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ABSTRACT. Our aim is to obtain a suitable characterization of certain topological
properties of a random closed set through its capacity functional. The main technique
mixes two different fields: on the one hand, the abstract simplicial complex associ-
ated to a covering, whose topology coincides with the topology of the original set
thanks to the nerve theorem. On the other hand, the celebrated Choquet-Kendall-
Matheron theorem, which states that a random closed set is characterized by its
capacity functional.

* Corresponding author: salamancajuan@Quniovi.es

1. INTRODUCTION

The first concepts and results involving random sets appeared some time ago in both,
probabilistic and statistical literature (see for instance [9]) to the first works on the so-
called Boolean models. These models appeared early in the area of applied probability,
as an attempt to describe random geometrical structures. Its use was however marginal
until the publication of Matheron’s book in the 70s [10].

In his book, Matheron introduces in a formal way, not only the concept of random
closed set, but also establish all the formalism and theoretical machinery required,
including the measure formalism used until these days.

From this publication, the theory of random closed sets has experienced a rapid
development and a growing interest in different areas as physics, engineering, image
processing and economy. For instance, random closed sets are used on the risk analysis
of multivariate portfolios [7], the stochastic labelling of images with applications to
biology [!] or in the theory of imprecise probabilities [11, 15].

Random closed sets are introduced in [10] (see also [12, 13]) as maps from a complete
probability space into the class of closed sets of a topological space, usually denoted by
F. The space F is then endowed with a topology commonly known as the Fell topology,
and with its associated o-algebra. In this context, the probabilities of interest are those
related to the probability that a random set intersects a given compact set. To this
end it is defined the so-called capacity functional which maps a compact set K with
the probability that X intersects (or hits) K.

One of the main results on this regard is the Choquet-Kendall-Matheron theorem,
which states that random closed sets are bi-univocally characterized by its capacity
functional. Hence, we can interpret that the capacity functional behaves for random
closed sets as the probability distributions for a random variable, [12].
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Previous theorem ensures then that the capacity functional should encapsulate all the
relevant information of its corresponding random closed set, including its topological
information. In fact, in [14] the author was able to characterize the connectedness of
a closed random set in terms of its capacity functional, assuming that the associated
topological space was R.

Inspired by this result, our aim in this paper is to obtain a similar characterization
but in more general random closed sets. In order to achieve this, we will introduce here
a technique based on the use of abstract simplicial complexes. As it is well known [],
under some mild hypothesis simplicial complexes share the same topological properties
of the corresponding space. Hence, we will be able to make use of the well-known
characterizations of connectedness in terms of simplicial complexes, which will be key
for our main results.

The contents of this paper are organized as follow: In Section 2 we introduce all
the required elements from topological and metric theory that we will require for the
rest of the paper, including simplicial complexes. On Section 3 we review the concepts
of random closed set, the Fell topology and the capacity functional. We will also
define how are we going to define connectedness (and e-connectedness) in this context.
Finally, Section 4 includes the main result of the paper, Theorem 4.1, and a discussion
of some of its consequences, including a characterization of connectedness in terms of
the capacity functional Theorem 4.4.

2. TOPOLOGICAL PRELIMINARIES

Along this section, we will introduce the main concepts and results that we will need
from the topological theory for the next section. Observe that we will restrict ourselves
to work on compact sets K of the euclidean space R™ even so our results can be easily
generalized to more general contexts (for instance, by working on compact Riemannian
manifolds).

Let us begin by recalling that there are several ways to define the notion of a random
closed set, each one more suitable than the other in different contexts. One of such
definitions requires the notion of the Fell topology defined over the space of closed
(and so, compact) sets inside K, that we will denote by F(K). One way to introduce
this topology is by means of the so-called Hausdorff topology, which is defined in the
following way: Given two closed sets F, L € F(K), we define

dg(F,L):=inf{e>0: F C L and L C F},
where
(1) Fe={zx e K:d(z,F) <¢€}.
(see Figure 1). In particular, the Fell topology is the topology inherited from the metric
space (F(K),dg).

