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Abstract

Target signatures are discrete quantities computed from measured scattering data that
could potentially be used to classify scatterers or give information about possible
defects in the scatterer compared to an ideal object. Here, we study a class of modified
interior transmission eigenvalues that are intended to provide target signatures for an
inverse fluid–solid interaction problem. The modification is based on an auxiliary
problem parametrized by an artificial diffusivity constant. This constant may be chosen
strictly positive, or strictly negative. For both choices, we characterize the modified
interior transmission eigenvalues by means of a suitable operator so that we can
determine their location in the complex plane. Moreover, for the negative sign choice,
we also show the existence and discreteness of these eigenvalues. Finally, no matter
the choice of the sign, we analyze the approximation of the eigenvalues from far field
measurements of the scattered fluid pressure and provide numerical results which
show that, even with noisy data, some of the eigenvalues can be determined from far
field data.
Keywords: Fluid–solid interaction, Inverse scattering, Steklov eigenvalues, Modified
interior transmission eigenvalues

Mathematics Subject Classification: 35R30, 35P25, 35P05, 65N21, 65N25

1 Introduction
Target signatures are discrete data that can be computed from the wave field scattered
by an unknown target. It has been proposed that these discrete data can be used either
to categorize the scatterer by comparing the signature to a dictionary of known signa-
tures, or to detect changes in the structure of a scatterer. The first target signatures to
be proposed were for electromagnetic waves and could be computed from time domain
measurements of a radar signal [23]. In recent years, the quest for target signatures for
inverse acoustic and electromagnetic scattering has been centered around three eigen-
value problems: transmission eigenvalues, Steklov type eigenvalues and modified interior
transmission eigenvalues. The first of these, transmission eigenvalues, arise in the study
of the injectivity of the far field operator for a bounded penetrable scatterer. However,
transmission eigenvalues can only be detected by scanning in frequency and are restricted
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to non-absorbing media. These are practical limitations. For a discussion of these eigen-
values, see [10].
In order to obtain signatures that can be determined for absorbing media, and which

only require scattering data at a single frequency, Cakoni et al. [4] proposed to use the
so-called Steklov eigenvalues for the Helmholtz equation as target signatures. This study
was extended to Maxwell’s equations in [5], and to the fluid–solid interaction problem in
[20]. For the fluid–solid problem, Steklov type eigenvalues (termed impedance eigenvalues
in [20]) can be determined from scattering data, but only a few can be determined from
such data.
In order to provide a tunable parameter that can help increase the sensitivity of the

eigenvalues to changes in the scatterer, Cogar et al. [8] introduced modified transmission
eigenvalues. This idea was recently extended to Maxwell’s equations in [9].
In our paper, we develop the modified interior transmission eigenvalues for the fluid–

solid interaction problem. Such eigenvalues involve amodified interior transmission prob-
lem (mITP) with a coupling between the fluid and elastic wave fields, and results in a
discrete set of eigenvalues. The properties of these eigenvalues depend on the choice of an
artificial diffusivity parameter that can be positive (the natural case [8]) or negative (the
metamaterial case [2]). The idea of using a metamaterial was first suggested in [2] in the
context of the Helmholtz equation. In particular for themetamaterial case, it is possible to
prove monotonicity results for the eigenvalues whichmay be helpful in characterizing the
elastic properties of the scatterer. We point out that only physical data from a standard
linear elastic scatterer are used to determine these eigenvalues, regardless of the sign of
the artificial diffusivity.
Among themain contributions of this paper is to give the first study of modified interior

transmission eigenvalues for the fluid–solid problem. This is also the first such study of
modified interior transmission eigenvalues for a multi-physics problem and shows that
this type of eigenvalues can be used in this case.
Tounderstand the behavior of the eigenvalues associatedwith themITP,we reformulate

the mITP first by means of an auxiliary boundary operator. We then study the mITP
by superposition with a reference case, and this reasoning allows us to make use of the
Fredholmalternative. The behavior ofmodified interior transmission eigenvalues depends
on the sign of an auxiliary parameter defining themodified far field operator. In particular,
when this parameter is negative, we prove an upper bound; and, this allows us to guarantee
the existence of a reference case and use it to show the existence of infinitelymany discrete
eigenvalues. Finally, for either sign choice,we study the approximationof these eigenvalues
using a modified far field equation.
The outline of this paper is as follows. First, in Sect. 2, we give a brief summary of

the forward problem, drawing heavily on the presentation in [20]. In Sect. 3, we define
the modified interior transmission eigenvalues, motivating their choice by considering
the injectivity of the modified far field operator defined at the start of that section. We
also derive theorems concerning the discreteness and distribution of modified interior
transmission eigenvalues. Next, in Sect. 4 we demonstrate the usual theorems concerning
the approximation of modified transmission eigenvalues using solutions of the far field
equation. Then, in Sect. 5 we show a few numerical examples to illustrate our theory.
Finally, we end with conclusions and comments on further study.
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We perform the analysis for a bounded elastic scatterer in R
m for m = 2, 3. Generally,

bold face quantities denote vectors as well as spaces of vector-valued fields: For exam-
ple, u(x) denotes the displacement of the solid at the point x ∈ R

m; besides, if O is a
bounded open set, then H1(O) stands for the standard Sobolev space of functions with
L2-derivatives, and H1(O) = (H1(O))m.

2 The forward fluid–solid interaction problem
This section follows closely the corresponding introductory material in [20]. For this
reason, we only give enough detail to define the basic notation, and direct the reader to
that paper for more details.
We first recall a standard mathematical formulation of the forward fluid–solid interac-

tion problem, cf. [16]. We consider a linear elastic body that occupies a bounded domain
� ⊂ R

m. A fluid occupies the unbounded domain �e = R
m\�, which is assumed to be

connected. We also assume that the boundary � = ∂� is smooth and denote by n the
unit normal on � outward to �.
As usual, we denote by ε(u) = ( 1

2 (∂iuj + ∂jui)
)m
i,j=1 the strain tensor and by σ (u) =

λ divu I + 2με(u) the stress tensor, where I is the m × m identity tensor. The elastic
coefficients λ,μ ∈ R are the Lamé moduli and are assumed to satisfy (cf. [21]):

μ > 0, λ + 2
m

μ > 0. (2.1)

The wavenumber in the fluid is denoted by k = ω/cf ∈ R, k > 0, where ω is the angular
frequency of the fields and cf is the speed of sound in the fluid. In addition, the mass
densities in the fluid (ρf ) and the solid (ρs) are positive, and the mass density in the fluid
(ρf ) is constant.
We shall consider incident plane waves from the fluid on the solid:

pi(x) = pi(x,d) = eıkx·d in R
m , (2.2)

where d ∈ S
m−1 = {x ∈ R

m ; |x| = 1} is the direction of propagation.
The standard traction operator is

Tu = σ (u)n = λ divu n + 2μ ε(u)n on � .

