Nowhere Differentiability Conditions of Composites on Peano Curves

Antonio Martínez-Abejón ${ }^{1}$ (D)

Received: 28 March 2021 / Revised: 24 July 2021 / Accepted: 19 August 2021
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021

Abstract

Sufficient conditions on a smooth, real-valued function g for the nowhere differentiability of $g \circ p$ are given, where p is Peano's curve. This generalizes Sagan's analytic proof on the nowhere differentiability of the coordinate functions of p. Most of the proofs are geometrically intuitive. The interest about the composites $g \circ p$ stems from their recent applications in technical branches.

Keywords Nowhere differentiability • Peano curve - Gradient
Mathematics Subject Classification 26A27 • 26A30 • 26B05

1 Introduction

Continuous, nowhere differentiable functions have been fascinating mathematicians since their discovery by Weierstrass in 1872. Almost each known example of these functions has been collected in [15]. A deep monograph about this subject can be found in [4], and more recent advances are given in [1,9].

Peano claimed without proof that the coordinate functions of his famous spacefilling curve $p:[0,1] \longrightarrow[0,1]^{2}$ are also nowhere differentiable [12]. A proof for Peano's claim was given by Sagan [14] by means of analytical techniques, although in an earlier paper, Alsina proved the nowhere differentiability of Schoenberg spacefilling curve [2].

[^0]Section 3 is the core of the present paper and its main result is Theorem 1 , which proves that $g \circ p$ has no finite derivative at any point if g is a real valued, Fréchet differentiable function with non-null gradient everywhere. Note that among these functions g are the coordinate functions $g\left(u_{1}, u_{2}\right)=u_{i}, i=1,2$.

The interest in the composites $g \circ p$ stems from their role in some technical branches like image compression [5,6,10,11, 16, 17].

The proof of Theorem 1 is geometrically intuitive in contrast with most of the known proofs of the existence of continuous, nowhere differentiable functions, which are mainly analytic. Let us remark that there are two examples built ad hoc to shed geometric light on the subject of nowhere differentiability: the Bolzano function $[4,15]$ and Koch's curve, which resembles a beatiful trace italienne [3].

Section 3 ends with Propositions 1 and 2 which complement the information provided by Theorem 1.

The Peano curve considered in this article has been taken from [7] because of its simple geometric construction. This curve is briefly described in Sect. 2 and will be denoted by p from now on (see comments about the geometric Peano curve in Chapter 2 in [14]). However, it must be pointed out that the methods used here can be applied to most of continuous space-filling curves.

The main tools used are two: the first is the geometric properties of the gradient of g, denoted as ∇g as usual. If $\|\cdot\|$ is a fix norm on \mathbb{R}^{2}, the second tool is that there exist a pair of positive constants k and K such that $k|a-b| \leq\|p(a)-p(b)\|^{2} \leq K|a-b|$ if a and b are numbers in $[0,1]$ which are close enough (in particular, p is a Hölder function of class $\mathbb{H}^{1 / 2}$ as defined in [13]). This property of p can be guessed from the well-known fact that the function p borrowed from [7] preserves the Lebesgue measure, that is, if A is a Börel-Lebesgue subset of I then the value of the Lebesgue measures of A and $p(A)$ coincide. In particular, this implies $g \circ p$ and g have the same distribution function. Thus, although $g \circ p$ is a very bad function from the point of view of differentiability as shown in the results of Sect. 3, $g \circ p$ is as well behaved as g from the point of view of integrability which enables the implementation of simple techniques of integration like those of [8] if g sufficiently simple.

Notation: \mathbb{N} represents the set of positive integers; \mathbb{R} denotes the set of real numbers and $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty, \infty\}$. The unit interval $[0,1]$ is denoted by I. The set of all limit points of a subset A of \mathbb{R} is denoted by A^{\prime} as usual. Given $f: A \longrightarrow \mathbb{R}$ and $t_{0} \in A \cap A^{\prime}$, the derivative of f at t_{0} is the limit

$$
\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}} \in \overline{\mathbb{R}}
$$

if it exists, in which case is denoted by $f^{\prime}\left(t_{0}\right)$. If $t_{0} \in A \cap\left[A \cap\left(-\infty, t_{0}\right)\right]^{\prime}$ (alt., $\left.t_{0} \in A \cap\left[A \cap\left(t_{0}, \infty\right)\right]^{\prime}\right)$, the left-sided (alt., right-sided) derivative of f at t_{0} is the number $f^{\prime}\left(t_{0}^{-}\right):=\left.f\right|_{A \cap\left(-\infty, t_{0}\right]} ^{\prime}\left(t_{0}\right)$ if the derivative at t_{0} of the restriction of f to $A \cap\left(-\infty, t_{0}\right]$ exists (alt., $f^{\prime}\left(t_{0}^{+}\right):=\left.f\right|_{A \cap\left[t_{0}, \infty\right)} ^{\prime}\left(t_{0}\right)$ if it exists). If f has a finite derivative at each $t \in A$,-that is, $f^{\prime}(t) \in \mathbb{R}$ - then, f is said to be differentiable.

