
Computer Standards & Interfaces 83 (2023) 103642

Available online 4 April 2022
0920-5489/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

MDICA: Maintenance of data integrity in column-oriented
database applications

María José Suárez-Cabal *, Pablo Suárez-Otero , Claudio de la Riva , Javier Tuya
Department of Computing, University of Oviedo, Spain

A R T I C L E I N F O

Keywords:
NoSQL
Column-oriented database
Cassandra
Database application
Data integrity

A B S T R A C T

Current information technologies generate large amounts of data for management or further analysis, storing it
in NoSQL databases which provide horizontal scaling and high performance, supporting many read/write op
erations per second. NoSQL column-oriented databases, such as Cassandra and HBase, are usually modelled
following a query-driven approach, resulting in denormalized databases where the same data can be repeated in
several tables. Therefore, maintaining data integrity relies on client applications to ensure that, for data changes
that occur, the affected tables will be appropriately updated. We devise a method called MDICA that, given a data
insertion at a conceptual level, determines the required actions to maintain database integrity in column-oriented
databases. This method is implemented for Cassandra database applications. MDICA is based on the definition of
(1) rules to determine the tables that will be impacted by the insertion, (2) procedures to generate the statements
to ensure data integrity and (3) messages to warn the user about errors or potential problems. This method helps
developers in two ways: generating the statements needed to maintain data integrity and producing messages to
avoid problems such as loss of information, redundant repeated data or gaps of information in tables.

1. Introduction

The development of new information technologies and their use in
daily routines have allowed society to be completely interconnected.
Information systems available to citizens, social networks and the
Internet of Things, among others, generate large amounts of data,
known as Big Data, which are stored for management or further analysis.
On many occasions, this information is unstructured or distributed and
comes from different data sources which has motivated the emergence
of new paradigms of data storage and information management,
different from traditional relational database systems.

The NoSQL database (Not only SQL) paradigm [1] addresses
non-relational databases that do not use SQL for data manipulation.
Unlike relational databases, they relax the ACID properties (Atomicity,
Consistency, Isolation, Durability) as these are difficult to maintain,
especially with distributed data. Nevertheless, NoSQL databases adhere
to the BASE properties (Basically Available, Soft state, Eventually
consistent) [2] providing horizontal scaling, which enables them to
support a large number of simple read/write operations per second [3].
Moniruzzaman and Hossain [4] classify NoSQL databases in four basic
categories: (1) key-value stores that associate identifiers and values, (2)

document databases designed to manage and store documents with
semi-structured data, (3) wide-column stores or column-oriented data
bases which present a distributed, tabular data structure that associates
multiple attributes per key and (4) graph databases that use structured
relational graphs of interconnected key-value pairings.

Many definitions of data integrity have been proposed [5], focusing
on various aspects such as access control, data completeness, data con
sistency or correctness consisting of concurrency control, recovery
mechanisms or semantic integrity [6]. If these aspects are not
adequately managed, they can lead to different problems in information
management. In Big Data and cloud environments, aspects of data
integrity have been studied to prevent unauthorized modification of
data from malicious attacks [7,8], ensure eventual consistency [9] when
data is replicated throughout all the clusters [10,11] and, as NoSQL
databases do not support transactions (with few exceptions), detect
anomalies in data consistency [12] after a transaction developing
transactional services [13].

Modeling NoSQL databases is usually query-driven [14] to optimize
the query processing and, as a result, these databases are not normal
ized. In the case of key-value stores or column-oriented databases, which
manage tabular data, each table is designed to satisfy a single query so

* Corresponding author.
E-mail address: cabal@uniovi.es (M.J. Suárez-Cabal).

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

https://doi.org/10.1016/j.csi.2022.103642
Received 27 October 2020; Received in revised form 21 February 2022; Accepted 1 April 2022

mailto:cabal@uniovi.es
www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2022.103642
https://doi.org/10.1016/j.csi.2022.103642
https://doi.org/10.1016/j.csi.2022.103642
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2022.103642&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Standards & Interfaces 83 (2023) 103642

2

all data that the query encompasses will be in this single table. Conse
quently, the same piece of data can be repeated in multiple tables and
each table, and its data are isolated without references to another, as
opposed to relational databases. These databases have some features
that enforce semantic integrity like primary key or data type definitions,
however, they do not have others to support referential integrity or
guarantee the correctness when data are repeated. The scope of our
work is focused on semantic integrity that cannot be enforced by using
features of the NoSQL databases.

Consider, for example, an application which shows the list of book
authors, the list of books of a given author published in a year and the
list of books of a given author ordered by their title. Using a relational
database there would be two tables: “Authors” with all the information
of authors and “Books” for books and the reference of their authors. The
data would be retrieved by three SQL queries with different FROM,
WHERE and ORDER clauses. However, in column-oriented databases
the usual design would be three tables, each of them to be requested by a
query: “Authors”, and “BooksByYear” and “BooksByTitle” with infor
mation of books and their authors but differently organized according to
the search criteria (author and year of publication and author and title,
respectively).

On the other hand, this approach to modeling, which does not
require a conceptual data model, may also cause potential problems [15,
16] such as forgetting important domain concepts or their relationships,
losing information, or even misunderstandings of the business rules that
no stakeholder [17–24] notices because there is no representation of the
data domain to be assessed. Researchers and companies which provide
products and services for the commercial use of NoSQL databases [25,
26], have studied and made recommendations for the design of NoSQL
databases considering conceptual data models besides queries. The goal
is to avoid as far as possible inconsistencies or loss of information pre
serving features such as linear scalability and high availability without
compromising performance.

Nevertheless, these proposals do not prevent that the same data are
repeated in multiple tables due to denormalized models. If these data are
not properly updated, data integrity could be endangered. Avoiding this
issue relies on external mechanisms generally implemented in proced
ures of client programs that access data. These procedures should ensure
that, independently of the number of times a piece of data is repeated in
different tables, if a change is produced in any data, these data will be
updated in each repetition. In the previous example, adding a book in a
relational database involves inserting the book data in a single table, but
in a column-oriented database, it must be added into two of the tables
designed.

We address data integrity as the semantic integrity when data is
repeated or referential integrity is not enforced. In this paper, we devise
a method to support data integrity in column-oriented databases that we
call MDICA (Maintenance of Data Integrity in column-oriented database
Applications). Given a conceptual data model, a data insertion at a
conceptual model level and a column-oriented database, MDICA de
termines the database statements that must be carried out against the
database in order to preserve data integrity and advises the user about
situations where it may be impended. Using MDICA, developers will get
the necessary data definition and data management statements to
include in their source code or, if a client program exists, they will be
able to compare their procedures, and check whether data integrity will
be preserved.

NoSQL databases are able to support a large number of read/write
operations and they are optimised for obtaining and inserting data.
Other typical operations (delete and update) in transactional systems are
not efficiently supported by some of the NoSQL databases or are of little
significance in terms of volume [27]. Thus, we will mainly focus on data
insertions which are the most frequent in this paradigm designed for
large volume data storage. Nevertheless, we will sketch out the
approach for delete and update operations, leaving their detailed study
for future work. We have implemented MDICA for Apache Cassandra™

[28] applications since Cassandra is the most popular wide-column store
and one of the most used NoSQL databases [29].

We have previously addressed the initial idea about the maintenance
of data integrity [30]. We now extend it with the following main
contributions:

• To define the conditions that tables must satisfy to guarantee a good
design according to a given conceptual data model.

• To provide an approach that determines for each insert operation in
an entity or relation in a conceptual data model, the tables that are
impacted by the operation in order to ensure data integrity.

• To determine the updates in the tables impacted by an insert oper
ation maintaining data integrity.

• To provide error and warning messages for users about potential data
integrity problems.

• An implementation of MDICA for Cassandra database applications,
providing database statements in Cassandra Query Language (CQL)
that will be generated to update the tables.

• A validation of MDICA through several case studies.

The remainder of the paper is organized as follows: Section 2 in
troduces the background and the terminology used. Section 3 includes
an introductory example and the basic definitions of rules and proced
ures. Section 4 describes in detail rules and procedures to insert a tuple
into an entity and Section 5 describes them in order to insert tuples into
relations. In Section 6 the validation of the method is carried out in three
case studies, including description of the experiments, analysis of results
and threats to validity. Section 7 discusses MDICA extensions. The paper
ends with conclusions and future work in Section 8.

2. Data models and notation

A data model [31] is a type of data abstraction that is used to
represent the actual world of a system to be developed. It uses concepts
that organize elements of data, their properties, and relationships be
tween them. According to the abstraction level represented in data
models, they can be categorized from a high-level or conceptual data
model, which describes the domain or ideas close to the way final users
perceive data, to a low-level or physical data model, which provides
details of how the information is stored. Between these two extremes, we
can find other models depending on the level of detail or what they
represent, such as a logical data model which describes the semantics
represented by a particular technology.

Here, we give some definitions and describe the basic notation that
will be used in the remainder of the paper.

Conceptual data model.- A conceptual data model or conceptual
model, denoted as M, which represents concepts of the system to be
developed, is composed of entities, denoted as e∈Ents(M), and relations
between those entities, denoted as R{ei}∈Rels(M) where ei∈Ents(M).
Entities and relations may be characterized by their properties, named
attributes and denoted as Attrs(I), where I is an item that hereafter refers
to entity or relation. The primary key of an item I, denoted as PK(I), is
the set of attributes in I which uniquely identifies a concrete instance of
the item. The rest of the attributes of I are non-key attributes. In a
relation R{ei, ej}, cardinality is the number of instances in the entity ei
related to the entity ej, which can be 1:1, 1:n or n:m. Instances of an item
(data at a conceptual model level) are represented by tuples. A tuple of
an item I is defined as tp(I)=<(a1,v1), (a2,v2), …, (an,vn)> where
ai∈Attrs(I) and vi is the value of ai in the instance. We represent graph
ically a conceptual model as an Entity-Relationship model (ER model)
[32].

Logical data model.- A logical data model or logical model, denoted as
L, is composed of tables, denoted as Tabs(L), which represent how data is
stored in a column-oriented database. A table in a logical model L,
denoted as t∈Tabs(L), is a collection of ordered columns, denoted as Cols
(t). At the logical model level, data are represented by rows instead of

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

3

tuples (used in the conceptual model). A row of a column t is defined as
column-data pairs r(t)=<(c1, d1), (c2, d2), …, (cn, dn)> where ci∈Cols(t)
and di is the data of ci in the row. In Cassandra databases, the primary
key of a table t, denoted as Key(t), is the ordered list of key columns in t,
composed of (1) partition key, pKey(t): columns that identify the
uniqueness of a particular row as well as the location or node where it is
held, and (2) clustering key, cKey(t): columns that determine the order
of rows on a partition. The remaining columns of t are non-key columns.

Well-modelled table.- Well-modelled table denotes the table designed at
a logical level following a given modeling process e.g. Chetboko et al.
[20] or Mior et al. [21]. These processes state that a logical data model is
obtained using the conceptual model and the queries of the application,
which ensures a correct logical data model, not losing data represented
by the conceptual model, to support query requirements allowing them
to execute properly and to return data in the correct order.

Conceptual-Logical data model mapping.- A conceptual-logical data
model mapping, denoted as Map(M,L), is the association established
between a conceptual model and a logical model. Map(M,L) provides
information about:

(1) Associations between attributes of entities or relations, and col
umns of tables generated and vice versa. We say that an attribute
generates a column when the association attribute-column exists
where the attribute is mapped to the column,

(2) Tables generated from an item (entity or relation). We say that a
table t is generated from item I when for each column of t, an
association attribute-column exists with an attribute of I.