Then, the elastodynamic displacement field u ∈ H1(�) and the dynamic component of
the fluid pressure p ∈ H1

loc(�e) solve the following fluid–solid interaction problem:

∇ · σ (u) + ρsω
2u = 0 in �,


p + k2p = 0 in �e,
Tu = −pn on �,

u · n = 1
ρf ω2

∂p
∂n

on �,

p = pi + ps and
∂ps

∂r
− ıkps = O

(
r−(m−1)/2

)
as r = |x| → ∞.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

For a complete description of the derivation of this model see [16] or [21], and the
references therein.
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To define conditions under which problem (2.3) has a unique solution, we recall that ω

is a Jones frequency with Jones mode u ∈ H1(�) whenever u is a non-trivial solution of
the following interior problem:

∇ · σ (u) + ρsω2u = 0 in �,
Tu = 0 on �,

u · n = 0 on �.

⎫
⎪⎬

⎪⎭
(2.4)

Such modes (if any) are discrete. They exist, for example, when � is a disk in R
2 or a

ball in R
3. By the Fredholm alternative, problem (2.3) is well-posed when ω is not a Jones

frequency (see, e.g., [16,21,24]) and from now on we shall assume that ω is not a Jones
mode.
Because ps is a radiating solution of the Helmholtz equation, it has the asymptotic

expansion

ps(x) = eıkr

r(m−1)/2 p∞ (̂x) + O
(
r−(m+1)/2

)
as r = |x| → ∞, (2.5)

see [10]. Here, the function p∞, called the far field pattern of the scattered field, is given
by

p∞ (̂x) = −cm
∫

�

(
ıkps(y)n(y) · x̂ + ∂ps

∂n
(y)

)
e−ıky·̂x dSy , (2.6)

where

cm =
⎧
⎨

⎩

eıπ/4√
8πk

ifm = 2,
1
4π ifm = 3.

Given an incident plane wave as in (2.2), we denote by u(·,d), ps(·,d) and p∞(·,d) the
associated displacement field, scattered wave and far field pattern, respectively.
A key tool in inverse scattering is the far field operator F : L2(Sm−1) → L2(Sm−1)

defined by (see [10])

(Fg)(̂x) =
∫

Sm−1

p∞ (̂x,d) g(d) dSd for all x̂ ∈ S
m−1. (2.7)

By the linearity of the forward problem (2.3), Fg = p∞
g where p∞

g is the far field pattern
of the scattered wave due to the incident field given by the Herglotz wave function

pig (x) =
∫

Sm−1

eıkx·y g(y) dSy =
∫

Sm−1

pi(x, y) g(y) dSy . (2.8)

3 Modified interior transmission eigenvalues
In this section, we define modified transmission eigenvalues for the fluid–solid problem.
In order to relate them to a scattering problem, we propose a modification of the far
field operator F motivated by the corresponding theory for the Helmholtz equation in [8].
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More precisely, given parameters γ �= 0 andβ ∈ C, we consider the auxiliary transmission
problem of finding h ∈ H1

loc(R
m) such that

1
γ


h + βk2h = 0 in �,


h + k2h = 0 in �e,
h+ − h− = 0 on �,
∂h+

∂n
− 1

γ

∂h−

∂n
= 0 on �,

h = hi + hs and
∂hs

∂r
− ıkhs = O

(
r−(m−1)/2

)
as r → ∞.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

Here, h± denotes the trace of the field from the exterior or the interior of�, respectively;

similarly,
∂h±

∂n
stands for the normal derivatives taken from the exterior or the interior,

respectively. From now on, we assume that γ �= 0 is fixed and β ∈ C is the parameter we
may change, and which will ultimately become an eigenvalue. This problem is well-posed
when γ > 0 for any β ∈ C+ = {z ∈ C; Im(z) ≥ 0}, see [10]; it is also well-posed in case
γ < 0 when γ �= −1 and β ∈ C+, see [13,29].
We consider an incident plane wave hi = pi(·,d) as in (2.2), and denote by hs(·,d) and

h∞(·,d) the associated scattered wave and its far field pattern, respectively. We introduce
Fβ : L2(Sm−1) → L2(Sm−1) the far field operator associated with this auxiliary problem,
which is given by

(Fβg)(̂x) =
∫

Sm−1

h∞ (̂x,d) g(d) dSd a.e. d ∈ S
m−1. (3.2)

We then define the associated modified far field operator Fβ = F − Fβ : L2(Sm−1) →
L2(Sm−1), that is

(Fβg)(̂x) =
∫

Sm−1

(
p∞ (̂x,d) − h∞ (̂x,d)

)
g(d) dSd for all x̂ ∈ S

m−1. (3.3)

We first study the injectivity of the modified far field operator Fβ = F − Fβ . This will
motivate our definition of modified interior transmission eigenvalues. To this end, we
consider g ∈ L2(Sm−1) such that Fβg = 0 in S

m−1. To start the study of the modified far
field operator, we can rewrite this condition by taking, in problems (2.3) and (3.1), both
incident fields to be theHerglotzwave functionwith density g , that is, pi = pig and hi = pig .
Indeed, if we denote by p∞

g and h∞
g the far field patterns of the associated scattered waves

psg and hsg , then Fβg = 0 implies that p∞
g = h∞

g in S
m−1. By Rellich’s lemma, this implies

that psg = hsg in �e; therefore, the transmission conditions satisfied by the displacement
field ug that solves (2.3) can be rewritten as

Tug = −h−
g n , ug · n = 1

γ ρf ω2
∂h−

g

∂n
on � ,

where hg = hig + hsg . This discussion suggests the following definition.