Given an open set Ω in $\mathbb{R}^{n}, f: \Omega \longrightarrow \mathbb{R}^{m}(n, m \in \mathbb{N})$ is said to be Fréchet differentiable at $x_{0} \in \Omega$ if there exists a linear mapping $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ such that
$\lim _{x \rightarrow x_{0}}\left\|f(x)-f\left(x_{0}\right)-L\left(x-x_{0}\right)\right\| /\left\|x-x_{0}\right\|=0$, in which case, L is denoted by $\mathrm{d} f\left(x_{0}\right)$ (let us remind that Fréchet differentiability does not depend on the chosen norms in \mathbb{R}^{n} and \mathbb{R}^{m}).

The distance in \mathbb{R}^{2} will be measured with the norm $\|(x, y)\|_{\infty}:=\max \{|x|,|y|\}$, which will be simply denoted as $\|(\cdot, \cdot)\|$ for short. Let us recall that $\sqrt{2}^{-1}\|(\cdot, \cdot)\|_{2} \leq$ $\|(\cdot, \cdot)\|_{\infty} \leq\|(\cdot, \cdot)\|_{2}$, where $\|(\cdot, \cdot)\|_{2}$ is the Euclidean norm of \mathbb{R}^{2}.

2 Peano's Geometric Curve

Henceforth, a (plain) curve is a continuous function $f:[a, b] \longrightarrow \mathbb{R}^{2}$ where a and b are real numbers such that $a<b$; the points $f(a)$ and $f(b)$ are, respectively, termed as initial and terminal points of the curve f.

A brief geometric description of the space-filling Peano's curve $p: I \longrightarrow I^{2}$ defined in [7] is necessary. Given two bounded, closed intervals L and J in $\mathbb{R}, L \leq J$ means $\max I \leq \min J$.

The 9 -adic subintervals of I of order $k \in \mathbb{N}$ have length equal to $1 / 9^{k}$ and are labeled as follows: the intervals of order 1 are $I_{i}:=[i / 9,(i+1) / 9], i=0,1,2, \ldots, 8$. Each interval $I_{i_{1} \ldots i_{k}}$ of order $k\left(i_{l}=0,1, \ldots, 8\right)$ is divided into nine closed intervals $I_{i_{1} \ldots i_{k} j}$, $j=0,1, \ldots, 8$, of length $1 / 9^{k+1}$ such that
(i) $I_{i_{1} \ldots i_{k}}=\bigcup_{j=0}^{8} I_{i_{1} \ldots i_{k} j}$
(ii) $I_{i_{1} \ldots i_{k} 0} \leq I_{i_{1} \ldots i_{k} 1} \leq \cdots \leq I_{i_{1} \ldots i_{k} 8}$.

The interval I will be considered as the 9 -adic interval of order 0 .
For every $k \in \mathbb{N}$, the square I^{2} is also divided into closed subsquares whose side length is equal to $1 / 3^{k}$; these subsquares are labeled in a Cartesian manner as follows:

$$
C_{i}^{j}:=\left[\frac{i-1}{3^{k}}, \frac{i}{3^{k}}\right] \times\left[\frac{j-1}{3^{k}}, \frac{j}{3^{k}}\right], \quad 1 \leq i, j \leq 3^{k} .
$$

Henceforth, these subsquares will be called k-subsquares, and the subintervals of order k will be called k-subintervals for short. The square I^{2} will be referred to as the 0 -square.

Given $n \in \mathbb{N}$, two n-subintervals are said to be adjacent if their intersection is a singleton; two n-subsquares are adjacent if they share one and only one side; a finite collection $\left\{G_{i}\right\}_{i=1}^{m}$ of n-subintervals (alt., n-subsquares) is called a chain if they are pairwise different and G_{i} and G_{i+1} are adjacent for all $1 \leq i \leq m-1$.

Peano's curve is the uniform limit of a sequence of polygonal curves $p_{n}: I \longrightarrow I^{2}$ which are defined as follows:

The curve p_{0} linearly maps the interval I onto the NE diagonal of I^{2}, so that $p_{0}(0)=(0,0)$ and $p_{0}(1)=(1,1)$ (the graph of p_{0} is depicted in Fig. 1, NE).

For $n \in \mathbb{N}$, assume that p_{n-1} linearly maps each $(n-1)$-subinterval $I_{i_{1} \ldots i_{n-1}}$ onto one diagonal of certain $(n-1)$-subsquare C. If the graph of $p_{n-1}\left(I_{i_{1} \ldots i_{n-1}}\right)$ is of the form NE (alt., SE; SW; NW) as indicated in Fig. 1, then p_{n} is piecewise defined by linearly mapping each n-subinterval $I_{i_{1} \ldots i_{n-1} j}, 0 \leq j \leq 8$, onto one diagonal of

Fig. 1 Some corners have been intentionally rounded for clarity
certain n-subsquare contained in C so that the graph of $\left.p_{n}\right|_{i_{i_{1} \ldots i_{n-1} j}}$ replicates the graph depicted in Fig. 1a (alt., b-d).