Remark 2.1. Let us remark the fact that, in the set F(K) we will use two different
notions of distance. On the one hand, the Hausdorff distance defined above. On the
other hand, on the cases where both sets F, L are disjoint, we will call distance, the
gap between sets given by do(F, L) = mingepyer d(x,y). Observe that the second one
is not truly a distance per se, as it is not true that do(F, L) = 0 implies that F' = L.
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FIGURE 1. Observe that the dotted line encloses the corresponding F°.
Hence, any other closed set L with dy(F, L) < e should be included in
such a F*.

We will also make use of some notions and definitions of algebraic topology, in partic-
ular the theory of simplicial complexes. Our aim is to extract topological information
of our closed sets by studing an appropriate (and more simple) simplicial complex ob-
tained from an cover. Let us begin by fixing the family of covers that we will consider
in this paper:

Definition 2.2. A conver cover of a compact set K of R" is a finite cover U =
{Uy,...,Up} of K such that any set of U is closed and convex'.

From definition, we have that any convex cover satisfies the following important
property: the intersection of an arbitrary number of sets of U is contractible to a point.
In fact, the intersection of an arbitrary number of convex set is again convex and as a
consequence, contractible to a point. This fact makes any convex cover a good cover
(see [3]), and so the nerve theorem can be applied.

Let us remind very briefly what the nerve theorem states (we recommend [3, 5, 6, &]
for details). From a finite cover we can build an abstract simplicial complex, the nerve
N (U) of U in the following way: the vertex set is identified with the collection of sets
of U, and a set of k + 1 vertices span a k-simplex if the corresponding U,’s have non-
empty intersection. Since the space K covered by U is compact, the nerve theorem can
be recalled to state that K is homotopy equivalent to N (U). In other words, N'(U) is
mathematically equivalent to a simplicial complex of K. From now on, we denote by
N (U)? the collection of i-simpleces of N'(U).

For a given subset of K, we can also obtain an associated sub-nerve in the following

way.

LAs usual, for convex we mean a set where the segment joining any two points of the set is completely
contained in the set. In the context of Riemannian Geometry, this is known as strongly convex sets.
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Definition 2.3. Let U be a convex cover of a compact space K of R", and let N ()
be its nerve. For a closed set A C K, define the sub-convex cover U|4 as U|4 :=
{UeU:UNA+#0}. The sub-convex cover U|4 yields to a sub-nerve N (U)|4: its
simplices are the simplices of N (U) with non-empty intersection with A.

It is clear that not always a sub-cover obtained from a subset A C K will encapsulate
the same homotopical information than A. However, under some natural conditions of
the set A, this can be easily achieved:

Proposition 2.4. Let K be a compact set of R"™ contractible to a point. Let U be a
convez cover of K, with N'(U) its nerve. For a closed convex set A C K, the sub-nerve
N(U)|a shares with A the same cohomology groups, the trivial ones.

Proof. Let us prove that N (U)|4 can be seen as a nerve of A. Observe that the main
argument on this proof is the fact that the intersection of convex sets is also convex.
Hence, the family {U N A}UeN(u)lA is a good cover of A and the Nerve theorem applies.
As the complex obtained from this cover does not include new simplices neither avoids
any one from N(U)|4, both N'(U)|4 and A shares the same cohomology groups, which
are the trivial ones.

0

The result is not satisfied if the convexity assumption of A is avoided, as the following
example shows.

Example 2.5. Let us consider the convex cover U formed by the solid ellipses pic-
tures in the figure 2 (a). Its nerve is pictured next to it, in the figure 2 (b). This
abstract simplicial complex has five vertices (0-simplices), represented as crosses; eight
edges (1-simplices), represented as the segments; and four faces (2-simplices), which
are represented as the blue regions.

Now, we consider the subset A pictured in red in the figure 3 (a). Note that A
is contractible to a point, and, consequently, has trivial cohomology groups. Next,
we picture the sub-nerve associated to A, in the figure 3 (b). This sub-nerve has
four vertices and four edges (and no face). We note that the first cohomology group
of the sub-nerve is non-trivial; in fact, this sub-nerve is homotopy equivalent to the
circumference S'.