There are different types of attribute-column associations in mappings
depending on if attributes are key (ka) or non-key (na), and if columns
are key (kc) or non-key (nc):

• ka-kc: key attribute generates key column,
• ka-nc: key attribute generates non-key column,
• na-kc: non-key attribute generates key column, and
• na-nc: non-key attribute generates non-key column.

Fig. 1 depicts the mapping between an item I and a Cassandra table t
generated from it. The item has two key attributes and three non-key
attributes. The table has two key columns (a partition key I_pk1 gener
ated from the key attribute pk1 and a clustering key I_a1 generated from
the non-key attribute a1) and two non-key columns (I_pk2 generated
from the key attribute pk2 and I_a2 generated from the non-key attribute
a2). Note that attribute az does not generate any columns. The attribute-
column associations are labelled according to each of the aforemen
tioned types.

3. Data integrity based on conceptual and logical data models

This paper addresses the problem of data integrity maintenance in a
column-oriented database when changes of data are produced by an

insert operation of a tuple at a conceptual data model level. The data
integrity maintenance process leverages the logical models generated
from conceptual models and application queries through a set of map
ping rules or patterns in the modeling process of column-oriented da
tabases [20,21]. Fig. 2 depicts the integration of the modeling process
(on the left) and the data integrity maintenance process, MDICA, devised
in this work (on the right).

The inputs for the maintenance of data integrity will consist of (1) a
tuple, which represents the data to insert, (2) a conceptual model and (3)
a logical model. MDICA will generate the list of ordered data manipu
lation statements to execute against the database by applying two con
cepts defined in the following sections:

• Data manipulation rules (DMR) to determine which tables are
impacted by the operation considering mappings between the con
ceptual and logical models,

• Data manipulation procedures (DMP) to determine which changes
must be executed against the database to preserve data integrity
(data manipulation statements).

Sometimes, the generated database statements will also retrieve data
from tables in the database or even modify the logical data model (data
definition statements). Moreover, MDICA will provide different types of
messages to inform the users about potential data integrity problems.

3.1. Introductory example

In order to illustrate how data integrity has to be maintained, we use
a simple example of a digital music store interacting with an information
system in Cassandra, adapted from a Datastax tutorial [33], that we will
also refer to throughout the remaining sections.

The conceptual model (Fig. 3 a) that represents users, playlists
created by users, which are featured by tracks, tracks available in the
system and artists who release tracks.

The logical model (Fig. 3 b), result of the modeling process, includes
a table for each query in the application. In this example, required in
formation is about playlists created by a user (Q1), artists whose name
starts with a certain letter (Q2), tracks ordered by their title that have
been released by a given artist (Q3) or that are from a specific genre (Q4)
and tracks of a playlist (Q5). In each table, columns are labelled as
primary key (K), partition key (C) with ascending (↑) or descending (↓)
order, or non-key columns (without a label).

Table 1 displays the mapping, Map(M,L), of items (entities and re
lations) in the conceptual model and tables generated from them in the
logical data model with the associations between attributes and
columns.

We consider below two situations in which there is an insert opera
tion for the same relation between two entities but with different attri
butes in the tuples to insert. For each situation, we illustrate how data in
a logical model should be updated, and we identify which problems may
occur if data integrity is not maintained appropriately.

Fig. 1. Map(M,L) between an item I (entity or relation) and a table t generated from this item.

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

4

Introductory Example, Part 1.- Consider a new track released by an
artist. At the conceptual level, it implies inserting the artist (if it does not
exist), the track and a new relation (releases) between these entities.
According to the mapping (Table 1), in the logical model, tables to up
date are artists_by_first_letter, which stores data of the Artist, and
tracks_by_artist and tracks_by_genre, which store data of “releases”. So, in
order to maintain data integrity in the database, it is necessary (1) to
check whether the artist already exists in the table artists_by_first_letter
and insert it if not, and (2) add new rows into tracks_by_artist and
tracks_by_genre. The rest of the tables (playlists_by_user and tracks_in_
playlists) are not impacted by the insertion.

Determining which tables must be updated is a difficult task if there
are dozens of tables with data repeated and it is carried out manually.
Omitting any of the tables will lead to potential integrity problems. For
instance, if the table tracks_by_genre is forgotten, queries Q3 and Q4 will

not retrieve the same tracks: the new track will be retrieved by Q3,
which queries the table tracks_by_artist, but not by Q4, which queries the
table tracks_by_genre.

Introductory Example, Part 2.-. Consider that another new track is
released by the same artist, but now only the artist’s name is known
(neither first letter nor nationality are provided in the tuple). As the
artist already exists in the database, tables to insert new data are
tracks_by_artist and tracks_by_genre.

Cassandra only requires values for key columns in insert operations,
the rest of the columns may not be provided. Therefore, inserting a new
track without the artist’s nationality in tables tracks_by_artist and
tracks_by_genre is feasible although it would produce a situation of
incompleteness of data: the nationality of that artist is known because it
was previously inserted into artists_by_first_letter but now it will not be
inserted for the new track. To avoid the incompleteness, it will be

Fig. 2. Integration of modeling and data integrity maintenance processes.

Fig. 3. Illustrative example: a digital music store.

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

5

necessary (1) to determine data for column artist_first_letter from the
artist’s name, (2) search the table artists_by_first_letter for the artist’s
nationality and (3) complete the data to be inserted in tracks_by_artist
and tracks_by_genre.

However, it may be the case that the first letter cannot be determined
and there is no table that retrieves the unknown information (first letter
and nationality) for a given artist name. In this case, it will be necessary
(1) to create a new table that relates artist names to first letters and
nationalities, (2) populate it with data from artists_by_first_letter, and (3)
query it to obtain the unknown information.

In this work, we will provide appropriate solutions to the mainte
nance of data integrity by inserting data in each table impacted by the
change and/or creating and populating new tables to obtain the infor
mation required.

3.2. Data manipulation rules and procedures

MDICA is based on the definition and application of a set of rules and
procedures to generate database statements and messages in order to
maintain data integrity in a column-oriented database and identify po
tential threats.

In this section, we define these rules and procedures in general terms
and, in subsequent sections, they will be particularized within the scope
of inserting tuples: in an entity (Section 4), in a relation with cardinality
1:1, 1:n or n:m (Section 5.1) and in combinations of relations with a
variety of cardinalities (Section 5.2).

The first step is to identify the tables in a logical model that must be
updated when something in the real world, represented by a conceptual
model, is inserted. To achieve this aim, we define the concept of Data
Manipulation Rule (DMR):

Definition 1. (Data Manipulation Rule, DMR).- Given a conceptual
model M, an insert operation on an item I (entity or relation in M), a
logical model L. A DMR determines:

(1) The Map(M,L) between M and L through the naming of the col
umns (by convention, an attribute of an item referenced as item.
attr generates columns called item_attr),

(2) According to Map(M,L), the set of target tables TT⊆Tabs(L) which
are impacted by the operation on the item I,

(3) The potential threats to the maintenance of data integrity if any
target table is not well-modelled.

Depending on the mapping between M and L, risky situations may
exist that will generate:

• Error messages “Absence of target tables to update” (ATT) which
inform that it is not possible to execute the insert operation against
the logical model because there is no target table.

• Warning messages “Absence of a key column generated from a key
attribute” (TNW-K) and “Column not generated from any attribute”
(TNW-C). These inform about a possibly misshapen logical model
because a table is not well-modelled and may produce loss or un
necessary duplicity of data, or try to store data not supported by the
conceptual model.

The second step is to generate the operations that must be executed
against the database in order to properly update rows from values in a
tuple. We define the Data Manipulation Procedure (DMP) to generate
them:

Definition 2. (Data Manipulation Procedure, DMP).- Given a tuple tp(I)
to insert, the conceptual-logical data model mapping Map(M,L) between
M and L, and the set TT of target tables determined by DMR. DMP
determines:

(1) According to Map(M,L), the suitability of tp(I) for the insert
operation,

(2) For each column c of each target table tt∈TT, data taken from
attribute a in tp(I) that generates c according to Map(M,L), or
retrieved from the database,

Table 1
Map(M,L) for conceptual and logical data models.

Entity Artist Entity Track Entity Playlist Entity User
name first_letter nationality id title genre duration id name username password

Table playlist_by_user (Q1) from relation “creates” between Playlist and User
user_username ka-kc
playlist_id ka-kc
playlist_name na-nc
Table artists_by_first_letter (Q2) from entity Artist
artist_first_letter na-kc
artist_name ka-kc
artist_nationality na-nc
Table tracks_by_artist (Q3) from relation “releases” between Artist and Track
artist_name ka-kc
track_title na-kc
track_id ka-kc
track_duration na-nc
tranck_genre na-nc
artist_nationality na-nc
Table tracks_by_genre (Q4) from relation “releases” between Artist and Track
track_genre na-kc
track_title na-kc
track_id ka-kc
track_duration na-nc
artist_name ka-nc
artist_nationality na-nc
Table tracks_in_playlist (Q5) from relations “releases-features” between Artist, Track and Playlist
playlist_name na-kc
playlist_id ka-kc
track_title na-kc
track_id ka-kc
artist_name ka-nc
track_duration na-nc
track_genre na-nc

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

6

(3) For each table tt, the ordered list of manipulation operations
(insert, update or select) to maintain data integrity in TT,

(4) Other additional messages, specific of the procedure, where
applicable.

The algorithm DMP, included below, describes this procedure
(Definition 2):

Algorithm DMP
Input: A tuple tp(I) to insert, the conceptual-logical data model mapping between M

and L Map(M,L), and a set TT of target tables
Output: Database statements and messages
suitable = Analysis (tp(I), Map(M,L))
If (tp(I) is not suitable due to absence of value for any key attribute)

generateMessage(Error, AKA)
Abort

Else If (tp(I) is not suitable due to attribute does not correspond with any column)
generateMessage(Warning,AWC)

End If
Foreach target table tt ∈TT

Foreach c ∈ Cols(tt)
data = FindData (c, tt, tp(I), Map(M,L))
row = AddPair(c, data)

End Foreach
GenerateStatement (tt, row)

End Foreach

First, it analyses the tuple tp(I) (function Analysis) to determine its
suitability:

• It contains an attribute-value pair for each key attribute of I. If this is
not the case, DMP raises (in the function GenerateMessage) the error
message “Absence of value for a key attribute” (AKA) because there
is no value for primary keys at a conceptual model level; the insert
operation cannot be executed, aborting the process and invalidating
any previous operation on any table.

• Each attribute in tp(I) generated one or more columns in the data
base. Otherwise, the function GenerateMessage raises the warning
message “Attribute does not correspond with any column” (AWC) to
inform about a possible loss of information because values of those
attributes will be not stored in the database.

Then, it processes each column c of each target table tt, assigning
data to it through the function FindData and adding column-data pairs to
the row to insert into tt (function AddPair). FindData will be defined
within each scope depending on the item (an entity, a relation or mul
tiple relations) and the content of the tuple. After all columns are pro
cessed, the function GenerateStatement generates the statements to be
executed against the database.

4. Insert a tuple into an entity

The simplest case of insert operations at a conceptual model level is
to insert a tuple into an entity. Next, DMR and DMP are defined spe
cifically for this.