Clearly, $\left.p_{n}\right|_{i_{1} \ldots i_{n-1}}$ is continuous, and if $i_{n-1}<8$, the terminal point of $\left.p_{n}\right|_{I_{1} \ldots i_{n-1}}$ coincides with the initial point of $\left.p_{n}\right|_{i_{1} \ldots\left(i_{n-1}+1\right)}$. Hence, p_{n} is continuous on I.

The crucial properties of the curves p_{n} are:
(iii) if A and B are adjacent n-subintervals, then $p_{n}(A)$ and $p_{n}(B)$ are contained in adjacent n-subsquares;
(iv) if B is an n-subinterval and $p_{n}(B)$ is contained in a n-subsquare C, then $p_{n+k}(B) \subset C$ for all $k \in \mathbb{N}$;
(v) for each n-subinterval $I_{i_{1} \ldots i_{n}}$ there is a unique n-subsquare C such that $p_{n}\left(I_{i_{1} \ldots i_{n}}\right) \subset C$, and vice versa: for every n-subsquare C there exists a unique n-subinterval $I_{i_{1} \ldots i_{n}}$ such that $p_{n}\left(I_{i_{1} \ldots i_{n}}\right) \subset C$; the n-subsquare C will be labeled as $C=D_{i_{1} \ldots i_{n}}$.

It can be proved from (iii), (iv) and (v) that the curves p_{n} converge uniformly to a continuous curve $p: I \longrightarrow I^{2}$. Moreover, it is easy to see that for every $\left(x_{0}, y_{0}\right) \in$ I^{2}, there exists a sequence $\left(C_{n}\right)$ where each C_{n} is a n-subsquare, $C_{n} \supset C_{n+1}$ and $\left\{\left(x_{0}, y_{0}\right)\right\}=\cap_{n=1}^{\infty} C_{n}$. Let I_{n} be the only n-subinterval such that $p_{n}\left(I_{n}\right) \subset C_{n}$. Then, $\left(I_{n}\right)$ is a decreasing sequence of compact intervals. Thus, $\left\{t_{0}\right\}=\cap_{n=1}^{\infty} I_{n}$ for some $t_{0} \in I$. It is straightforward that $p\left(t_{0}\right)=\left(x_{0}, y_{0}\right)$ and therefore, $p(I)=I^{2}$. The same argument proves $p\left(I_{n}\right)=C_{n}$ for all n. As a consequence, p satisfies the following properties:
(iii') if A and B are adjacent n-subintervals, then $p(A)$ and $p(B)$ are contained in adjacent n-subsquares;
(iv') if B is a n-subinterval and $p_{n}(B)$ is contained in a n-subsquare C, then $p(B) \subset$ C;
(v') $p\left(I_{i_{1} \ldots i_{n}}\right)=D_{i_{1} \ldots i_{n}}$ for all n and all $0 \leq i_{k} \leq 8$.

Springer

(vi') if t and τ belong to a n-subinterval J then $|t-\tau| \leq 1 / 3^{2 n}$ and $\|p(t)-p(\tau)\| \leq$ $1 / 3^{n}$. Moreover, if m is the smallest positive integer for which there exists a chain $\left\{K_{i}\right\}_{i=1}^{m+2}$ of n-subsquares with $p(t) \in K_{1}$ and $p(\tau) \in K_{m+2}$, then $|t-\tau| \geq m / 3^{2 n}$.

Detailed proofs of these facts can be found in [7] (see also [12,14] or [15]) or can be done by the reader.

Given $n \in \mathbb{N} \cup\{0\}$, the ending points of the n-subintervals are called n-nodes. In particular, a n-node is a $(n+k)$-node for any non-positive integer k. The set of all n-nodes for any n is denoted \mathcal{N} and its elements are called nodes, that is, $\mathcal{N}=$ $\left\{k / 9^{n}: n \in \mathbb{N} \cup\{0\}, k=0,1,2, \ldots, 9^{n}\right\}$.

