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A B S T R A C T   

Current information technologies generate large amounts of data for management or further analysis, storing it 
in NoSQL databases which provide horizontal scaling and high performance, supporting many read/write op
erations per second. NoSQL column-oriented databases, such as Cassandra and HBase, are usually modelled 
following a query-driven approach, resulting in denormalized databases where the same data can be repeated in 
several tables. Therefore, maintaining data integrity relies on client applications to ensure that, for data changes 
that occur, the affected tables will be appropriately updated. We devise a method called MDICA that, given a data 
insertion at a conceptual level, determines the required actions to maintain database integrity in column-oriented 
databases. This method is implemented for Cassandra database applications. MDICA is based on the definition of 
(1) rules to determine the tables that will be impacted by the insertion, (2) procedures to generate the statements 
to ensure data integrity and (3) messages to warn the user about errors or potential problems. This method helps 
developers in two ways: generating the statements needed to maintain data integrity and producing messages to 
avoid problems such as loss of information, redundant repeated data or gaps of information in tables.   

1. Introduction 

The development of new information technologies and their use in 
daily routines have allowed society to be completely interconnected. 
Information systems available to citizens, social networks and the 
Internet of Things, among others, generate large amounts of data, 
known as Big Data, which are stored for management or further analysis. 
On many occasions, this information is unstructured or distributed and 
comes from different data sources which has motivated the emergence 
of new paradigms of data storage and information management, 
different from traditional relational database systems. 

The NoSQL database (Not only SQL) paradigm [1] addresses 
non-relational databases that do not use SQL for data manipulation. 
Unlike relational databases, they relax the ACID properties (Atomicity, 
Consistency, Isolation, Durability) as these are difficult to maintain, 
especially with distributed data. Nevertheless, NoSQL databases adhere 
to the BASE properties (Basically Available, Soft state, Eventually 
consistent) [2] providing horizontal scaling, which enables them to 
support a large number of simple read/write operations per second [3]. 
Moniruzzaman and Hossain [4] classify NoSQL databases in four basic 
categories: (1) key-value stores that associate identifiers and values, (2) 

document databases designed to manage and store documents with 
semi-structured data, (3) wide-column stores or column-oriented data
bases which present a distributed, tabular data structure that associates 
multiple attributes per key and (4) graph databases that use structured 
relational graphs of interconnected key-value pairings. 

Many definitions of data integrity have been proposed [5], focusing 
on various aspects such as access control, data completeness, data con
sistency or correctness consisting of concurrency control, recovery 
mechanisms or semantic integrity [6]. If these aspects are not 
adequately managed, they can lead to different problems in information 
management. In Big Data and cloud environments, aspects of data 
integrity have been studied to prevent unauthorized modification of 
data from malicious attacks [7,8], ensure eventual consistency [9] when 
data is replicated throughout all the clusters [10,11] and, as NoSQL 
databases do not support transactions (with few exceptions), detect 
anomalies in data consistency [12] after a transaction developing 
transactional services [13]. 

Modeling NoSQL databases is usually query-driven [14] to optimize 
the query processing and, as a result, these databases are not normal
ized. In the case of key-value stores or column-oriented databases, which 
manage tabular data, each table is designed to satisfy a single query so 

* Corresponding author. 
E-mail address: cabal@uniovi.es (M.J. Suárez-Cabal).  
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all data that the query encompasses will be in this single table. Conse
quently, the same piece of data can be repeated in multiple tables and 
each table, and its data are isolated without references to another, as 
opposed to relational databases. These databases have some features 
that enforce semantic integrity like primary key or data type definitions, 
however, they do not have others to support referential integrity or 
guarantee the correctness when data are repeated. The scope of our 
work is focused on semantic integrity that cannot be enforced by using 
features of the NoSQL databases. 

Consider, for example, an application which shows the list of book 
authors, the list of books of a given author published in a year and the 
list of books of a given author ordered by their title. Using a relational 
database there would be two tables: “Authors” with all the information 
of authors and “Books” for books and the reference of their authors. The 
data would be retrieved by three SQL queries with different FROM, 
WHERE and ORDER clauses. However, in column-oriented databases 
the usual design would be three tables, each of them to be requested by a 
query: “Authors”, and “BooksByYear” and “BooksByTitle” with infor
mation of books and their authors but differently organized according to 
the search criteria (author and year of publication and author and title, 
respectively). 

On the other hand, this approach to modeling, which does not 
require a conceptual data model, may also cause potential problems [15, 
16] such as forgetting important domain concepts or their relationships, 
losing information, or even misunderstandings of the business rules that 
no stakeholder [17–24] notices because there is no representation of the 
data domain to be assessed. Researchers and companies which provide 
products and services for the commercial use of NoSQL databases [25, 
26], have studied and made recommendations for the design of NoSQL 
databases considering conceptual data models besides queries. The goal 
is to avoid as far as possible inconsistencies or loss of information pre
serving features such as linear scalability and high availability without 
compromising performance. 

Nevertheless, these proposals do not prevent that the same data are 
repeated in multiple tables due to denormalized models. If these data are 
not properly updated, data integrity could be endangered. Avoiding this 
issue relies on external mechanisms generally implemented in proced
ures of client programs that access data. These procedures should ensure 
that, independently of the number of times a piece of data is repeated in 
different tables, if a change is produced in any data, these data will be 
updated in each repetition. In the previous example, adding a book in a 
relational database involves inserting the book data in a single table, but 
in a column-oriented database, it must be added into two of the tables 
designed. 

We address data integrity as the semantic integrity when data is 
repeated or referential integrity is not enforced. In this paper, we devise 
a method to support data integrity in column-oriented databases that we 
call MDICA (Maintenance of Data Integrity in column-oriented database 
Applications). Given a conceptual data model, a data insertion at a 
conceptual model level and a column-oriented database, MDICA de
termines the database statements that must be carried out against the 
database in order to preserve data integrity and advises the user about 
situations where it may be impended. Using MDICA, developers will get 
the necessary data definition and data management statements to 
include in their source code or, if a client program exists, they will be 
able to compare their procedures, and check whether data integrity will 
be preserved. 

NoSQL databases are able to support a large number of read/write 
operations and they are optimised for obtaining and inserting data. 
Other typical operations (delete and update) in transactional systems are 
not efficiently supported by some of the NoSQL databases or are of little 
significance in terms of volume [27]. Thus, we will mainly focus on data 
insertions which are the most frequent in this paradigm designed for 
large volume data storage. Nevertheless, we will sketch out the 
approach for delete and update operations, leaving their detailed study 
for future work. We have implemented MDICA for Apache Cassandra™ 

[28] applications since Cassandra is the most popular wide-column store 
and one of the most used NoSQL databases [29]. 

We have previously addressed the initial idea about the maintenance 
of data integrity [30]. We now extend it with the following main 
contributions:  

• To define the conditions that tables must satisfy to guarantee a good 
design according to a given conceptual data model.  

• To provide an approach that determines for each insert operation in 
an entity or relation in a conceptual data model, the tables that are 
impacted by the operation in order to ensure data integrity. 

• To determine the updates in the tables impacted by an insert oper
ation maintaining data integrity.  

• To provide error and warning messages for users about potential data 
integrity problems.  

• An implementation of MDICA for Cassandra database applications, 
providing database statements in Cassandra Query Language (CQL) 
that will be generated to update the tables.  

• A validation of MDICA through several case studies. 

The remainder of the paper is organized as follows: Section 2 in
troduces the background and the terminology used. Section 3 includes 
an introductory example and the basic definitions of rules and proced
ures. Section 4 describes in detail rules and procedures to insert a tuple 
into an entity and Section 5 describes them in order to insert tuples into 
relations. In Section 6 the validation of the method is carried out in three 
case studies, including description of the experiments, analysis of results 
and threats to validity. Section 7 discusses MDICA extensions. The paper 
ends with conclusions and future work in Section 8. 

2. Data models and notation 

A data model [31] is a type of data abstraction that is used to 
represent the actual world of a system to be developed. It uses concepts 
that organize elements of data, their properties, and relationships be
tween them. According to the abstraction level represented in data 
models, they can be categorized from a high-level or conceptual data 
model, which describes the domain or ideas close to the way final users 
perceive data, to a low-level or physical data model, which provides 
details of how the information is stored. Between these two extremes, we 
can find other models depending on the level of detail or what they 
represent, such as a logical data model which describes the semantics 
represented by a particular technology. 

Here, we give some definitions and describe the basic notation that 
will be used in the remainder of the paper. 

Conceptual data model.- A conceptual data model or conceptual 
model, denoted as M, which represents concepts of the system to be 
developed, is composed of entities, denoted as e∈Ents(M), and relations 
between those entities, denoted as R{ei}∈Rels(M) where ei∈Ents(M). 
Entities and relations may be characterized by their properties, named 
attributes and denoted as Attrs(I), where I is an item that hereafter refers 
to entity or relation. The primary key of an item I, denoted as PK(I), is 
the set of attributes in I which uniquely identifies a concrete instance of 
the item. The rest of the attributes of I are non-key attributes. In a 
relation R{ei, ej}, cardinality is the number of instances in the entity ei 
related to the entity ej, which can be 1:1, 1:n or n:m. Instances of an item 
(data at a conceptual model level) are represented by tuples. A tuple of 
an item I is defined as tp(I)=<(a1,v1), (a2,v2), …, (an,vn)> where 
ai∈Attrs(I) and vi is the value of ai in the instance. We represent graph
ically a conceptual model as an Entity-Relationship model (ER model) 
[32]. 