Definition 3. (Data Manipulation Rule for inserting a tuple into an
entity, DMR-IE).- Definition 1 is applied where item I is an entity e∈Ents
(M). DMR-IE determines the set of target tables TT⊆Tables(L) generated
from e. Each tt∈TT is well-modelled if ∀pk∈PK(e), ∃k∈Key(tt) / an as
sociation ka-kc in Map(M,L) exists between pk and k.

Note: Each key attribute of e corresponds with a key column of tt, and
non-key attributes of e could correspond with key or non-key columns,
or not be in tt.

Definition 4. (Data Manipulation Procedure for inserting a tuple into an
entity, DMP-IE).- Definition 2 is applied where item I is an entity e∈Ents
(M). DMP-IE sets, for each column c of each target table tt∈TT, data
taken exclusively from pairs (ai,vi) in tp(e).

The general algorithm DMP (Section 3.2) is applied here but Find
Data is specialized for inserting a tuple in an entity:

Function FindData
Input: A column c, a target table tt, a tuple tp(e) to insert, the conceptual-logical data

model mapping between M and L Map(M,L)
Output: data for c
If tp(e) has value v for attribute a corresponding to c case 1
R eturn v
Else If c∈Key(tt) case 2
G enerateMessage(Error,AKC)
A bort
Else case 3
G enerateMessage(Warning,ADC)
R eturn null
End If

This function considers three situations:

• A column c is generated from attribute a that is in the tuple tp(e)(case
1): FindData returns as data the value v of the pair (a,v) in tp(e).

• A key column c is generated from attribute a that is not in the tuple tp
(e) (case 2): GenerateMessage raises the error message “Absence of
data for a key column” (AKC) because it is not possible to insert rows
in the table without data for any key column. The insert operation
cannot be carried out and the process will abort and any previous
operation on any table will be invalidated.

• A non-key column c is generated from attribute a that is not in the
tuple tp(e) (case 3): FindData returns null because no data exists to be
inserted for c. GenerateMessage raises the warning message “Absence
of data for a non-key column” (ADC) to inform that the row will be
inserted without this column.

Example 1.-. Consider the insertion of a tuple into entity Artist in the
conceptual model in the introductory example (Section 3.1).

DMR-IE determines the mapping between conceptual and logical
models (that can be seen in Table 1) and the target table artists_by_firs
t_letter (generated from entity Artist). The key attribute in Artist (name)
is mapped to a key column (artist_name) of artists_by_first_letter, so this
table is well-modelled.

The following examples show different situations in which attribute-
value pairs in the tuple change and what DMP-IE produces for each one.

Example 1.1.- Consider the tuple to insert has an attribute-value pair
for each attribute of Artist:

<(artist.name, “author11”), (artist.first_letter, “a”), (artist.national
ity, “nation11”)>

DMP-IE determines that the tuple is suitable and calls FindData for
each column of table artists_by_first_letter that finds all the data from the
tuple (case 1). The result is the row:

<(artist_first_letter, “a”),(artist_name, “author11”), (artist_nation
ality, “nation11”)>

Finally, DMP-IE generates the statement that inserts that row:
INSERT INTO artists_by_first_letter (artist_first_letter, artist_name, artist_nationality)

VALUES (“a”, “author11”, “nation11”)

Example 1.2.- Consider the tuple to insert does not have an attribute-
value pair for the non-key attribute first_letter of Artist that generated the
key column artist_first_letter:

<(artist.name, “author12”), (artist.nationality, “nation12”)>
DMP-IE determines that the tuple is suitable but FindData is not able

to set data to the key column artist_first_letter (case 2). The result is the
next row that has a placeholder ‘$’ to represent the absence of data for
this column:

<(artist_first_letter, $),(artist_name, “author12”), (artist_nationality,
“nation12”)>

Although an artist can be inserted into a relational database without

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

7

the first letter, the table artists_by_first_letter requires this data (because it
is a key column), so it is not possible to carry out the insertion. DMP-IE
generates an error message:

Error(AKC): Absence of data for key column artist_first_letter. No insertion is possible

Example1.3.- Consider the tuple to insert does not have an attribute-
value pair for the non-key attribute nationality of Artist that generated
the non-key column artist_nationality:

<(artist.name, “author13”), (artist.first_letter, “a”)>
Now, FindData is not able to obtain data for the non-key column

artist_nationality (case 3). The result is the next row, with a placeholder
‘$’ for the data of this column:

<(artist_first_letter, “a”),(artist_name, “author13”), (artist_nation
ality, $)>

In this situation, the algorithm shows a warning message (absence of
data for column artist_nationality) and generates an insert statement:

Warning(ADC): Absence of data for non-key column artist_nationality. Column is not
inserted. Possible incomplete data stored in table artists_by_first_letter

INSERT INTO artists_by_first_letter (artist_first_letter, artist_name) VALUES (“a”,
“author13”)

5. Insert a tuple into relations

Next, we will deal with inserting a tuple into relations at a conceptual
model level, considering a binary relation (Section 5.1) and multiple
relations (Section 5.2) that are illustrated with examples.

5.1. Insert a tuple into a binary relation

To define the specific DMR and DMP, we will consider different
cardinalities of binary relations (1:1, 1:n and n:m).

Definition 5. (Data Manipulation Rule for inserting a tuple into a bi
nary relation, DMR-IR).- Definition 1 is applied where item I is a relation
between entities e1 and e2, R{e1,e2}∈Rels(M). DMR-IR consists of two
complementary rules to determine the set of target tables
TT=TTEnts∪TTR⊆Tables(L):

DMR-IR.1 determines the set of target tables TTEnts ⊆ Tables(L),
generated from e1 and e2. DMR-IE (Definition 3) is applied to these
entities.
DMR-IR.2 determines the set of target tables TTR ⊆ Tables(L),
generated from R{e1,e2}. Depending on the cardinality of R{e1,e2}, each
ttR∈TTR is well-modelled, if:
1:1 relation: ∀pke1∈PK(e1) ∨∀pke2∈PK(e2), ∃k∈Key(ttR) / an associ
ation ka-kc in Map(M,L) exists between pke1 and k or pke2 and k.
1:n relation: ∀pke2∈PK(e2) ∃k∈Key(ttR) / an association ka-kc in Map
(M,L) exists between pke2 (key attribute of detail entity) and k.
n:m relation: pk∈PK(e1)∪PK(e2) ∃k∈Key(ttR) / an association ka-kc in
Map(M,L) exists between pk and k.

Note: The rest of the attributes not included (from any entity or
relation) may correspond with key or non-key columns, or not be in a
tt∈TT.

If there is no target table determined by DMR-IE.1 for any of the
entities, MDICA generates a warning message which informs about a
possible loss of data: absence of target tables for some items in the tuple
(ATA).

Definition 6. (Data Manipulation Procedure for inserting a tuple into
a binary relation, DMP-IR).- Definition 2 is applied where item I is a
relation between entities e1 and e2, R{e1,e2}∈Rels(M). DMP-IR sets, for
each column c of each target table tt∈TT, data taken from pairs (ai,vi) in
tp(R{e1,e2}) or retrieved from a table lookupTable∈Tabs(L).

The general algorithm DMP (Section 3.2) is now applied with the

specialized FindData for inserting a tuple in a relation.
Function FindData
Input: a column c, a target table tt, a tuple tp(R{e1,e2}) to insert, the conceptual-logical

data model mapping between M and L Map(M,L)
Output: data for c
If tp(R{e1,e2}) has value v for attribute a corresponding to c case 1

Return v
Else

lookupQuery = CreateQuery (c, tp(R{e1,e2}), Map(M,L))
If (lookupQuery is executable) case 4

GenerateMessage(Information,ADC-S)
Return data=lookupQuery

Else
lookupQuery = RecreateQuery (c, tp(R{e1,e2}), Map(M,L))
If (lookupQuery is executable) case 5

GenerateMessage(Information,ADC-C)
Return data=lookupQuery

Else
If c∈Key(tt) case 2

GenerateMessage(Error,AKC)
Exit

Else case 3
GenerateMessage(Warning,ADC)
Return null

End If
End If

End If
End If

FindData will build a query named LookupQuery, defined below,
which will retrieve data from a table for a column c when the data is not
present in the tuple but already exists in the database (cases 4 and 5).

Definition 7. (LookupQuery).- Given a tuple tp(R{e1,e2}) and a row of a
target table tt r(tt)=<(c1,d1),…, (ci,$i),…(cn,dn)> where data for col
umn ci is unknown, represented by a placeholder $i. lookupQuery is an
statement in the form SELECT ci FROM lookupTable WHERE φ, where
lookupTable∈Tabs(L) has the column ci, and φ is a proposition, which
holds for lookupTable, with columns and data retrieved from attribute-
value pairs in tp(R{e1,e2}) or from column-data pairs in r(tt).

This function FindData contemplates cases 1, 2 and 3 as inserting a
tuple into an entity. Moreover, it considers two more situations when a
column c is generated from attribute a that is not in tp(R{e1,e2}), for
which lookupquery is prepared to be executed against the database, ob
tains data for the column and replaces the placeholder in the row:

• Data for the column c can be retrieved from the database with loo
kupQuery (case 4). The function CreateQuery: (1) searches L and finds
a lookupTable for which the proposition φ holds, and (2) prepares and
returns lookupQuery. GenerateMessage raises the information message
“Absence of data for a column, data might be retrieved from
lookupTable executing lookupQuery” (ADC-S) to notify the need of a
query to find unknown data, otherwise data integrity cannot be
ensured because of the absence of data in some columns that already
exists in others.

• Data for the column c can be retrieved from the database but Crea
teQuery is not able to prepare lookupQuery (case5). The function
RecreateQuery: (1) searches Q looking for a table, named sourceTable,
that stores data for ci (column with unknown data), (2) generates a
new table, named remadeTable, from sourceTable, with suitable keys
so that the proposition φ holds, and (3) prepares and returns loo
kupQuery that retrieves data from remadeTable. In this case, Gen
erateMessage raises the information message “Absence of data for a
column, an auxiliary table (remadeTable) might be created and
populated from sourceTable, and data would be retrieved from
remadeTable executing lookupQuery” (ADC-C) to notify the need to
create, populate and query a new table to find unknown data.

In case 5, once remadeTable is created, it becomes part of L, so in

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

8

subsequent insert operations, the process will be as in case 4.

Example 2.-. Consider the insertion of a tuple into the relation “re
leases” between entities Artist and Track in the conceptual model in the
introductory example (Section 3.1).

DMR-IR determines a set of target tables considering two comple
mentary rules:

• DMR-IR.1 implies the application of DMR-IE to both entities Artist
and Track. No table is generated from entity Track. Therefore, table
artists_by_letter, generated from entity Artist, is the only target table.

• DMR-IR.2 determines as target tables tracks_by_artist and tracks_by_
genre, generated from the relation “releases”. Both tables are well-
modelled provided that the relation cardinality is 1:n and the pri
mary key of entity Track (detail entity) is part of the key in both of
them.

Different situations with a variety of attribute-value pairs in tuples to
insert are shown below.