The images of the nodes of every n-subinterval $J=\left[t_{0}, t_{1}\right]$ are a pair of opposite corners of the n-subsquare $p(J)$ and moreover, $p\left(t_{i}\right)=p_{n+k}\left(t_{i}\right)$ for $i=0,1$ and for $k=0,1,2, \ldots$ It is very easy to check that the remaining pair of corners of $p(J)$ are $p\left(\xi_{0}\right)$ and $p\left(\xi_{1}\right)$ where $\xi_{0}:=t_{0}+9^{-n} \sum_{k=1}^{\infty} 2 / 9^{k}=t_{0}+\left(1 / 9^{n} 4\right)$ and $\xi_{1}:=t_{1}-\left(1 / 9^{n} 4\right)$. The numbers ξ_{i} are called n-pseudonodes or just pseudonodes if the order n is not specified. Note that $p\left(\xi_{i}\right) \notin p_{n}(I)$ for any $n \in \mathbb{N}$. The set of all pseudonodes of any order will be denoted as \mathcal{F}, each element of $p(\mathcal{N})$ will be called an attainable corner and each element of $p(\mathcal{F})$, a non-attainable corner.

3 Main Results

Theorem 1 Let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a Fréchet differentiable function such that $\nabla g(x, y) \neq(0,0)$ at each $(x, y) \in \mathbb{R}^{2}$. Let $f:=g \circ p$, where p is the Peano curve. Then f is continuous and moreover:
(i) f has no finite derivative at each $t \in I$;
(ii) additionally, if g is of class $\mathcal{C}^{(2}$ then f has no infinite derivative at any $t \in$ $I \backslash(\mathcal{F} \cup\{0,1\})$.

Proof The continuity of f is immediate since g and p are continuous. In order to prove (i) and (ii), fix $t_{0} \in I$ and let $\left(x_{0}, y_{0}\right):=p\left(t_{0}\right)$. As $\nabla g\left(x_{0}, y_{0}\right) \neq(0,0)$, it will be assumed without loss of generality that $\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right)=: \alpha \neq 0$ (the case $\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) \neq 0$ is similar).

For every $n \in \mathbb{N}$, let L_{n} be a n-subinterval such that

$$
\begin{equation*}
L_{n} \supset L_{n+1} \text { and }\left\{t_{0}\right\}=\cap_{n=1}^{\infty} L_{n} \tag{1}
\end{equation*}
$$

Denote $C_{n}:=p\left(L_{n}\right)$, so that $\left(x_{0}, y_{0}\right)=\cap_{n=1}^{\infty} C_{n}$.
Let s be the orthogonal line to $\nabla g\left(x_{0}, y_{0}\right)$ that passes through $\left(x_{0}, y_{0}\right)$. In the case when $t_{0} \in \mathcal{N} \backslash\{0,1\}$, if k is the smallest nonnegative integer such that t_{0} is a k-node, then two adjacent k-subintervals $I_{i_{1} \ldots i_{k-1} j}$ and $I_{i_{1} \ldots i_{k-1}, j+1}$ contain t_{0}; an appropriate choice of L_{k} among these two k-subintervals produces that $s \cap p\left(L_{k}\right)$ is infinite, and once L_{k} has been selected, the choice of the following intervals L_{k+l} is univocally determined by condition (1). Consequently,

$$
\begin{equation*}
s \cap C_{n} \text { is infinite for all } n \in \mathbb{N} \cup\{0\} \text { if } t_{0} \in I \backslash(\mathcal{F} \cup\{0,1\}) . \tag{2}
\end{equation*}
$$

(i) Let r denote the parallel line to the Y-axis that passes through $\left(x_{0}, y_{0}\right)$. Note that r cannot be orthogonal to $\nabla g\left(x_{0}, y_{0}\right)$ and $s \neq r$ because $\alpha \neq 0$.

Given $n \in \mathbb{N}$, let T and B, respectively, denote the top side and the bottom side of C_{n}. The set $(T \cup B) \cap r$ has exactly two elements. Among these two elements, choose the one is furthest from $\left(x_{0}, y_{0}\right)$. Clearly, the element so chosen is of the form $\left(x_{0}, y_{n}\right)$, and as the length of the sides of C_{n} is $1 / 3^{n}$, then

$$
\begin{equation*}
\frac{1}{2 \cdot 3^{n}} \leq\left\|\left(x_{0}, y_{n}\right)-\left(x_{0}, y_{0}\right)\right\| \leq \frac{1}{3^{n}} . \tag{3}
\end{equation*}
$$

Assume $y_{0}<y_{n}$ (if $y_{n}<y_{0}$, the actions to be done are similar). Let $\mathcal{C}:=\left\{C_{i_{0} j}: l \leq\right.$ $j \leq q\}$ be a collection of $(n+2)$-subsquares vertically stacked and contained in C_{n} such that $\left(x_{0}, y_{0}\right) \in C_{i_{0} l}$ and $\left(x_{0}, y_{n}\right) \in C_{i_{0} q}$ (note $1 \leq l \leq q \leq 3^{n+2}$). Let $J_{l}=p^{-1}\left(C_{i_{0} l}\right)$ and $J_{q}=p^{-1}\left(C_{i_{0} q}\right)$ and take $t_{n} \in q$ such that $p\left(t_{n}\right)=\left(x_{0}, y_{n}\right)$. Inequality (3) yields $3 / 3^{n+2} \leq\left\|\left(x_{0}, y_{n}\right)-\left(x_{0}, y_{0}\right)\right\|$, so l and q satisfy $|l-q| \geq 4$. In plain words, this means that there are at least three squares of \mathcal{C} between $C_{i_{0} l}$ and $C_{i_{0} q}$ (see Fig. 2), and as \mathcal{C} is the shortest chain of ($n+2$)-subsquares connecting $C_{i_{0} l}$ with $C_{i_{0} q}$, (vi') yields $\left|t_{n}-t_{0}\right| \geq 3 / 9^{n+2}$. Moreover, as both $p\left(t_{n}\right)$ and $p\left(t_{0}\right)$ belong to C_{n}, it is immediate that $\left|t_{n}-t_{0}\right| \leq 1 / 3^{2 n}$, and this and (3) eventually gives