Definition 1 For a fixed frequency ω and a parameter γ �= 0, we say that β ∈ C is amod-
ified interior transmission eigenvalue (mITP eigenvalue) if the following homogeneous
modified interior transmission problem has a nontrivial solution (u, h) ∈ H1(�)×H1(�):
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∇ · σ (u) + ρsω
2u = 0 in �,

1
γ


h + β k2h = 0 in �,

Tu = −hn on �,

u · n = 1
γ ρf ω2

∂h
∂n

on �.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.4)

Notice that, by comparing Eqs. (2.4) and (3.4), it is clear that any β ∈ C is an mITP
eigenvalue when ω is a Jones frequency (no matter the choice of γ �= 0). Hence, we
continue to assume that ω is not a Jones eigenvalue.

3.1 Modified transmission eigenvalues for any γ �= 0

We next analyze the non-homogeneous counterpart of (3.4):

∇ · σ (u) + ρsω
2u = f 1 in �,

1
γ


h + βk2h = f2 in �,

u · n − 1
γ ρf ω2

∂h
∂n

= g1 on �,

Tu + hn = g2 on �.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.5)

where f 1 ∈ H−1(�), f2 ∈ H−1(�), g1 ∈ H−1/2(�) and g2 ∈ H−1/2(�). By reasoning in the
standard way, we can formulate it in variational form as follows:

find u ∈ H1(�) and h ∈ H1(�) s.t.∫

�

(
σ (u) : ε(v) − ρsω

2u · v + 1
|γ |∇h · ∇q − sγ β k2 h q

)
dx

+
∫

�

(
h v · n − sγ ρf ω

2u · n q) dSx = −
∫

�

(
f 1 · v + sγ f2 q

)
dx

+
∫

�

(
g2 · v − sγ ρf ω

2g1 q
)
dSx

for all v ∈ H1(�), q ∈ H1(�),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

where sγ = γ /|γ |denotes the signofγ .Notice that the left-hand sidedefines the sesquilin-
ear form

ãβ ((u, h), (v, q)) =
∫

�

(
σ (u) : ε(v) − ρsω

2u · v + 1
|γ |∇h · ∇q − sγ β k2 h q

)
dx

+
∫

�

(
h v · n − sγ ρf ω

2u · n q) dSx ,

which is the sum of the following two forms:

a((u, h), (v, q)) =
∫

�

(
σ (u) : ε(v) + u · v + 1

|γ |∇h · ∇q + h q
)
dx

+
∫

�

(
h v · n − u · n q) dSx ,
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aβ ((u, h), (v, q)) = −
∫

�

(
(1 + ρsω

2)u · v + (1 + sγ βk2) h q
)
dx

+
∫

�

(1 − sγ ρf ω
2)u · n q dSx .

The sesquilinear form a(·, ·) is coercive in (H1(�)×H1(�))× (H1(�)×H1(�)). Indeed,
by Korn’s inequality,

Re
(
a((v, q), (v, q))

) =
∫

�

(
λ|∇ · v|2 + 2μ |ε(v)|2 + |v|2 + 1

|γ | |∇q|2 + |q|2
)
dx

≥ min{1, 2μ} ‖v‖21,� + min
{
1,

1
|γ |

}
‖q‖21,� .

Therefore, since the embeddings H1(�) ↪→ L2(�) and H1/2(�) ↪→ L2(�) are compact,
we can apply Fredholm theory to deduce that (3.6) is well-posed if, and only if, it admits
at most one solution. We summarize this result in the following lemma.

Lemma 1 Ifβ ∈ C is not anmITP eigenvalue, then the non-homogeneousmodified interior
transmission problem (3.5) is well-posed for data (f 1, f2, g1, g2) in H−1(�) × H−1(�) ×
H−1/2(�) × H−1/2(�).

We next study mITP eigenvalues and, in particular, we analyze their location in the
complex plane. To this end, notice that

Im
(
ãβ ((u, h), (u,− sγ

ρf ω2 h))
)

=
∫

�

Im(β) k2

ρf ω2 |h|2dx ∀(u, h) ∈ H1(�) × H1(�) .

In consequence, if β ∈ C \ R and (u, h) ∈ H1(�) × H1(�) solves (3.4), then h = 0;
and, under the assumption that ω is not a Jones eigenvalue, also u = 0. Hence, mITP
eigenvalues (if any) are real.
To further analyze the location of the mITP eigenvalues, we make use of a reference

value β0 ∈ C which is not an mITP eigenvalue (assuming such a point exists). Then, (3.5)
is well-posed for this reference value β0 (see Lemma 1); in particular, we can define the
solution operator Sβ0 : H−1(�)×H−1(�)×H−1/2(�)×H−1/2(�) → H1(�)×H1(�) by

Sβ0 (f 1, f2, g1, g2) = (u, h) ,

where (u, h) ∈ H1(�) × H1(�) denotes the solution of (3.5) for the parameter β0. By
means of this operator, we characterize the mITP eigenvalues as those values β ∈ C\ {β0}
for which there is a non-trivial (u, h) ∈ H1(�) × H1(�) such that

Sβ0 (0, (β − β0)h, 0, 0) = (u, h) . (3.7)

If this is the case and h = 0, then also u = 0 thanks to the assumption that ω is not
a Jones eigenvalue. This suggests defining the auxiliary operator Tβ0 : L2(�) → L2(�)
by Tβ0 f = h where Sβ0 (0, f, 0, 0) = (u, h). We then characterize the mITP eigenvalues as
those β ∈ C for which there exists a non-trivial h ∈ H1(�) such that

(β − β0)Tβ0h = h;
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in other words, β ∈ C is an mITP eigenvalue if, and only if,
1

β − β0
is an eigenvalue of

Tβ0 : L2(�) → L2(�).
The reasoning above leads us to study the operator Tβ0 : L2(�) → L2(�). Notice that

it is linear and bounded, and also compact (thanks to the compactness of the embedding
H1(�) ↪→ L2(�) and the fact that Tβ0 : L2(�) → H1(�) is linear and bounded). Also
notice that its adjoint is Tβ0

