 
near future to improve collusion detection with ML. 

The second model we examine is developed by Ballesteros-Pérez 
et al. [29], which focuses on analyzing possible abnormal dispersions in 
the distribution of bids, assuming they follow a Uniform distribution. In 
essence, the Ballesteros-Pérez et al. [29] model is an approximated 
collusion detection method used in conjunction with other approaches. 
It uses a simplified order statistics approach where the bids absolute 
order of magnitude is neglected and only the relative distances are 
considered. This approach, of course, leaves the possibility of cheating 
the method by submitting cover bids that ‘emulate’ a uniformly 
distributed pattern, no matter they are still abnormally high on average. 

The third model has been proposed by Signor et al. [30], which is a 
Probabilistic method [2,34]. Signor et al.’s [30] model analyses submitted 
bids at two levels. Firstly, it analyses whether the bids overall distri
bution conform to a reference scenario (e.g., a Lognormal distribution). 
Additionally, the location of this distribution (i.e., absolute order of 
magnitude of the bids) can be closely approximated by historical auc
tions whenever data about their pre-tender estimates (PTE) is available. 
Hence, the model scrutinizes the distance of submitted bids from the 
PTE. 

Secondly, Signor et al.’s [30] probabilistic method analyze the 
lowest bid’s dispersion by drawing on order statistics theory. Put simply, 
it compares the probability of the lowest bid (i.e., the theoretical 
winner) being materialized as if it had been generated from the same 
reference distribution of the previous step. Hence, in Signor et al.’s [30] 

M.J. García Rodríguez et al.                                                                                                                                                                                                                  



Automation in Construction 133 (2022) 104047

3

method, the actual winning bid observed is compared against the lowest 
order statistic (i.e., the minimum draw of n artificially generated bids) 
from a calibrated reference distribution. If the statistical deviation is 
significant, we can be confident that such a bid is unlikely to be truly 
competitive. Thus, the probabilistic method is robust, but it has the 
limitation of being strongly dependent on the availability and reliability 
of a PTE for a number of previous honest auctions and the auction being 
tested. 

Finally, the fourth model is that developed by Imhof [17,35]. This 
model has been the first to examine the application of ML to bidding and 
the detection of collusion by applying a small set of Screening Variables 
(SV) in a Swiss dataset of roads construction. We will use those SV and 
the same dataset in our study but assuming different levels of access to 
auction data. Additionally, Imhof [17,35] utilized two ML algorithm 
types: (1) the Lasso regression and an ‘Ensemble method’ consisting of a 
weighted average of several algorithms; and (2) bagged regression trees, 
random forests, and neural networks. In this research, we will consider a 
wider range of algorithmic options and various datasets to understand 
better the conditions leading to SV and ML algorithms performing 
better. 

3. Materials and methods 

This section describes the research methods adopted to detect 
collusion in auctions of public sector capital works. In Fig. 1, we present 
a summary of the research process used in this study. 

3.1. Datasets 

To assess the collusive detection capabilities of ML algorithms under 
different conditions (e.g., countries, types of auctions, time period, and 

the availability of data per auction), we acquired six public procurement 
datasets. These datasets are derived from five countries covering periods 
between 1980 and 2013. 

All datasets can be found in the Supplementary file attached to this 
paper so that others can replicate our results. A quantitative description 
of the datasets is presented in Table 1. At this juncture, no study that has 
examined collusion has had access to such an extensive dataset, which 
enables the suitability of ML to be explored as a detection approach. 

It is worth noting that all six datasets have been investigated and/or 
provided by public institutions [e.g. Swiss Competition Commission 
(COMCO), Brazilian Federal Police, Japanese Fair-Trade Commission 
(JFTC) and two courts of justice from the US and Italy]. Hence, we as
sume the data are reliable and trustworthy. While the datasets may 
contain minor contradictions, we are unable to judge the auctions’ 
bidding consistency. Actually, the datasets’ owners are also unable due 
to the secret nature of the agreements. For example, there are instances 
where an auction’s winning bidder was classified as collusive while 
other higher (not awarded) bids were not. Clearly, in the context of 
capital works procurement, collusion generally involves being awarded 
contracts at a higher-than-usual price. In the example above, all bidders 
may have facilitated this outcome. However, we can only assume the 
awarded bidder was flagged with a consistent abnormal bidding pattern 
through a series of auctions. Thus, without criminal proof, other com
panion bidders might have avoided being flagged as collusive and 
consequently avoided conviction, or even being honest competitors 
unwittingly involved in a case of partial collusion. 

Alternatively, these non-awarded bids may have been the result of 
estimation errors or were competitive bids with intentionally high mark- 
ups where evidence of coordinated action among bidders either did not 
exist or could not be determined. Coordinated action is a necessary 
condition for collusion to occur being the most difficult to prove. Despite 

Fig. 1. Flowchart summarizing the research approach for collusion detection.  
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some minor inconsistencies with the data, all auctions are treated being 
uniform in our study. Indeed, due to differing formats for collecting data 
the ability to ensure its calibration poses a challenge. However, it needs 
to be acknowledged this is the most comprehensive study undertaken to 
date that examines the detection of collusion in real-life auctions. We 
now proceed to briefly describe the datasets, whose main features are 
summarized in Table 1. 

3.1.1. Brazil 
Between 2002 and 2013, the Brazilian Oil Company Petrobras (a 

publicly traded, State-controlled company) was subjected to significant 
bid-rigging during the procurement of infrastructure projects. The 
dataset has been previously analyzed and made available by Signor et al. 
[18,30,33,34]. In 2014, a routine investigation by the Brazilian Federal 
Police into money laundering quickly turned into a very important 
anticorruption operation called “Operation Car Wash”. Signor et al.’s 
[18,30,33,34] dataset form part of an ongoing investigation where 
several collusive companies confessed to price-fixing and bid-rigging. It 
was shown that 16 of the largest Brazilian construction companies (a 
cartel referred to as the “Club of 16”) colluded in many of Petrobras’s 
auctions. 

3.1.2. Italy 
The Italian dataset comprises road construction auctions from the 

municipality of Turin [36]. The legal office of Turin collected the dataset 
as part of a legal case against several firms accused of bid-rigging 

between 2000 and 2003. This dataset employs the Average Bid Auction 
(ABA) method: the awardee is the bid closest to a trimmed average [36]. 
The ABA can be used to create incentives to coordinate bids among 
bidders with the intention of manipulating the bids distribution. In 
2008, the Court of Justice of Turin convicted 95 construction firms that 
operated in eight cartels that had been successfully awarded contracts 
(<10% of the firms won >80% of the auctions). 

3.1.3. Japan 
The Japanese dataset comprises building construction and civil en

gineering contracts from Okinawa. Initially, the data was published in 
Ishii [37], and it was later analyzed in Imhof [38]. The dataset was 
obtained from the Okinawa Prefectural Government (OPG), covering the 
period between 2003 and 2007. The construction market in Okinawa 
exhibits several features facilitating collusion: (1) geographic conditions 
(islands); (2) restricted invitation procedure (the buyer chooses those 
companies allowed to bid); and (3) contracts and bidders segmented into 
ranks. In June 2005, the Japanese Fair-Trade Commission (JFTC) filed a 
bid-rigging investigation against many firms involved in the auctioning 
process. The dataset covers three periods: 

1. Pre-inspection period: auctions before the opening of the JFTC inves
tigation (June 2005). These auctions can be collusive or competitive, 
according to JFTC resolutions.  

2. Post-inspection period: auctions between the opening of the JFTC 
investigation (June 2005) and the amendment of Japanese 

Table 1 
Description of the collusive datasets.  