$$
\begin{equation*}
3^{n-1} \leq \frac{\left\|p\left(t_{n}\right)-p\left(t_{0}\right)\right\|}{\left|t_{n}-t_{0}\right|} \leq 3^{n+3} . \tag{4}
\end{equation*}
$$

Since g is Fréchet differentiable, there is a function $\omega: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that $\omega(x, y) \rightarrow$ 0 as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
g(x, y)-g\left(x_{0}, y_{0}\right)=\mathrm{d} g\left(x_{0}, y_{0}\right)\left(x-x_{0}, y-y_{0}\right)+\left\|\left(x-x_{0}, y-y_{0}\right)\right\| \omega(x, y) . \tag{5}
\end{equation*}
$$

Plugging $(x, y)=p\left(t_{n}\right)$ and $\left(x_{0}, y_{0}\right)=p\left(t_{0}\right)$ into (5), we get

$$
\begin{equation*}
f\left(t_{n}\right)-f\left(t_{0}\right)=\mathrm{d} g\left(p\left(t_{0}\right)\right)\left(p\left(t_{n}\right)-p\left(t_{0}\right)\right)+\left\|p\left(t_{n}\right)-p\left(t_{0}\right)\right\| \omega\left(p\left(t_{n}\right)\right) \tag{6}
\end{equation*}
$$

As $\mathrm{d} g\left(p\left(t_{0}\right)\right) \equiv\left(\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right), \alpha\right)$ and $p\left(t_{n}\right)-p\left(t_{0}\right)=\left(0, y_{n}-y_{0}\right)$, it follows

$$
\begin{equation*}
\left|\mathrm{d} g\left(p\left(t_{0}\right)\right)\left(p\left(t_{n}\right)-p\left(t_{0}\right)\right)\right|=|\alpha| \cdot\left\|p\left(t_{n}\right)-p\left(t_{0}\right)\right\| . \tag{7}
\end{equation*}
$$

Moreover, as p is continuous and $t_{n} \rightarrow t_{0}$ as $n \rightarrow \infty$, there is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\omega\left(p\left(t_{n}\right)\right)\right|<|\alpha / 2| \text { for all } n \geq n_{0} \tag{8}
\end{equation*}
$$

Thus, dividing both sides of (6) by $t_{n}-t_{0}$ and taking their absolute values, a consecutive application of (7), (8) and (4) leads to

$$
\begin{equation*}
\left|\frac{f\left(t_{n}\right)-f\left(t_{0}\right)}{t_{n}-t_{0}}\right| \geq\left(|\alpha|-\frac{|\alpha|}{2}\right) \frac{\left\|p\left(t_{n}\right)-p\left(t_{0}\right)\right\|}{\left|t_{n}-t_{0}\right|} \geq \frac{|\alpha|}{2} 3^{n-1} . \tag{9}
\end{equation*}
$$

Springer

Since $t_{n} \rightarrow t_{0}$ as $n \rightarrow \infty$, formula (9) shows that f has not a finite derivative at t_{0}. (ii) One and only one of the following three cases may happen:
(a) $\left(x_{0}, y_{0}\right) \in \operatorname{Int} C_{n}$ for all n;
(b) there exists $n_{0} \in \mathbb{N}$ such that $\left(x_{0}, y_{0}\right) \in \operatorname{Fr} C_{n} \backslash p(\mathcal{N} \cup \mathcal{F})$ for all $n \geq n_{0}$;
(c) $\left(x_{0}, y_{0}\right)$ is an attainable corner of C_{n} for all $n \geq n_{0}$ but $(0,0) \neq\left(x_{0}, y_{0}\right) \neq(1,1)$.

Assume (a) holds. Then, for every $n \in \mathbb{N}$ there exists $m \geq n$ and a pair of positive integers k and l such that

$$
\begin{align*}
& \left(x_{0}, y_{0}\right) \in K_{33} \subset \bigcup_{1 \leq i, j \leq 5} K_{i j}=: K \subset C_{n} \\
& K_{i j}=\left[\frac{k-1+i}{3^{m+2}}, \frac{k+i}{3^{m+2}}\right] \times\left[\frac{l-1+j}{3^{m+2}}, \frac{l+j}{3^{m+2}}\right] . \tag{10}
\end{align*}
$$

Let us label as $J_{i j}$ the corresponding $(m+2)$-subinterval so that $p\left(J_{i j}\right)=K_{i j}$ and $t_{0} \in J_{33}$.