: To see this, for any f, g ∈ L2(�), let us take (uf , hf ) =
Sβ0 (0, f, 0, 0) and (ug , hg ) = Sβ0

(0, g, 0, 0). Using the definition of the operator Tβ0 and the
equations satisfied by hf and hg , we have that

∫

�

Tβ0 f g dx =
∫

�

hf
( 1
γ


hg + β0 k2 hg
)
dx

=
∫

�

( − 1
γ

∇hf · ∇hg + β0 k2 hf hg
)
dx +

∫

�

1
γ
hf

∂hg
∂n

dSx . (3.8)

In addition, the equations satisfied by (uf , hf ) and (ug , hg ) guarantee that, for real-valued
parameters ρs, λ and μ,

0 =
∫

�

( − σ (uf ) : ε(ug ) + ρsω
2 uf · ug

)
dx +

∫

�

Tuf · ug dSx

=
∫

�

( − σ (uf ) : ε(ug ) + ρsω
2 uf · ug

)
dx −

∫

�

1
γ ρf ω2 hf

∂hg
∂n

dSx ,

so that
∫

�

1
γ
hf

∂hg
∂n

dSx = ρf ω
2
∫

�

( − σ (uf ) : ε(ug ) + ρsω
2 uf · ug

)
dx ;

similarly,
∫

�

1
γ

∂hf
∂n

hg dSx = ρf ω
2
∫

�

( − σ (ug ) : ε(uf ) + ρsω
2 uf · ug

)
dx ;

and therefore
∫

�

1
γ
hf

∂hg
∂n

dSx =
∫

�

1
γ

∂hf
∂n

hg dSx .

Taking this result into (3.8), we conclude that
∫

�

Tβ0 f g dx =
∫

�

( − 1
γ

∇hf · ∇hg + β0 k2 hf hg
)
dx +

∫

�

1
γ

∂hf
∂n

hg dSx

=
∫

�

( 1
γ


hf + β0 k2 hf
)
hg dx =

∫

�

f Tβ0
g dx .

In particular,Tβ0 is self-adjoint ifβ0 is real. Hence, if there exists at least one real number
β0 which is not a modified interior transmission eigenvalue, then the spectral theorem
guarantees that the set of eigenvalues ofTβ0 is discrete and the only possible accumulation
point is zero.
We summarize these results in the following lemma.

Lemma 2 The set of mITP eigenvalues is either the whole real line R, or a discrete subset
of R with no finite accumulation point (or empty).

Computational examples suggest that mITP eigenvalues exist and are discrete.



P. Monk , V. Selgas Res Math Sci (2022) 9:3 Page 9 of 20 3

3.2 Modified transmission eigenvalues when γ < 0

In this subsection, we assume that γ < 0 is fixed and we will see that, in particular, this
hypothesis allows us to show that mITP eigenvalues exist.
First, we show that the (real) mITP eigenvalues are bounded above. To this end, let us

suppose that, on the contrary, there exists a sequence of positive eigenvalues {βj}j∈N ⊂ R

that approaches ∞ as j → ∞. We consider a sequence of associated eigenfunctions
{(uj , hj)}j∈N normalized in H1(�) × H1(�). Since these are eigenfunctions, it holds that
ãβj ((uj , hj), (v, 1

ρf ω2 q)) = 0 for all (v, q) ∈ H1(�) × H1(�); in other words,

∫

�

(
σ (uj) : ε(v) − ρsω

2uj · v − 1
γ ρf ω2∇hj · ∇q + βj k2

ρf ω2 hj q
)
dx

+
∫

�

(
hj v · n + uj · n q

)
dSx = 0

(3.9)

for all (v, q) ∈ H1(�) × H1(�). In particular, uj · n = 1
γ ρf ω2 hj on �, so that (3.9) for

(v, q) = (uj , hj) reads as

−
∫

�

βj k2

ρf ω2 |hj|2dx =
∫

�

(
λ|∇ · uj|2 + 2μ|ε(uj)|2 − ρsω

2|uj|2 − 1
γ ρf ω2 |∇hj|2

)
dx

+ 2
γ ρf ω2

∫

�

|hj|2 dSx . (3.10)

Notice that the right-hand side is bounded uniformly in j ∈ N (because of the normaliza-
tion of the eigenfunctions {(uj , hj)}j∈N), whereas βj → +∞; thus, we deduce that hj → 0
inL2(�). Let {(uj , hj)}j∈N be a subsequence (which for simplicitywe identifywith thewhole
sequence) that converges weakly inH1(�)×H1(�) and strongly in L2(�)×L2(�) to some
(u, h) ∈ H1(�)×H1(�). Recall that we have already shown that h = 0 in�. Moreover, by
taking the limit in (3.9) we deduce that (u, h) ∈ H1(�)×H1(�) solves (3.4) with h = 0 in
�; in consequence, our assumption on ω not being a Jones mode guarantees that u = 0
in �. Summing up, {(uj , hj)}j∈N converges to zero weakly inH1(�)×H1(�) and strongly
in L2(�)×L2(�). Notice that (3.10) and the strong convergence in L2(�)×L2(�) implies
that

0 ≤
∫

�

(
λ|∇ · uj|2 + 2μ|ε(uj)|2 − 1

γ ρf ω2 |∇hj|2
)
dx + 2

γ ρf ω2

∫

�

|hj|2 dSx

=
∫

�

(
ρsω

2|uj|2 − βj k2

ρf ω2 |hj|2
)
dx ≤

∫

�

ρsω
2|uj|2 dx → 0 ,

and, in particular, ||∇ · uj||L2(�) → 0, ||ε(uj)||L2(�)m×m → 0 and ||∇hj||L2(�) → 0. Hence,
||uj||H1(�) → 0 and ||hj||H1(�) → 0, which contradicts that the sequence {(uj , hj)}j∈N had
been normalized in H1(�) × H1(�).

Lemma 3 When γ < 0, the set of mITP eigenvalues is a subset of R and is bounded above
(or empty).

The previous result guarantees that there are real numbers that are not eigenvalues. In
consequence, Lemma 2 may be modified as follows in the case when γ < 0.
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Lemma 4 The set of mITP eigenvalues is either empty or a discrete subset of R with no
finite accumulation point.