Topic Description Brazil Italy Japan Swiss–Ticino Swiss–SG&GR US 

General information Scope Oil infrastructure 
projects 

Road construction Building constr. 
and civil eng. 

Road 
construction 

Road construction 
and civil engineering 

School milk market 

Time period 2002–2013 2000–2003 2003–2007 1999–2006 14 years (over 2005) 1980–1990 
N◦ auctions 101 278 1080 224 4344 3754 
N◦ bids 683 20,286 13,515 1629 21,231 7004 
Awarding 
criteria 

Lowest bid Average Bid Method Lowest bid Lowest bid Lowest bid Lowest bid 

Avg. n◦ of bids 
per auction 

6.76 72.97 12.51 7.27 4.89 1.91 

Available information per 
dataset 

Common fields Auction code, bid values, winning bidder and number of bids per auction 
Auction date Yes N/A Yes N/A Yes Yes 
Pre Tender 
Estimate (PTE) 

Yes Yes Yes N/A N/A N/A 

Identity of 
bidders 

Yes. 272 Yes. 821 Yes. 1665 N/A N/A Yes. 120 

N◦ of different 
awardees 

80 (29.41%) 19 (2.31%) 690 (41.44%) N/A N/A 91 (75.83%) 

Other fields 
(additional 
information) 

Location and 
Brazilian State 

Location, legal 
company type and 
economic size 

Location Consortium 
composition 

Contract type Inflation adjusted 
bid and inflation raw 
milk price adjusted 
bid 

Collusive vs competitive 
data 

Collusive 
auctions 

N/A N/A N/A 184 (82.14%) N/A N/A 

Competitive 
auctions 

N/A N/A N/A 40 (17.86%) N/A N/A 

Collusive bids 128 (18.74%) 8085 (39.86%) 1093 (8.09%) 1332 (81.77%) 12,501 (58.88%) 866 (12.36%) 
Competitive bids 555 (81.26%) 12,201 (60.14%) 12,422 (91.91%) 297 (18.23%) 8730 (41.12%) 6138 (87.64%) 
Collusive bidders 47 (17.28%) 195 (23.75%) 230 (13.81%) N/A N/A 11 (9.17%) 
Competitive 
bidders 

225 (82.72%) 626 (76.25%) 1435 (86.19%) N/A N/A 109 (90.83%) 

Bids per auction 1 ≤ bids ≤ 4 42 (41.58%) 0 0 29 (12.95%) 2315 (53.29%) 3727 (99.28%) 
5 ≤ bids ≤ 10 38 (37.62%) 5 (1.80%) 474 (43.89%) 171 (76.34%) 1897 (43.67%) 27 (0.72%) 
11 ≥ bids 21 (20.79%) 273 (98.20%) 606 (56.11%) 24 (10.71%) 132 (3.04%) 0 

Awarding price Aggregated total €12,170,309,780 €11,520,750,772 €402,195,427 €514,972,754 €2,136,031,656 N/A (Bid values are 
unit price per half a 
pint of milk) 

Aggregated 
collusive 

€7,918,003,543 
(65.06%) 

€7,911,773,729 
(68.67%) 

€91,405,888 
(22.73%) 

€458,103,059 
(88.96%) 

€908,666,894 
(42.54%) 

Aggregated 
competitive 

€4,252,306,237 
(34.94%) 

€3,608,977,044 
(31.33%) 

€310,789,539 
(77.27%) 

€56,869,695 
(11.04%) 

€1,227,364,760 
(57.46%) 

Note: datasets used in this paper, apart from the Italian dataset, adopt the lowest bid wins awarding criterion. 
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competition laws in January 2006. These auctions are not used in our 
analysis as it was a transition period without information from the 
JFTC.  

3. Post-amendment period: auctions after the amendment of Japanese 
competition laws. The JFTC sentenced and sanctioned the involved 
cartel participants at the beginning of the post-amendment period in 
March 2006. Therefore, all these auctions can be considered 
competitive as there has not been any proof of collusion ever since. 

3.1.4. Swiss – Ticino 
The Swiss dataset comprises road construction projects from the 

Canton of Ticino in Switzerland [35,39,40]. The cartel operating in this 
area of Switzerland had existed since the 50s, but it was not until the 
mid-90s that collusion became more frequent. By then, competition 
pressure within cartel companies started to grow, reaching its peak in 
1998. This motivated cartel members to reach a tacit agreement in 1998 
to which they adhered until 2005. During this period, all cartel firms in 
the road construction sector rigged nearly all procurement contracts. 
Therefore, this is undoubtedly one of the most severe bid-rigging cartels. 
As a result, local politicians went to the Swiss Competition Commission 
(COMCO) to investigate how awarding prices were exaggeratedly high 
in Ticino compared to other country regions. 

3.1.5. Swiss – St Gallen and Graubünden 
The next Swiss dataset covers the period between 2004 and 2010. It 

comprises the operations of two cartels specialized in road construction, 
asphalt paving, and civil engineering works in the Swiss cantons of St. 
Gallen and Graubünden [40]. In the first canton, eight firms participated 
in bid-rigging conspiracies. They met once or twice per month until 
2009, when the COMCO launched house searches in the neighbor 
canton. In the second canton, another cartel was made up of a local trade 
association for road construction and asphalt paving operated until 
2010. Both cartels were well organized and were awarded a very large 
share of auctions. As a result, the COMCO opened an investigation after 
the statistical anomalies identified in the procurement data until 2010. 

3.1.6. United States 
The US dataset was published in Porter and Zona [19] and also used 

in the study of Wachs and Kertész [41]. The dataset involves school milk 
procurement contracts in the State of Ohio between 1980 and 1990. 
School district officials independently solicited bids on annual supply 
contracts for milk and other products to regional milk producers 
(dairies). Typically, the lowest bidder was selected to supply milk in half 
pints to the schools during the following school year. In 1993 repre
sentatives of two dairies in Ohio confessed having bid-rigged these 
auctions during the 1980s. Thus, all bidding data were collected by the 
United States District Court of Ohio in 1994, and 30 dairies were charged 
with collusion. After careful analysis of these auctions, it was concluded 
that the estimated average effect of collusion on this market resulted in a 
6.5% price increase. The dataset is non-construction-related, but it is 
useful to analyze it as it serves as a frame of reference to better under
standing bidding behaviors and patterns in other markets. 

3.2. Screening variables 

Screening Variables, or just Screens, are specific indices derived from 
each auction’s bid values distribution (prices offered by bidders). These 
screens can help ML algorithms process auction information more effi
ciently to detect collusion [17]. However, there have been limited 
studies that have investigated the performance of different screens in 
collusive datasets. 

Screens can be useful, not just for flagging possible collusion in a 
given auction but also for identifying sustained collusive patterns among 
specific bidders. Screens frequently consist of statistical indices calcu
lated directly from the bid values of each auction (e.g. the bids standard 
deviation, skewness or kurtosis) or after removing or selecting some of 

the bids (e.g. the lowest and highest bid in an auction, or the lowest and 
second-lowest). They are generally easy to calculate and have proven to 
produce higher performance in ML algorithms. As a result, screens are 
usually beneficial when combined with ML algorithms and in our case, 
for detecting abnormally high bids. 