Choose $\left(x_{n}, y_{n}\right) \in s \cap \operatorname{Fr} K$. Note that $\left(x_{n}, y_{n}\right)$ belongs to some of the sixteen external $(m+2)$-subsquares that form K, that is, $\left(x_{n}, y_{n}\right) \in K_{u v}$ for some pair (u, v) with $u \in\{1,5\}$ or $v \in\{1,5\}$. Let $\tau_{n} \in J_{u v}$ such that $p\left(\tau_{n}\right)=\left(x_{n}, y_{n}\right)$. Clearly, $\left|\tau_{n}-t_{0}\right| \leq 1 / 3^{2 m}$ and $\left\|p\left(\tau_{n}\right)-p\left(t_{0}\right)\right\| \leq 2 / 3^{m+2}$. Clearly, any chain of $(m+2)$ subsquares connecting K_{33} with $K_{u v}$ must have at least three $(m+2)$-subsquares so, by virtue of (vi'), $1 / 3^{2(m+2)} \leq\left|\tau_{n}-t_{0}\right| \leq 3 / 3^{2(m+2)}$. Hence,

$$
\begin{equation*}
\frac{\left\|p\left(\tau_{n}\right)-p\left(t_{0}\right)\right\|^{2}}{\left|\tau_{n}-t_{0}\right|} \leq 4 \tag{11}
\end{equation*}
$$

Next, since g is of class $\mathcal{C}^{(2}$, Young's formula provides $\psi: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that $\psi(x, y) \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ and

$$
\begin{align*}
g(x, y)- & g\left(x_{0}, y_{0}\right)=\mathrm{d} g\left(x_{0}, y_{0}\right)\left(x-x_{0}, y-y_{0}\right) \\
& +\frac{1}{2} \mathrm{~d}^{2} g\left(x_{0}, y_{0}\right)\left(x-x_{0}, y-y_{0}\right)^{(2)}+\left\|\left(x-x_{0}, y-y_{0}\right)\right\|^{2} \psi(x, y) . \tag{12}
\end{align*}
$$

where $\mathrm{d}^{2} g\left(x_{0}, y_{0}\right)$ denotes the bilinear form associated with the hessian matrix of g.
Note that the orthogonality between the vectors $p\left(\tau_{n}\right)-p\left(t_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right)$ yields

$$
\begin{equation*}
d g\left(x_{0}, y_{0}\right)\left(p\left(\tau_{n}\right)-p\left(t_{0}\right)\right)=0 . \tag{13}
\end{equation*}
$$

Moreover, by virtue of (11) there is a constant M such that

$$
\begin{equation*}
\left|\mathrm{d}^{2} g\left(x_{0}, y_{0}\right)\left(\frac{p\left(\tau_{n}\right)-p\left(t_{0}\right)}{\sqrt{\left|\tau_{n}-t_{0}\right|}}\right)^{(2)}\right| \leq M \text { for all } n \in \mathbb{N} \tag{14}
\end{equation*}
$$

Fig. 2 .

and since $\tau_{n} \underset{n}{ } t_{0}$, inequality (11) yields

$$
\begin{equation*}
\frac{\left\|p\left(\tau_{n}\right)-p\left(t_{0}\right)\right\|^{2}}{\left|\tau_{n}-t_{0}\right|} \psi\left(p\left(\tau_{n}\right)\right) \xrightarrow[n]{ } 0 . \tag{15}
\end{equation*}
$$

Thus, plugging $(x, y)=p\left(\tau_{n}\right)-p\left(t_{0}\right)$ into (12) and dividing both sides of the resulting identity by $\left|\tau_{n}-t_{0}\right|$, an implementation of (13), (14) and (15) shows that the sequence $\left.\left(g p\left(\tau_{n}\right)-g p\left(t_{0}\right)\right) /\left(\tau_{n}-t_{0}\right)\right)$ is bounded. Therefore, since $\tau_{n} \underset{n}{\longrightarrow} t_{0}, f$ cannot have an infinite derivative at t_{0} and this ends the proof for case (a).