We next show that there is at least one positive mITP eigenvalue. To this end, let us
denote by {(uj , hj)}j∈N an orthonormal basis of

H(�) = {(v, q) ∈ H1(�) × H1(�); v · n = q on �}
that consists of eigenfunctions associated withmITP eigenvalues {βj}j∈N ⊂ R. Notice that
ãβj ((uj , hj), (−uj , 1

ρf ω2 hj)) = 0 means

∫

�

−βj k2

ρf ω2 |hj|2 dx =
∫

�

( − λ|∇ · uj|2 − 2μ|ε(uj)|2 + ρsω
2|uj|2 − 1

γ ρf ω2 |∇hj|2
)
dx .

In particular, if all the eigenvalues were negative, we would have that

0 ≤
∫

�

(
− λ|∇ · v|2 − 2μ|ε(v)|2 + ρsω

2|v|2 − 1
γ ρf ω2 |∇q|2

)
dx , (3.11)

for any (v, q) ∈ H(�). This leads to contradiction under suitable assumptions on the
material parameters, in particular if λ,μ are large enough compared to ρsω2 according to
Korn’s inequality: To show it, we notice that for any v ∈ H1

0(�) it holds that

C2
P min{1, 2μ}||v||20,� ≤ min{1, 2μ}|v|21,� <

∫

�

(
λ|∇ · v|2 + 2μ|ε(v)|2

)
dx ,

where CP > 0 is the Poincaré constant:

CP ||q||0,� ≤ |q|1,� for all q ∈ H1
0 (�) ; (3.12)

therefore, if ρsω2 ≤ C2
P min{1, 2μ}, for any v ∈ H1

0(�), we have that
∫

�

ρsω
2|v|2 dx <

∫

�

(
λ|∇ · v|2 + 2μ|ε(v)|2

)
dx , (3.13)

and then for any v ∈ H1
0(�) we know that (v, 0) ∈ H(�) does not fulfill (3.11). Summariz-

ing, we have shown the following result.

Lemma 5 Consider a solid whose material parameters λ and μ are large enough with
respect to ρsω2. Then, there exists at least one positive mITP eigenvalue.

We next look for a physical meaning of the largest mITP eigenvalue. To this end, we
first define E : H1(�) × H1(�) → R by

E(v, q) =
∫

�

(
σ (v) : ε(v) − ρsω

2|v|2 − 1
γ ρf ω2 |∇q|2) dx + 2Re

( ∫

�

q v · n dSx
)
.

Notice that, under suitable conditions on the material parameters λ andμ, we have that
E(v, q)
||q||20,�

is bounded below for (v, q) ∈ H(�) such that q �= 0. To see this, if it was not

bounded, there would exist a normalized sequence {(vj , qj)}j∈N ⊂ H(�) such that

E(vj , qj) ≤ −j||qj||20,�. (3.14)
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We emphasize that E is linear continuous and the eigenfunctions {(uj , hj)}j∈N are nor-
malized. Therefore, {E(vj , qj)}j∈N is bounded uniformly in j ∈ N, and it follows that
||qj||0,� → 0, that is, qj → 0 strongly in L2(�). Moreover, wemay take a subsequence that
converges weakly inH1(�)×H1(�) and strongly in L2(�)×L2(�) to some (v, q) ∈ H(�);
recall that we have already shown that q = 0 in �. Since the norm of the weak limit is not
greater that the limit inferior of the norm, we have that

∫

�

σ (v) : ε(v)dx =
∫

�

(
λ|∇ · v|2 + 2μ|ε(v)|2)dx

≤ lim
j∈ inf

N

∫

�

σ (vj) : ε(vj)dx,− 1
γ ρf ω2

∫

�

|∇q|2dx

≤ − 1
γ ρf ω2 lim

j∈ inf
N

∫

�

|∇qj|2dx.

The continuity of the trace implies the weak convergence of vj · n = qj to v · n = q in
H1/2(�), so that

∫

�

|q|2dSx ≤ lim
j∈ inf

N

∫

�

|qj|2dSx .

From (3.14) rewritten as
∫

�

(
σ (vj) : ε(vj)− 1

γ ρf ω2 |∇qj|2
)
dx+ 2

γ ρf ω2

∫

�

|qj|2 dSx ≤
∫

�

ρsω
2|vj|2 dx−j||qj||20,� ,

and the fact that, because of the strong convergence of vj toward v in L2(�),

lim
j∈ inf

N

∫

�

ρsω
2|vj|2 dx = lim

j∈N

∫

�

ρsω
2|vj|2 dx = ρsω

2||v||20,� ,

we have that

lim
j∈ inf

N

⎛

⎝
∫

�

(
σ (vj) : ε(vj) − 1

γ ρf ω2 |∇qj|2
)
dx + 2

γ ρf ω2

∫

�

|qj|2 dSx
⎞

⎠ ≤ ρsω
2||v||20,� .

Therefore,
∫

�

(
σ (v) : ε(v) − 1

γ ρf ω2 |∇q|2) dx + 2
γ ρf ω2

∫

�

|q|2 dSx ≤ ρsω
2||v||20,� .

In particular,
∫

�

(
λ|∇ · v|2 + 2μ|ε(v)|2)dx + 2

γ ρf ω2

∫

�

|v · n|2 dSx ≤ ρsω
2||v||20,� .

This leads to a contradiction if λ and μ are large enough compared to ρsω2, see (3.13)
above.
Summing up, we have just shown that, for large enough λ and μ, there exists

� = inf
(v,q)∈H(�),q �=0

E(v, q)
||q||20,�

.
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We next look for an estimate for the largest mITP eigenvalue βmax by using the above
defined �. To this end, we start by considering any mITP eigenvalue β and denote by
(u, h) ∈ H(�) an associated eigenfunction of its. As in (3.10), from the fact that it is an
eigenfunction we have that

−
∫

�

βk2

ρf ω2 |h|2dx =
∫

�

(
λ|∇ · u|2 + 2μ|ε(u)|2 − ρsω

2|u|2 − 1
γ ρf ω2 |∇h|2

)
dx

+ 2
γ ρf ω2

∫

�

|h|2 dSx .