The process to create a screen commences by letting t be the t-th 
auction in a dataset. We will not use an additional subscript to refer to 
each of the six datasets for the sake of clarity. Let sdt be the (economic) 
bids standard deviation in auction t; bt the mean (average) of all bids 
submitted to auction t; bmax, t the maximum (most expensive) bid; bmin, t 
the minimum (lowest, cheapest) bid; b2t is the second-lowest bid; sdlo

singbids, t is the standard deviation of the non-awarded bids (all but the 
winning bid); nt is the number of bids submitted to auction t; and bit is the 
i-th bid in auction t when ordered from lowest to highest. With this 
notation, the following screens are initially proposed to detect collusion 
better: 

CVt =
sdt

bt
(1)  

SPDt =
bmax,t − bmin,t

bmin,t
(2)  

DIFFPt =
b2t − bmin,t

bmin,t
(3)  

RDt =
b2t − bmin,t

sdlosingbids,t
(4)  

SKEWt =
nt

(nt − 1)(nt − 2)
∑nt

i=1

⎛

⎝ bit − bt

sdt

⎞

⎠

3

(5)  

KURTt =
nt(nt + 1)

(nt − 1)(nt − 2)(nt − 3)
∑nt

i=1

⎛

⎝ bit − bt

sdt

⎞

⎠

4

−
3(nt − 1)3

(nt − 2)(nt − 3)
(6)  

KSTESTt = max
(
D+

t ,D
−
t

)
with D+

t = maxi
(
bit

sdt
−

it
nt + 1

)

,

D−
t = maxi

(
it

nt + 1
−

bit

sdt

)

(7) 

All previous screening variables have been proposed by different 
researchers in the context of collusion detection (e.g. [35,38–40,42]). 
The first screen is the Coefficient of Variation called CVt (Eq. (1)), a scale- 
invariant statistic calculated as the ratio of the bids’ standard deviation 
divided by the average of the bids. The second screen is the Spread (SPDt) 
represented in Eq. (2). Eq. (3) measures the relative difference between the 
two lowest bids in the auction (DIFFPt). An alternative screen to the latter 
is the Relative Distance (RDt) which replaces the term in the denominator 
by the losing bids standard deviation (Eq. (4)). Finally, the last three 
screens refer to the bid values’ Skewness (SKEWt), Excess Kurtosis 
(KURTt) and Kolmogorov-Smirnov test (KSTESTt). These three screens 
allow identifying possible bid distribution asymmetries (Eq. (5)), the 
condensation of bid values next to (or too far from) the average of the 
bids (Eq. (6)), and the similarity of the bid values for a uniform distri
bution (Eq. (7)), respectively. As the Excess Kurtosis requires at least 
four bids per auction to its calculation and our datasets contain a sig
nificant number of auctions with less than four bids (see Table 1), this 
screen will not be adopted in our study. 

Other screening variables could have also been proposed, but a 
detailed exploration of their potential use remains outside the scope of 
this investigation. The ones used are the most common in other ML 
applications that work with statistically distributed values. Of note, it 
has been observed that the statistical distribution of bids is expected to 
become explicit when taking the log bids instead of their natural values 
(i.e., a lognormal distribution) [43,44]. In our experiments, we also 
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tested the performance of these screens with log bids besides natural bid 
values. However, we found no improvement in the algorithms detection 
rates. Thus, a bids log transformation is not to be considered in this 
paper. 

The Scatter matrix of the screening variables above (Eqs. (1) to (7)) 
for all the datasets (64,348 bids in total) is shown in Fig. 2. This matrix is 
frequently generated in ML applications to identify correlations between 
the screening variables. It is also useful for detecting the screens that 
differentiate between competitive and collusive bids. However, we can 

see from Fig. 2 that it does not show any distinct relationship between 
the space dispersion of competitive (green dots) versus collusive bids 
(red dots). That is, we cannot find separated clusters of red versus green 
dots in any subgraph of Fig. 2. This finding indicates that we will need to 
rely on each algorithm’s learning process (training) and performance 
(with and without the help of screens). 

Fig. 2. Screening variables scatter matrix from all datasets.  
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3.3. Machine learning algorithms settings 

The collusion detection capability of 11 algorithms is tested in this 
paper under different scenarios of information availability. It is assumed 
that each auction could be classified as either ‘collusive’ or ‘competi
tive’. Hence, the algorithms have to perform a binary classification for 
each auction t. The following algorithms are utilized to perform this 
task:  

• Linear models: SGD (Stochastic Gradient Descent) [45];  
• Ensemble methods: Extra Trees (Extremely Randomized Trees) [46], 

Random Forest [47], Ada Boost [48] and Gradient Boosting [49];  
• Support Vector Machines: SVC (C-Support Vector Classification) 

[50];  
• Nearest Neighbors: K Neighbors [51];  
• Neural network models: MLP (Multi-Layer Perceptron) [52];  
• Naive Bayes: Bernoulli Naive Bayes and Gaussian Naive Bayes [52]; 

and  
• Gaussian Process [53]. 

Ensemble methods are the top-performing algorithms in our study as 
shown later. They combine several models (multiple learning algo
rithms) that produce a single optimal predictive model. This model is 
also generally more robust from the prediction point of view. Decision 
tree is usually one of those learning algorithms integrated in the 
Ensemble methods. This algorithm resembles a flowchart-like structure 
where each node implements a test on an attribute. Hence, each branch 
represents the outcome of a test, and each leaf node represents a class 
label. Two families of ensemble methods are usually distinguished:  

• Averaging methods; they encompass several independent estimators 
and then average their predictions. On average, the combined esti
mator is usually better than any of the single base estimator because 
its variance is lower. Examples of averaging methods are Extra Trees 
and Random Forest algorithms.  

• Boosting methods; their base estimators are implemented sequentially 
which reduces the bias of a combined estimator in some cases. 
Broadly speaking, the objective of Boosting methods is to combine 
several weak models to produce a single, more powerful model. Ada 
Boost and Gradient Boosting are some examples of Boosting methods. 

These are common ML algorithms that have produced satisfactory 
results in many engineering applications, construction sector [54,55] 
and public procurement [56,57] included. All datasets and the algo
rithms’ code can be found in the Supplementary files (csv format) we have 
provided. This will facilitate the future replicability of our results. The 
Python (3.0) programming language and the ML library scikit-learn have 
been used in this research [58]. Details about the eleven ML algorithms 
have not been provided but they are freely available from the scikit-learn 
library. However, we do provide some additional information at the end 
of this section about the numerical settings (parameter values) adopted 
for those algorithms that performed better. For those readers interested 
in extending their knowledge on the inner workings of each algorithm, 
we suggest resorting to the references provided in the list above and 
referring to the Supplementary material we have provided. 

All the ML algorithms we have identified require calibration 
(training) before they are capable of differentiating collusive from 
competitive auctions. In conventional ML applications, training datasets 
typically comprise of thousands of entries. Algorithms generally use 
80% of the data for training purposes and the remaining 20% to test 
their performance [59]. However, in our study and even though some of 
these datasets are large compared to most auction datasets reported in 
the construction bidding literature [60–62], many are too small to train 
all algorithms properly (i.e., they ‘only’ comprise 9781 auctions with 
64,348 bids). 

To avoid collusion detection results being biased by the particular 

choice of training and test subsets, we performed 500 iterations with 
each algorithm. Thus, for each algorithm and dataset, we tested their 
detection performance while changing the specific subset of auctions 
used for training and testing (random choices). Noteworthy, the bids of 
each auction were either all used for training or testing; that is, they 
were not split for different purposes. This avoids the transfer of 
knowledge (rendering collusion detection harder for the algorithms, as 
they cannot use the same auction ID to flag an auction as collusive later), 
but provides a realistic scenario (as the bids of the same auction are 
generally known at once, not in different stages). Hence, our algorithms 
classify an auction as collusive or competitive based on each of the 
specific bids it contains. Markedly, all bids from the same auction were 
used as a single group of analyses. 