Logical data model.- A logical data model or logical model, denoted as 
L, is composed of tables, denoted as Tabs(L), which represent how data is 
stored in a column-oriented database. A table in a logical model L, 
denoted as t∈Tabs(L), is a collection of ordered columns, denoted as Cols 
(t). At the logical model level, data are represented by rows instead of 

M.J. Suárez-Cabal et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103642

3

tuples (used in the conceptual model). A row of a column t is defined as 
column-data pairs r(t)=<(c1, d1), (c2, d2), …, (cn, dn)> where ci∈Cols(t) 
and di is the data of ci in the row. In Cassandra databases, the primary 
key of a table t, denoted as Key(t), is the ordered list of key columns in t, 
composed of (1) partition key, pKey(t): columns that identify the 
uniqueness of a particular row as well as the location or node where it is 
held, and (2) clustering key, cKey(t): columns that determine the order 
of rows on a partition. The remaining columns of t are non-key columns. 

Well-modelled table.- Well-modelled table denotes the table designed at 
a logical level following a given modeling process e.g. Chetboko et al. 
[20] or Mior et al. [21]. These processes state that a logical data model is 
obtained using the conceptual model and the queries of the application, 
which ensures a correct logical data model, not losing data represented 
by the conceptual model, to support query requirements allowing them 
to execute properly and to return data in the correct order. 

Conceptual-Logical data model mapping.- A conceptual-logical data 
model mapping, denoted as Map(M,L), is the association established 
between a conceptual model and a logical model. Map(M,L) provides 
information about: 

(1) Associations between attributes of entities or relations, and col
umns of tables generated and vice versa. We say that an attribute 
generates a column when the association attribute-column exists 
where the attribute is mapped to the column,  

(2) Tables generated from an item (entity or relation). We say that a 
table t is generated from item I when for each column of t, an 
association attribute-column exists with an attribute of I. 

There are different types of attribute-column associations in mappings 
depending on if attributes are key (ka) or non-key (na), and if columns 
are key (kc) or non-key (nc):  

• ka-kc: key attribute generates key column,  
• ka-nc: key attribute generates non-key column,  
• na-kc: non-key attribute generates key column, and  
• na-nc: non-key attribute generates non-key column. 

Fig. 1 depicts the mapping between an item I and a Cassandra table t 
generated from it. The item has two key attributes and three non-key 
attributes. The table has two key columns (a partition key I_pk1 gener
ated from the key attribute pk1 and a clustering key I_a1 generated from 
the non-key attribute a1) and two non-key columns (I_pk2 generated 
from the key attribute pk2 and I_a2 generated from the non-key attribute 
a2). Note that attribute az does not generate any columns. The attribute- 
column associations are labelled according to each of the aforemen
tioned types. 

3. Data integrity based on conceptual and logical data models 

This paper addresses the problem of data integrity maintenance in a 
column-oriented database when changes of data are produced by an 

insert operation of a tuple at a conceptual data model level. The data 
integrity maintenance process leverages the logical models generated 
from conceptual models and application queries through a set of map
ping rules or patterns in the modeling process of column-oriented da
tabases [20,21]. Fig. 2 depicts the integration of the modeling process 
(on the left) and the data integrity maintenance process, MDICA, devised 
in this work (on the right). 

The inputs for the maintenance of data integrity will consist of (1) a 
tuple, which represents the data to insert, (2) a conceptual model and (3) 
a logical model. MDICA will generate the list of ordered data manipu
lation statements to execute against the database by applying two con
cepts defined in the following sections:  

• Data manipulation rules (DMR) to determine which tables are 
impacted by the operation considering mappings between the con
ceptual and logical models,  

• Data manipulation procedures (DMP) to determine which changes 
must be executed against the database to preserve data integrity 
(data manipulation statements). 

Sometimes, the generated database statements will also retrieve data 
from tables in the database or even modify the logical data model (data 
definition statements). Moreover, MDICA will provide different types of 
messages to inform the users about potential data integrity problems. 

3.1. Introductory example 

In order to illustrate how data integrity has to be maintained, we use 
a simple example of a digital music store interacting with an information 
system in Cassandra, adapted from a Datastax tutorial [33], that we will 
also refer to throughout the remaining sections. 

The conceptual model (Fig. 3 a) that represents users, playlists 
created by users, which are featured by tracks, tracks available in the 
system and artists who release tracks. 

The logical model (Fig. 3 b), result of the modeling process, includes 
a table for each query in the application. In this example, required in
formation is about playlists created by a user (Q1), artists whose name 
starts with a certain letter (Q2), tracks ordered by their title that have 
been released by a given artist (Q3) or that are from a specific genre (Q4) 
and tracks of a playlist (Q5). In each table, columns are labelled as 
primary key (K), partition key (C) with ascending (↑) or descending (↓) 
order, or non-key columns (without a label). 

Table 1 displays the mapping, Map(M,L), of items (entities and re
lations) in the conceptual model and tables generated from them in the 
logical data model with the associations between attributes and 
columns. 

We consider below two situations in which there is an insert opera
tion for the same relation between two entities but with different attri
butes in the tuples to insert. For each situation, we illustrate how data in 
a logical model should be updated, and we identify which problems may 
occur if data integrity is not maintained appropriately. 

Fig. 1. Map(M,L) between an item I (entity or relation) and a table t generated from this item.  
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Introductory Example, Part 1.- Consider a new track released by an 
artist. At the conceptual level, it implies inserting the artist (if it does not 
exist), the track and a new relation (releases) between these entities. 
According to the mapping (Table 1), in the logical model, tables to up
date are artists_by_first_letter, which stores data of the Artist, and 
tracks_by_artist and tracks_by_genre, which store data of “releases”. So, in 
order to maintain data integrity in the database, it is necessary (1) to 
check whether the artist already exists in the table artists_by_first_letter 
and insert it if not, and (2) add new rows into tracks_by_artist and 
tracks_by_genre. The rest of the tables (playlists_by_user and tracks_in_
playlists) are not impacted by the insertion. 

Determining which tables must be updated is a difficult task if there 
are dozens of tables with data repeated and it is carried out manually. 
Omitting any of the tables will lead to potential integrity problems. For 
instance, if the table tracks_by_genre is forgotten, queries Q3 and Q4 will 

not retrieve the same tracks: the new track will be retrieved by Q3, 
which queries the table tracks_by_artist, but not by Q4, which queries the 
table tracks_by_genre. 

Introductory Example, Part 2.-. Consider that another new track is 
released by the same artist, but now only the artist’s name is known 
(neither first letter nor nationality are provided in the tuple). As the 
artist already exists in the database, tables to insert new data are 
tracks_by_artist and tracks_by_genre. 

Cassandra only requires values for key columns in insert operations, 
the rest of the columns may not be provided. Therefore, inserting a new 
track without the artist’s nationality in tables tracks_by_artist and 
tracks_by_genre is feasible although it would produce a situation of 
incompleteness of data: the nationality of that artist is known because it 
was previously inserted into artists_by_first_letter but now it will not be 
inserted for the new track. To avoid the incompleteness, it will be 

Fig. 2. Integration of modeling and data integrity maintenance processes.  

Fig. 3. Illustrative example: a digital music store.  
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necessary (1) to determine data for column artist_first_letter from the 
artist’s name, (2) search the table artists_by_first_letter for the artist’s 
nationality and (3) complete the data to be inserted in tracks_by_artist 
and tracks_by_genre. 

However, it may be the case that the first letter cannot be determined 
and there is no table that retrieves the unknown information (first letter 
and nationality) for a given artist name. In this case, it will be necessary 
(1) to create a new table that relates artist names to first letters and 
nationalities, (2) populate it with data from artists_by_first_letter, and (3) 
query it to obtain the unknown information. 

In this work, we will provide appropriate solutions to the mainte
nance of data integrity by inserting data in each table impacted by the 
change and/or creating and populating new tables to obtain the infor
mation required. 

3.2. Data manipulation rules and procedures 

MDICA is based on the definition and application of a set of rules and 
procedures to generate database statements and messages in order to 
maintain data integrity in a column-oriented database and identify po
tential threats. 

In this section, we define these rules and procedures in general terms 
and, in subsequent sections, they will be particularized within the scope 
of inserting tuples: in an entity (Section 4), in a relation with cardinality 
1:1, 1:n or n:m (Section 5.1) and in combinations of relations with a 
variety of cardinalities (Section 5.2). 

The first step is to identify the tables in a logical model that must be 
updated when something in the real world, represented by a conceptual 
model, is inserted. To achieve this aim, we define the concept of Data 
Manipulation Rule (DMR): 

Definition 1. (Data Manipulation Rule, DMR).- Given a conceptual 
model M, an insert operation on an item I (entity or relation in M), a 
logical model L. A DMR determines: 

(1) The Map(M,L) between M and L through the naming of the col
umns (by convention, an attribute of an item referenced as item. 
attr generates columns called item_attr),  

(2) According to Map(M,L), the set of target tables TT⊆Tabs(L) which 
are impacted by the operation on the item I,  

(3) The potential threats to the maintenance of data integrity if any 
target table is not well-modelled. 

