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Abstract

Motivation. Biomedical research entails analyzing high dimensional records of biomedical features
with hundreds or thousands of samples each. This often involves using also complementary clinical
metadata, as well as a broad user domain knowledge. Common data analytics software makes use of
machine learning algorithms or data visualization tools. However, they are frequently one-way analyses,
providing little room for the user to reconfigure the steps in light of the observed results. In other cases,
reconfigurations involve large latencies, requiring a retraining of algorithms or a large pipeline of actions.
The complex and multiway nature of the problem, nonetheless, suggests that user interaction feedback is
a key element to boost the cognitive process of analysis, and must be both broad and fluid.
Results In this paper we present a technique for biomedical data analytics, based on blending meaningful
views in an efficient manner, allowing to provide a natural smooth way to transition among different but
complementary representations of data and knowledge. Our hypothesis is that the confluence of diverse
complementary information from different domains on a highly interactive interface allows the user to
discover relevant relationships or generate new hypotheses to be investigated by other means. We illustrate
the potential of this approach with two case studies involving gene expression data and clinical metadata,
as representative examples of high dimensional, multidomain, biomedical data.
Availability and implementation Code and demo app to reproduce the results available at
https://gitlab.com/idiazblanco/morphing-projections-demo-and-dataset-preparation
Supplementary information Supplementary data is available at Bioinformatics online.

1 Introduction
Biomedical data is growing at astonishing rates with the broadening of
access to massive analyses, including laboratory tests, medical image, or
gene expression data, bearing precise information about the underlying
biological state of the subject. However, analysis of high dimensional
biomedical datasets is rarely directly managed by doctors, even though

they encompass a unique set of challenges, hard important problems, and
huge potential sanitary impact.

At the same time as quality and availability of biomedical data
increased, accordingly did its application in biomedical research. Most
interestingly, there has also been a huge research activity in the field
of visualization of this high-dimensional data, as a very powerful tool
for researchers, providing better data interpretation, easier detection of
patterns, and generation of new hypotheses. Related surveys about the use
of these techniques can be found in (Kamal et al. (2014); O’Donoghue
et al. (2018)).
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In this paper, we set the focus on the analysis of genomic data for
cancer research, which is a paradigmatic example of such problems.
Many processes related to the onset, spreading and evolution of cancer,
are strongly related to biological pathways that involve complex chains
of regulation/deregulation mechanisms acting on different stages of the
gene expression path, and resulting in specific footprints in the gene
expression pattern that coexist with many others coming from normal
biological processes. The large amount of coexisting processes, including
normal and aberrant cancer-related ones, along with the large number
(tens of thousands) of involved genes in the human genome, make
the analysis process of gene expression data a challenging task, even
for modern machine learning techniques, that requires a joint approach
that combines data analysis and expert knowledge from other domains.
Detecting genes with differential expression between groups of samples,
finding relationships between the expression levels for groups of genes
(co-expressed genes), identifying prognostic genes or finding genetic
disorders, are just a few examples. Classical analysis methods, however,
were mainly based on clustering, regression, correlation and other similar
statistical analysis techniques (Trevino et al. (2007)), which soon started
showing limitations to handle this complexity.

Moreover, in recent years, micro-RNA (miRNA) data has also attracted
a lot of attention, as some miRNAs were identified as prognostic markers
or associated with overall survival for specific type of cancers (Di Leva
and Croce (2013); Akcakaya et al. (2011); Võsa et al. (2011); Eyking
et al. (2016); Xu et al. (2013); Jones et al. (2014)). Since then, a lot
of research has been oriented to determine correlations or interactions
between miRNAs and specific genes in different types of cancer (Dai
et al. (2019); Telonis et al. (2017); Tan et al. (2019); Hu et al. (2018)).
The also recent boost of machine learning techniques resulted in their
successful application for cancer detection and treatment (Cheerla and
Gevaert (2017)).

Thus, genomic approaches in cancer research have a strong multi-
domain nature, posing interesting problems in the co-analysis of gene
and miRNA expression levels, but also requiring complementary data that
may include a broad range of clinical information and related metadata
of the samples under study. This cross-domain nature of the problem,
along with the high dimensionality and volume of data, as well as the
nonlinear complexity of the underlying processes make it a challenging
representative kind of biomedical data.