Example 2.1.- Consider the tuple to insert does not have an attribute-
value pair for the non-key attribute nationality of Artist (which generated
non-key columns artist_nationality in the target tables):

<(artist.name, “author21”), (artist.first_letter, “a”), (track.id,
“id021”), (track.title, “title21”), (track.genre, “genre21”), (track.dura
tion, 21)>

In this situation, FindData is not able to obtain data from the tuple for
columns artist_nationality. If the artist has been previously inserted, it can
retrieve the nationality from a table: CreateQuery generates a lookup
Query to retrieve data for the column artist_nationality from the table
artists_by_first_letter (case 4). lookupQuery is “SELECT artist_nationality
from artists_by_first_letter where artist_name="author21" and
artist_first_letter="a"”. When executing this lookupQuery, data retrieved
will replace placeholders $ in rows:

artists_by_first_letter: <(artist_first_letter, “a”), (artist_name,
“author21”),(artist_nationality,$)>

tracks_by_artist: <(artist_name, “author21”), (track_id, “id21”),
(track_title, “title21”), (track_genre, “genre21”), (track_duration, 21),
(artist_nationality, $)>

tracks_by_genre: <(track_genre, “genre21”), (track_id, “id21”),
(track_title, “title21”), (track_duration, 21), (artist_name, “author21”),
(artist_nationality, $)>

Finally, the algorithm shows a warning message due to the absence
of tables generated from the entity Track and an information message
indicating the need to retrieve data from the database, and it generates
statements that ensure data integrity:

Warning(ATA): Absence of target tables for entity Track
Information(ADC-S): Absence of data for column artist_nationality.

Select artist_nationality from table artists_by_first_letter
$ = SELECT artist_nationality FROM artists_by_first_letter WHERE artist_name=

“author21” and artist_first_letter=“a”
INSERT INTO artists_by_first_letter (first_letter, artist_name, artist_nationality)

VALUES (“a”, “author21”,$)
INSERT INTO tracks_by_artist (artist_name, track_title, track_id, track_genre,

track_duration, artist_nationality) VALUES (“author21”, “title21”, “id21”,
“genre21”, 21, $)

INSERT INTO tracks_by_genre (track_genre, track_title, track_id, track_duration,
artist_name, artist_nationality) VALUES (“genre21”, “title21”, “id21”, 21,
“author21”, $)

Example 2.2.- Consider the tuple to insert has attribute-value pairs for
all attributes of the entity Track but only one pair for the primary key
(attribute name) of Artist:

<(artist.name, “author22”), (track.id, “id22”), (track.title, “title22”),
(track.genre, “genre22”), (track.duration, 22)>

Now, FindData does not find data from the tuple for the key column
artist_first_letter in table artists_by_first_letter or for non-key column
artist_nationality in every target table. CreateQuery does not find any

lookupTable from which the queries in the form “SELECT artist_firs
t_letter/artist_nationality FROM lookuptable WHERE artist_name="au
thor33"”, were executable, although these columns exist in the table
artists_by_first_letter. RecreateQuery creates and populates a new table,
rm_artists_by_first_letter, that can retrieve the unknown values (case 5).
The retrieved data will replace the placeholders $i in rows:

artists_by_first_letter: <(artist_first_letter, $1), (artist_name,
“author22”), (artist_nationality, $2)>

tracks_by_artist: <(artist_name, “author22”), (track_id, “id22”),
(track_title, “title22”), (track_genre, “genre22”), (track_duration, 22),
(artist_nationality, $2)>

tracks_by_genre: <(track_genre, “genre22”), (track_id, “id22”),
(track_title, “title22”), (track_duration, 22), (artist_name, “author22”),
(artist_nationality, $2)>

For this situation, together with database statements, the algorithm
shows a warning message due to the absence of target tables generated
from Track and an information message to notify the need to create,
populate and query a new table to maintain data integrity:

Warning(ATA): Absence of target tables for entity Track
Information(ADC-C): Absence of data for column artist_first_letter

Create and populate table rm_artists_by_first_letter from artists_by_first_letter
Select artist_first_letter from table rm_artists_by_first_letter

Information(ADC-S): Absence of data for column artist_nationality
Select artist_nationality from table rm_artists_by_first_letter

CREATE TABLE rm_artists_by_first_letter (artist_name PRIMARY KEY,
artist_first_letter, artist_nationality)

COPY rm_artists_by_first_letter (artist_name, artist_first_letter, artist_nationality)
FROM artists_by_first_letter (artist_name, artist_first_letter, artist_nationality)

$1 = SELECT artist_first_letter FROM rm_artists_by_first_letter WHERE
artist_name=‘author22’

$2 = SELECT artist_nationality FROM rm_artists_by_first_letter WHERE
artist_name=‘author22’

INSERT INTO artists_by_first_letter (artist_first_letter, artist_name, artist_nationality)
VALUES ($1, “author22”, $2)

INSERT INTO tracks_by_artist (artist_name, track_title, track_id, track_genre,
track_duration, artist_nationality) VALUES (“author22”, “title22”, “id22”,
“genre22”, 22, $2)

INSERT INTO tracks_by_genre (track_genre, track_title, track_id, track_duration,
artist_name, artist_nationality) VALUES (“genre22”, “title22”, “id22”, 22,
“author22”, $2)

5.2. Insert a tuple including multiple relations

Tuples to insert at a conceptual model level can include attributes of
entities related through more than one relationship. This section in
cludes the definition of the specific DMR considering tuples whose at
tributes belong to entities related by multiple relations and an example.

Definition 8. (Data Manipulation Rule for inserting a tuple into two or
more relations, DMR-IRR).- Definition 1 is applied where item I is a set of
two or more relations RR⊆Rels(M) between a set of entities EE⊆Ents
(M). DMR-IRR consists of two complementary rules to determine the set
of target tables TT= TTbR∪ TTRR ⊆Tables(L):

DMR-IRR.1 determines the set of target tables TTbR ⊆Tables(L),
generated from each binary relation R{ei,ej}∈RR. DMR-IR (Definition
5) is applied to each R{ei,ej}.
DMP-IRR.2 determines the set of target tables TTRR⊆Tables(L),
generated from combinations of chained relations in RR with car
dinality 1:1, 1:n and n:m. Depending on combinations of the cardi
nality of relations, each table ttRR∈TTRR is well-modelled if:
Combination of 1:1 relations: ∃ei∈EE, ∀pkei∈PK(ei) ∃k∈Key(ttRR) / an
association ka-kc in Map(M,L) exists between pkei and k.
Combination of 1:n relations: ∃en∈EE, ∀pken∈PK(en) ∃k∈Key(ttRR) /
an association ka-kc in Map(M,L) exists between pken and k. Next,
cases are distinguished depending on the position of the detail entity
in the chained relations:

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

9

• Case 1:n - 1:n: the detail entity en is at the end of the chained
relations.

• Case 1:n - n:1: the detail entity en is in the middle of the chained
relations.

• Case n:1 - 1:n: two detail entities exist, at the beginning e1 and at the
end en of the chained relations and both must fulfill the proposition.

Combination of n:m relations: ∀ei∈EE, ∀pk∈ ∪PK(ei) ∃k∈Key(ttRR) /
an association ka-kc in Map(M,L) exists between pk and k.
Combination of 1:1, 1:n and n:m relations: an association ka-kc in
Map(M,L) exists between a key column of ttRR and every key attribute
of: any entity in 1:1 relations, detail entities in 1:n relations and
every entity in n:m relations.

Note: The rest of the attributes not included (from any entity or
relation) may correspond with key or non-key columns, or not be in any
target table tt∈TT.

Moreover, when inserting a tuple into a set of relations:

• MDICA generates warning messages informing about a possible loss
of data if there is no target table determined by DMR-IRR.1 for any of
the binary relations: absence of target tables for some items in the
tuple (ATA).

• DMP-IR (Definition 6) is applied where item I is a set of two or more
relations.

Example 3.-. Consider the insertion of a tuple into the relations (“re
leases” and “features”) between entities Artist, Track and Playlist at the
conceptual model level in the introductory example (Section 3.1).

DMR-IRR determines target tables considering two complementary
rules:

• DMR-IRR.1 implies the application of DMR-IR to relations “release”
and “features” that, recursively, implies the application of DMR-IE to
entities Artist, Track and Playlist. No table is generated from entities
Track or Playlist or from the relation “features”.
Table artists_by_first_letter (generated from entity Artist) and tables
tracks_by_artist and tracks_by_genre (generated from relation “re
leases”) are determined as target tables.

• DMR-IRR2 determines as a target table tracks_in_playlist, generated
from the relations chained “releases” and “features”, a combination
of a 1:n relation (Artist R Track) and an n:m relation (Track R Playlist),
respectively. The table is well-modelled because the key column
track_id was generated from the primary key of Track (detail entity in
the 1:n relation) and playlist_id was generated from the primary key
of Playlist (Track and Playlist entities in the n:m relation).

6. Validation

In order to evaluate MDICA which, given a tuple to insert into a
conceptual model, generates database statements and messages with the
goal of maintaining data integrity in a column-oriented database, the
following research questions are established:

RQ1: Given an insert operation at a conceptual model level, is it al
ways possible to insert data at a logical model level? If not, what are the
causes of this situation?

RQ2: What is the impact of an insert operation at a conceptual model
level on the logical model in terms of the number of tables affected to
maintain data integrity?

RQ3: How many database statements must be executed for each
insert operation at the conceptual model level in order to maintain data
integrity in the database?

RQ4: Is it always possible to ensure that data integrity is maintained?
If this is not the case, what are the situations identified that can endanger
it?

6.1. Experimental subjects

To answer the research questions, we have considered two options to
select the experimental subjects: (1) standard benchmarks and (2) ap
plications publicly available with a conceptual model.

Yahoo Cloud Serving Benchmark (YCSB) [34] has become the
de-facto benchmark, designed by [35] to compare the performance of
data stores and used for measuring performance, scalability, elastic
speedup, throughput and latency [35–37] of different NoSQL databases.
Since the logical model of YCSB only contains one table on which op
erations such as read or insert are executed, it is not suitable for the goals
of the MDICA experimentation.

Therefore, we have searched for other case studies used in different
works related to the design of Cassandra databases and with a variety of
tables generated from items in the conceptual models (one entity, one or
more relations, and relations with different cardinality). The selected
case studies are:

• Digital Library Portal, used by Chebotko et al. [20] to illustrate the
data modeling methodology. It is an application that features a
collection of digital artifacts (papers, posters…) which appeared in
various venues. Registered users can leave their feedback for venues
and artifacts in the form of reviews, likes or ratings.

• Hotel reservations is used by Carpenter and Hewitt [15] to show how
to design data models for Cassandra. It is a sample application that
includes hotels, guests, the rates and availability of rooms, and res
ervations booked for guests. It also maintains a collection of “points
of interest” near hotels.

• Digital music store (the introductory example in Section 3.1) is used
as a tutorial intended for programmers interested in learning about
Cassandra [33] and it covers the techniques used to create databases
and tables. It is a Java web application that manages a collection of
music files.

Each case study provides both the conceptual and the logical models.
Table 2 displays information about the models:

• Conceptual models: items (entity or relation with its cardinality 1:n
or n:m), their name and the number of key and non-key attributes
(columns “#PK” and “#nPK”).

• Logical models: tables, the items that generate them, their name
(columns “From Item/s” and “From Name”) and their number of key
and non-key columns (columns “#Key” and “#nKey”). If a table is
generated from more than one relation, column “From Item/s” is
“multiple”.

In short, the total number of items and tables are, respectively, 10
and 9 for Digital Library, 13 and 9 for Hotel Reservations, and 7 and 5 for
Music Store.

6.2. Test cases design

For the evaluation of MDICA, we have generated for each case study
a set of insert operations. Each operation will be a test case. The test
cases have been systematically designed applying the classification-tree
method [38]. We have regarded MDICA under two relevant aspects,
named classifications: where it inserts (classification based on the item
to insert) and what it inserts (classification based on the attribute-value
pairs in the tuple to insert). For each classification, we have identified
different classes:

• Where it inserts (item at a conceptual model level):
○ Entity: insertion in an entity.
○ Relation: insertion in a relation, which is subdivided into three

classes depending on the cardinality: 1:1, 1:n and n:m.