Depending on the mapping between M and L, risky situations may 
exist that will generate:  

• Error messages “Absence of target tables to update” (ATT) which 
inform that it is not possible to execute the insert operation against 
the logical model because there is no target table.  

• Warning messages “Absence of a key column generated from a key 
attribute” (TNW-K) and “Column not generated from any attribute” 
(TNW-C). These inform about a possibly misshapen logical model 
because a table is not well-modelled and may produce loss or un
necessary duplicity of data, or try to store data not supported by the 
conceptual model. 

The second step is to generate the operations that must be executed 
against the database in order to properly update rows from values in a 
tuple. We define the Data Manipulation Procedure (DMP) to generate 
them: 

Definition 2. (Data Manipulation Procedure, DMP).- Given a tuple tp(I) 
to insert, the conceptual-logical data model mapping Map(M,L) between 
M and L, and the set TT of target tables determined by DMR. DMP 
determines:  

(1) According to Map(M,L), the suitability of tp(I) for the insert 
operation,  

(2) For each column c of each target table tt∈TT, data taken from 
attribute a in tp(I) that generates c according to Map(M,L), or 
retrieved from the database, 

Table 1 
Map(M,L) for conceptual and logical data models.   

Entity Artist Entity Track Entity Playlist Entity User 
name first_letter nationality id title genre duration id name username password 

Table playlist_by_user (Q1) from relation “creates” between Playlist and User 
user_username          ka-kc  
playlist_id        ka-kc    
playlist_name         na-nc   
Table artists_by_first_letter (Q2) from entity Artist 
artist_first_letter  na-kc          
artist_name ka-kc           
artist_nationality   na-nc         
Table tracks_by_artist (Q3) from relation “releases” between Artist and Track 
artist_name ka-kc           
track_title     na-kc       
track_id    ka-kc        
track_duration       na-nc     
tranck_genre      na-nc      
artist_nationality   na-nc         
Table tracks_by_genre (Q4) from relation “releases” between Artist and Track 
track_genre      na-kc      
track_title     na-kc       
track_id    ka-kc        
track_duration       na-nc     
artist_name ka-nc           
artist_nationality   na-nc         
Table tracks_in_playlist (Q5) from relations “releases-features” between Artist, Track and Playlist 
playlist_name         na-kc   
playlist_id        ka-kc    
track_title     na-kc       
track_id    ka-kc        
artist_name ka-nc           
track_duration       na-nc     
track_genre      na-nc       
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(3) For each table tt, the ordered list of manipulation operations 
(insert, update or select) to maintain data integrity in TT,  

(4) Other additional messages, specific of the procedure, where 
applicable. 

The algorithm DMP, included below, describes this procedure 
(Definition 2):  

Algorithm DMP 
Input: A tuple tp(I) to insert, the conceptual-logical data model mapping between M 

and L Map(M,L), and a set TT of target tables 
Output: Database statements and messages 
suitable = Analysis (tp(I), Map(M,L)) 
If (tp(I) is not suitable due to absence of value for any key attribute) 

generateMessage(Error, AKA) 
Abort 

Else If (tp(I) is not suitable due to attribute does not correspond with any column) 
generateMessage(Warning,AWC) 

End If 
Foreach target table tt ∈TT 

Foreach c ∈ Cols(tt) 
data = FindData (c, tt, tp(I), Map(M,L)) 
row = AddPair(c, data) 

End Foreach 
GenerateStatement (tt, row) 

End Foreach  

First, it analyses the tuple tp(I) (function Analysis) to determine its 
suitability:  

• It contains an attribute-value pair for each key attribute of I. If this is 
not the case, DMP raises (in the function GenerateMessage) the error 
message “Absence of value for a key attribute” (AKA) because there 
is no value for primary keys at a conceptual model level; the insert 
operation cannot be executed, aborting the process and invalidating 
any previous operation on any table. 

• Each attribute in tp(I) generated one or more columns in the data
base. Otherwise, the function GenerateMessage raises the warning 
message “Attribute does not correspond with any column” (AWC) to 
inform about a possible loss of information because values of those 
attributes will be not stored in the database. 

Then, it processes each column c of each target table tt, assigning 
data to it through the function FindData and adding column-data pairs to 
the row to insert into tt (function AddPair). FindData will be defined 
within each scope depending on the item (an entity, a relation or mul
tiple relations) and the content of the tuple. After all columns are pro
cessed, the function GenerateStatement generates the statements to be 
executed against the database. 

4. Insert a tuple into an entity 

The simplest case of insert operations at a conceptual model level is 
to insert a tuple into an entity. Next, DMR and DMP are defined spe
cifically for this. 

Definition 3. (Data Manipulation Rule for inserting a tuple into an 
entity, DMR-IE).- Definition 1 is applied where item I is an entity e∈Ents 
(M). DMR-IE determines the set of target tables TT⊆Tables(L) generated 
from e. Each tt∈TT is well-modelled if ∀pk∈PK(e), ∃k∈Key(tt) / an as
sociation ka-kc in Map(M,L) exists between pk and k. 

Note: Each key attribute of e corresponds with a key column of tt, and 
non-key attributes of e could correspond with key or non-key columns, 
or not be in tt. 

Definition 4. (Data Manipulation Procedure for inserting a tuple into an 
entity, DMP-IE).- Definition 2 is applied where item I is an entity e∈Ents 
(M). DMP-IE sets, for each column c of each target table tt∈TT, data 
taken exclusively from pairs (ai,vi) in tp(e). 

The general algorithm DMP (Section 3.2) is applied here but Find
Data is specialized for inserting a tuple in an entity:  

Function FindData 
Input: A column c, a target table tt, a tuple tp(e) to insert, the conceptual-logical data 

model mapping between M and L Map(M,L) 
Output: data for c 
If tp(e) has value v for attribute a corresponding to c case 1 
R eturn v 
Else If c∈Key(tt) case 2 
G enerateMessage(Error,AKC) 
A bort 
Else case 3 
G enerateMessage(Warning,ADC) 
R eturn null 
End If  

This function considers three situations:  

• A column c is generated from attribute a that is in the tuple tp(e)(case 
1): FindData returns as data the value v of the pair (a,v) in tp(e).  

• A key column c is generated from attribute a that is not in the tuple tp 
(e) (case 2): GenerateMessage raises the error message “Absence of 
data for a key column” (AKC) because it is not possible to insert rows 
in the table without data for any key column. The insert operation 
cannot be carried out and the process will abort and any previous 
operation on any table will be invalidated.  

• A non-key column c is generated from attribute a that is not in the 
tuple tp(e) (case 3): FindData returns null because no data exists to be 
inserted for c. GenerateMessage raises the warning message “Absence 
of data for a non-key column” (ADC) to inform that the row will be 
inserted without this column. 

Example 1.-. Consider the insertion of a tuple into entity Artist in the 
conceptual model in the introductory example (Section 3.1). 

DMR-IE determines the mapping between conceptual and logical 
models (that can be seen in Table 1) and the target table artists_by_firs
t_letter (generated from entity Artist). The key attribute in Artist (name) 
is mapped to a key column (artist_name) of artists_by_first_letter, so this 
table is well-modelled. 

The following examples show different situations in which attribute- 
value pairs in the tuple change and what DMP-IE produces for each one. 

Example 1.1.- Consider the tuple to insert has an attribute-value pair 
for each attribute of Artist: 

<(artist.name, “author11”), (artist.first_letter, “a”), (artist.national
ity, “nation11”)>

DMP-IE determines that the tuple is suitable and calls FindData for 
each column of table artists_by_first_letter that finds all the data from the 
tuple (case 1). The result is the row: 

<(artist_first_letter, “a”),(artist_name, “author11”), (artist_nation
ality, “nation11”)>

Finally, DMP-IE generates the statement that inserts that row:  
INSERT INTO artists_by_first_letter (artist_first_letter, artist_name, artist_nationality) 

VALUES (“a”, “author11”, “nation11”)  

Example 1.2.- Consider the tuple to insert does not have an attribute- 
value pair for the non-key attribute first_letter of Artist that generated the 
key column artist_first_letter: 

<(artist.name, “author12”), (artist.nationality, “nation12”)>
DMP-IE determines that the tuple is suitable but FindData is not able 

to set data to the key column artist_first_letter (case 2). The result is the 
next row that has a placeholder ‘$’ to represent the absence of data for 
this column: 

<(artist_first_letter, $),(artist_name, “author12”), (artist_nationality, 
“nation12”)>

Although an artist can be inserted into a relational database without 
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the first letter, the table artists_by_first_letter requires this data (because it 
is a key column), so it is not possible to carry out the insertion. DMP-IE 
generates an error message:  

Error(AKC): Absence of data for key column artist_first_letter. No insertion is possible  

Example1.3.- Consider the tuple to insert does not have an attribute- 
value pair for the non-key attribute nationality of Artist that generated 
the non-key column artist_nationality: 

<(artist.name, “author13”), (artist.first_letter, “a”)>
Now, FindData is not able to obtain data for the non-key column 

artist_nationality (case 3). The result is the next row, with a placeholder 
‘$’ for the data of this column: 

<(artist_first_letter, “a”),(artist_name, “author13”), (artist_nation
ality, $)>

In this situation, the algorithm shows a warning message (absence of 
data for column artist_nationality) and generates an insert statement:  

Warning(ADC): Absence of data for non-key column artist_nationality. Column is not 
inserted. Possible incomplete data stored in table artists_by_first_letter 

INSERT INTO artists_by_first_letter (artist_first_letter, artist_name) VALUES (“a”, 
“author13”)  

5. Insert a tuple into relations 

Next, we will deal with inserting a tuple into relations at a conceptual 
model level, considering a binary relation (Section 5.1) and multiple 
relations (Section 5.2) that are illustrated with examples. 