Previous result leads us immediately to the following result, which will be our main
technique for this paper:

Proposition 2.6. Let K be a compact set of R™ contractible to a point, and let A C K
be a convez closed set. For any convex cover U of K, the following equation holds:

(2) SN Y (1)) =1,
i veNU)

where 14 denotes the characteristic map defined by

M@%:{IUUQA#Q

0 otherwise.
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(a) A convex cover.

(b) Its nerve.

FIGURE 2

Proof. The equation (2) can be expressed in another way: it is the signed sum of the
number of i-simplices of the sub-nerve N (U)|4. This sum is the Euler characteristic
of the sub-nerve, [3]. Making use of the proposition 2.4, we have that the sub-nerve
is homotopic equivalent to a CW-complex contractible to a point. Since the Euler
characteristic is invariant under contractions, and recalling that the Euler characteristic
of a point is 1, the result follows. See [5, &] for further details. O

As a corollary of previous result, we can obtain the following characterization:

Proposition 2.7. Let K be a compact setof R™ contractible to a point, and let A C K
be a closed set which can be expressed as the disjoint union of m convex sets. The set A
is connected (equivalently, m = 1) if and only if the equation (2) holds for any convex
cover U of K.

Proof. We sketch the proof of the single implication that we have to prove. By reductio
ad absurdum, assume that A is not connected, and consider d as the induced distance
on K from the Euclidean distance. Let Aq, As,..., A, be the connected components
of A. Let p := min;jeq1,  m},izj (minxeAi,yeAj d(:v,y)). That is, p is the minimum
do-distance between the connected components of A. Now, let &/ be a convex cover
of K whose sets has diameter ©/10 at most. It is clear that the sub-nerve has m
components. Fach connected component of this sub-nerve is homotopic equivalent
to a point, and consequently, for each connected component, the equation (2) holds.
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(a) A set A.

(b) Its sub-nerve.

FIGURE 3

However, summing for all the elements of the sub-nerve, finally we find that the right
side of the equation (2) equals to m. O

As we can see from previous proof, the result given by the left part of equation (2)
will depend strongly on the selected convex cover U: if its sets are small enough to dis-
tinguish between the different connected components, the result will be m. Otherwise,
the convex cover will not detect all the connected components and the result will be
smaller. Therefore, it easily follows that:

Corollary 2.8. Let K be a compact set of R™ contractible to a point, and let A C K
be a closed set which can be expressed as the disjoint union of m conver sets. For any
convex cover U of K, it holds:

1<) > (=)™ a(w) < m.

Let us also observe that Proposition 2.6 yields to other characterization for a different
topological property of a closed set. We anticipate that the proof is inspired by the
example 2.5.

Proposition 2.9. Let K be a convex set of R™, and let A C K be a connected, closed

set. The set A is convez if and only if the equation (2) holds for any convex cover U
of K.
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FiGURE 4. Here we show a rectangle R included in the convex hull of
the non-convex set A. The lines of the boundaries of the semispaces
Hy, Hy, H3 and H,4 are depicted, and the semispace H; appears shaded.

Proof. Again, we only have to prove the sufficient condition. For this, we assume that
A is not convex and we show that there exists a convex cover U of K for which the
equation (2) does not hold. Let us prove it when the underlying space is R?. After
that, we show how to extend this proof to higher dimension.

Denote the convex hull of A by CH(A). From assumptions, there exists a rectangle
R satisfying: RN A = () and C ¢ CH(A). Consider the semi-spaces Hy, Ho, Hs, Hy
pointing outside of R that each boundary contains each edge of R (see Figure 4 for a
graphical representation). We have that H1 N A # 0, ..., Hy N A # (). Otherwise, we
would find a contradiction with the aforementioned properties of R. It is clear that
U :={R, HNK HNK H3NK,H NK} is a convex cover of K. The sub-nerve
N(U)| 4 is equivalent to the simplicial complex represented in 3 (b). The proof in R?
is complete.