The performance of the algorithms was analyzed under four different 
settings (scenarios). Each setting represents access to different pieces of 
data per auction. We named these pieces of information as fields in 
Table 1. Naturally, a higher amount of data per auction should lead to 
better collusion detection results. However, in actual practice, some data 
is not always available. Yet, it is equally valuable for anticipating the 
detection rates of each algorithm in the absence of data. Hence, the al
gorithms were trained and tested individually for each dataset under the 
following settings:  

• Setting 1 (all fields). In this scenario, the algorithms used all the 
available data with one exception: the bidders’ identity (see Table 1 
to identify the specific fields that were available in each dataset). The 
‘identity of bidders’ was not used to avoid the potential risk of a 
bidder being easily catalogued upfront as collusive in the training 
process, and later classify as collusive almost all the auctions where it 
was involved (during the testing stage).  

• Setting 2 (all fields + screens). Algorithms had the same data available 
as in setting 1 but with the assistance of the screening variables (CV, 
SPD, DIFFP, RD, SKEW and KSTEST). Theoretically, this should 
correspond to the scenario where ML algorithms perform better.  

• Setting 3 (common fields only). In this scenario, the algorithms were 
only allowed to use the data shared among all datasets: that is, the 
auction code, bid values, winning bidder and number of bids per 
auction.  

• Setting 4 (common fields only + screens). As in setting 2, this scenario 
assumed the data availability of setting 3 plus the aid of the screen 
variables described earlier. 

Finally, we summarize the configuration adopted for the four 
ensemble methods as they were the top-performing algorithms in our 
study. A preliminary exploratory analysis was conducted to set the 
values of the algorithm parameters. Namely, we fine-tuned them based 
on data from related algorithm [35,38–40] and our first implementation 
results. With this, the best detection results were obtained for this pa
rameters configuration:  

• Extra Trees and Random Forest: The number of trees was 300; the 
function to measure the quality of a split was Gini; and the maximum 
depth of tree was until all leaves were pure or contained less than two 
samples.  

• Ada Boost: The maximum number of estimators at which boosting 
terminated was 300. The base estimator was a decision tree classifier 
with 1 as the maximum depth of the tree with a learning rate also of 
1.  

• Gradient Boosting: The number of boosting stages to perform was 300; 
deviance was the loss function; and the learning rate was 0.1. 

3.4. Error metrics 

To compare the performance of the proposed algorithms for classi
fication problems, it is necessary to initially define some error metrics. 
The most common error metrics in ML are accuracy, precision, recall, 
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balanced accuracy and F1 score [63]. Each metric was calculated in our 
research, though all of them are reported in the manuscript. 

In this study, we are dealing with a binary classification performed at 
the auction level. This focus on auctions rather than bids was chosen to 
compare previous studies, which also classify auctions as collusive or not 
(as a full-colluded auction is more harmful than a small percentage of 
collusive bids among honest ones). However, as the algorithms must first 
analyze every bid, every auction will be classified as collusive or 
competitive. This classification depends on the ratio between its collu
sive and competitive bids. In our study, the minimum percentage of 
collusive bids to classify an auction as collusive was established as fol
lows: Brazil (≥11%), Italy (≥44%), Japan (≥11.5%), Swiss – Ticino 
(≥10%), Swiss – SG&GR (≥10%), and US (≥10%). As stated earlier, 
most of these percentages correspond to those used by the courts of 
justice and/or researchers who published the datasets. We only 
increased the Italian percentage to present good results for two reasons: 
the average number of bids per auction was considerably high (72.92, 
which is about ten times higher than the average value of the other 
datasets), and it has a different awarding criterion (ABA). Overall, 
adhering to previous percentages of collusive versus competitive bids 
allows us to benchmark the improvement of detection rates against 
previous research. 

Thus, let ̂yi be the predicted value of the i − th sample (1 ≤ i ≤ n), yi is 
the corresponding true value, and L is the set of classes (1 ≤ l ≤ L). In our 
case, L = 2 has two possible classes: (1) collusive or (2) competitive bid. 
In this instance, the accuracy error metric is defined as the proportion of 
correct predictions over n samples and expressed as: 

Accuracy =
1
n

∑n

i=1
1
(

ŷi = yi
)

(8) 

where 1
(

ŷi

)

is the indicator function. The equation returns 1 if the 

classes match and 0 otherwise. 
Precision, also called positive predictive value, is intuitively the 

ability of the classifier not to label as positive (collusive bid) a sample 
that is negative (competitive bid). Recall, also called sensitivity or true 
positive rate, represents the ability of the classifier to find all positive 
samples. Let yl be the subset of true values with class l, and ŷl the subset 
of true predicted values in the same class l: 

Precisionl =

⃒
⃒
⃒
⃒yl ∩ ŷl

⃒
⃒
⃒
⃒

|yl|
(9)  

Recalll =

⃒
⃒
⃒
⃒yl ∩ ŷl

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ŷl

⃒
⃒
⃒
⃒

(10) 

The balanced accuracy avoids biased performance estimates in 
imbalanced datasets. Our collusion datasets are imbalanced as the 
number of competitive auctions in most datasets outnumber the number 
of collusive auctions (refer to Table 1 for the exact percentage of 
collusive and competitive bids in each dataset). This means, one of the 
two classes appears is more frequent than the other. Hence, the balanced 
accuracy can be defined as the average of the true positive rates (recall) 
of each class, that is: 

Balanced Accuracy =
1
L

∑L

l=1
recalll =

1
L

∑L

l=1

⃒
⃒
⃒
⃒yl ∩ ŷl

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ŷl

⃒
⃒
⃒
⃒

(11) 

Finally, the F1 score can be interpreted as a weighted average of the 
precision and recall, where an F1 score reaches its best value at 1 and 
worst score at 0. The relative contribution of precision and recall to the 
F1 score are equal and expressed as: 

F1 = 2∙
precision∙recall

precision + recall
(12) 

The aforementioned error metrics can be adapted to our specific 
problem. Our study involves a binary classification (two classes), thus a 
True Positive (TP) is a correctly identified collusive bid. Additionally, a 
True Negative (TN) is a competitive bid that has also been correctly 
identified. A False Positive (FP) implies the ML algorithm flags a bid as 
collusive even though it was competitive. Conversely, a False Negative 
(FN) implies that the method does not classify a bid as collusive when it 
is so. The FP and FN have worse consequences depending on the type of 
public institution being involved. From the perspective of police 
agencies and courts of justice, FP is the worst type of prediction error, as 
it could induce an unjustified investigation in a competitive (honest) 
bidder. From the perspective of contracting authorities, a high per
centage of FN is worse as there are many collusive bidders that go un
noticed. Summarizing, we have TN = Correct (not collusion), FP =
Unexpected collusion, FN = Missing collusion and TP = Correct 
(collusion), with: 

TN+FP+ FN+TP = Total number of bids (13) 

Hence, the previous error metrics can be expressed into our binary 
classification problem as: 

Accuracy =
1
n

∑n

i=1
1
(

ŷi = yi
)

=
TP+ TN

n
(14)  

Precision =
TP

TP+ FP
(15)  

Recall =
TP

TP+ FN
(16)  

Balanced Accuracy =
1
L

∑L

l=1

⃒
⃒
⃒
⃒yl ∩ ŷl

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ŷl

⃒
⃒
⃒
⃒

=
1
2

(
TP

TP+ FN
+

TN
TN + FP

)

(17)  

F1 = 2∙
precision∙recall

precision + recall
(18) 

Hence, the eleven ML algorithms were trained and tested to detect 
collusion in six datasets from five countries. As mentioned earlier, each 
algorithm was run 500 times while randomly changing the training 
subset (80%) and the test subset (20%) from each dataset. For each 
repetition (run), the previous error metrics were calculated and recor
ded. The error metric values reported below correspond to the average 
values obtained from those 500 repetitions. 