5.1. Insert a tuple into a binary relation 

To define the specific DMR and DMP, we will consider different 
cardinalities of binary relations (1:1, 1:n and n:m). 

Definition 5. (Data Manipulation Rule for inserting a tuple into a bi
nary relation, DMR-IR).- Definition 1 is applied where item I is a relation 
between entities e1 and e2, R{e1,e2}∈Rels(M). DMR-IR consists of two 
complementary rules to determine the set of target tables 
TT=TTEnts∪TTR⊆Tables(L): 

DMR-IR.1 determines the set of target tables TTEnts ⊆ Tables(L), 
generated from e1 and e2. DMR-IE (Definition 3) is applied to these 
entities. 
DMR-IR.2 determines the set of target tables TTR ⊆ Tables(L), 
generated from R{e1,e2}. Depending on the cardinality of R{e1,e2}, each 
ttR∈TTR is well-modelled, if: 
1:1 relation: ∀pke1∈PK(e1) ∨∀pke2∈PK(e2), ∃k∈Key(ttR) / an associ
ation ka-kc in Map(M,L) exists between pke1 and k or pke2 and k. 
1:n relation: ∀pke2∈PK(e2) ∃k∈Key(ttR) / an association ka-kc in Map 
(M,L) exists between pke2 (key attribute of detail entity) and k. 
n:m relation: pk∈PK(e1)∪PK(e2) ∃k∈Key(ttR) / an association ka-kc in 
Map(M,L) exists between pk and k. 

Note: The rest of the attributes not included (from any entity or 
relation) may correspond with key or non-key columns, or not be in a 
tt∈TT. 

If there is no target table determined by DMR-IE.1 for any of the 
entities, MDICA generates a warning message which informs about a 
possible loss of data: absence of target tables for some items in the tuple 
(ATA). 

Definition 6. (Data Manipulation Procedure for inserting a tuple into 
a binary relation, DMP-IR).- Definition 2 is applied where item I is a 
relation between entities e1 and e2, R{e1,e2}∈Rels(M). DMP-IR sets, for 
each column c of each target table tt∈TT, data taken from pairs (ai,vi) in 
tp(R{e1,e2}) or retrieved from a table lookupTable∈Tabs(L). 

The general algorithm DMP (Section 3.2) is now applied with the 

specialized FindData for inserting a tuple in a relation.  
Function FindData 
Input: a column c, a target table tt, a tuple tp(R{e1,e2}) to insert, the conceptual-logical 

data model mapping between M and L Map(M,L) 
Output: data for c 
If tp(R{e1,e2}) has value v for attribute a corresponding to c case 1 

Return v 
Else 

lookupQuery = CreateQuery (c, tp(R{e1,e2}), Map(M,L)) 
If (lookupQuery is executable) case 4 

GenerateMessage(Information,ADC-S) 
Return data=lookupQuery 

Else 
lookupQuery = RecreateQuery (c, tp(R{e1,e2}), Map(M,L)) 
If (lookupQuery is executable) case 5 

GenerateMessage(Information,ADC-C) 
Return data=lookupQuery 

Else 
If c∈Key(tt) case 2 

GenerateMessage(Error,AKC) 
Exit 

Else case 3 
GenerateMessage(Warning,ADC) 
Return null 

End If 
End If 

End If 
End If  

FindData will build a query named LookupQuery, defined below, 
which will retrieve data from a table for a column c when the data is not 
present in the tuple but already exists in the database (cases 4 and 5). 

Definition 7. (LookupQuery).- Given a tuple tp(R{e1,e2}) and a row of a 
target table tt r(tt)=<(c1,d1),…, (ci,$i),…(cn,dn)> where data for col
umn ci is unknown, represented by a placeholder $i. lookupQuery is an 
statement in the form SELECT ci FROM lookupTable WHERE φ, where 
lookupTable∈Tabs(L) has the column ci, and φ is a proposition, which 
holds for lookupTable, with columns and data retrieved from attribute- 
value pairs in tp(R{e1,e2}) or from column-data pairs in r(tt). 

This function FindData contemplates cases 1, 2 and 3 as inserting a 
tuple into an entity. Moreover, it considers two more situations when a 
column c is generated from attribute a that is not in tp(R{e1,e2}), for 
which lookupquery is prepared to be executed against the database, ob
tains data for the column and replaces the placeholder in the row: 

• Data for the column c can be retrieved from the database with loo
kupQuery (case 4). The function CreateQuery: (1) searches L and finds 
a lookupTable for which the proposition φ holds, and (2) prepares and 
returns lookupQuery. GenerateMessage raises the information message 
“Absence of data for a column, data might be retrieved from 
lookupTable executing lookupQuery” (ADC-S) to notify the need of a 
query to find unknown data, otherwise data integrity cannot be 
ensured because of the absence of data in some columns that already 
exists in others. 

• Data for the column c can be retrieved from the database but Crea
teQuery is not able to prepare lookupQuery (case5). The function 
RecreateQuery: (1) searches Q looking for a table, named sourceTable, 
that stores data for ci (column with unknown data), (2) generates a 
new table, named remadeTable, from sourceTable, with suitable keys 
so that the proposition φ holds, and (3) prepares and returns loo
kupQuery that retrieves data from remadeTable. In this case, Gen
erateMessage raises the information message “Absence of data for a 
column, an auxiliary table (remadeTable) might be created and 
populated from sourceTable, and data would be retrieved from 
remadeTable executing lookupQuery” (ADC-C) to notify the need to 
create, populate and query a new table to find unknown data. 

In case 5, once remadeTable is created, it becomes part of L, so in 
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subsequent insert operations, the process will be as in case 4. 

Example 2.-. Consider the insertion of a tuple into the relation “re
leases” between entities Artist and Track in the conceptual model in the 
introductory example (Section 3.1). 

DMR-IR determines a set of target tables considering two comple
mentary rules:  

• DMR-IR.1 implies the application of DMR-IE to both entities Artist 
and Track. No table is generated from entity Track. Therefore, table 
artists_by_letter, generated from entity Artist, is the only target table. 

• DMR-IR.2 determines as target tables tracks_by_artist and tracks_by_
genre, generated from the relation “releases”. Both tables are well- 
modelled provided that the relation cardinality is 1:n and the pri
mary key of entity Track (detail entity) is part of the key in both of 
them. 

Different situations with a variety of attribute-value pairs in tuples to 
insert are shown below. 

Example 2.1.- Consider the tuple to insert does not have an attribute- 
value pair for the non-key attribute nationality of Artist (which generated 
non-key columns artist_nationality in the target tables): 

<(artist.name, “author21”), (artist.first_letter, “a”), (track.id, 
“id021”), (track.title, “title21”), (track.genre, “genre21”), (track.dura
tion, 21)>

In this situation, FindData is not able to obtain data from the tuple for 
columns artist_nationality. If the artist has been previously inserted, it can 
retrieve the nationality from a table: CreateQuery generates a lookup
Query to retrieve data for the column artist_nationality from the table 
artists_by_first_letter (case 4). lookupQuery is “SELECT artist_nationality 
from artists_by_first_letter where artist_name="author21" and 
artist_first_letter="a"”. When executing this lookupQuery, data retrieved 
will replace placeholders $ in rows: 

artists_by_first_letter: <(artist_first_letter, “a”), (artist_name, 
“author21”),(artist_nationality,$)>

tracks_by_artist: <(artist_name, “author21”), (track_id, “id21”), 
(track_title, “title21”), (track_genre, “genre21”), (track_duration, 21), 
(artist_nationality, $)>

tracks_by_genre: <(track_genre, “genre21”), (track_id, “id21”), 
(track_title, “title21”), (track_duration, 21), (artist_name, “author21”), 
(artist_nationality, $)>

Finally, the algorithm shows a warning message due to the absence 
of tables generated from the entity Track and an information message 
indicating the need to retrieve data from the database, and it generates 
statements that ensure data integrity:  

Warning(ATA): Absence of target tables for entity Track 
Information(ADC-S): Absence of data for column artist_nationality. 