Let us prove now that a similar construction can be made in higher dimension.
Let H be a 2-dimensional hyperplane on R™ (n > 3) such that AN H is not con-
vex on H. Let U = {Uy,...,Us} the sets that we obtain applying the above pro-
cedure on the 2-dimensional Euclidean space H. Split the space as the following
orthogonal decomposition: R® = H x R" 2. From this composition, we can obtain
U = {({UixR")NK,...,(U xR"?)NK}. It is trivial to show that U’ is a
convex cover of K. Furthermore, the sub-nerve N (U')|4 is again equivalent to the
simplicial complex represented in 3 (b). Now, the whole proof is complete. ]

Finally, let us recall that in many practical situations, we will require a more flezible
notion of connectedness. Maybe a given set A is not connected according to the rigorous
definition, but the “gap” between connected components is small enough so it can be
disregarded. In this sense, we introduce the following notion:

Definition 2.10. We will say that a set A is e-connected if A/? (recall (1)) is connected.

Remark 2.11. Observe that, in spite of the concept of connectedness which is purely
topological, the notion of e-connectedness depends on the metric. It follows straightfor-
wardly that, if A is not e-connected, the distance between at least one of the connected
components and the rest of points is bigger than or equal to e. Moreover, if a closed
set A with at most a finite number of connected components is not connected, then it
will not be e-connected for some € small enough.

We are then in conditions to prove that:

Theorem 2.12. Let K be a compact set in R™; and let A C K be a closed set which can
be expressed as the disjoint union of convex sets. Consider U be a convex cover so each
U € U satisfies that diam(U) < €. If equation (2) is satisfied, then A is e-connected.

Proof. Assume that A is not e-connected, and so, that there exists a connected com-
ponent, say Ay, satisfying that d(Ap, A\ Ag) > €. Now, as the diam(U) < e for all
U € U, any set in U intersecting Ay will not intersects A\ Ag. Hence we can decompose
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NU) = NU)|a, UN(U)|a\4,- Recalling now that Ag is connected, Proposition 2.6
and Corollary 2.8, it follows that

(3) Y () ) > 2,

i veNU)!

a contradiction. OJ

Hence, we have a simple test to prove when a set A is e-connected: Choose a convex
cover which elements have a small diameter, and see if equation (2) is satisfied. A
simple way to achieve this is by constructing a grid of K formed by n-dimensional
rectangles (i.e., the cartesian product of n intervals).

Remark 2.13. Almost all the results of this section are extensible for compact metric
spaces with the appropriate changes. For instance, we need to consider strong convexity
for the sets: a set U is strongly convex if any two points in U can be joined with a
unique minimizing curve.

It is straightforward to check that the intersection of two stronlgy convex sets is again
a strongly convex set. Even more, a strongly convex set is contractible (see Exercise
4-4 in Chapter 3 of [1]).

There is however only one result (Proposition 2.9) which proof cannot be directly
translated to this context. In any case, this result will not be used in the forthcoming
sections.

3. ON CONNECTED AND €-CONNECTED RANDOM CLOSED SETS

In this section we will introduce the basic statistical preliminaries that we will require
for our results. Let us begin by giving the definition of Random closed set. As we have
mentioned above, there are several analogous ways to define the notion of Random
closed set. Here, we will introduce two of them:

Definition 3.1 ([12]). A random closed set X of R™ is a map from a complete prob-
ability space (€2, 0, P) into the class of closed sets of R” and which satisfies any of the
following two equivalent assertions (see [12, Appendix C]):

(i) {w eQ: )?(w) N K} € o for any compact set K.
(ii) For a given open set O of the Fell topology, )?_1((9) €o.

Let us denote by K the class of compact sets of R®. From the definition, we have
that the following map is well-defined,

T:K — [0,1]
K — T(K)=P(XNK#0).
The map T is the capacity functional of X , [12, 13]. The Choquet-Kendall-Matheron

theorem states that a random closed set is characterized by its capacity functional, (see
[12] and references therein for further details). For this reason, it is commonly inter-
preted that the capacity functional plays a similar role than the probability distribution
for a random variable.
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In the following definition we will take into account all the properties that we will
be interested on Random closed sets:

Definition 3.2. A random closed set X of R” is said to be
e bounded if there exists a compact set K such that P()? C K)=1. We will say
that K is a good support for X.

e convez (resp. convex by components) if for almost all> w € Q, the set X (w) is
convex (resp. the disjoint union of a finite number of convex sets).

o (e-)connected if for almost all w € Q, the set )?(w) is (e-)connected.