4. Results 

Table 2 shows four of the most relevant error metrics (accuracy, FP, 
FN and balanced accuracy) when each dataset is used independently to 
detect collusion under the setting 1 (all fields) and 2 (all fields +
screens). Results from the other error metrics (precision, recall and F1 
score) are included later and in our Supplementary material. Table 3 
presents the same four error metrics but applying settings 3 (common 
fields) and 4 (common fields + screens). Additionally, and only because 
settings 3 and 4 share the same input parameters, it was also possible to 
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Table 2 
Average error metrics (accuracy, FP, FN and balanced accuracy) for each dataset in settings 1 (all fields) and 2 (all fields + screens). 

Algorithm

SGD Extra 
Trees

Random 
Forest

Ada 
Boost

Gradient 
Boosting SVC K 

Neighbors MLP
Bernoulli 

Naive 
Bayes

Gaussian 
Naive 
Bayes

Gaussian 
Process Colour  

legendError 
metrics

Setting 
Dataset 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Accuracy 
(%)

Brazil 65.2 65.1 84.9 91.2 84.9 89.8 82.4 88.1 85.2 92.4 79.3 82.7 83.2 83.5 84.0 83.5 76.9 76.5 78.6 79.6 78.5 75.9 100%

Italy 51.3 51.1 84.4 87.4 82.5 83.1 79.5 80.8 76.1 80.2 50.8 52.4 57.2 57.5 57.4 57.1 57.4 64.8 54.4 54.4 58.1 58.5 75%

Japan 87.8 87.8 94.7 94.5 93.1 93.0 93.5 93.1 90.5 89.2 87.8 87.9 92.5 92.5 88.7 88.8 88.7 88.6 94.6 94.6 89.5 88.9 60%

Swiss - Ticino 74.7 74.5 79.4 90.8 77.4 86.7 73.8 91.4 77.4 87.6 60.2 55.1 75.6 76.0 81.5 81.3 81.6 80.0 81.5 81.2 19.2 16.3 45%

Swiss - SG&GR 68.5 68.9 83.4 85.3 82.7 84.7 84.1 85.0 78.6 74.2 50.0 49.0 77.8 77.6 80.1 80.2 80.2 80.1 75.1 41.4 20.0 20.1 30%

US 70.3 72.6 84.1 84.8 83.5 83.9 83.0 82.4 77.1 76.1 46.3 45.4 79.4 79.4 82.2 82.3 82.3 77.9 81.8 79.1 73.6 75.2 0%

False 
positives 

(FP)
(%)

Brazil 23.6 23.8 4.7 2.6 6.7 5.5 8.1 6.3 4.7 4.0 12.1 10.5 6.3 5.9 4.8 5.0 1.7 6.5 14.2 13.8 0.0 0.0 100%

Italy 23.8 24.1 9.7 6.2 9.0 8.5 11.7 9.3 13.2 11.3 37.6 39.7 17.0 17.2 0.0 0.0 2.2 8.2 34.1 32.3 0.1 0.1 75%

Japan 5.6 5.6 0.9 0.8 2.6 2.6 2.4 2.5 4.8 5.8 9.4 9.3 3.7 3.6 0.1 0.0 0.0 0.0 0.7 0.7 0.0 0.0 60%

Swiss - Ticino 16.0 16.0 13.9 7.5 13.1 7.7 14.6 5.8 14.3 8.5 2.9 2.8 13.6 13.5 18.5 18.7 18.4 12.8 18.5 18.8 0.0 0.1 45%

Swiss - SG&GR 15.1 15.5 9.2 9.7 9.3 9.0 9.4 8.8 9.9 10.9 7.5 7.4 17.9 18.3 19.9 19.8 19.8 19.4 15.8 5.4 0.0 0.0 15%

US 15.4 12.5 4.0 1.7 4.3 3.1 2.3 3.9 12.6 13.2 48.1 48.9 4.0 3.7 0.0 0.0 0.0 8.9 3.8 8.0 11.8 10.1 0%

False 
negatives 

(FN)
(%)

Brazil 11.2 11.1 10.4 6.3 8.5 4.7 9.5 5.7 10.1 3.6 8.6 6.8 10.5 10.6 11.2 11.5 21.4 17.0 7.1 6.5 0.0 24.1 100%

Italy 24.9 24.9 6.0 6.4 8.5 8.4 8.7 9.9 10.7 8.5 11.6 7.9 25.8 25.3 42.6 42.9 40.3 27.1 11.5 13.3 41.8 41.5 75%

Japan 6.6 6.6 4.4 4.7 4.3 4.5 4.1 4.4 4.7 5.0 2.8 2.7 3.8 3.9 11.3 11.2 11.3 11.4 4.7 4.7 10.5 11.1 60%

Swiss - Ticino 9.3 9.4 6.7 1.7 9.4 5.5 11.6 2.9 8.3 3.8 36.9 42.1 10.8 10.6 0.0 0.0 0.0 7.2 0.0 0.0 80.8 83.6 45%

Swiss - SG&GR 16.5 15.7 7.4 5.0 7.9 6.3 6.6 6.2 11.4 14.9 42.5 43.6 4.3 4.1 0.0 0.0 0.0 0.5 9.1 53.2 80.0 79.9 15%

US 14.3 14.9 11.9 13.6 12.2 13.0 14.6 13.6 10.4 10.7 5.6 5.7 16.7 16.9 17.8 17.7 17.7 13.1 14.4 12.9 14.7 14.7 0%

Balanced 
accuracy 

(%)

Brazil 59.5 59.8 74.0 84.6 77.0 86.0 74.3 83.7 75.5 90.6 74.2 77.5 72.9 72.7 71.3 71.5 48.9 58.7 74.0 75.3 50.0 50.0 100%

Italy 50.5 50.4 84.7 87.2 82.3 82.7 79.5 80.3 76.4 80.3 53.5 56.4 55.5 55.6 50.0 50.0 50.8 61.0 57.2 56.7 50.7 50.4 75%

Japan 67.6 67.9 79.8 78.7 79.3 78.6 80.4 79.2 76.3 75.3 82.9 83.1 80.7 80.7 50.0 50.1 50.0 50.1 78.3 78.7 50.0 50.0 60%

Swiss - Ticino 50.0 50.0 57.7 78.6 58.2 75.6 52.7 82.7 61.3 76.9 69.7 66.8 56.2 56.5 50.0 50.0 50.0 61.5 50.0 50.0 50.3 50.0 45%

Swiss - SG&GR 51.8 51.4 72.4 72.6 71.5 73.4 72.3 74.0 67.6 63.6 54.6 54.4 52.0 51.6 50.0 50.0 50.0 50.9 54.5 53.3 50.0 50.0 30%

US 50.7 50.5 64.2 60.7 63.1 61.6 57.3 59.2 62.9 61.6 55.0 54.9 50.5 50.3 50.0 50.0 50.0 57.6 57.4 58.6 50.4 51.4 0%

Table 3 
Average error metrics (accuracy, FP, FN and balanced accuracy) for each dataset in settings 3 (common fields) and 4 (common fields + screens). 