This is equivalently rewritten using the definition of E and the transmission conditions

as − βk2

ρf ω2 ||h||20,� = E(u, h). Also notice that h �= 0 because, otherwise, u would also

cancel under the assumption that ω is not a Jones mode. Therefore, −β ≥ ρf ω
2

k2
�, or

equivalently, in terms of the largest mITP eigenvalue βmax, we have

βmax ≤ −ρf ω
2

k2
� .

Wenext show that this bound is indeed optimal. To this end, let us reason as usual in the
derivation of the Courantmin–max principle (cf. [3, Th. 6.13] and references therein):We
consider {(uj , hj)}j∈N anorthonormal basis ofH(�) that consists of eigenvectors associated
with mITP eigenvalues {βj}j∈N ⊂ R. We rewrite ãβj ((uj , hj), (v, q)) = 0 as

−A((uj , hj), (v, q)) =
∫

�

βjk2

ρf ω2 h qdx ,

where

A((u, h), (v, q)) =
∫

�

( − σ (u) : ε(v) + ρsω
2u · v

+ 1
γ ρf ω2∇h · ∇q

)
dx − 2Re

( ∫

�

h q dSx
)
.

Since {(uj , hj)}j∈N is an orthonormal basis of H(�), we deduce that for any (v, q) =∑

j∈N
aj(uj , hj) ∈ H(�) it holds

−A((v, q), (v, q)) =
∑

j∈N

βjk2

ρf ω2 |aj|2||hj||2L2(�) .

Hence,

−� = sup
(v,q)∈H(�),q �=0

−A((v, q), (v, q))
||q||2L2(�)

= βmaxk2

ρf ω2 .

We state this result in the following lemma.

Lemma 6 Suppose that thematerial parametersλandμ satisfy (2.1)andμ is large enough
with respect to ρsω2, that is, ρsω2 ≤ C2

P min{1, 2μ}. Then, the largest mITP eigenvalue is

βmax = −ρf ω
2

k2
�.
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4 Determination of modified interior transmission eigenvalues from far field
data
Let us consider again the general situation γ �= 0 (positive or negative). The aim of this
section is to show that we can approximate the mITP eigenvalues from far field data
by solving approximately several modified far field equations for some points inside the
target. For this strategy to make sense, we needFβ : L2(Sm−1) → L2(Sm−1) to be injective
and to have dense range. We can repeat the usual reasoning (cf. [2,8]) to deduce that Fβ

is injective and has dense range in L2(Sm−1) as long as β is not an mITP eigenvalue whose
eigenmode has the form (ug , hg ) for some g ∈ L2(Sm−1).
Let �z denote the fundamental solution of the Helmholtz equation with source point

at z so that, for x �= z,

�z(x) =
⎧
⎨

⎩

i
4H

(1)
0 (kf |x − z|) ifm = 2 ,

1
4π

exp(ikf |x − z|)
|x − z| ifm = 3 .

Since �z is a radiating solution of the Helmholtz equation, it has a far field pattern, and
this is given by:

�∞
z (̂x) = exp(iπ/4)√

8πk
exp(−ikf x̂ · z), x̂ ∈ S

m−1.

The algorithm for identifying mITP eigenvalues is based on solving approximately a
discrete version of the modified far field equation

Fβgz = �∞
z , (4.1)

where z ∈ � is an auxiliary point chosen as part of the algorithm. Next, we examine the
role of the parameter β in the behavior of (approximate) solutions gz ∈ L2(Sm−1) of the
modified far field equations (4.1) for points z inside the target �.

4.1 Behavior at values of β which are not mITP eigenvalues

Let us consider any point z ∈ � and then seek g ∈ L2(Sm−1) that solves approximately

Fβg = p∞
g − h∞

g = �∞
z a.e. in S

m−1.

By Rellich’s lemma, this happens if, and only if,

psg − hsg = �z a.e. in �e;

in particular, p+
g − h+

g = �z and
∂p+

g

∂n
− ∂h+

g

∂n
= ∂�z

∂n
on �. Thanks to the transmission

conditions for the fields ug and pg in (2.3), together with those for hg in (3.1),

ug · n − 1
γ ρf ω2

∂h−
g

∂n
= 1

ρf ω2
∂�z
∂n

and t(ug ) = −h−
g n − �zn on �.

Thus, in the domain � we are looking for u = ug ∈ H1(�) and h− = h−
g ∈ H1(�) such

that

∇ · σ (u) + ρsω
2u = 0 in �,

1
γ


h− + β k2 h− = 0 in �,

u · n − 1
γ ρf ω2

∂h−

∂n
= 1

ρf ω2
∂�z
∂n

on �,

t(u) + h−n = −�zn on �.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)
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Assuming that β is not an mITP eigenvalue, the problem above is well-posed and has a
unique solution (u, h−) ∈ H1(�)n×H1(�), see Lemma 1; however, the unique solution of
this problem is not necessarily of the form u = ug and h− = h−

g with g ∈ L2(Sm−1). Fur-
thermore, in the exterior domain �e, we are looking for a suitable function g ∈ L2(Sn−1)
to build p = pg ∈ H1(�e) and h+ = h+

g ∈ H1
loc(�e). To this end, we take p = h+ + �z in

�e, where h+ solves


h+ + k2h+ = 0 in �e,
h+ = h− on �,
∂h+

∂n
= 1

γ

∂h−

∂n
on �,

h+ = hi + h+,s and
∂h+,s

∂r
− ikh+,s = O

(
r−(m−1)/2

)
as r → ∞.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.3)

This problem seems to have too many constraints, but we emphasize that the incident
field hi is not given, but we choose both hi and h+,s. In particular, for the incident field hi,
let us not require it to be a Herglotz function and allow it to be just an admissible incident
field, that is, hi ∈ H1(�) such that 
hi + k2hi = 0 in �. Accordingly, (4.3) consists of
finding hi ∈ H1(�) and h+,s ∈ H1

loc(�e) such that


hi + k2hi = 0 in �,

h+,s + k2h+,s = 0 in �e,
hi + h+,s = h− on �,
∂hi

∂n
+ ∂hs,+

∂n
= 1

γ

∂h−

∂n
on �,

∂h+,s

∂r
− ikh+,s = O

(
r−(m−1)/2

)
as r → ∞

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

This problem is a well-posed transmission problem, although once again we emphasize
that its unique solution is not necessarily of the form hi = hig and h+,s = h+,s

g with
g ∈ L2(Sm−1).
Summing up, let us define the space of generalized incident fields by

Hinc(�) = {q ∈ H1(�); 
q + k2q = 0 in �}.
Then, we have seen that, for any z ∈ � andwhen β ∈ C is not anmITP eigenvalue, there

exists some pi = hi ∈ Hinc(�) for which the far field patterns of the associated scattered
fields that solve (2.3) and (3.1) satisfy

p∞ − h∞ = �∞
z .