Select artist_nationality from table artists_by_first_letter 
$ = SELECT artist_nationality FROM artists_by_first_letter WHERE artist_name=

“author21” and artist_first_letter=“a” 
INSERT INTO artists_by_first_letter (first_letter, artist_name, artist_nationality) 

VALUES (“a”, “author21”,$) 
INSERT INTO tracks_by_artist (artist_name, track_title, track_id, track_genre, 

track_duration, artist_nationality) VALUES (“author21”, “title21”, “id21”, 
“genre21”, 21, $) 

INSERT INTO tracks_by_genre (track_genre, track_title, track_id, track_duration, 
artist_name, artist_nationality) VALUES (“genre21”, “title21”, “id21”, 21, 
“author21”, $)  

Example 2.2.- Consider the tuple to insert has attribute-value pairs for 
all attributes of the entity Track but only one pair for the primary key 
(attribute name) of Artist: 

<(artist.name, “author22”), (track.id, “id22”), (track.title, “title22”), 
(track.genre, “genre22”), (track.duration, 22)>

Now, FindData does not find data from the tuple for the key column 
artist_first_letter in table artists_by_first_letter or for non-key column 
artist_nationality in every target table. CreateQuery does not find any 

lookupTable from which the queries in the form “SELECT artist_firs
t_letter/artist_nationality FROM lookuptable WHERE artist_name="au
thor33"”, were executable, although these columns exist in the table 
artists_by_first_letter. RecreateQuery creates and populates a new table, 
rm_artists_by_first_letter, that can retrieve the unknown values (case 5). 
The retrieved data will replace the placeholders $i in rows: 

artists_by_first_letter: <(artist_first_letter, $1), (artist_name, 
“author22”), (artist_nationality, $2)>

tracks_by_artist: <(artist_name, “author22”), (track_id, “id22”), 
(track_title, “title22”), (track_genre, “genre22”), (track_duration, 22), 
(artist_nationality, $2)>

tracks_by_genre: <(track_genre, “genre22”), (track_id, “id22”), 
(track_title, “title22”), (track_duration, 22), (artist_name, “author22”), 
(artist_nationality, $2)>

For this situation, together with database statements, the algorithm 
shows a warning message due to the absence of target tables generated 
from Track and an information message to notify the need to create, 
populate and query a new table to maintain data integrity:  

Warning(ATA): Absence of target tables for entity Track 
Information(ADC-C): Absence of data for column artist_first_letter 

Create and populate table rm_artists_by_first_letter from artists_by_first_letter 
Select artist_first_letter from table rm_artists_by_first_letter 

Information(ADC-S): Absence of data for column artist_nationality 
Select artist_nationality from table rm_artists_by_first_letter 

CREATE TABLE rm_artists_by_first_letter (artist_name PRIMARY KEY, 
artist_first_letter, artist_nationality) 

COPY rm_artists_by_first_letter (artist_name, artist_first_letter, artist_nationality) 
FROM artists_by_first_letter (artist_name, artist_first_letter, artist_nationality) 

$1 = SELECT artist_first_letter FROM rm_artists_by_first_letter WHERE 
artist_name=‘author22’ 

$2 = SELECT artist_nationality FROM rm_artists_by_first_letter WHERE 
artist_name=‘author22’ 

INSERT INTO artists_by_first_letter (artist_first_letter, artist_name, artist_nationality) 
VALUES ($1, “author22”, $2) 

INSERT INTO tracks_by_artist (artist_name, track_title, track_id, track_genre, 
track_duration, artist_nationality) VALUES (“author22”, “title22”, “id22”, 
“genre22”, 22, $2) 

INSERT INTO tracks_by_genre (track_genre, track_title, track_id, track_duration, 
artist_name, artist_nationality) VALUES (“genre22”, “title22”, “id22”, 22, 
“author22”, $2)  

5.2. Insert a tuple including multiple relations 

Tuples to insert at a conceptual model level can include attributes of 
entities related through more than one relationship. This section in
cludes the definition of the specific DMR considering tuples whose at
tributes belong to entities related by multiple relations and an example. 

Definition 8. (Data Manipulation Rule for inserting a tuple into two or 
more relations, DMR-IRR).- Definition 1 is applied where item I is a set of 
two or more relations RR⊆Rels(M) between a set of entities EE⊆Ents 
(M). DMR-IRR consists of two complementary rules to determine the set 
of target tables TT= TTbR∪ TTRR ⊆Tables(L): 

DMR-IRR.1 determines the set of target tables TTbR ⊆Tables(L), 
generated from each binary relation R{ei,ej}∈RR. DMR-IR (Definition 
5) is applied to each R{ei,ej}. 
DMP-IRR.2 determines the set of target tables TTRR⊆Tables(L), 
generated from combinations of chained relations in RR with car
dinality 1:1, 1:n and n:m. Depending on combinations of the cardi
nality of relations, each table ttRR∈TTRR is well-modelled if: 
Combination of 1:1 relations: ∃ei∈EE, ∀pkei∈PK(ei) ∃k∈Key(ttRR) / an 
association ka-kc in Map(M,L) exists between pkei and k. 
Combination of 1:n relations: ∃en∈EE, ∀pken∈PK(en) ∃k∈Key(ttRR) / 
an association ka-kc in Map(M,L) exists between pken and k. Next, 
cases are distinguished depending on the position of the detail entity 
in the chained relations: 
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• Case 1:n - 1:n: the detail entity en is at the end of the chained 
relations.  

• Case 1:n - n:1: the detail entity en is in the middle of the chained 
relations.  

• Case n:1 - 1:n: two detail entities exist, at the beginning e1 and at the 
end en of the chained relations and both must fulfill the proposition. 

Combination of n:m relations: ∀ei∈EE, ∀pk∈ ∪PK(ei) ∃k∈Key(ttRR) / 
an association ka-kc in Map(M,L) exists between pk and k. 
Combination of 1:1, 1:n and n:m relations: an association ka-kc in 
Map(M,L) exists between a key column of ttRR and every key attribute 
of: any entity in 1:1 relations, detail entities in 1:n relations and 
every entity in n:m relations. 

Note: The rest of the attributes not included (from any entity or 
relation) may correspond with key or non-key columns, or not be in any 
target table tt∈TT. 

Moreover, when inserting a tuple into a set of relations:  

• MDICA generates warning messages informing about a possible loss 
of data if there is no target table determined by DMR-IRR.1 for any of 
the binary relations: absence of target tables for some items in the 
tuple (ATA).  

• DMP-IR (Definition 6) is applied where item I is a set of two or more 
relations. 

Example 3.-. Consider the insertion of a tuple into the relations (“re
leases” and “features”) between entities Artist, Track and Playlist at the 
conceptual model level in the introductory example (Section 3.1). 

DMR-IRR determines target tables considering two complementary 
rules:  

• DMR-IRR.1 implies the application of DMR-IR to relations “release” 
and “features” that, recursively, implies the application of DMR-IE to 
entities Artist, Track and Playlist. No table is generated from entities 
Track or Playlist or from the relation “features”. 
Table artists_by_first_letter (generated from entity Artist) and tables 
tracks_by_artist and tracks_by_genre (generated from relation “re
leases”) are determined as target tables.  

• DMR-IRR2 determines as a target table tracks_in_playlist, generated 
from the relations chained “releases” and “features”, a combination 
of a 1:n relation (Artist R Track) and an n:m relation (Track R Playlist), 
respectively. The table is well-modelled because the key column 
track_id was generated from the primary key of Track (detail entity in 
the 1:n relation) and playlist_id was generated from the primary key 
of Playlist (Track and Playlist entities in the n:m relation). 

6. Validation 

In order to evaluate MDICA which, given a tuple to insert into a 
conceptual model, generates database statements and messages with the 
goal of maintaining data integrity in a column-oriented database, the 
following research questions are established: 

RQ1: Given an insert operation at a conceptual model level, is it al
ways possible to insert data at a logical model level? If not, what are the 
causes of this situation? 

RQ2: What is the impact of an insert operation at a conceptual model 
level on the logical model in terms of the number of tables affected to 
maintain data integrity? 

RQ3: How many database statements must be executed for each 
insert operation at the conceptual model level in order to maintain data 
integrity in the database? 

RQ4: Is it always possible to ensure that data integrity is maintained? 
If this is not the case, what are the situations identified that can endanger 
it? 

6.1. Experimental subjects 

To answer the research questions, we have considered two options to 
select the experimental subjects: (1) standard benchmarks and (2) ap
plications publicly available with a conceptual model. 

Yahoo Cloud Serving Benchmark (YCSB) [34] has become the 
de-facto benchmark, designed by [35] to compare the performance of 
data stores and used for measuring performance, scalability, elastic 
speedup, throughput and latency [35–37] of different NoSQL databases. 
Since the logical model of YCSB only contains one table on which op
erations such as read or insert are executed, it is not suitable for the goals 
of the MDICA experimentation. 

Therefore, we have searched for other case studies used in different 
works related to the design of Cassandra databases and with a variety of 
tables generated from items in the conceptual models (one entity, one or 
more relations, and relations with different cardinality). The selected 
case studies are:  

• Digital Library Portal, used by Chebotko et al. [20] to illustrate the 
data modeling methodology. It is an application that features a 
collection of digital artifacts (papers, posters…) which appeared in 
various venues. Registered users can leave their feedback for venues 
and artifacts in the form of reviews, likes or ratings.  

• Hotel reservations is used by Carpenter and Hewitt [15] to show how 
to design data models for Cassandra. It is a sample application that 
includes hotels, guests, the rates and availability of rooms, and res
ervations booked for guests. It also maintains a collection of “points 
of interest” near hotels.  

• Digital music store (the introductory example in Section 3.1) is used 
as a tutorial intended for programmers interested in learning about 
Cassandra [33] and it covers the techniques used to create databases 
and tables. It is a Java web application that manages a collection of 
music files. 

Each case study provides both the conceptual and the logical models. 
Table 2 displays information about the models:  

• Conceptual models: items (entity or relation with its cardinality 1:n 
or n:m), their name and the number of key and non-key attributes 
(columns “#PK” and “#nPK”).  