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

10

○ Multiple relations: insertion of a tuple of two or more adjacent
relations. In order to avoid a combinatorial explosion, there will
only be one class for each group of relations which generated a
table in the logical model.

• What it inserts (attribute-value pairs in the tuple):
○ *: Every attribute of the item to insert has a value in the tuple.
○ PK: Only key attributes have a value; the rest of the attributes are

not in the tuple.
○ -attr: A non-key attribute of the item has no value in the tuple.

There will be a class for each non-key attribute.
○ -PK: A key attribute of the item has no value. There will be a class

for each key attribute.

We have combined each item in the conceptual model (in the first
classification) with each class in the second classification, resulting in
289 test cases in total (118 for Digital Library, 118 for Hotel Reserva
tions, and 53 for Music Store). For each case study and item, Table 3
displays the number of test cases for each of the combinations.

Once we have generated the test cases, we apply the rules and pro
cedures defined in Sections 4 and 5 to each one. As previously described,
after obtaining the mapping between conceptual and logical models,
MDICA identifies the target tables (listed in Table 3, column “Target
Tables”), generated from the items of the tuple to insert, and determines
the database statements that should be executed against the database to
maintain data integrity and the messages shown to users. The analysis of
the results of these executions is detailed in the following sections.

6.3. Analysis of the insertion operations at a conceptual model level
(RQ1)

To answer RQ1, we ran the test cases and inspected for each one if
insertions were generated at a logical model level. We found that 45.0%
of the test cases produced insertions into databases, and the remaining
55.0% did not.

Table 4 displays the number of test cases (289 in total) divided into

those that inserted data into the database without generating error
messages (130 test cases) and those that generated an error message
without inserting rows into the databases (159 test cases).

The high number of the latter is due to the strategy for their design: in
86 test cases, the insert operation did not impact on any target tables
(columns “ATT”, Absence of Target Tables); in 68 test cases, tuples did
not have values for key attributes (columns “AKA”, Absence of value for
a Key Attribute); and in 5 test cases, tuples did not have values for any
key column and they could not be retrieved from the database either
(columns “AKC”, Absence of data for a Key Column). For each of these
test cases, MDICA generated the appropriate error message, described in
Sections 3.2 and 4, depending on the reason why they did not insert any
rows.

Answering RQ1, some situations do not enable data insertions into
the conceptual model or the database due to a lack of data for key at
tributes or for key columns or an absence of tables where to insert.
MDICA is a first help for developers since it can detect these situations
and provide information (to add new tables or modify the tuple with
additional attribute-value pairs) so that the insertion in both models is
feasible.

6.4. Analysis of target tables impacted by an insertion (RQ2)

To answer RQ2, we analyze the target tables in each test case that did
not generate an error message.

All tables in the logical models (listed in Table 2) are impacted by
some test case as Table 3 displays. For those test cases that did not
impact on any table, for which an ATT error message was generated,
target tables were labelled as ‘-’. For relations, more than half of the
insert operations impacted on more than one table. Moreover, the
maximum number of target tables was reached when inserting a tuple of
multiple relations (6 for Digital Library, 5 for Hotel Reservations and 4
for Music Store), accounting for more than 50% of the tables in each case
study.

Answering RQ2, to insert a tuple at a conceptual model level impacts

Table 2
Conceptual and logical models used in the evaluation.

Conceptual data model Logical data model
Case Study Item Name # PK # nPK Table From Item/s From Name # Key # nKey

Digital Library entity artifact 1 3 artifacts 1:n featuresDA 1 5
review 1 3 artifacts_by_author 1:n featuresDA 3 4
user 1 3 artifacts_by_venue 1:n featuresDA 3 3
venue 2 3 ratings_by_artifact 1:n featuresR 1 2

1:n featuresDA 3 6 experts_by_artifact n:m likes 3 3
featuresR 2 6 users_by_artifact n:m likes 2 3
posts 2 7 venues_by_user n:m likesV 3 3

n:m likes 2 6 artifacts_by_user multiple likes-featuresDA 3 3
likesR 2 6 reviews_by_user multiple post-featuresR 3 5
likesV 3 6

Hotel Reservations entity amenity 1 1 guests entity guest 1 5
guest 1 3 hotels entity hotel 1 3
hotel 1 3 hotels_by_poi n:m is_near 2 3
poi 1 2 pois_by_hotel n:m is_near 1 2
reservation 1 3 amenities_by_room multiple has-offers 3 1
room 1 1 available_rooms_by_hotel_date multiple has-is_available 3 1
room_availability 1 1 reservations_by_confirmation multiple has-holds-is_for 2 4

1:n has 2 4 reservations_by_guest multiple has-holds-is_for 3 4
holds 2 4 reservations_by_hotel_date multiple has-holds-is_for 3 3
is_for 2 6

n:m is_available 2 2
is_near 2 5
offers 2 2

Music Store entity artist 1 2 artists_by_first_letter entity artist 2 1
playlist 1 1 playlists_by_user 1:n creates 2 1
track 1 3 tracks_by_artist 1:n releases 3 3
user 1 1 tracks_by_genre 1:n releases 3 3

1:n creates 2 2 tracks_in_playlist multiple releases-features 4 3
releases 2 5

n:m features 2 4

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

11

on more or less tables, depending on those generated from items in the
tuple. The more complex the tuple, in terms of the number of items it
contains, the greater the number of target tables and the more error-
prone, by forgetting to insert some of them. MDICA identifies the
target tables regardless of the complexity of the tuple and decreases the
probability of making mistakes in their selection.

6.5. Analysis of database statements (RQ3)

To answer RQ3, we analyze the database statements generated by
DMPs to ensure data integrity in a database for test cases that did not
generate error messages.

Table 5 displays information about test cases, the number of tables
impacted and CQL statements generated for each test case. Database

statements are split into INSERT, SELECT and CREATE© and, for
each one, columns “#”, “%” and “Avg” display the number of state
ments, percentage of the total and average per test case, respectively.

For 130 test cases, MDICA generated 469 CQL statements in total (an
average of 3.6 CQLs per test case) that included mostly INSERT state
ments (332, 70.8% of the total) but also SELECT (111, 23.7%) and
CREATE© (26, 5.5%).

An insert operation at a conceptual level may imply several INSERT
statements at a logical level, as many as the number of target tables
impacted, with an average of 2.6 necessary for each test case.

Inserting into an entity does not generate SELECT or CREATE©
because it implies the creation of a new instance that does not exist in
the database. For inserting into relations, SELECT (average 0.9 per test
case) and CREATE© (average 0.2) statements were produced

Table 3
Test cases to evaluate MDICA and target tables impacted by each test case.

Case Study Item Name Attribute-value Pairs Target Tables
* PK -attr -PK Total

Digital Library entity artifact 1 1 3 1 6 -
review 1 1 3 1 6 -
user 1 1 3 1 6 -
venue 1 1 3 2 7 -

1:n featuresDA 1 1 6 3 11 artifacts_by_venue, artifacts_by_author, artifacts
featuresR 1 1 6 2 10 ratings_by_artifact
posts 1 1 7 2 11 -

n:m likes 1 1 6 2 10 users_by_artifact, experts_by_artifact
likesR 1 1 6 2 10 -
likesV 1 1 6 3 11 venues_by_user

multiple likes-featuresDA 1 1 9 4 15 artifacts_by_user artifacts_by_venue, artifacts_by_author, artifacts,
users_by_artifact, experts_by_artifact

posts-featuresR 1 1 10 3 15 ratings_by_artifact, reviews_by_user
Total Digital Library 12 12 68 26 118 n/a
Hotel

Reservations
entity amenity 1 1 1 1 4 -

guest 1 1 3 1 6 guests
hotel 1 1 3 1 6 hotels
poi 1 1 2 1 5 -
reservation 1 1 3 1 6 -
room 1 1 1 1 4 -
room_availability 1 1 1 1 4 -

1:n has 1 1 4 2 8 hotels
holds 1 1 4 2 8 -
is_for 1 1 6 2 10 guests

n:m is_available 1 1 2 2 6 -
is_near 1 1 5 2 9 hotels, hotels_by_poi, pois_by_hotel
offers 1 1 2 2 6 -

multiple has-holds-is_for 1 1 10 4 16 guests, hotels, reservations_by_confirmation, reservations_by_guest,
reservations_by_hotel_date

has-is_available 1 1 5 3 10 available_rooms_by_hotel_date, hotels
has-offers 1 1 5 3 10 amenities_by_room, hotels

Total Hotel Reservations 16 16 57 29 118 n/a
Music Store entity artist 1 1 2 1 5 artists_by_first_letter

playlist 1 1 1 1 4 -
track 1 1 3 1 6 -
user 1 1 1 1 4 -

1:n creates 1 1 2 2 6 playlists_by_user
releases 1 1 5 2 9 artists_by_first_letter, tracks_by_artist, tracks_by_genre

n:m features 1 1 4 2 8 -
multiple releases-features 1 1 6 3 11 artists_by_first_letter, tracks_by_artist, tracks_by_genre, tracks_in_playlist

Total Music Store 8 8 24 13 53 n/a
Total 36 36 149 68 289 n/a

Table 4
Test cases that produced insertions in databases and test cases that generated error messages.

Insertions without error messages Insertions with error messages Total
ATT AKA AKC

Case Study # % # % # % # % #

Digital Library 54 45.8 37 31.4 26 22.0 1 0.8 118
Hotel Reservations 55 46.6 32 27.1 29 24.6 2 1.7 118
Music Store 21 39.6 17 32.1 13 24.5 2 3.8 53
Total 130 45.0 86 29.8 68 23.5 5 1.7 289

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

12

when it was necessary to retrieve data from tables to complete the rows
to insert. In the evaluation, the same CREATE© statement was
generated for different test cases, however, in a real situation, once a
new table is created, it becomes part of the database so it can be queried
without repeating its creation. Therefore, the execution of CREATE&
COPY statements will be occasional, less frequent than in the case
studies.

Answering RQ3, MDICA automatically generates the set of database
statements that ensures data integrity in databases, which will require
an INSERT statement for each target table generated from the items in
the tuple, plus the appropriate SELECT statements for retrieving data of
columns that the tuple does not have but that were inserted in other
tables previously. Although less frequently than the other statements,
there may be situations that will also require CREATE© statements
to add new tables to query data when it cannot be directly retrieved from
the existent tables. Manually building the suitable set of statements for
an insert operation may become tedious and error-prone for developers,
therefore the use of MDICA is a considerable benefit in maintaining data
integrity.

6.6. Analysis of messages (RQ4)

To answer RQ4, we analyze messages (error, warning and informa
tion) generated by MDICA for test cases.

To answer RQ1, we analysed test cases and identified those that
made the insert operation impossible and for which error messages were
generated. They indicated the need to create new tables to store the
values or add other attribute-value pairs in the tuple to insert.

Table 6 displays the generated messages divided into information
and warning messages. Columns “#” are the number of messages and
“Avg” are the average number of messages for each test case.

Information messages (195 in total, average 1.5 messages per test
case), described in Section 5.1, reported the absence of values in the
tuple for some columns but data could be extracted from tables using
SELECT statements (ADC-S: 169 messages, average 1.3) and CREA
TE© statements (ADC-C: 26 messages, average 0.2).

The most important messages are warnings (832 in total, average
6.4), described in Sections 3.2, 4 and 5, because they give additional
information about the insert operation that may endanger data integrity,
although it can be carried out.