We can formalize this behavior in terms of the far field operator Fβ by an appropriate
factorization. More precisely, we consider the well-defined and bounded operator G :
Hinc(�) → L2(Sm−1), where Gpi = p∞ represents the far field pattern of the scattered
wave that solves (2.3) for the incident field pi. Similarly, Gβ : Hinc(�) → L2(Sm−1), where
Gβhi = h∞ represents the far field pattern of the scattered wave that solves (3.1) for
the incident field hi. In addition, we define H : L2(Sm−1) → Hinc(�) that maps each
function g into the associated Herglotz wave function Hg = pig with kernel g . Then,
Fβ = (G−Gβ )◦H : L2(Sm−1) → Hinc(�) → L2(Sm−1).With this notation, what we have
just shown is that �∞

z is in the range of (G − Gβ ).
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4.2 Behavior at values of β which are mITP eigenvalues

If β ∈ R is an mITP eigenvalue, by Definition 1 we know that there exists (uβ , hβ ) ∈
H1(�) × H1(�) that is a non-trivial solution of

∇ · σ (uβ ) + ρsω
2uβ = 0 in �,

1
γ


hβ + β k2 hβ = 0 in �,

uβ · n = 1
γ ρf ω2

∂hβ

∂n
on �,

t(uβ ) = −hβn on �.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Notice that, by defining h−
β = hβ in � and reasoning as for the previous case (see

comments below (4.3)), we know that there also exist hiβ ∈ Hinc(�) and h+
β ∈ H1

loc(�e)
such that


h+
β + k2h+

β = 0 in �e,
h+

β = h−
β on �,

∂h+
β

∂n
= 1

γ

∂h−
β

∂n
on �,

h+
β = hiβ + h+,s

β and
∂h+,s

β

∂r
− ikh+,s

β = O
(
r−(n−1)/2

)
as r → ∞.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

We then take piβ = hiβ ∈ Hinc(�) and pβ = h+
β in �e, and notice that (uβ , pβ ) ∈

H1(�) × H1
loc(�e) solves (2.3) and hβ ∈ H1

loc(� ∪ �e) satisfies (3.1).
Let us assume that for a given point z ∈ � there exists pi ∈ Hinc(�) such that (G −

Gβ )pi = �∞
z . Reasoning as for the previous case, we can deduce that the associated fields

u ∈ H1(�) and h− ∈ H1(�) satisfy the equations of (4.2). Therefore, by combining the
variational formulation (3.6) for v = uβ and q = hβ (associated with null data functions
f 1, f2, g1 and g2), with that for v = u and q = h− (that corresponds to the data functions

f 1 = 0, f2 = 0, g1 = 1
ρf ω2

∂�z
∂n

and g2 = −�zn), we have that
∫

�

(
�zuβ · n − 1

γ ρf ω2
∂�z
∂n

hβ

)
dSx = 0 .

Using the transmission conditions on � satisfied by (uβ , hβ ), this is equivalent to
∫

�

(
�z

∂hβ

∂n
− ∂�z

∂n
hβ

)
dSx = 0 .

The left-hand side of this equation is the integral representation of hβ for points z inside
�. Therefore, if this condition is fulfilled for a subset of � with nonzero measure, then
hβ vanishes in such domain and, in consequence, also in the whole domain �. Under the
assumption on ω not being a Jones frequency, it follows that also uβ = 0 vanishes in �.
This contradicts that (uβ , hβ ) is a non-trivial mode associated with the modified interior
transmission eigenvalue β .
Summarizing, we have shown the following theorem.

Theorem 1 If β ∈ C is not an mITP eigenvalue, then for almost any z ∈ �, it holds that
�∞

z is in the range of (G−Gβ ). On the contrary, if β ∈ C is an mITP eigenvalue and B ⊂ �

has nonzero measure, then it is not possible that �∞
z is in the range of (G − Gβ ) for a.e.

z ∈ B.
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5 Numerical examples
The numerical experiments we will now provide give preliminary evidence that some
target signatures may be computed from the far field data. For a given experiment, there
is a limit to the number of mITP eigenvalues we can detect from noisy data. Our results
demonstrate the sensitivity of the detected mITP eigenvalues to some of the material
parameters of the solid.
The general outline of the numerical tests is as follows:

1. We choose a scatterer (in our tests, the unit disk or unit square), and the fluid and
solid properties.

2. We solve the forward problem using a coupled finite element and spectral boundary
element method [22]. The same code is used to compute the solution of the auxil-
iary scattering problem for a discrete set of β in the interval where we seek mITP
eigenvalues. These codes produce a discrete approximation to the far fields of each
problem at equally spaced points on S

1.
3. In order to detect the family of mITP eigenvalues from the above far field data,

the modified far field equation (4.1) is discretized using the trapezoidal rule with
nodes at the far field data points. The discretized version of equation (4.1) is solved
by Tikhonov regularization for several choices of auxiliary source points z located
(randomly) in an open region that is known a priori to lie within the target.

4. We plot the average (averaged over the points z) of the L2-norm of gz against β .
Theorem 1 suggests that peaks in this graph should indicate the presence of an
mITP eigenvalue.

5. To compare the peaks in the graphs against themITP eigenvalues, we compute these
eigenvalues by solving the eigenvalue problem (3.4)with a straightforward eigenvalue
code developed in Netgen [28].