As we can see, the notion of Random closed set ensures that we will always be able
to measure the open sets of the Fell topology. The following condition will also ensure
that if we have a non-trivial open set of the Fell topology (in the sense that the inverse
image of the open set is non-empty), it will have some positive measure:

Definition 3.3. We will say that )A{iis a  continuous random closed set if given an
open set O of the Fell topology with X ~1(0) # (), P(X~1(0)) > 0.

Observe that continuous random closed set includes the case where the underlying
probability space is discrete.

4. MAIN RESULTS

We are now in conditions to present the main results of this paper:

Theorem 4.1. Let X be a bounded random closed set, with K a good support. Assume
that X is convex. The following equation holds for any conver cover U of K:

(4) Y ()T =1.

i veN(U)?

Proof. The random set X vields to a random sub-nerve Y of A/ (U); it is a map from
the same probability space associating each w € § with the sub-nerve Y (w) obtained

as described in the preliminaries section. Denote by I, the characteristic map of Y (w)
in V(). The equation (2) implies then:

/ Y ()T L) | dP(w) =

i veN(U)?

From the linearity of the above expectation, we can make use of the Robbin’s theorem
as in the proof of the Theorem 1 of [14] to obtain the announced equation. O

Remark 4.2. Formally the right side of equation (4) can be identified with the canon-
ical expansion of 7'(UU, ) in terms of the elements of the form 7'(NU, ), as in Poincaré’s
inequalities (see [13, p. 12] for instance). Moreover, observe that the random closed

set X := {X} built from a random variable X must satisfy the equation (4) trivially.

2Here, by for almost all we mean for all w € €2 except maybe a set of null probability.
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For the converse, let us recall that when a set is not (e-)connected, Theorem 2.12
ensures that (2) cannot be satisfied for a small enough cover. In order to apply this
result in the context of closed random sets, we require then not only that X (w) is not
e-connected for some w, but that the set of w where e-connectedness is not satisfied has
positive measure. In this sense, we can prove:

Proposition 4.3. Let X be a bounded and continuous random closed set, with K a
good support. Assume that X is convex by components. If equation (4) is satisfied for
some good cover U of K with elements U € U satisfying that diam(U) < €/2, then X
1s at least e-connected.

Proof. Let us assume by contradiction that X is not e-connected, and so, that there
exists w € Q so X(w) is not e-connected (as a set). It is possible then to consider an
open set X (w) € O for the Fell Topology so any A € O is not €/2-connected (consider
for instance a ball with the Hausdorff distance dy centered on X (w) and with radius
€/4).

/onllowing the proof of Theorem 2.12 we deduce that for any good cover under the
hypotheses and any A € O, it follows equation (3). Now recalling that P(X ~1(0)) > 0
(X is a continuous random closed set) and Corollary 2.8, we have that:

LZ 2 (0w e =3 3 0o >,

i veN(U)? i veNU

a contradiction. O
As a direct consequence of previous result, we can obtain (see also Remark 2.11):

Theorem 4.4. Let X be a continuous random closed set, bounded and convex by com-
ponents, with K a good support ofX The random set X is connected if and only if
the equation (4) holds for any convex cover of K.

Example 4.5. Let X = (X1,X5) and Y = (Y1,Y2) be two random points of
K = [0,4] x [0,B] C R2, not necessarily independent. We want to compute
P (doo(X,Y) <) for some positive real §, where do, is the Chebyshev distance (that is,
doo ((z1,22), (y1,y2)) = max{|z1 — y1|, |x2 — y2|} for points (x1,z2) and (y1,ys2); this
distance can be replaced with another one). This problem has several motivations and
has multiple applications (see [2] and references therein, for instance). For this end,
simulation may be quite difficult -assume complexity in the joint probability law. Let
us see how Theorem 4.4 can be used to this end.
R In oriier to use our results on connectedness, let us define the random closed set
X by X(w) = [X1(w) — 9, X1(w) + 0] x [Xa(w) — 6, Xo(w) + ] U {Y(w)}. Clearly,
P (dso(X,Y) < 8) equals to the probability that X is connected.