If the case (b) holds then (x_{0}, y_{0}) belongs to one and only one side of $C_{n_{0}}$; if (x_{0}, y_{0}) belongs to the left side (alt. right, top, bottom side) then (x_{0}, y_{0}) belongs to the left side of C_{n} for all $n \geq n_{0}$ (alt. right, top, bottom side). Given $n \geq n_{0}$, denoted by L (alt. R, T, B) its left side (alt., right, top, bottom side). Then there exists $m \geq n$ and a pair of positive integers k and l such that

$$
\begin{align*}
& \left(x_{0}, y_{0}\right) \in K_{33} \subset \bigcup_{i=1}^{3} \bigcup_{j=1}^{5} K_{i j}=: K \subset C_{n} \\
& K_{i j}=\left[\frac{k-1+i}{3^{m+2}}, \frac{k+i}{3^{m+2}}\right] \times\left[\frac{l-1+j}{3^{m+2}}, \frac{l+j}{3^{m+2}}\right] \tag{16}
\end{align*}
$$

and labeling as $J_{i j}$ the corresponding $(m+2)$-subinterval so that $p\left(J_{i j}\right)=K_{i j}$ and $t_{0} \in J_{33}$, and replacing (10) by (16), the same argument for proving (a) works now for case (b) when $\left(x_{0}, y_{0}\right) \in L$. The remaining cases when $\left(x_{0}, y_{0}\right) \in R$ (alt., T, B) are similar (the case $\left(x_{0}, y_{0}\right) \in L$ with $m=n$ is depicted in Fig. 2).

The case (c) admits a similar proof as case (b). Note that for case (c) is crucial that (2) holds true.

The reason why each point $\xi \in \mathcal{F} \cup\{0,1\}$ is excluded in Theorem 1 is that $s \cap p(J)$ may be finite, where J is a n-subinterval containing ξ such that $p(\xi)$ is a corner of $p(J)$. However, if $s \cap p(J)$ is infinite, the following result can be stated:

Springer

Fig. 3

Proposition 1 Assume $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is of class $\mathcal{C}^{(2}$ and let $\xi \in J \cap(\mathcal{F} \cup\{0,1\})$ where J is a n-subinterval and $p(\xi)$ is a corner of $p(J)$. Let s be the line orthogonal to $\nabla g(p(\xi))$ that passes through $p(\xi)$ and assume $s \cap p(J)$ is infinite. Then $g \circ p$ has no derivative at ξ.

Proof As $s \cap p(J)$ is infinite, the same arguments of Theorem 1 (ii) work for ξ and therefore, if $f^{\prime}(\xi)$ exists, it cannot be infinite. But Theorem 1 shows that $f^{\prime}(\xi)$ cannot be finite either. This proves that f has no derivative at ξ.

If the assumption that $s \cap p(J)$ is infinite is replaced in Proposition 1 by its negation then, $s \cap p(J)$ must be a singleton. Therefore, the following result completes the information.

Proposition 2 Let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a differentiablefunction andlet $\xi \in J \cap(\mathcal{F} \cup\{0,1\})$ where J is a n-subinterval and $p(\xi)$ is a corner of $p(J)$. Let s be the line orthogonal to $\nabla g(p(\xi))$ that passes through $p(\xi)$ and suppose $s \cap p(J)$ is a singleton. Let $f=g \circ p$. Then, the following statements hold:
(i) if $\xi \in\{0,1\}$ then, there exists $f^{\prime}(\xi)$;
(ii) if $\xi \in \mathcal{F}$ then, both sided derivatives $f^{\prime}\left(\xi^{-}\right)$and $f^{\prime}\left(\xi^{+}\right)$exist but $f^{\prime}\left(\xi^{-}\right) \neq$ $f^{\prime}\left(\xi^{+}\right)$.

Proof Only the case $\xi=1 / 4$ will be demonstrated since the others admit a similar proof. Recall $p(\xi)=(0,1)$ is a non-attainable corner. In order to avoid cumbersome notation, let us relabel

$$
\begin{aligned}
& J_{n}:=I_{3 n .3}, \\
& E_{n}:=C_{1,3^{n}}=p\left(J_{n}\right) \\
& K_{n}:=E_{n} \backslash E_{n+1} n \in \mathbb{N} .
\end{aligned}
$$

Note that $\xi \in \operatorname{Int} J_{n}$ for all n. Consider Young's formula

$$
\begin{equation*}
g(x, y)-g(0,1)=\mathrm{d} g(0,1)(x, y-1)+\|(x, y-1)\| \omega(x, y) \tag{17}
\end{equation*}
$$

where $\omega(x, y) \longrightarrow 0$ as $(x, y) \rightarrow(0,1)$.

Without loss of generality, assume the bound vector $\nabla g(1,0)$ with initial point at $(1,0)$ points inwards the square I^{2}. A moment of reflection will show that the hypotheses on $\nabla g(1,0)$ give a real number $\beta>0$ such that $\mathrm{d} g(0,1)(u)>\beta$ for all unitary vectors $u=\left(u_{1}, u_{2}\right)$ such that $u_{1} \geq 0$ and $u_{2} \leq 0$.