Algorithm

SGD Extra 
Trees

Random 
Forest

Ada 
Boost

Gradient 
Boosting SVC K 

Neighbors MLP
Bernoulli 

Naive 
Bayes

Gaussian 
Naive 
Bayes

Gaussian 
Process Colour  

legendError 
metrics

Setting 
Dataset 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

Accuracy 
(%)

Brazil 65.4 64.8 87.8 89.6 86.7 89.1 87.9 86.5 85.6 89.3 84.2 80.6 84.8 85.1 86.3 85.5 81.1 77.3 56.0 46.5 81.2 80.5 100%

Italy 51.3 50.7 78.9 86.8 79.9 81.9 77.3 79.5 74.7 72.4 54.5 50.8 56.6 56.5 57.7 57.0 57.4 65.0 53.8 53.4 57.5 60.5 75%

Japan 83.9 83.7 94.5 94.5 93.2 93.4 93.3 92.3 90.7 87.9 85.5 82.5 92.3 92.4 88.2 88.7 88.8 88.8 94.0 94.3 88.7 88.9 60%

Swiss - Ticino 73.8 73.3 78.1 90.9 77.0 86.9 73.7 91.4 74.4 90.3 53.6 55.1 76.0 75.6 81.8 81.9 81.9 79.9 82.0 81.4 18.9 18.0 45%

Swiss - SG&GR 69.3 70.0 76.6 81.1 75.8 80.3 79.4 79.2 70.5 69.4 49.8 48.3 77.8 77.7 80.2 80.2 80.1 80.2 75.5 42.2 19.3 19.8 30%

US 70.7 70.7 83.8 83.7 82.9 83.0 82.5 81.9 77.0 74.7 47.9 47.5 79.1 79.4 82.1 82.3 82.2 78.0 82.1 79.1 72.8 74.5 15%

All datasets 48.7 48.5 82.0 86.3 80.5 84.0 81.6 81.8 75.6 72.0 48.1 47.8 59.2 59.5 52.5 52.6 53.7 58.8 53.6 53.1 53.3 52.6 0%

False 
positives 

(FP)
(%)

Brazil 23.2 23.5 2.7 3.9 4.4 4.9 4.5 6.7 4.0 4.0 10.2 12.3 3.9 5.1 3.4 3.8 0.1 3.5 39.2 48.7 0.0 0.0 100%

Italy 22.4 23.7 11.9 6.7 10.4 9.2 12.2 10.2 14.5 14.5 38.1 40.9 16.7 16.6 0.0 0.0 0.6 7.2 27.8 28.0 0.2 0.2 75%

Japan 8.2 8.2 1.1 0.6 2.5 2.2 2.2 3.0 5.3 7.7 11.5 14.5 3.7 3.6 0.0 0.0 0.0 0.0 0.3 0.4 0.0 0.0 60%

Swiss - Ticino 15.7 16.5 14.9 7.7 13.1 7.6 14.8 5.7 17.6 5.9 4.3 3.0 13.5 13.7 18.2 18.1 18.1 12.4 18.0 18.6 0.0 0.2 45%

Swiss - SG&GR 15.2 15.7 15.2 16.4 15.1 14.6 17.9 15.6 12.6 12.5 7.4 7.3 17.9 18.1 19.8 19.8 19.9 19.3 16.0 5.6 0.0 0.0 30%

US 14.8 15.1 3.8 1.7 4.6 3.3 2.2 4.1 12.2 14.2 45.7 47.1 3.9 3.8 0.0 0.0 0.0 8.8 3.8 8.0 11.5 10.9 15%

All datasets 25.2 24.8 9.7 8.0 9.7 8.7 10.2 9.9 9.7 9.6 42.3 45.8 18.5 18.6 22.7 21.8 0.0 24.4 10.5 3.9 1.3 1.4 0%

False 
negatives 

(FN)
(%)

Brazil 11.4 11.7 9.5 6.6 8.9 6.1 7.6 6.7 10.4 6.7 5.6 7.1 11.3 9.8 10.3 10.7 18.9 19.2 4.8 4.9 18.8 19.5 100%

Italy 26.4 25.7 9.2 6.6 9.8 8.9 10.4 10.3 10.8 13.1 7.5 8.3 26.7 26.9 42.3 43.0 42.0 27.8 18.3 18.7 42.4 39.3 75%

Japan 7.9 8.1 4.5 4.9 4.3 4.3 4.5 4.7 4.0 4.4 3.0 3.0 4.1 3.9 11.2 11.3 11.2 11.2 5.6 5.4 11.3 11.1 60%

Swiss - Ticino 10.5 10.1 7.0 1.5 9.9 5.6 11.5 2.9 7.9 3.8 42.0 41.9 10.5 10.8 0.0 0.0 0.0 7.7 0.0 0.0 81.1 81.9 45%

Swiss - SG&GR 15.5 14.3 8.2 2.5 9.1 5.1 2.7 5.2 16.9 18.1 42.9 44.3 4.3 4.1 0.0 0.0 0.0 0.5 8.5 52.2 80.6 80.2 30%

US 14.5 14.2 12.4 14.6 12.5 13.8 15.3 14.1 10.8 11.1 6.4 5.3 16.9 16.8 17.9 17.7 17.8 13.2 14.0 12.9 15.6 14.6 15%

All datasets 26.1 26.7 8.2 5.7 9.8 7.3 8.2 8.3 14.7 18.4 9.6 6.4 22.3 21.9 24.8 25.6 46.3 16.7 35.9 43.0 45.6 46.0 0%

Balanced 
accuracy 

(%)

Brazil 57.1 58.6 73.9 83.7 74.3 83.6 78.0 81.2 71.0 83.6 78.4 73.6 69.5 74.2 71.3 72.4 50.0 54.1 64.0 58.4 50.0 50.0 100%

Italy 50.0 50.0 78.9 86.5 79.6 81.5 77.1 79.1 74.3 72.6 58.8 55.4 54.4 54.3 50.0 50.0 50.2 61.1 55.2 55.1 51.3 51.7 75%

Japan 60.5 59.6 79.6 78.2 79.5 79.4 78.9 77.3 77.4 75.8 80.2 78.4 80.2 80.5 50.1 50.0 50.0 50.0 74.4 75.7 50.2 50.0 60%

Swiss - Ticino 50.0 50.0 55.4 78.3 58.1 75.8 52.6 82.5 55.9 82.3 62.1 67.8 56.7 56.7 50.0 50.0 50.0 61.3 50.0 50.0 50.3 49.8 45%

Swiss - SG&GR 51.8 51.5 56.5 56.9 56.2 59.9 53.1 57.3 57.1 57.5 54.6 53.7 51.9 51.6 50.0 50.0 50.0 50.9 54.3 53.4 50.0 50.0 30%

US 50.3 50.5 62.7 58.0 62.0 59.2 55.6 58.0 62.0 59.9 54.1 56.3 50.2 50.3 50.0 50.0 50.0 57.6 57.9 58.7 50.3 50.8 15%

All datasets 48.4 48.1 82.1 86.4 80.4 84.0 81.7 81.8 75.1 70.8 49.7 50.7 58.7 59.1 53.0 53.0 50.0 59.3 51.6 50.1 49.3 49.1 0%

Note: In this table, an extra row named ‘All datasets’ is included as settings 3 and 4 only use fields shared among all datasets. Hence, it is possible to combine the 
auctions from all datasets into one. 
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aggregate all datasets and analyze them as a whole. These aggregated 
results are presented in the bottom rows of each error metric in Table 3 
(values highlighted in bold). 

Tables 2 and 3 show our major results - in facilitating the process of 
interpreting the results presented in Tables 2 and 3, we summarize key 
issues in Table 4. We also would like to point out that no single algo
rithm performs best in all datasets. Yet, we find the ensemble methods 
(Extra Trees, Random Forest, Ada Boost and Gradient Boosting) are 
generally better among the top performers. 