• Logical models: tables, the items that generate them, their name 
(columns “From Item/s” and “From Name”) and their number of key 
and non-key columns (columns “#Key” and “#nKey”). If a table is 
generated from more than one relation, column “From Item/s” is 
“multiple”. 

In short, the total number of items and tables are, respectively, 10 
and 9 for Digital Library, 13 and 9 for Hotel Reservations, and 7 and 5 for 
Music Store. 

6.2. Test cases design 

For the evaluation of MDICA, we have generated for each case study 
a set of insert operations. Each operation will be a test case. The test 
cases have been systematically designed applying the classification-tree 
method [38]. We have regarded MDICA under two relevant aspects, 
named classifications: where it inserts (classification based on the item 
to insert) and what it inserts (classification based on the attribute-value 
pairs in the tuple to insert). For each classification, we have identified 
different classes:  

• Where it inserts (item at a conceptual model level):  
○ Entity: insertion in an entity.  
○ Relation: insertion in a relation, which is subdivided into three 

classes depending on the cardinality: 1:1, 1:n and n:m. 
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○ Multiple relations: insertion of a tuple of two or more adjacent 
relations. In order to avoid a combinatorial explosion, there will 
only be one class for each group of relations which generated a 
table in the logical model.  

• What it inserts (attribute-value pairs in the tuple):  
○ *: Every attribute of the item to insert has a value in the tuple.  
○ PK: Only key attributes have a value; the rest of the attributes are 

not in the tuple.  
○ -attr: A non-key attribute of the item has no value in the tuple. 

There will be a class for each non-key attribute.  
○ -PK: A key attribute of the item has no value. There will be a class 

for each key attribute. 

We have combined each item in the conceptual model (in the first 
classification) with each class in the second classification, resulting in 
289 test cases in total (118 for Digital Library, 118 for Hotel Reserva
tions, and 53 for Music Store). For each case study and item, Table 3 
displays the number of test cases for each of the combinations. 

Once we have generated the test cases, we apply the rules and pro
cedures defined in Sections 4 and 5 to each one. As previously described, 
after obtaining the mapping between conceptual and logical models, 
MDICA identifies the target tables (listed in Table 3, column “Target 
Tables”), generated from the items of the tuple to insert, and determines 
the database statements that should be executed against the database to 
maintain data integrity and the messages shown to users. The analysis of 
the results of these executions is detailed in the following sections. 

6.3. Analysis of the insertion operations at a conceptual model level 
(RQ1) 

To answer RQ1, we ran the test cases and inspected for each one if 
insertions were generated at a logical model level. We found that 45.0% 
of the test cases produced insertions into databases, and the remaining 
55.0% did not. 

Table 4 displays the number of test cases (289 in total) divided into 

those that inserted data into the database without generating error 
messages (130 test cases) and those that generated an error message 
without inserting rows into the databases (159 test cases). 

The high number of the latter is due to the strategy for their design: in 
86 test cases, the insert operation did not impact on any target tables 
(columns “ATT”, Absence of Target Tables); in 68 test cases, tuples did 
not have values for key attributes (columns “AKA”, Absence of value for 
a Key Attribute); and in 5 test cases, tuples did not have values for any 
key column and they could not be retrieved from the database either 
(columns “AKC”, Absence of data for a Key Column). For each of these 
test cases, MDICA generated the appropriate error message, described in 
Sections 3.2 and 4, depending on the reason why they did not insert any 
rows. 

Answering RQ1, some situations do not enable data insertions into 
the conceptual model or the database due to a lack of data for key at
tributes or for key columns or an absence of tables where to insert. 
MDICA is a first help for developers since it can detect these situations 
and provide information (to add new tables or modify the tuple with 
additional attribute-value pairs) so that the insertion in both models is 
feasible. 

6.4. Analysis of target tables impacted by an insertion (RQ2) 

To answer RQ2, we analyze the target tables in each test case that did 
not generate an error message. 

All tables in the logical models (listed in Table 2) are impacted by 
some test case as Table 3 displays. For those test cases that did not 
impact on any table, for which an ATT error message was generated, 
target tables were labelled as ‘-’. For relations, more than half of the 
insert operations impacted on more than one table. Moreover, the 
maximum number of target tables was reached when inserting a tuple of 
multiple relations (6 for Digital Library, 5 for Hotel Reservations and 4 
for Music Store), accounting for more than 50% of the tables in each case 
study. 

Answering RQ2, to insert a tuple at a conceptual model level impacts 

Table 2 
Conceptual and logical models used in the evaluation.   

Conceptual data model Logical data model 
Case Study Item Name # PK # nPK Table From Item/s From Name # Key # nKey 

Digital Library entity artifact 1 3 artifacts 1:n featuresDA 1 5  
review 1 3 artifacts_by_author 1:n featuresDA 3 4  
user 1 3 artifacts_by_venue 1:n featuresDA 3 3  
venue 2 3 ratings_by_artifact 1:n featuresR 1 2 

1:n featuresDA 3 6 experts_by_artifact n:m likes 3 3  
featuresR 2 6 users_by_artifact n:m likes 2 3  
posts 2 7 venues_by_user n:m likesV 3 3 

n:m likes 2 6 artifacts_by_user multiple likes-featuresDA 3 3  
likesR 2 6 reviews_by_user multiple post-featuresR 3 5  
likesV 3 6      

Hotel Reservations entity amenity 1 1 guests entity guest 1 5  
guest 1 3 hotels entity hotel 1 3  
hotel 1 3 hotels_by_poi n:m is_near 2 3  
poi 1 2 pois_by_hotel n:m is_near 1 2  
reservation 1 3 amenities_by_room multiple has-offers 3 1  
room 1 1 available_rooms_by_hotel_date multiple has-is_available 3 1  
room_availability 1 1 reservations_by_confirmation multiple has-holds-is_for 2 4 

1:n has 2 4 reservations_by_guest multiple has-holds-is_for 3 4  
holds 2 4 reservations_by_hotel_date multiple has-holds-is_for 3 3  
is_for 2 6      

n:m is_available 2 2       
is_near 2 5       
offers 2 2      

Music Store entity artist 1 2 artists_by_first_letter entity artist 2 1  
playlist 1 1 playlists_by_user 1:n creates 2 1  
track 1 3 tracks_by_artist 1:n releases 3 3  
user 1 1 tracks_by_genre 1:n releases 3 3 

1:n creates 2 2 tracks_in_playlist multiple releases-features 4 3  
releases 2 5      

n:m features 2 4       
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on more or less tables, depending on those generated from items in the 
tuple. The more complex the tuple, in terms of the number of items it 
contains, the greater the number of target tables and the more error- 
prone, by forgetting to insert some of them. MDICA identifies the 
target tables regardless of the complexity of the tuple and decreases the 
probability of making mistakes in their selection. 

6.5. Analysis of database statements (RQ3) 

To answer RQ3, we analyze the database statements generated by 
DMPs to ensure data integrity in a database for test cases that did not 
generate error messages. 

Table 5 displays information about test cases, the number of tables 
impacted and CQL statements generated for each test case. Database 

statements are split into INSERT, SELECT and CREATE&COPY and, for 
each one, columns “#”, “%” and “Avg” display the number of state
ments, percentage of the total and average per test case, respectively. 

For 130 test cases, MDICA generated 469 CQL statements in total (an 
average of 3.6 CQLs per test case) that included mostly INSERT state
ments (332, 70.8% of the total) but also SELECT (111, 23.7%) and 
CREATE&COPY (26, 5.5%). 

An insert operation at a conceptual level may imply several INSERT 
statements at a logical level, as many as the number of target tables 
impacted, with an average of 2.6 necessary for each test case. 

Inserting into an entity does not generate SELECT or CREATE&COPY 
because it implies the creation of a new instance that does not exist in 
the database. For inserting into relations, SELECT (average 0.9 per test 
case) and CREATE&COPY (average 0.2) statements were produced 

Table 3 
Test cases to evaluate MDICA and target tables impacted by each test case.  