AWC (attribute does not correspond with any column) (363 mes
sages, average 2.8) and ATA (absence of target tables for some items in
the tuple), (334, average 2.6) warns the developer the inability of the
logical model to store values of the tuple which could cause a potential
loss of information. The developer should analyze the logical model and
decide whether or not to add new tables or columns.

Other warning messages showed discrepancies between the expected
and the actual design of databases: TNW-C (table not well-modelled
because a column was not generated from any attribute) (59, average
0.5) and TNW-K (table not well-modelled because of the absence of a key
column generated from a key attribute) (55, average 0.4). They could
provoke that columns never store data, unnecessary repeated data or
incorrect outputs of queries. The developer could avoid them changing
columns or keys in tables.

ADC (absence of data for a non-key column) (21, average 0.2) alerted
the user to the generation of gaps of data in columns. To avoid them, the
developer should add attribute-value pairs to the tuple to store data in
those columns.

Answering RQ4, in addition to error messages (treated in Section
6.3) and information messages, warnings provide particularly valuable
knowledge for the maintenance of data integrity. MDICA identifies sit
uations that can endanger it and generates the right messages. Using

Table 5
Database statements generated by DMPs.

Case Study Item Name #Target Tables #Test Cases INSERT SELECT CREATE& COPY Total
% Avg # % Avg # % Avg # Avg

Digital Library 1:n featuresDA 3 8 24 80.0 3.0 6 20.0 0.8 0 0.0 0.0 30 3.8
featuresR 1 8 8 100.0 1.0 0 0.0 0.0 0 0.0 0.0 8 1.0

n:m likes 2 8 16 61.5 2.0 6 23.1 0.8 4 15.4 0.5 26 3.3
likesV 1 8 8 44.4 1.0 6 33.3 0.8 4 22.2 0.5 18 2.3

multiple likes-featuresDA 6 11 66 76.7 6.0 16 18.6 1.5 4 4.7 0.4 86 7.8
posts-featuresR 2 11 22 91.7 2.0 2 8.3 0.2 0 0.0 0.0 24 2.2

Total Digital Library 54 144 75.0 2.7 36 18.8 0.7 12 6.3 0.2 192 3.6
Hotel Reservations entity guest 1 5 5 100.0 1.0 0 0.0 0.0 0 0.0 0.0 5 1.0

hotel 1 5 5 100.0 1.0 0 0.0 0.0 0 0.0 0.0 5 1.0
1:n has 1 6 6 50.0 1.0 6 50.0 1.0 0 0.0 0.0 12 2.0

is_for 1 8 8 57.1 1.0 6 42.9 0.8 0 0.0 0.0 14 1.8
n:m is_near 3 7 21 63.6 3.0 10 30.3 1.4 2 6.1 0.3 33 4.7
multiple has-holds-is_for 5 12 60 76.9 5.0 18 23.1 1.5 0 0.0 0.0 78 6.5

has-is_available 2 5 10 76.9 2.0 3 23.1 0.6 0 0.0 0.0 13 2.6
has-offers 2 7 14 63.6 2.0 8 36.4 1.1 0 0.0 0.0 22 3.1

Total Hotel Reservations 55 129 70.9 2.4 51 28.0 0.9 2 1.1 0.0 182 3.3
Music Store entity artist 1 2 2 100.0 1.0 0 0.0 0.0 0 0.0 0.0 2 1.0

1:n creates 1 4 4 50.0 1.0 2 25.0 0.5 2 25.0 0.5 8 2.0
releases 3 7 21 60.0 3.0 10 28.6 1.4 4 11.4 0.6 35 5.0

multiple releases-features 4 8 32 64.0 4.0 12 24.0 1.5 6 12.0 0.8 50 6.3
Total Music Store 21 59 62.1 2.2 24 25.3 1.1 12 12.6 0.6 95 4.5
Total 130 332 70.8 2.6 111 23.7 0.9 26 5.5 0.2 469 3.6

Table 6
Information and warning messages generated by MDICA.

Case Study #Test Cases Information Messages Warning Messages
ADC-S ADC-C Total AWC ATA TNW-C TNW-K ADC Total
Avg # Avg # Avg # Avg # Avg # Avg # Avg # Avg # Avg

Digital Library 54 60 1.1 12 0.2 72 1.3 306 5.7 141 2.6 6 0.1 0 0.0 7 0.1 460 8.5
Hotel Reservations 55 71 1.3 2 0.0 73 1.3 32 0.6 154 2.8 53 1.0 55 1.0 13 0.2 307 5.6
Music Store 21 38 1.8 12 0.6 50 2.4 25 1.2 39 1.9 0 0.0 0 0.0 1 0.0 65 3.1
Total 130 169 1.3 26 0.2 195 1.5 363 2.8 334 2.6 59 0.5 55 0.4 21 0.2 832 6.4

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

13

these messages, where appropriate, developers will be able to fix faults
to ensure data integrity by including more values in the tuples, creating
new tables, adding new columns, or making other changes in the
databases.

6.7. Threats to validity

We evaluated MDICA with three case studies generating, systemati
cally, a set of test cases for which it identified the impacted target tables,
generated database statements to ensure data integrity and produced
messages informing of those situations that could endanger the integ
rity. However, there are several threats to the validity of our experi
ments that may limit the ability to generalize the results. In this section
we discuss threats to external, internal, construct and conclusion
validity.

Threats to external validity.- The experimental subjects were drawn
from a research paper, a tutorial and a book where the design of Cas
sandra databases was illustrated. These threats include the degree to
which the subjects represent other case studies or real applications
because they may appear rather limited. However, we consider them
representative of partial or entire applications as they are examples in
guidelines for many developers. Another threat is whether test cases are
representative of real practice. They were systematically generated,
based on the item to insert and the content of the tuple, and represent a
large variety of insertions at a conceptual level that impacted on all the
tables of each case study. These threats could be reduced by considering
more experiments concerning other subjects and real insert operations,
for which both the number of test cases that do not produce insertions
and messages would probably be reduced. However, we consider the
approach as appropriate for a complete evaluation of the method.

Threats to internal validity.- MDICA generates database statements to
maintain data integrity in databases. We inspected them carefully and
found that they maintain data integrity and are coherent in all case
studies. As part of an ongoing research [39], an oracle is being devel
oped to automatically determine if, starting from a consistent state of a
database, the resultant state after executing database statements main
tains data integrity.

Threats to construct validity.- In two of the three case studies, the
logical models were designed following the modeling process that
MDICA leverages. Therefore, a threat is that the experimental subjects
contain the features that MDICA expects. To mitigate this threat, we
included the third case study, “Hotel Reservations”, designed according
to a query-driven modeling process without considering the conceptual
model.

Threats to conclusion validity.- We used as metrics the number of
target tables, database statements and messages generated. Regarding
the target tables, all tables in each case study were impacted by some
test case. There is an INSERT statement for each target table and, when
necessary, SELECT and CREATE© statements. In our opinion, the
messages generated seem to be sufficient, clear and appropriate to warn
about potential data integrity faults although we do not have feedback
from professional users. To mitigate this threat, messages should be
validated by developers with different levels of experience.

7. MDICA extensions

In this section, we describe how to handle different issues of the
approach not detailed in this work: how to adapt MDICA to other
column-oriented databases and how to address delete and update
operations.

7.1. Handling other column-oriented databases

The main difference between Cassandra and other logical models of
other column-oriented databases is the design of the keys in the tables.
In Cassandra, rows are identified by a compound primary key that may

involve multiple columns, whereas in others such as Apache HBase [40]
or Google Cloud Bigtable [41], rows are uniquely identified by their row
key and sorted lexicographically by it.

Regarding MDICA, the mapping between conceptual and logical
models will be the same except for the key composition in the tables.
Due to the fact that HBase and Bigtable tables only have a row key, it will
be necessary to map the attributes that generate the row key for each
table. Thus, MDICA will be able to identify tables affected by the
insertion of tuples.

7.2. Delete and update operations

To support delete and update operations, new data manipulation
rules and procedures (DMR and DMP, respectively) must be defined
considering the following situations, for which MDICA must provide
statements or messages:

• Delete a tuple from an entity or a relation: statements to delete rows
in tables generated from this entity or relation and, for each table
generated from relations between this entity or relation and another:
○ to delete rows if there exists a key column generated from any

attribute, otherwise,
○ to delete data of the columns generated from the attributes in the

tuple.
• Delete values of attributes from an entity or relation: statements to

delete data of the non-key columns generated from these attributes.
If any attribute generated any key column, an error message should
be produced because that column cannot have a null value.

• Update values of attributes from an entity or relation: statements to
update data of the columns generated from these attributes.

• For all cases, MDICA must also consider the conditions included in
these operations which specify the rows to change.

8. Related work

Most research oriented to improve the quality of databases or data
base applications focuses on relational databases and supposes that data
integrity is ensured because relational database systems have their own
mechanisms for the referential integrity control that guarantees it,
avoiding data duplicity and a loss of information. Therefore, said
research improves the quality of test databases by means of generating
new databases [42,43] or reducing large ones [44], generating
program-input for database applications [45] and other aspects such as
determining the correctness of the schema [46] or the correctness of SQL
statements considering the conceptual data model [47]. Moreover,
mutation testing has been applied to validate different studies [48], even
to NoSQL databases [49], and tools have been developed to support
experiments evaluating testing techniques [50,51].

To achieve high availability, scalability and performance, NoSQL
databases do not generally ensure strong consistency in all situations of
data management and do not support transactions. Several transactional
services have been developed [13] and tested [12] to detect anomalies
in data consistency. Our approach is complementary to them: trans
actional services ensure consistency of data after a transaction and
MDICA ensures data integrity after a change in all the tables where they
are repeated.

Within the scope of data integrity, there is research about how ma
licious attacks can affect it in cloud environments [7,8]. Our objective is
to ensure data integrity when inserting tuples whose data must be stored
in a column-oriented database such as Cassandra rather than to avoid
inserting information from external attacks. From the point of view of
column-oriented databases, research on integrity is based on assuring
the physical integrity when a row is replicated throughout all the clus
ters [10,11] or the completeness and correctness of data retrieved by
queries [52]. However, MDICA is focused on data integrity, ensuring the
integrity of repeated data in different tables (if any data changes in any

M.J. Suárez-Cabal et al.

Computer Standards & Interfaces 83 (2023) 103642

14

column, that data will be updated in each repetition of the database) and
the integrity of data between conceptual and logical models.

The official Cassandra developer team has proposed solving the
problem of maintaining data integrity by the use of materialized views
[53]. Materialized views are table-like structures that ensure data
integrity automatically on the server side. Data is stored in a base table,
but it can be retrieved from different views. Any insertion or change is
executed against the base table and immediately updated for every view.
The main drawbacks of materialized views are (1) they must have the
same key columns as the base table and can only have a new key column
from the rest of the columns and (2) they can only be created from a
single base table rather than from a join of multiple tables as in rela
tional databases, so data in materialized views can be accessed in limited
ways. In our work, it does not matter if tables have a different or similar
design: provided that the table is generated from an item of the tuple to
insert, this table will be impacted by the insert operation and an INSERT
statement will thus be generated for it.

Some problems related to the repeated data in several tables could be
reduced if CQL select statements include join operators. In [54], joins
are implemented by modifying the source code of Cassandra 2.0.
However, it has not yet been included in Apache Cassandra.