The screens improve the accuracy of collusion detection and 
decrease the rate of false positives (FP) and false negatives (FN) in 
almost every situation. The screens are especially effective when used 
with the ensemble methods. This can be readily appreciated when 
comparing the results of ‘setting 2 versus setting 1’ (Table 2) and ‘setting 
4 versus setting 3’ (Table 3). A simple summary of this increase can be 
seen in the central block of Table 4. For example, Setting 2 (all fields +
screens) provides evidence of the best percentages of balanced accuracy. 
This was expected as this is the scenario where ML algorithms have 
access to more auction information. For the best four algorithms (the 
ensemble methods) in setting 2, it is possible to see that:  

• accuracy is usually higher than 80%;  
• FP and FN are generally lower than 10%; and  
• balanced accuracy is usually higher than 70%. 

Comparing the top-performing algorithms’ detection rates and 

results reported in the literature (bottom row of Table 4), we can see 
some of our algorithms have outperformed previous empirical models’. 
We also reveal that the US dataset was the most difficult for detecting 
collusion as it shows the worst percentages of balanced accuracy (about 
60%) for almost all settings and algorithms. This may have arisen due to 
the dataset containing the lowest number of collusive bidders (11 bid
ders, 9.17% of the total). Similarly, the Swiss–SG&GR dataset had a low 
balanced accuracy (about 70%). This situation may have arisen due to 
the extremely high proportion of collusive versus competitive bids (59% 
vs 41%), rendering it difficult for the ML to differentiate between the 
varying bids. However, results are satisfactory when all the datasets are 
trained together (results in bold text in setting 4). The best algorithm, in 
this case, is the Extra Trees, which reaches a balanced accuracy of 86%. 
For this algorithm, the rate of FP is 8%, and the rate of FN is 6%. 

The worst performing algorithms (SGD, SVC, K Neighbors, MLP, 
Bernoulli and Gaussian Naive Bayes and Gaussian Processes) hardly 
improve their detection results with the help of the screens. The 
implemented neural network algorithm (MLP, Multi-Layer Perceptron) 
has shown low percentages of balanced accuracy in all datasets and 
settings. Our MLP adopted four hidden layers with 240, 120, 70 and 35 
neurons, respectively. However, a better combination of hidden layers 
and neurons might have reached better detection results. It should be 
acknowledged that combining hidden layers and neurons is an uphill 
task and is thus outside of the scope of this research. 

Finally, Fig. 3 identifies three error metrics (precision, recall and F1 
score) for settings 3 and 4 for the dataset called ‘All datasets’ (auctions 

Table 4 
Summary of collusion detection average results with ML algorithms.    

Datasets 

Topic Description Brazil Italy Japan Swiss - Ticino Swiss - 
SG&GR 

US All 
datasets 

Fields Common 
fields 

Auction code, bid values, winning bid and number of bids per auction 

All fields in 
the dataset 

Common fields, 
PTE, difference Bid/ 
PTE, location, 
Brazilian State and 
date 

Common fields, PTE, 
difference Bid/PTE, 
location, type and 
size of bidding 
companies 

Common fields, 
PTE, difference 
Bid/PTE, 
location and 
date 

Common fields 
and consortium 
composition 

Common 
fields, 
contract 
type and 
date 

Common fields, 
bid value with 
and without 
inflation and 
date 

Common 
fields only 

Num. of 
variables 

9 9 8 5 6 7 4 

Screens Coefficient of variation (CV), spread (SPD), percentage difference between the two lowest bids (DIFFP), relative distance (RD), skewness 
statistic (SKEW) and Kolmogorov–Smirnov test (KSTEST) 

Results. Best 
accuracy and top- 
performing 
algorithm 

Setting 1 
All fields from 
each dataset 

85.2% 
Gradient Boosting 

84.4% 
Extra Trees 

94.7% 
Extra Trees 

81.6% 
Bernoulli Naive 
Bayes 

84.1% 
Ada Boost 

84.1% 
Extra Trees 

N/A 

Setting 2 
All fields from 
each dataset +
screens 

92.4% 
Gradient Boosting 

87.4% 
Extra Trees 

94.6% 
Gaussian Naive 
Bayes 

91.4% 
Ada Boost 

85.3% 
Extra Trees 

84.8% 
Extra Trees 

N/A 

Setting 3 
Common 
fields 

87.9% 
Ada Boost 

79.9% 
Random Forest 

94.5% 
Extra Trees 

82.0% 
Gaussian Naive 
Bayes 

80.2% 
MLP 

83.8% 
Extra Trees 

82.0% 
Extra 
Trees 

Setting 4 
Common 
fields +
screens 

89.6% 
Extra Trees 

86.8% 
Extra Trees 

94.5% 
Extra Trees 

91.4% 
Ada Boost 

81.1% 
Extra Trees 

83.7% 
Extra Trees 

86.3% 
Extra 
Trees 

Average accuracy 
increase on 
including screens 
(for the four top- 
performing 
algorithms) 

Best 
algorithms 

Ensemble methods: Extra Trees, Random Forest, Ada Boost and Gradient Boosting 

Setting 2 
from 1 

+6.0% +2.3% − 0.5% +12.1% +0.1% − 0.1% N/A 

Setting 4 
from 3 

+1.6% +2.5% − 0.9% +14.1% +1.9% − 0.7% +1.1% 

Detection rates 
reported in the 
literature 

Paper/s [30,34] [36] [38] [40] [40] [19] N/A 
Method Probabilistic 

methods 
Standard 
hierarchical 
clustering algorithm 

ML methods: 
Random Forest 
& Ensemble 
Method 

ML method: 
Random Forest 

ML method: 
Random 
Forest 

N/A N/A 

Accuracy 81% - 96% N/A 88% - 93% 77% - 86% 61% - 84% N/A N/A  
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from all datasets merged into one). For each algorithm, the error metrics 
are denoted by a cross. The cutting point of the cross is the median of the 
precision and the recall. The endpoints of the cross are the minimum and 
maximum values of the precision and the recall (remember, we per
formed 500 iterations with each algorithm, so there are 500 values of 
precision and the other 500 values of recall). As a result, the precision, 
recall, and F1 score values remain inside the rectangle formed by the 
cross with a high degree of confidence. The algorithms with <50% of 
precision and < 50% recall are not shown in the figure. By comparing 
setting 3 (left graph) with setting 4 (right graph), it is seen how the 
screens improve the precision slightly and recall for the four top- 
performing algorithms (ensemble methods). Summarizing the graph
ical results from setting 4, we observe:  

• Extra Trees: 83%–86% precision, 86%–89% recall and 84%–87% F1 
score.  

• Random Forest: 80%–84% precision, 82%–86% recall and 81%–85% 
F1 score.  

• Ada Boost: 78%–82% precision, 80%–84% recall and 79%–83% F1 
score.  

• Gradient Boosting: 73%–81% precision, <50%–76% recall and < 78% 
F1 score. 

For additional detail with regard to the screens boxplot and the 
precision, recall and F1 scores of other settings and specific datasets, we 
refer the readers to our Supplementary material. 

5. Discussion 

Our research demonstrates that the amount of data available per 
auction is positively correlated with a higher collusion detection 
balanced accuracy in the majority of the tested ML algorithms. Yet, even 
with limited access to primary data, the ML algorithms were able to 
achieve satisfactory collusion detection rates. To this end, the research 
empirically demonstrates that ML tools can be implemented and be 
useful even when few pieces of information are available from a large 
number of auctions. In this case, this basic information was the bid 
values and the winning bid from each auction. 