Case Study Item Name Attribute-value Pairs Target Tables 
* PK -attr -PK Total  

Digital Library entity artifact 1 1 3 1 6 -   
review 1 1 3 1 6 -   
user 1 1 3 1 6 -   
venue 1 1 3 2 7 -  

1:n featuresDA 1 1 6 3 11 artifacts_by_venue, artifacts_by_author, artifacts   
featuresR 1 1 6 2 10 ratings_by_artifact   
posts 1 1 7 2 11 -  

n:m likes 1 1 6 2 10 users_by_artifact, experts_by_artifact   
likesR 1 1 6 2 10 -   
likesV 1 1 6 3 11 venues_by_user  

multiple likes-featuresDA 1 1 9 4 15 artifacts_by_user artifacts_by_venue, artifacts_by_author, artifacts, 
users_by_artifact, experts_by_artifact   

posts-featuresR 1 1 10 3 15 ratings_by_artifact, reviews_by_user 
Total Digital Library 12 12 68 26 118 n/a 
Hotel 

Reservations 
entity amenity 1 1 1 1 4 -   

guest 1 1 3 1 6 guests   
hotel 1 1 3 1 6 hotels   
poi 1 1 2 1 5 -   
reservation 1 1 3 1 6 -   
room 1 1 1 1 4 -   
room_availability 1 1 1 1 4 -  

1:n has 1 1 4 2 8 hotels   
holds 1 1 4 2 8 -   
is_for 1 1 6 2 10 guests  

n:m is_available 1 1 2 2 6 -   
is_near 1 1 5 2 9 hotels, hotels_by_poi, pois_by_hotel   
offers 1 1 2 2 6 -  

multiple has-holds-is_for 1 1 10 4 16 guests, hotels, reservations_by_confirmation, reservations_by_guest, 
reservations_by_hotel_date   

has-is_available 1 1 5 3 10 available_rooms_by_hotel_date, hotels   
has-offers 1 1 5 3 10 amenities_by_room, hotels 

Total Hotel Reservations 16 16 57 29 118 n/a 
Music Store entity artist 1 1 2 1 5 artists_by_first_letter   

playlist 1 1 1 1 4 -   
track 1 1 3 1 6 -   
user 1 1 1 1 4 -  

1:n creates 1 1 2 2 6 playlists_by_user   
releases 1 1 5 2 9 artists_by_first_letter, tracks_by_artist, tracks_by_genre  

n:m features 1 1 4 2 8 -  
multiple releases-features 1 1 6 3 11 artists_by_first_letter, tracks_by_artist, tracks_by_genre, tracks_in_playlist 

Total Music Store  8 8 24 13 53 n/a 
Total  36 36 149 68 289 n/a  

Table 4 
Test cases that produced insertions in databases and test cases that generated error messages.   

Insertions without error messages Insertions with error messages Total  
ATT AKA AKC  

Case Study # % # % # % # % # 

Digital Library 54 45.8 37 31.4 26 22.0 1 0.8 118 
Hotel Reservations 55 46.6 32 27.1 29 24.6 2 1.7 118 
Music Store 21 39.6 17 32.1 13 24.5 2 3.8 53 
Total 130 45.0 86 29.8 68 23.5 5 1.7 289  
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when it was necessary to retrieve data from tables to complete the rows 
to insert. In the evaluation, the same CREATE&COPY statement was 
generated for different test cases, however, in a real situation, once a 
new table is created, it becomes part of the database so it can be queried 
without repeating its creation. Therefore, the execution of CREATE&
COPY statements will be occasional, less frequent than in the case 
studies. 

Answering RQ3, MDICA automatically generates the set of database 
statements that ensures data integrity in databases, which will require 
an INSERT statement for each target table generated from the items in 
the tuple, plus the appropriate SELECT statements for retrieving data of 
columns that the tuple does not have but that were inserted in other 
tables previously. Although less frequently than the other statements, 
there may be situations that will also require CREATE&COPY statements 
to add new tables to query data when it cannot be directly retrieved from 
the existent tables. Manually building the suitable set of statements for 
an insert operation may become tedious and error-prone for developers, 
therefore the use of MDICA is a considerable benefit in maintaining data 
integrity. 

6.6. Analysis of messages (RQ4) 

To answer RQ4, we analyze messages (error, warning and informa
tion) generated by MDICA for test cases. 

To answer RQ1, we analysed test cases and identified those that 
made the insert operation impossible and for which error messages were 
generated. They indicated the need to create new tables to store the 
values or add other attribute-value pairs in the tuple to insert. 

Table 6 displays the generated messages divided into information 
and warning messages. Columns “#” are the number of messages and 
“Avg” are the average number of messages for each test case. 

Information messages (195 in total, average 1.5 messages per test 
case), described in Section 5.1, reported the absence of values in the 
tuple for some columns but data could be extracted from tables using 
SELECT statements (ADC-S: 169 messages, average 1.3) and CREA
TE&COPY statements (ADC-C: 26 messages, average 0.2). 

The most important messages are warnings (832 in total, average 
6.4), described in Sections 3.2, 4 and 5, because they give additional 
information about the insert operation that may endanger data integrity, 
although it can be carried out. 

AWC (attribute does not correspond with any column) (363 mes
sages, average 2.8) and ATA (absence of target tables for some items in 
the tuple), (334, average 2.6) warns the developer the inability of the 
logical model to store values of the tuple which could cause a potential 
loss of information. The developer should analyze the logical model and 
decide whether or not to add new tables or columns. 

Other warning messages showed discrepancies between the expected 
and the actual design of databases: TNW-C (table not well-modelled 
because a column was not generated from any attribute) (59, average 
0.5) and TNW-K (table not well-modelled because of the absence of a key 
column generated from a key attribute) (55, average 0.4). They could 
provoke that columns never store data, unnecessary repeated data or 
incorrect outputs of queries. The developer could avoid them changing 
columns or keys in tables. 

ADC (absence of data for a non-key column) (21, average 0.2) alerted 
the user to the generation of gaps of data in columns. To avoid them, the 
developer should add attribute-value pairs to the tuple to store data in 
those columns. 

Answering RQ4, in addition to error messages (treated in Section 
6.3) and information messages, warnings provide particularly valuable 
knowledge for the maintenance of data integrity. MDICA identifies sit
uations that can endanger it and generates the right messages. Using 

Table 5 
Database statements generated by DMPs.  

Case Study Item Name #Target Tables #Test Cases INSERT SELECT CREATE& COPY Total 
# % Avg # % Avg # % Avg # Avg 

Digital Library 1:n featuresDA 3 8 24 80.0 3.0 6 20.0 0.8 0 0.0 0.0 30 3.8 
featuresR 1 8 8 100.0 1.0 0 0.0 0.0 0 0.0 0.0 8 1.0 

n:m likes 2 8 16 61.5 2.0 6 23.1 0.8 4 15.4 0.5 26 3.3 
likesV 1 8 8 44.4 1.0 6 33.3 0.8 4 22.2 0.5 18 2.3 

multiple likes-featuresDA 6 11 66 76.7 6.0 16 18.6 1.5 4 4.7 0.4 86 7.8 
posts-featuresR 2 11 22 91.7 2.0 2 8.3 0.2 0 0.0 0.0 24 2.2 

Total Digital Library  54 144 75.0 2.7 36 18.8 0.7 12 6.3 0.2 192 3.6 
Hotel Reservations entity guest 1 5 5 100.0 1.0 0 0.0 0.0 0 0.0 0.0 5 1.0 

hotel 1 5 5 100.0 1.0 0 0.0 0.0 0 0.0 0.0 5 1.0 
1:n has 1 6 6 50.0 1.0 6 50.0 1.0 0 0.0 0.0 12 2.0 

is_for 1 8 8 57.1 1.0 6 42.9 0.8 0 0.0 0.0 14 1.8 
n:m is_near 3 7 21 63.6 3.0 10 30.3 1.4 2 6.1 0.3 33 4.7 
multiple has-holds-is_for 5 12 60 76.9 5.0 18 23.1 1.5 0 0.0 0.0 78 6.5 

has-is_available 2 5 10 76.9 2.0 3 23.1 0.6 0 0.0 0.0 13 2.6 
has-offers 2 7 14 63.6 2.0 8 36.4 1.1 0 0.0 0.0 22 3.1 

Total Hotel Reservations  55 129 70.9 2.4 51 28.0 0.9 2 1.1 0.0 182 3.3 
Music Store entity artist 1 2 2 100.0 1.0 0 0.0 0.0 0 0.0 0.0 2 1.0 

1:n creates 1 4 4 50.0 1.0 2 25.0 0.5 2 25.0 0.5 8 2.0 
releases 3 7 21 60.0 3.0 10 28.6 1.4 4 11.4 0.6 35 5.0 

multiple releases-features 4 8 32 64.0 4.0 12 24.0 1.5 6 12.0 0.8 50 6.3 
Total Music Store  21 59 62.1 2.2 24 25.3 1.1 12 12.6 0.6 95 4.5 
Total   130 332 70.8 2.6 111 23.7 0.9 26 5.5 0.2 469 3.6  

Table 6 
Information and warning messages generated by MDICA.  

Case Study #Test Cases Information Messages Warning Messages 
ADC-S ADC-C Total AWC ATA TNW-C TNW-K ADC Total  
# Avg # Avg # Avg # Avg # Avg # Avg # Avg # Avg # Avg 

Digital Library 54 60 1.1 12 0.2 72 1.3 306 5.7 141 2.6 6 0.1 0 0.0 7 0.1 460 8.5 
Hotel Reservations 55 71 1.3 2 0.0 73 1.3 32 0.6 154 2.8 53 1.0 55 1.0 13 0.2 307 5.6 
Music Store 21 38 1.8 12 0.6 50 2.4 25 1.2 39 1.9 0 0.0 0 0.0 1 0.0 65 3.1 
Total 130 169 1.3 26 0.2 195 1.5 363 2.8 334 2.6 59 0.5 55 0.4 21 0.2 832 6.4  
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these messages, where appropriate, developers will be able to fix faults 
to ensure data integrity by including more values in the tuples, creating 
new tables, adding new columns, or making other changes in the 
databases. 

6.7. Threats to validity 

We evaluated MDICA with three case studies generating, systemati
cally, a set of test cases for which it identified the impacted target tables, 
generated database statements to ensure data integrity and produced 
messages informing of those situations that could endanger the integ
rity. However, there are several threats to the validity of our experi
ments that may limit the ability to generalize the results. In this section 
we discuss threats to external, internal, construct and conclusion 
validity. 