Take $m \in \mathbb{N}$ so that $|\omega(x, y)|<\beta / 2$ for all $(x, y) \in E_{m}$. Hence,

$$
\begin{equation*}
\mathrm{d} g(p(\xi))\left(\frac{p(t)-p(\xi)}{\|p(t)-p(\xi)\|}\right)+\omega(p(t)) \geq \frac{\beta}{2}>0, \text { all } t \in J_{m}, \tag{18}
\end{equation*}
$$

and in combination with (18),

$$
\frac{g(p(t))-g(p(\xi))}{t-\xi}\left\{\begin{array}{l}
\leq 0, t \in(-\infty, \xi) \cap J_{m} \tag{19}\\
\geq 0, t \in(\xi, \infty) \cap J_{m}
\end{array}\right.
$$

Next, given any $t \in J_{m} \backslash\{\xi\}=\bigcup_{n=m}^{\infty}\left(J_{n} \backslash J_{n+1}\right)$, let $n \geq m$ such that $t \in J_{n} \backslash J_{n+1}$, so $p(t) \in K_{n}$. Since E_{n+2} is separated from K_{n} by a double belt of $(n+2)$-subsquares (see Fig. 3), (vi') proves $1 / 3^{2 n+4} \leq|t-\xi| \leq 1 / 3^{2 n}$ and $1 / 3^{n+2} \leq\|p(t)-p(\xi)\| \leq 1 / 3^{n}$, so

$$
\begin{equation*}
\frac{\|p(t)-p(\xi)\|}{|t-\xi|} \geq 3^{n-2} \tag{20}
\end{equation*}
$$

Thus, from (17), (18) and (20),

$$
\begin{equation*}
\left|\frac{g(p(t))-g(p(\xi))}{t-\xi}\right| \geq \frac{\beta}{2} \frac{\|p(t)-p(\xi)\|}{|t-\xi|} \geq \frac{\beta}{2} 3^{m-2}, t \in J_{m} \backslash\{\xi\} . \tag{21}
\end{equation*}
$$

Since $\xi \in \operatorname{Int} J_{m}$, the length of J_{m} is $1 / 3^{2 m}$ and m can be chosen as large as one pleases, it is straightforward from (19) and (21) that there exist $f^{\prime}\left(\xi^{-}\right)=-\infty$ and $f^{\prime}\left(\xi^{+}\right)=\infty$.

References

1. Allaart, P., Kawamura, K.: The improper infinite derivatives of Takagi's nowhere-differentiable function. J. Math. Anal. Appl. 372(2), 656-665 (2010)
2. Alsina, J.: The Peano curve of Schoenberg is nowhere differentiable. J. Approx. Theory 33, 28-42 (1981)
3. Darst, R.B., Palagallo, J.A., Price, T.E.: Curious Curves. World Scientific, Singapore (2009)
4. Jarnicki, M., Pflug, P.: Continuous Nowhere Differentiable Functions. The monster of Analysis. Springer, Heidelberg (2015)
5. Kauranen, A., Koskela, P., Zapadinskaya, A.: Regularity and modulus of continuity of space-filling curves. J. Anal. Math. 137(1), 73-100 (2019)
6. Lera, D., Posypkin, M., Sergeyev, Y.D.: Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics. Appl. Math. Comput. 390, 125660 (2021)
7. Malý, J.: The Peano Curve and the Density Topology. Real Anal. Exchange, vol. 5, 326-329 (1979-80)
8. Martínez-Abejón, A.: Correct Antidifferentiation. The Change of Variable Well Done. World Scientific, Singapore (2021)
9. Okamoto, H.: A remark on continuous, nowhere differentiable functions. Proc. Jpn. Acad. Ser. A Math. Sci. 81(3), 47-50 (2005)

Springer

10. Ouni, T., Lassoued, A., Abid, M.: Gradient-based space filling curves: applications to lossless image compression. In: 2011 International Conference on Computer and Industrial Electronics (2011)
11. Ouni, T., Lassoued, A. Abid, M.: Lossless Image Compression Using Gradient Based Space Filling Curves. (G-SFC) SIViP 9, 277-293 (2015)
12. Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Ann. 36, 157-160 (1890)
13. Prodanov, D.: Characterization of the local growth of two cantor-type functions. Fractal Fract. 3(45), 1-11 (2019)
14. Sagan, H.: Space-Filling Curves. Springer, New York (1994)
15. Thim, J.: Continuous Nowhere Differentiable Functions. Master's thesis. Luleå, University of Technology (2003)
16. Valantinas, J.: On the use of space-filling curves in changing image dimensionality. Inf. Technol. Control 34(4), 345-354 (2005)
17. Weinzierl, T. : The Peano software-parallel, automaton-based, dynamically adaptive grid traversals. ACM Trans. Math. Softw. 45(2), Art. 14 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Rosihan M. Ali.

 Partially supported by Agencia Estatal de Investigación (Spain), Grant MTM2016-76958.
 \boxtimes Antonio Martínez-Abejón
 ama@uniovi.es
 1 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oviedo, 33007 Oviedo, Spain