One of the most important inputs in MDICA is the conceptual data
model. However, it is a common practice to design NoSQL databases in
general without an explicit conceptual model. To address this limitation,
inferring normalized schemas that represent entities and relations for
document databases is proposed in [55] and [56], although the research
could be applied to other NoSQL databases. If we had to deal with sit
uations where the conceptual model was not provided, we would
include a previous task in which we inferred it from the logical model.

The conceptual model is not only an important element in ensuring
data integrity but also in modeling a logical data model [57]. Starting
from a conceptual model, it is automatically transformed into a NoSQL
schema [22] that can serve the queries with minimal cost [18], it is
mapped to heterogeneous datastores [23], and MongoDB [17] and
HBase [19] databases are designed. In [24], a tool is designed to
generate implementations for Cassandra and MongoDB from the same
conceptual data model. Chebotko et al. [20] and Mior et al. [21] focus
their approach on generating logical and physical Cassandra models
from the application’s conceptual data model and supported queries,
which have been leveraged for this work.

9. Conclusions and future work

This paper presents a method, MDICA, that helps to maintain data
integrity when data is inserted in column-oriented databases. It takes a
tuple to insert at a conceptual model level and generates the database
statements (both data management and data definition statements)
needed to ensure the integrity in the database. Moreover, it produces
messages (error, warning and information) which can guide developers
in decisions about how to deal with data integrity in their applications.
Although this method is implemented for Cassandra, it can be partic
ularised for other column-oriented databases with small changes related
to the map between the conceptual model and the logical model of these
databases.

MDICA was validated by three case studies. Results showed that the
method is automatically able to determine the tables impacted by an
insert operation, generate the appropriate statements and warn about
potential problems that could endanger it.

Developers can benefit from the use of this method, saving time and
reducing mistakes. They can use the generated database statements to
include them in their source code so that they do not forget to update
any table, retrieve adequate data from other tables to complete rows to
insert, and avoid making mistakes that endanger data integrity. For
previously developed applications, they may compare statements with
programmed procedures to facilitate the fault detection in the code and
repair it when necessary. Considering the generated messages,

developers will have an early warning against defects that can be pre
vented. They will be able to detect if values in the tuple are sufficient to
insert successfully into the database, if new tables, columns or keys are
necessary to store data satisfactorily or if there are columns that never
store them.

Future work will be focused on different lines. One area of interest is
to ensure data integrity when changes are produced at a logical model
level, that is when a row in a table is inserted. We also plan to extend the
approach to support delete and update operations, both at a conceptual
level and logical level. Related to this, an important issue is to infer the
conceptual model from a logical model to be able to apply MDICA when
the conceptual model has not been considered previously.

CRediT authorship contribution statement

María José Suárez-Cabal: Conceptualization, Methodology, Formal
analysis, Writing – original draft. Pablo Suárez-Otero: Software, Vali
dation, Data curation. Claudio de la Riva: Visualization, Writing – re
view & editing, Project administration. Javier Tuya: Writing – review &
editing, Supervision, Investigation, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported in part by projects TIN2016–76956-C3–1-R
funded by the Spanish Ministry of Economy and Competitiveness and
PID2019–105455GB-C32 funded by MCIN/ AEI/10.13039/
501100011033.

References

[1] N. Leavitt, Will NoSQL databases live up to their promise? Computer 43 (2010)
12–14, https://doi.org/10.1109/MC.2010.58 (Long. Beach. Calif).

[2] D. Pritchett, BASE: an acid alternative, Queue 6 (2008) 48–55, https://doi.org/
10.1145/1394127.1394128.

[3] A. Makris, K. Tserpes, V. Andronikou, D. Anagnostopoulos, A classification of
NoSQL data stores based on key design characteristics, Procedia Comput. Sci. 97
(2016) 94–103, https://doi.org/10.1016/j.procs.2016.08.284.

[4] A.B.M. Moniruzzaman, S. Hossain, NoSQL database: new era of databases for big
data analytics - classification, characteristics and comparison, Int. J. Database
Theor. Appl. 6 (2013).

[5] M. Zviran, C. Glezer, Towards generating a data integrity standard, Data Knowl.
Eng. 32 (2000) 291–313, https://doi.org/10.1016/S0169-023X(99)00042-7.

[6] E.B. Fernandez, R.C. Summers, C. Wood, Database Security and Integrity, Addison-
Wesley Longman Publishing Co., Inc., USA, 1981.

[7] P. Ghazizadeh, R. Mukkamala, S. Olariu, Data integrity evaluation in cloud
database-as-a-service, in: Proceedings of the IEEE 9th World Congress Services,
2013, pp. 280–285, https://doi.org/10.1109/SERVICES.2013.40.

[8] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, V. Sassone,
Blockchain-based database to ensure data integrity in cloud computing
environments, in: Proceedings of the 1st Italian Conference on Cybersecurity,
Venice, Italy, 2017.

[9] M. Diogo, B. Cabral, J. Bernardino, Consistency models of NoSQL databases, Futur.
Internet 11 (2019) 43, https://doi.org/10.3390/fi11020043.

[10] A. Lakshman, P. Malik, Cassandra - A decentralized structured storage system,
ACM SIGOPS Oper. Syst. Rev. 44 (2010) 35–40, https://doi.org/10.1145/
1773912.1773922.

[11] H. Fan, A. Ramaraju, M. McKenzie, W. Golab, B. Wong, Understanding the causes
of consistency anomalies in apache Cassandra, Proc. VLDB Endow. 8 (2015)
810–813, https://doi.org/10.14778/2752939.2752949.

[12] M.T. González-Aparicio, M. Younas, J. Tuya, R. Casado, Testing of transactional
services in NoSQL key-value databases, Futur. Gener. Comput. Syst. 80 (2018)
384–399, https://doi.org/10.1016/j.future.2017.07.004.

[13] V. Padhye, A. Tripathi, Scalable transaction management with snapshot isolation
for NoSQL data storage systems, IEEE Trans. Serv. Comput. 8 (2015) 121–135,
https://doi.org/10.1109/TSC.2013.47.

[14] J. Pokorny, B. Stantic, Challenges and opportunities in big data processing.
Managing Big Data in Cloud Computing Environments, IGI Global, 2016, pp. 1–24,
https://doi.org/10.4018/978-1-4666-9834-5.ch001.

M.J. Suárez-Cabal et al.

https://doi.org/10.1109/MC.2010.58
https://doi.org/10.1145/1394127.1394128
https://doi.org/10.1145/1394127.1394128
https://doi.org/10.1016/j.procs.2016.08.284
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0004
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0004
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0004
https://doi.org/10.1016/S0169-023X(99)00042-7
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0006
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0006
https://doi.org/10.1109/SERVICES.2013.40
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0008
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0008
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0008
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0008
https://doi.org/10.3390/fi11020043
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.14778/2752939.2752949
https://doi.org/10.1016/j.future.2017.07.004
https://doi.org/10.1109/TSC.2013.47
https://doi.org/10.4018/978-1-4666-9834-5.ch001

Computer Standards & Interfaces 83 (2023) 103642

15

[15] J. Carpenter, E. Hewitt, Cassandra: The Definitive Guide, 2nd ed., O’Reilly Media,
Inc., 2016.

[16] P. Atzeni, F. Bugiotti, L. Cabibbo, R. Torlone, Data modeling in the NoSQL world,
Comput. Stand. Interfaces 67 (2020), 103149, https://doi.org/10.1016/j.
csi.2016.10.003.

[17] G. Zhao, W. Huang, S. Liang, Y. Tang, Modeling MongoDB with relational model,
in: Proceedings of the 4th International Conference on Emerging Intelligent Data
and Web Technologies, 2013, pp. 115–121.

[18] T. Vajk, L. Deák, K. Fekete, G. Mezei, Automatic NOSQL schema development: A
case study, in: IASTED Multiconferences -, Proc. IASTED Int. Conf. Parallel Distrib.
Comput. Networks, PDCN 2013 (2013) 656–663. https://doi.org/10.2316/P.2013.
795-044.

[19] Y. Li, P. Gu, C. Zhang, Transforming UML class diagrams into HBase based on meta-
model, in: Proceedings of the International Conference of Electrical and Electronics
Engineering, 2014, pp. 720–724.

[20] A. Chebotko, A. Kashlev, S. Lu, A big data modeling methodology for apache
Cassandra, in: Proceedings of the IEEE International Conference on Big Data, 2015,
pp. 238–245, https://doi.org/10.1109/BigDataCongress.2015.41.

[21] M.J. Mior, K. Salem, A. Aboulnaga, R. Liu, NoSE: schema design for NoSQL
applications, IEEE Trans. Knowl. Data Eng. 29 (2017) 2275–2289, https://doi.org/
10.1109/TKDE.2017.2722412.

[22] F. Abdelhedi, A.A. Brahim, F. Atigui, G. Zurfluh, UMLtoNoSQL: automatic
transformation of conceptual schema to NoSQL databases, in: Proceedings of the
IEEE/ACS 14th International Conference on Computer Systems and Applications
(AICCSA), 2018, pp. 272–279, https://doi.org/10.1109/AICCSA.2017.76.

[23] G. Daniel, A. Gómez, J. Cabot, UMLto[No]SQL: mapping conceptual schemas to
heterogeneous datastores, in: Proceedings of the 13th International Conference on
Research Challenges in Information Science, 2019, pp. 1–13.

[24] A. de la Vega, D. García-Saiz, C. Blanco, M. Zorrilla, P. Sánchez, Mortadelo:
automatic generation of NoSQL stores from platform-independent data models,
Futur. Gener. Comput. Syst. 105 (2020) 455–474, https://doi.org/10.1016/j.
future.2019.11.032.

[25] CQL data modeling, CQL for DSE 6.8. https://docs.datastax.com/en/dse/6.8/cq
l/cql/ddl/dataModelingCQLTOC.html (accessed February 14, 2022).

[26] Guide to apache Cassandra data modelling - instaclustr. https://www.instaclustr.
com/resource/6-step-guide-to-apache-cassandra-data-modelling-white-paper/
(accessed February 14, 2022).

[27] V.N. Gudivada, D. Rao, V.V. Raghavan, NoSQL Systems for Big Data Management,
in: Institute of Electrical and Electronics, Engineers (IEEE, 2014, pp. 190–197.
https://doi.org/10.1109/services.2014.42.

[28] Apache Cassandra, Apache Cassandra Documentation. https://cassandra.apache.
org/_/index.html (accessed April 1, 2022).

[29] DB-engines ranking - popularity ranking of database management systems. http
s://db-engines.com/en/ranking (accessed February 14, 2022).

[30] P. Suárez-Otero, M.J. Suárez-Cabal, J. Tuya, Leveraging conceptual data models to
ensure the integrity of Cassandra databases, J. Web Eng. 18 (2019) 257–286,
https://doi.org/10.13052/jwe1540-9589.18461.

[31] R. Elmasri, S. Navathe, Fundamentals of Database Systems, 6th ed., Addison-
Wesley Publishing Company, USA, 2010.

[32] P.P.S. Chen, The entity-relationship model – toward a unified view of data, ACM
Trans. Database Syst. 1 (1976) 9–36, https://doi.org/10.1145/320434.320440.

[33] The Playlist tutorial. https://docs.datastax.com/en/archived/playlist/doc/java/p
laylistPreface.html (accessed February 14, 2022).

[34] V. Reniers, D. Van Landuyt, A. Rafique, W. Joosen, On the state of NoSQL
benchmarks, in: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion, 2017, pp. 107–112, https://doi.org/
10.1145/3053600.3053622.