In the light of this scenario, the need to broaden the scope of analysis
brought by machine learning approaches, resulted in a huge research
effort. (Nusrat et al. (2019)) provide a deep analysis of the state-of-
the-art visualization techniques used for genomic data visualization, as
well as a taxonomy of the most widely used. Their study reveals many
different options regarding layout, arrangement, encoding, scales, and
so forth. Each one of these views has different strong and weak points
depending on the intended objective. Other authors propose the use of
machine learning-based dimensionality reduction techniques, such as the
t-distributed Stochastic Neighbor Embedding (t-SNE), proposed back in
2008 (Van Der Maaten and Hinton (2008)). This technique has been used
for single-cell transcriptomics (Kobak and Berens (2019)) and analysis
of the gene expression in the mouse brain (Pezzotti et al. (2016)), for
instance. Also, several computer applications have been recently reported
for visualization of genomic data (Ding et al. (2018); Huisman et al. (2017);
Egorov et al. (2019)).

However, few works take advantage of the synergies between
interaction, data visualization and machine learning (ML), allowing only
for simple interactions such as tuning the visualization algorithm or
selecting between different views of the data. In a review of this topic,
often referred as visual analytics (Endert et al. (2017)), the authors suggest
a broad niche of opportunities yet to be explored in this field. Algorithmic
approaches allow the analysis of massive data, being able to outperform

humans in well-defined tasks, but prone to failure under minimal changes
in the context or the problem statement. Humans, in turn, benefit from
a broad domain knowledge, being able to work on ill-posed problems
and perform reasonably well in a vast range of tasks, and are able to find
connections and improve answers by means of an iterative and exploratory
cognitive process.

This cognitive feedback is depicted in Fig. 1. In the one-way approach
(left), common in many conventional visualizations, the user U consumes
a fixed outcome of a data visualization or ML softwareV , requiring a long
time (or not allowing) to modify the problem formulation, thereby lending
to a narrow analysis and/or a slow improvement in the acquisition of
problem-related knowledge. Interactive analysis (right), in turn, introduces
feedback in the process, which may dramatically change the outcome of
the analysis, resulting in a qualitative improvement of the overall cognitive
process. The broader the interaction highway, the higher the bandwidth and
the throughput of the knowledge discovery process.

In this sense, many tools featuring interaction and ML have been
proposed in recent years for genomic data visualization. For instance,
tools like iDREM (Ding et al. (2018)), NetworkAnalyst (Xia et al.
(2015); Zhou et al. (2019)) or VIGLA-M (Navas-Delgado et al. (2019))
use ML algorithms in different ways using gene expression data and
known interactions (e.g. protein-DNA interaction) and produce interactive
visualizations of gene regulatory networks that allow some kinds of user
interaction (zoom, selection, 3D rotation, etc.). Interactive heatmaps,
enriched with cluster information and interactions like selection, filter,
sort, etc. are also another common way of visual analytics in genomics
used in tools like GiTools (Perez-Llamas and Lopez-Bigas (2011)) and
also VIGLA-M. Other kind of tools provide context to the researcher,
combining gene expression data and anatomical visualizations by showing
expression levels of selected genes on the anatomical views using color
scales on organs (GEPIA, Tang et al. (2017)) or cloropleth-like maps
(BrainScope, Huisman et al. (2017)). All these tools, in addition, allow
the user to carry out different ML computations, like principal component
analysis, or differential expression analysis. However, most of them
involve a long workflow (ranging from a few seconds to many minutes)
for the user from the time the researcher produces a hypothesis until she
obtains a result for validation or suggestion of new hypotheses.

Few tools allowing for a truly fluid exploration have been proposed,
such as SPRING (Weinreb et al. (2018)), which includes a steerable
force-directed layout built out from gene expression data able to reveal
biological relationships on a user-steered, dynamically changing graph
topology overlaid with gene expression and other annotations. Despite
having a strong visual analytics gist, featuring steerable ML in a dynamic
visualization, the method does not consider ways to integrate context
information in the layout, such as clinical data, thereby narrowing the
possibilities of connecting knowledge from other domains. Also, the need
to compute a force layout limits the allowable sample size for the analysis.

In a former work (Diaz-Blanco et al. (2012)), the authors presented an
interaction technique for data visualization called morphing projections
(MP). Despite being a preliminary work, focused on an electrical
engineering problem, the underlying idea allowed a comprehensive
analysis of multiway data in a highly, multimodal, interactive manner,
suggesting it could be well suited to deal with biomedical data, and
particularly to explore the highly complex landscape of biological
processes in genomic analysis. In this paper we develop this idea in
a formal and general way, providing a mathematical framework that
connects the approach with relational algebra principles, extending the
functionality to allow the combination of an arbitrary number of factors of
analysis according to researcher’s needs, and propose a methodology for
exploratory analysis of complex high dimensional biomedical data. The
MP approach is based on reconfigurable data visualizations composed
of a user-driven mixture of basis views, each highlighting conceptually
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Fig. 1. One-way analysis vs. interactive analysis. In the one-way analysis (left), the user
U consumes fixed visual information I produced by visualization software V from the
available data. With the interactive analysis (right), the user can modulate V upon received
information I by means of interaction, in a continuous improvement cycle.