Next, we give some more details about the numerical tests provided here: We first
consider the unit disk (centered at the origin and with unit radius) and the parameters
ω = 2 and ρf = ρs = 1; for this case, we choose the points z ∈ D to be 20 randomly
located points in [−0.5, 0.5]2. To investigate non-smooth geometries, we also consider
the unit square [−0.5, 0.5]2 and then take the same parameters except the wavenumber;
indeed, in this situation, we choose ω = 1 (in order to keep the same ratio between
the target size and the wavelength) and we relocate the 20 random points under study
to [−0.25, 0.25]2 (so they lie inside the target). We take 64 incident plane waves, whose
angles of incidence are {2jπ/64; j = 0, 1, . . . , 63}.We compute the far field data associated
with each incident wave by a combination of spectral BEM and FEM (cf. [22]), and add
pointwise 2% uniformly distributed noise to the synthetic data (to help avoid inverse
crimes). We finally solve the equation (4.1) using Tikhonov regularization with the small
fixed regularization parameter 10−3.

5.1 Numerical results for γ > 0

In Fig. 1, we compare the mITP eigenvalues recovered by the steps describe above against
those computed by solving (3.4) using our Netgen code. The parameter γ is taken to be
2 both for the unit circle and the unit square, and we choose μ = 0.5 and λ = 1. In each
case at least four eigenvalues are detected, although some of these are slightly displaced
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Fig. 1 Average of the L2-norms of approximate solutions of the far field equationsFβgz = �∞
z against β .

Red crosses on the horizontal axis show the location of mITP eigenvalues found by a finite element
discretization of (3.4). Left: for the unit circle. Right: for the square. Here, μ = 0.5, λ = 1 and γ = 2
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Fig. 2 Here, we consider the unit disk and plot the average of the L2-norms of approximate solutions of the
far field equationsFβgz = �∞

z for different values of μ and λ: red stands for the reference values μ = 0.5
and λ = 1.0. In the left-hand side figure, green and blue representμ = 0.4 andμ = 0.6, respectively; whereas
in the right-hand side figure green and blue represent λ = 0.8 and λ = 1.2, respectively. Here, γ = 2, and we
choose to focus on the eigenvalue near β = 0.6; a similar behavior is observed for other eigenvalues

compared to the Netgen eigenvalue (specially when they are large and in the case of the
square).
We next investigate the sensitivity of mITP eigenvalues with respect to changes in

the elasticity parameters. More precisely, in Figs. 2 and 3 we show the behavior of the
solutions of the far field equations for the circle and the square for different values of
μ and λ, respectively. It is clear that mITP eigenvalues are sensitive to changes in the
parameters. It is not known if the monotonic dependence shown in these examples is a
general characteristic of mITP eigenvalues.

5.2 Numerical results for γ < 0

Now, the parameter γ is taken to be −2 both for the unit circle and the unit square. In
Fig. 4, we compare the recovered mITP eigenvalues against those computed by solving
(3.4) with our Netgen code. In each case at least four eigenvalues are detected, although
some of these are again slightly displaced compared to the Netgen eigenvalue.
As for the case γ > 0, we also investigate the sensitivity of mITP eigenvalues with

respect to changes in the elasticity parameters: In Figs. 5 and 6, we show the behavior of
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Fig. 3 Here, we consider the square domain with γ = 2 and plot the average of the L2-norms of
approximate solutions of the far field equationsFβgz = �∞

z for different values of μ and λ for the square:
red stands for the reference values μ = 0.5 and λ = 1.0. In the left-hand side figure, green and blue represent
μ = 0.4 and μ = 0.6, respectively; whereas in the right-hand side figure green and blue represent λ = 0.8
and λ = 1.2, respectively
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Fig. 4 Average of the L2-norms of approximate solutions of the far field equationsFβgz = �∞
z against β .

Red crosses on the horizontal axis show the location of mITP eigenvalues found by a finite element
discretization of (3.4). Left: for the unit circle. Right: for the square. Here, μ = 0.5, λ = 1 and γ = −2

the solutions of the far field equations for the circle and the square for different values of
μ and λ, respectively. As happened for the opposite sign case, the mITP eigenvalues are
sensitive to changes in the parameters.

6 Conclusion
We have shown that mITP eigenvalues can be detected from far field data. One issue
remaining is that we have not verified the existence of mITP eigenvalues when γ > 0,
although they have been observed by directly solving the eigenvalue problem, and from
the behavior of the modified far field equation. For γ < 0, the theory is more complete,
and eigenvalues are known to exist. Since the case γ < 0 also shows sensitivity to changes
in bulk λ and μ, it seems that this case is appropriate for further investigation.
We remark that the natural and metamaterial cases studied here are by no means the

only possible modifications for introducing a reference medium. For example, we could
try to use a fictitious solid in�with a parameter in the lower order term (similar toβ in our
natural and metamaterial cases) that can be used to generate an eigenvalue problem. In
this paper, we chose to use the Helmholtz equation in � to avoid having to solve auxiliary
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Fig. 5 Here, γ = −2 and we consider the unit disk. We plot the average of the L2-norms of approximate
solutions of the far field equationsFβgz = �∞

z for different values of μ and λ: red stands for the reference
values μ = 0.5 and λ = 1.0. In the left-hand side figure, green and blue represent μ = 0.4 and μ = 0.6,
respectively; whereas in the right-hand side figure green and blue represent λ = 0.8 and λ = 1.2,
respectively. Here, we choose to focus on the eigenvalue near β = 0.87; a similar behavior is observed for
other eigenvalues
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Fig. 6 Here, γ = −2 and we consider the square domain. We plot the average of the L2-norms of
approximate solutions of the far field equationsFβgz = �∞

z for different values of μ and λ: red stands for
the reference values μ = 0.5 and λ = 1.0. In the left-hand side figure, green and blue represent μ = 0.4 and
μ = 0.6, respectively; whereas in the right-hand side figure green and blue represent λ = 0.8 and λ = 1.2,
respectively. The zoom is made on the eigenvalue near β = 0.7; a similar behavior is observed in other
eigenvalues

problems involving the time harmonic elastic wave equation. But this is more a matter of
convenience than necessity, and the use of an elastic reference medium will be the object
of a future investigation.
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