The eleven ML algorithms have been tested extensively with four 
different settings (input data configurations). They have been analyzed 

with standard error metrics for binary classification problems: accuracy, 
false positive, false negative, balanced accuracy, precision, recall and F1 
score. The results from the previous section highlight that the four 
ensemble methods are the top-performing algorithms for the six collu
sive datasets. If the field ‘identity of bidders’ had also been considered in 
settings 1 and 2, the error metrics would have also significantly 
improved. 

Yet, we have observed some minor differences in the screen’s 
effectiveness across datasets. In this regard, the US dataset (non-con
struction) and (but to a lesser extent) the Japanese dataset did not 
augment their average accuracy when screens were applied. Still, it is 
expected that screens in construction datasets will help boost collusion 
detection rates. Furthermore, there are no significant differences be
tween the two awarding criteria (lowest bid versus the average bid 
method), at least not in accuracy for the top-performing algorithms or 
screens. Even though we only counted on a single dataset with different 
awarding criteria (the Italy dataset), hardly any differences have been 
found with other datasets results. 

Another interesting analysis would involve training the algorithms in 
all but one country and then predicting collusion in the excluded 
country [38]. Basically, one could iteratively change the country 
excluded from the training data but later use it for testing purposes. This 
analysis would provide additional evidence on how well the methods 
work in terms of transferability across countries. Still, this would be a 
highly time-consuming, and it can only be implemented when all 
datasets share the same fields. Instead, we performed a similar analysis 
thanks to the so-called ‘All datasets’ combination (combining the auc
tions from all datasets into one) with promising results. This combina
tion was only possible for settings 3 and 4, though, as they were the only 
ones using shared information across all datasets. 

6. Conclusions 

Collusion has malevolent effects on public procurement, diminishes 
the confidence in a competitive market, and dissuades truly competitive 
competitors from submitting realistic bids. Research in collusion 
detection in construction has focused on producing both theoretical and 
empirical methods. However, theoretical models have been restricted to 
simple applications with few bidders and under the assumption of per
fect information. In contrast, the accuracy of those of an empirical 

Fig. 3. Error metrics (precision, recall and F1 score) for the ‘All datasets’ combination in setting 3 (common fields) on the left and setting 4 (common fields + screens) 
on the right. 
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nature has come into question. Our research contributes to those based 
on empirical models and has used a comparison of ML algorithms to 
demonstrate their potential for improving the accuracy of detecting 
collusion. 

The increasing availability of public procurement information and 
the recent development of ML techniques has made it much easier to 
develop alternative empirical models to detect collusion. While ML al
gorithms require large amounts of data for training, they can provide 
robust results with fewer input variables. Recognizing the potential of 
ML, we have compared the performance of eleven algorithms to detect 
collusion. We have provided evidence that these algorithms can work 
with a lot of limited pieces of information. We have also shown how 
detection rates can be improved with the help of some screening vari
ables. The eleven ML algorithms were tested using an extensive dataset 
acquired from six public procurement datasets (a total of 9781 auctions) 
from five countries: (1) Brazil; (2) Italy; (3) Japan; (4) Switzerland; and 
(5) the US. 

Our analyses’ three top-performing ML algorithms have been the 
Extra Trees, Random Forest and Ada Boost (ensemble methods). In the 
scenario where all auction information was available, these algorithms’ 
accuracy (detection rates) ranged between 81% and 95%, with a 
balanced accuracy generally above 73% (excluding the US dataset). The 
algorithms can also be used with limited data, which poses a significant 
advantage over existing empirical methods. Once the algorithms are 
trained, they can be automatically updated with the latest auctions, and 
the user needs to make little effort in supervising their outcomes. 

The research has limitations, which also need to be acknowledged. It 
is widely known that ML algorithms are akin to a black box from which it 
is difficult to explain the inherent complexity of the problem being 
analyzed (at least not in a straightforward manner). Moreover, they 
need a substantial amount of reliable historical data, some of which 
(especially the collusion-related) may not always be made available by 
competition commissions or law enforcement agencies – this problem is 
shared by other detection methods. Future research is needed to address 
the shortcomings of ML, specifically examining different algorithm types 
and fine-tuning their parameters. Access to data is critical for improving 
detection accuracy. A promising path for future research is to combine 
auction and company data (e.g., annual operating income, backlog, 
earnings before interest, taxes, depreciation, and amortization). By 
merging ML concepts with the economic theory first explored by Bajari 
and Ye [28] (driven by currently available data mining/scraping tools), 
we hope that the results will be even more accurate and their explana
tion better substantiated. Whereas the use of ML to detect collusion is in 
its infancy, we hope the research presented in this paper can foster 
future studies in this fertile and unexplored area. 
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[44] P. Ballesteros-Pérez, M.C. González-Cruz, J.L. Fuentes-Bargues, M. Skitmore, 
Analysis of the distribution of the number of bidders in construction contract 
auctions, Constr. Manag. Econ. 33 (2015) 752–770, https://doi.org/10.1080/ 
01446193.2015.1090008. 

[45] T. Zhang, Solving large scale linear prediction problems using stochastic gradient 
descent algorithms, in: Twenty-First International Conference on Machine Learning 
- ICML ′04, ACM Press, New York, USA, 2004, p. 116, https://doi.org/10.1145/ 
1015330.1015332. 

[46] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 
(2006) 3–42, https://doi.org/10.1007/s10994-006-6226-1. 

[47] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/ 
10.1023/A:1010933404324. 

[48] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning 
and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119–139, https:// 
doi.org/10.1006/jcss.1997.1504. 

[49] J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. 
Stat. 29 (2001) 1189–1232, https://doi.org/10.1214/aos/1013203451. 

[50] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273–297, 
https://doi.org/10.1007/BF00994018. 

[51] N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric 
regression, Am. Stat. 46 (1992) 175–185, https://doi.org/10.1080/ 
00031305.1992.10475879. 

[52] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Second, 
Springer, New York, NY, 2009, https://doi.org/10.1007/978-0-387-84858-7. ISBN 
978-0-387-84858-7. 

[53] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, MIT 
Press, 2006. ISBN: 978-0-262-18253-9, www.GaussianProcess.org/gpml. 

[54] H. Anysz, A. Foremny, J. Kulejewski, Comparison of ANN classifier to the neuro- 
fuzzy system for collusion detection in the tender procedures of road construction 
sector, in: IOP Conference Series: Materials Science and Engineering 471, 2019, 
p. 112064, https://doi.org/10.1088/1757-899X/471/11/112064. 

[55] H. Anysz, Ł. Brzozowski, Long short-term memory (LSTM) neural networks in 
predicting fair price level in the road construction industry, in: IOP Conference 
Series: Materials Science and Engineering 1015, 2021, p. 012060, https://doi.org/ 
10.1088/1757-899X/1015/1/012060. 

[56] M.J. García Rodríguez, V. Rodríguez Montequín, F. Ortega Fernández, J. 
M. Villanueva Balsera, Public procurement announcements in Spain: regulations, 
data analysis, and award price estimator using machine learning, Complexity. 2019 
(2019), https://doi.org/10.1155/2019/2360610. 

[57] M.J. García Rodríguez, V. Rodríguez Montequín, F. Ortega Fernández, J. 
M. Villanueva Balsera, Bidders recommender for public procurement auctions 
using machine learning: data analysis, algorithm, and case study with tenders from 
Spain, Complexity. 2020 (2020) 1–20, https://doi.org/10.1155/2020/8858258. 

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 
M. Blondel, A. Müller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, 
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, 
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