In order to compute such a probabilty, let us recall some facts: On thg one hand, X
has, at most, two connected components. Hence, if we denote with #X the random
variable given by the number of connected components, its expectation is then:

E(#X)= P(X is connected) + 2P(X is not connected)
= 2—P(X is connected)



ON THE CONNECTEDNESS OF A RANDOM CLOSED SET OF AN EUCLIDEAN SPACE 11

On the other hand, let us consider U some convex cover, and let Y be the random sub-
nerve of N'(U) associated to X (as defined in Theorem 4.1). Applying then Robbin’s
theorem to #Y it follows that:

SIS

i ’L)GN

Finally, let us recall that, depending on the convex cover U, given some w € {2, ?(w)
could be connected even so X (w) is not (i.e., the convex cover does not detect the
gap between [X;(w) — §, X1 (w) + ] X [Xa(w) — 6, Xo(w) + 6] and {Y (w)}). Therefore,
E(#Y) should be lower than E(#X). In conclusion,

2— IP’(X is connected) < Z Z DT (w).
i veN(U)t
In order to simplify the computation of T'(v) we can provide a simple convex cover:
for fixed m, and my, define U = {U;;}, ; where i € {0,...,m, —1},j € {0,...,m, —1}

and

o= (ates) 0 () 5] () () 5]

Note that the intersection of two (or more) sets of U is either empty or a rectangle.
Then, the simplices of N'(U) are constituted by rectangles and we only need to evaluate
T on them.

Remark 4.6. There is another approach for previous example by defining a random
closed set Y as Y (w) = {X(w)} U{Y(w)}. In this case, P(dso(X,Y) < §) equals the
probabilty that Yisé /2-connected, and then an analogous argument can be applied
by using Proposition 4.3 instead of Theorem 4.4.

Finally, we would like to remark that Theorem 4.1 is obtained as a consequence of
both, Proposition 2.6 and Robbin’s Theorem. Following the same arguments but using
Proposition 2.9 instead of Proposition 2.6, we can obtain:

Theorem 4.7. Let X be a bounded and continuous random closed set, with K a good
support. Assume that X is connected. Then X is convex if and only if equation (4) is
satisfied.

Proof. Again, the right implication is a direct consequence of Proposition 2.9 and Rob-
bin’s theorem. For the left one, assume that X is not convex, and so, that X (w) is
not convex for some w € Q. It is not difficult then to prove that there exists an open
set O for the Fell topology with X (w) € O and so that any A € O is not convex. By
Proposition 2.9 it follows then that equation 2 does not hold for any element in O, and
s0, as from hypothesis P(X~1(0)) > 0, equation (4) does not hold either. O

Example 4.8. Let X,Y and Z be three (non-independent) univariate random vari-
ables, all of them defined on (0, A), with A > 0. Build a random set X as follows:
X (w) is the polygon of R% whose vertices are (0,0), (0, X(w)), (1, Y (w)), (2, Z(w))
and (2,0). We want to determine whether X is convex. Theorem 4.7 can be applied to
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this end. Note that it can be used a convex cover as in Example 4.5. Again, we only
need evaluations of the capacity functional on rectangles.

5. CONCLUSIONS

In this work, several topological and geometrical properties of a random closed set
have been characterized. Concretely, connectedness and convexity. A priori, this prob-
lem has a hard nature; in the most naive approach, checking whether each X (w) is
connected (or convex) needs high computational costs and eventually it cannot be
solved in finite time. Our results indicate that some finite computations can be enough
to determine such properties of the random closed set. In fact, Theorems 4.4 and 4.5
are quite easy to implement in a computer program. On the other hand, we should
observer that a square grid (a lattice) can be a nice convex cover to be considered in
this setting.
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