[35] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking
cloud serving systems with YCSB, in: Proceedings of the 1st ACM Symposium on
Cloud computIng, 2010, pp. 143–154, https://doi.org/10.1145/
1807128.1807152.

[36] P. Martins, P. Tomé, C. Wanzeller, F. Sá, M. Abbasi, NoSQL comparative
performance study, in: Proceedings of the Advances in Intelligent Systems and
Computing, 2021, pp. 428–438, https://doi.org/10.1007/978-3-030-72651-5_41,
1366 AISC.

[37] A. Hendawi, J. Gupta, L. Jiayi, A. Teredesai, R. Naveen, S. Mohak, M. Ali,
Distributed NoSQL Data Stores: Performance Analysis and a Case Study, in: Proc. -
2018 IEEE Int. Conf. Big Data, Big Data 2018, Institute of Electrical and Electronics
Engineers Inc., 2019: pp. 1937–1944. https://doi.org/10.1109/BigData.201
8.8622544.

[38] M. Grochtmann, K. Grimm, Classification trees for partition testing, Softw. Testing,
Verif. Reliab. 3 (1993) 63–82, https://doi.org/10.1002/stvr.4370030203.

[39] P. Suárez-Otero, M.J. Suárez-Cabal, J. Tuya, Verificación del mantenimiento de la
consistencia lógica en bases de datos Cassandra |, in: Proceedings of the Jornadas
de Ingeniería del Software y Bases de Datos, Seville, Spain, 2019.

[40] Apache HBase – apache HBase™ Home. https://hbase.apache.org/index.html
(accessed February 14, 2022).

[41] Cloud bigtable: noSQL database service, Google cloud. https://cloud.google.com/
bigtable/ (accessed February 7, 2022).

[42] M.J. Suárez-Cabal, C. de la Riva, J. Tuya, R. Blanco, Incremental test data
generation for database queries, Autom. Softw. Eng. 24 (2017) 719–755, https://
doi.org/10.1007/s10515-017-0212-7.

[43] S.A. Khalek, B. Elkarablieh, Y.O. Laleye, S. Khurshid, Query-aware test generation
using a relational constraint solver, in: Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering, USA, 2008,
pp. 238–247, https://doi.org/10.1109/ASE.2008.34. IEEE Computer Society.

[44] J. Tuya, C. de la Riva, M.J. Suárez-Cabal, R. Blanco, Coverage-aware test database
reduction, IEEE Trans. Softw. Eng. 42 (2016) 941–959, https://doi.org/10.1109/
TSE.2016.2519032.

[45] K. Pan, X. Wu, T. Xie, Program-input generation for testing database applications
using existing database states, Autom. Softw. Eng. 22 (2015) 439–473, https://doi.
org/10.1007/s10515-014-0158-y.

[46] P. McMinn, C.J. Wright, C.J. McCurdy, G.M. Kapfhammer, Automatic detection
and removal of ineffective mutants for the mutation analysis of relational database
schemas, IEEE Trans. Softw. Eng. 45 (2019) 427–463, https://doi.org/10.1109/
TSE.2017.2786286.

[47] W.K. Chan, S.C. Cheung, T.H. Tse, Fault-based testing of database application
programs with conceptual data model, in: Proceedings of the 5th International
Conference on Quality Software (QSIC’05), 2022, pp. 187–196, https://doi.org/
10.1109/QSIC.2005.27.

[48] J. Tuya, M.J. Suárez-Cabal, C. de la Riva, Mutating database queries, Inf. Softw.
Technol. 49 (2007) 398–417, https://doi.org/10.1016/j.infsof.2006.06.009.

[49] H. Shahriar, S. Batchu, Towards mutation-based testing of column-oriented
database queries, in: Proceedings of the ACM Southeast Regional Conference,
2014, pp. 1–6, https://doi.org/10.1145/2638404.2638470.

[50] C. Zhou, P. Frankl, JDAMA: java database application mutation analyser, Softw.
Testing Verif. Reliab. 21 (2011) 241–263, https://doi.org/10.1002/stvr.462.

[51] J. Tuya, M.J. Suárez-Cabal, C. de la Riva, SQLMutation: a tool to generate mutants
of SQL database queries, in: Proceedings of the 2nd Workshop on Mutation
Analysis (Mutation - ISSRE Workshops), 2006, https://doi.org/10.1109/
MUTATION.2006.13, 1–1.

[52] G. Weintraub, E. Gudes, F. Kerschbaum, S. Paraboschi, Data integrity verification
in column-oriented NoSQL databases. Data and Applications Security and Privacy
XXXII, Springer International Publishing, Cham, 2018, pp. 165–181.

[53] Using materialized views, CQL for Cassandra 3.0. https://docs.datastax.co
m/en/cql-oss/3.3/cql/cql_using/useOverviewMV.html (accessed February 14,
2022).

[54] C. Peter, Supporting the Join Operation in a NoSQL System - Mastering the
Internals of Cassandra, Norwegian University of Science and Technology, 2015.

[55] A. Ait Brahim, R. Tighilt Ferhat, G. Zurfluh, Extraction process of conceptual model
from a document-oriented NoSQL database, Conf. Knowl. Syst. Eng. KSE 2019
(2019) 1–5. https://doi.org/10.1109/KSE.2019.8919400.

[56] D. Sevilla Ruiz, S.F. Morales, J.G. Molina, P. Johannesson, M.L. Lee, S.W. Liddle, A.
L. Opdahl, Ó.P. López, Inferring versioned schemas from NoSQL databases and its
applications. Conceptual Modeling, Springer International Publishing, Cham,
2015, pp. 467–480.

[57] D. Martinez-Mosquera, R. Navarrete, S. Lujan-Mora, Modeling and management
big data in databases – a systematic literature review, Sustainability 12 (2020) 634,
https://doi.org/10.3390/su12020634.

María José Suárez-Cabal is an assistant professor at the Uni
versity of Oviedo, Spain, and is a member of the Software En
gineering Research Group (GIIS, giis.uniovi.es). She obtained
her PhD in Computing from the University of Oviedo in 2006.
Her research has focused on software testing, and more spe
cifically on testing SQL and database applications, being pub
lished in high impact international journals and conferences.
Her current research interests also include testing NoSQL
systems.

Pablo Suárez-Otero received his B.Sc. degree in Computer
Engineering in 2015 and in M.Sc. in Computer Engineering in
2017 from the University of Oviedo. He is currently a PhD
candidate in Computing at the University of Oviedo as well as
an Assistant Professor at the University of Oviedo. He is a
member of the Software Engineering Research Group (GIIS,
giis.uniovi.es). His research interests include software testing,
NoSQL databases and data modeling.

M.J. Suárez-Cabal et al.

http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0015
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0015
https://doi.org/10.1016/j.csi.2016.10.003
https://doi.org/10.1016/j.csi.2016.10.003
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0017
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0017
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0017
https://doi.org/10.2316/P.2013.795-044
https://doi.org/10.2316/P.2013.795-044
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0019
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0019
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0019
https://doi.org/10.1109/BigDataCongress.2015.41
https://doi.org/10.1109/TKDE.2017.2722412
https://doi.org/10.1109/TKDE.2017.2722412
https://doi.org/10.1109/AICCSA.2017.76
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0023
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0023
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0023
https://doi.org/10.1016/j.future.2019.11.032
https://doi.org/10.1016/j.future.2019.11.032
https://docs.datastax.com/en/dse/6.8/cql/cql/ddl/dataModelingCQLTOC.html
https://docs.datastax.com/en/dse/6.8/cql/cql/ddl/dataModelingCQLTOC.html
https://www.instaclustr.com/resource/6-step-guide-to-apache-cassandra-data-modelling-white-paper/
https://www.instaclustr.com/resource/6-step-guide-to-apache-cassandra-data-modelling-white-paper/
https://doi.org/10.1109/services.2014.42
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://doi.org/10.13052/jwe1540-9589.18461
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0031
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0031
https://doi.org/10.1145/320434.320440
https://docs.datastax.com/en/archived/playlist/doc/java/playlistPreface.html
https://docs.datastax.com/en/archived/playlist/doc/java/playlistPreface.html
https://doi.org/10.1145/3053600.3053622
https://doi.org/10.1145/3053600.3053622
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1007/978-3-030-72651-5_41
https://doi.org/10.1109/BigData.2018.8622544
https://doi.org/10.1109/BigData.2018.8622544
https://doi.org/10.1002/stvr.4370030203
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0039
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0039
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0039
https://hbase.apache.org/index.html
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://doi.org/10.1007/s10515-017-0212-7
https://doi.org/10.1007/s10515-017-0212-7
https://doi.org/10.1109/ASE.2008.34
https://doi.org/10.1109/TSE.2016.2519032
https://doi.org/10.1109/TSE.2016.2519032
https://doi.org/10.1007/s10515-014-0158-y
https://doi.org/10.1007/s10515-014-0158-y
https://doi.org/10.1109/TSE.2017.2786286
https://doi.org/10.1109/TSE.2017.2786286
https://doi.org/10.1109/QSIC.2005.27
https://doi.org/10.1109/QSIC.2005.27
https://doi.org/10.1016/j.infsof.2006.06.009
https://doi.org/10.1145/2638404.2638470
https://doi.org/10.1002/stvr.462
https://doi.org/10.1109/MUTATION.2006.13
https://doi.org/10.1109/MUTATION.2006.13
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0052
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useOverviewMV.html
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useOverviewMV.html
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0054
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0054
https://doi.org/10.1109/KSE.2019.8919400
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0056
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0056
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0056
http://refhub.elsevier.com/S0920-5489(22)00020-4/sbref0056
https://doi.org/10.3390/su12020634

Computer Standards & Interfaces 83 (2023) 103642

16

Claudio de la Riva received the Ph.D. degree in Computing
from the University of Oviedo, Oviedo, Spain, in 2004.He is an
Associate Professor with the University of Oviedo and member
of the Software Engineering Research Group. His research in
terests include software verification and validation and soft
ware testing, mainly focused on testing database applications
and massive data processing.

Javier Tuya received the Ph.D. degree in engineering from the
University of Oviedo, Oviedo, Spain, in 1995. He is a Professor
with the University of Oviedo, Oviedo, Spain, where he is the
Research Leader of the Software Engineering Research Group.
He is the Director of the Indra-Uniovi Chair, a member of the
ISO/IEC JTC1/SC7/ WG26 Working Group for the recent ISO/
IEC/IEEE 29,119 Software Testing Standard, and a Convener of
the corresponding UNE National Body Working Group. His
research interests in software engineering include verification,
and validation and software testing for database applications
and service transactions.

M.J. Suárez-Cabal et al.

	MDICA: Maintenance of data integrity in column-oriented database applications
	1 Introduction
	2 Data models and notation
	3 Data integrity based on conceptual and logical data models
	3.1 Introductory example
	3.2 Data manipulation rules and procedures

	4 Insert a tuple into an entity
	5 Insert a tuple into relations
	5.1 Insert a tuple into a binary relation
	5.2 Insert a tuple including multiple relations

	6 Validation
	6.1 Experimental subjects
	6.2 Test cases design
	6.3 Analysis of the insertion operations at a conceptual model level (RQ1)
	6.4 Analysis of target tables impacted by an insertion (RQ2)
	6.5 Analysis of database statements (RQ3)
	6.6 Analysis of messages (RQ4)
	6.7 Threats to validity

	7 MDICA extensions
	7.1 Handling other column-oriented databases
	7.2 Delete and update operations

	8 Related work
	9 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