Threats to external validity.- The experimental subjects were drawn 
from a research paper, a tutorial and a book where the design of Cas
sandra databases was illustrated. These threats include the degree to 
which the subjects represent other case studies or real applications 
because they may appear rather limited. However, we consider them 
representative of partial or entire applications as they are examples in 
guidelines for many developers. Another threat is whether test cases are 
representative of real practice. They were systematically generated, 
based on the item to insert and the content of the tuple, and represent a 
large variety of insertions at a conceptual level that impacted on all the 
tables of each case study. These threats could be reduced by considering 
more experiments concerning other subjects and real insert operations, 
for which both the number of test cases that do not produce insertions 
and messages would probably be reduced. However, we consider the 
approach as appropriate for a complete evaluation of the method. 

Threats to internal validity.- MDICA generates database statements to 
maintain data integrity in databases. We inspected them carefully and 
found that they maintain data integrity and are coherent in all case 
studies. As part of an ongoing research [39], an oracle is being devel
oped to automatically determine if, starting from a consistent state of a 
database, the resultant state after executing database statements main
tains data integrity. 

Threats to construct validity.- In two of the three case studies, the 
logical models were designed following the modeling process that 
MDICA leverages. Therefore, a threat is that the experimental subjects 
contain the features that MDICA expects. To mitigate this threat, we 
included the third case study, “Hotel Reservations”, designed according 
to a query-driven modeling process without considering the conceptual 
model. 

Threats to conclusion validity.- We used as metrics the number of 
target tables, database statements and messages generated. Regarding 
the target tables, all tables in each case study were impacted by some 
test case. There is an INSERT statement for each target table and, when 
necessary, SELECT and CREATE&COPY statements. In our opinion, the 
messages generated seem to be sufficient, clear and appropriate to warn 
about potential data integrity faults although we do not have feedback 
from professional users. To mitigate this threat, messages should be 
validated by developers with different levels of experience. 

7. MDICA extensions 

In this section, we describe how to handle different issues of the 
approach not detailed in this work: how to adapt MDICA to other 
column-oriented databases and how to address delete and update 
operations. 

7.1. Handling other column-oriented databases 

The main difference between Cassandra and other logical models of 
other column-oriented databases is the design of the keys in the tables. 
In Cassandra, rows are identified by a compound primary key that may 

involve multiple columns, whereas in others such as Apache HBase [40] 
or Google Cloud Bigtable [41], rows are uniquely identified by their row 
key and sorted lexicographically by it. 

Regarding MDICA, the mapping between conceptual and logical 
models will be the same except for the key composition in the tables. 
Due to the fact that HBase and Bigtable tables only have a row key, it will 
be necessary to map the attributes that generate the row key for each 
table. Thus, MDICA will be able to identify tables affected by the 
insertion of tuples. 

7.2. Delete and update operations 

To support delete and update operations, new data manipulation 
rules and procedures (DMR and DMP, respectively) must be defined 
considering the following situations, for which MDICA must provide 
statements or messages:  

• Delete a tuple from an entity or a relation: statements to delete rows 
in tables generated from this entity or relation and, for each table 
generated from relations between this entity or relation and another:  
○ to delete rows if there exists a key column generated from any 

attribute, otherwise,  
○ to delete data of the columns generated from the attributes in the 

tuple.  
• Delete values of attributes from an entity or relation: statements to 

delete data of the non-key columns generated from these attributes. 
If any attribute generated any key column, an error message should 
be produced because that column cannot have a null value.  

• Update values of attributes from an entity or relation: statements to 
update data of the columns generated from these attributes.  

• For all cases, MDICA must also consider the conditions included in 
these operations which specify the rows to change. 

8. Related work 

Most research oriented to improve the quality of databases or data
base applications focuses on relational databases and supposes that data 
integrity is ensured because relational database systems have their own 
mechanisms for the referential integrity control that guarantees it, 
avoiding data duplicity and a loss of information. Therefore, said 
research improves the quality of test databases by means of generating 
new databases [42,43] or reducing large ones [44], generating 
program-input for database applications [45] and other aspects such as 
determining the correctness of the schema [46] or the correctness of SQL 
statements considering the conceptual data model [47]. Moreover, 
mutation testing has been applied to validate different studies [48], even 
to NoSQL databases [49], and tools have been developed to support 
experiments evaluating testing techniques [50,51]. 

To achieve high availability, scalability and performance, NoSQL 
databases do not generally ensure strong consistency in all situations of 
data management and do not support transactions. Several transactional 
services have been developed [13] and tested [12] to detect anomalies 
in data consistency. Our approach is complementary to them: trans
actional services ensure consistency of data after a transaction and 
MDICA ensures data integrity after a change in all the tables where they 
are repeated. 

Within the scope of data integrity, there is research about how ma
licious attacks can affect it in cloud environments [7,8]. Our objective is 
to ensure data integrity when inserting tuples whose data must be stored 
in a column-oriented database such as Cassandra rather than to avoid 
inserting information from external attacks. From the point of view of 
column-oriented databases, research on integrity is based on assuring 
the physical integrity when a row is replicated throughout all the clus
ters [10,11] or the completeness and correctness of data retrieved by 
queries [52]. However, MDICA is focused on data integrity, ensuring the 
integrity of repeated data in different tables (if any data changes in any 
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column, that data will be updated in each repetition of the database) and 
the integrity of data between conceptual and logical models. 

The official Cassandra developer team has proposed solving the 
problem of maintaining data integrity by the use of materialized views 
[53]. Materialized views are table-like structures that ensure data 
integrity automatically on the server side. Data is stored in a base table, 
but it can be retrieved from different views. Any insertion or change is 
executed against the base table and immediately updated for every view. 
The main drawbacks of materialized views are (1) they must have the 
same key columns as the base table and can only have a new key column 
from the rest of the columns and (2) they can only be created from a 
single base table rather than from a join of multiple tables as in rela
tional databases, so data in materialized views can be accessed in limited 
ways. In our work, it does not matter if tables have a different or similar 
design: provided that the table is generated from an item of the tuple to 
insert, this table will be impacted by the insert operation and an INSERT 
statement will thus be generated for it. 

Some problems related to the repeated data in several tables could be 
reduced if CQL select statements include join operators. In [54], joins 
are implemented by modifying the source code of Cassandra 2.0. 
However, it has not yet been included in Apache Cassandra. 

One of the most important inputs in MDICA is the conceptual data 
model. However, it is a common practice to design NoSQL databases in 
general without an explicit conceptual model. To address this limitation, 
inferring normalized schemas that represent entities and relations for 
document databases is proposed in [55] and [56], although the research 
could be applied to other NoSQL databases. If we had to deal with sit
uations where the conceptual model was not provided, we would 
include a previous task in which we inferred it from the logical model. 

The conceptual model is not only an important element in ensuring 
data integrity but also in modeling a logical data model [57]. Starting 
from a conceptual model, it is automatically transformed into a NoSQL 
schema [22] that can serve the queries with minimal cost [18], it is 
mapped to heterogeneous datastores [23], and MongoDB [17] and 
HBase [19] databases are designed. In [24], a tool is designed to 
generate implementations for Cassandra and MongoDB from the same 
conceptual data model. Chebotko et al. [20] and Mior et al. [21] focus 
their approach on generating logical and physical Cassandra models 
from the application’s conceptual data model and supported queries, 
which have been leveraged for this work. 

9. Conclusions and future work 

This paper presents a method, MDICA, that helps to maintain data 
integrity when data is inserted in column-oriented databases. It takes a 
tuple to insert at a conceptual model level and generates the database 
statements (both data management and data definition statements) 
needed to ensure the integrity in the database. Moreover, it produces 
messages (error, warning and information) which can guide developers 
in decisions about how to deal with data integrity in their applications. 
Although this method is implemented for Cassandra, it can be partic
ularised for other column-oriented databases with small changes related 
to the map between the conceptual model and the logical model of these 
databases. 

MDICA was validated by three case studies. Results showed that the 
method is automatically able to determine the tables impacted by an 
insert operation, generate the appropriate statements and warn about 
potential problems that could endanger it. 

Developers can benefit from the use of this method, saving time and 
reducing mistakes. They can use the generated database statements to 
include them in their source code so that they do not forget to update 
any table, retrieve adequate data from other tables to complete rows to 
insert, and avoid making mistakes that endanger data integrity. For 
previously developed applications, they may compare statements with 
programmed procedures to facilitate the fault detection in the code and 
repair it when necessary. Considering the generated messages, 

developers will have an early warning against defects that can be pre
vented. They will be able to detect if values in the tuple are sufficient to 
insert successfully into the database, if new tables, columns or keys are 
necessary to store data satisfactorily or if there are columns that never 
store them. 

Future work will be focused on different lines. One area of interest is 
to ensure data integrity when changes are produced at a logical model 
level, that is when a row in a table is inserted. We also plan to extend the 
approach to support delete and update operations, both at a conceptual 
level and logical level. Related to this, an important issue is to infer the 
conceptual model from a logical model to be able to apply MDICA when 
the conceptual model has not been considered previously. 
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María José Suárez-Cabal: Conceptualization, Methodology, Formal 
analysis, Writing – original draft. Pablo Suárez-Otero: Software, Vali
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