different traits of the samples under study. We will illustrate the MP
technique through some case studies on genomic data analysis, considering
basis views that include the biological state obtained by dimensionality
reduction projections (e.g. tSNE, deep autoencoders) of gene expression
vectors, as well as available relevant related context information (e.g.
clinical data, such as cancer type, gender, race, etc). The methodology
can be extrapolated to any other biomedical data including vectors of
descriptors and/or context data relevant to the target problem, such as
those obtained from lab tests, biomedical equipment, etc.

2 Materials and methods

2.1 Materials: data sources and preprocessing

The Cancer Genome Atlas (TCGA) provides gene expression
measurements and other transcription data, including more than 20,000
RNA and hundreds of miRNA expression levels, of more than 10,000
tumors from 33 different cancer types. To show the functionality and
possibilities of our proposed method we considered gene expression
RNAseq data of a selection of 31 cohorts from the TCGA Hub. Data
for the cohorts included in our results were downloaded from the
Xenabrowser portal (https://xenabrowser.net/datapages/).
For every cohort we merged a) data containing experimental measurements
using the Illumina HiSeq 2000 RNA Sequencing platform, and mean-
normalized per gene across all cohorts and b) data with miRNA mature
strand expression RNAseq. The resulting table including gene and miRNA
expressions was curated by dropping genes with invalid values, and later
merged with clinical metadata (downloadable fromhttps://portal.

gdc.cancer.gov) which included tumor stage, existence of metastasis,
race, gender, etc. After processing we got a curated multivariate data
table, used in the reported results and demos, with 8580 tumor samples
(rows) belonging to 31 cancer types with 19279 attributes (columns) that
include 19112 gene expression values, 129 miRNA expression values and
18 clinical variables.

2.2 Methods: The Morphing framework

We present in this section a framework rooted on relational algebra to
formalize the idea of using animated transitions (Heer and Robertson
(2007)) between two or more meaningful views by means of morphing
operations. Morphing operations allow to interactively rearrange a
visualization composed of many items (e.g. points of a scatterplot) by
means of smooth transitions between several views corresponding to
arrangements of data according to different grouping criteria.

2.2.1 Multivariate data table
Gene expression data are often presented as a gene expression matrix
(GEM) (Jiang et al. (2004); Roche et al. (2018)), whose rows represent
the biological samples and the columns contain the gene expression levels.

This information can be extended by adding extra columns with clinical
descriptors or other available context information about the samples,
resulting in a multivariate data table. We shall refer to the rows (samples) as
records and the columns (gene expressions and clinical data) as attributes.
Each attribute is the result of discretizing a variable into a finite set of
groups thereby making it to take a finite set of values (e.g. a set of intervals
or bins, a set of classes, or simply the set of unique values of the variable
along all records). More formally, a multivariate data table can be defined
by the relation D:

D
id a1, a2, · · · an
...

...

where each row defines a sample for which id is a unique identifier (e.g.
primary key, timestamp, etc.), and a1, a2, · · · , an are attributes, where
attribute ai takes values from a discrete set {gi1, gi2, . . . , gini}. In general,
the elements gij may define groupings of elements in the sample for
attribute ai. For categorical attributes, they will typically represent class
labels, whilst for continuous valued attributes the set may contain bins
defined by intervals of a variable or all the unique values of this variable
present in the sample.

2.2.2 Spatial encodings
A spatial encoding can be formally expressed by means of a relation Ei:

Ei
ai P i

gi1 pi1
...

...
gini pini

that maps the group value gij of attribute ai to a position pij ∈ Rn. These
positions, supposed designed for an interpretable arrangement (e.g. using
visual conventions like clock-like, linear or matrix arrays, map coordinates,
or distance-preserving dimensionality reduction algorithms), will typically
represent the spatial coordinates of an item in a visualization, but more
generally can express other visual attributes such as color, size, shape, etc.
The encodingEi can be seen as a lookup table to assign a position to every
sample (row) of D according to its group value in the attribute ai. The
resulting positions allow to define visualizations that spatially arrange the
samples according to attribute ai in some meaningful way.

2.2.3 Extended dataset
A new table containing the positions of all the samples ofD, according to
the encoding Ei, can be defined by means of a natural join operation:

DEi = D on Ei . (1)

The natural join operator on is equivalent to a Cartesian product with
the restriction of equality of the common attribute ai of both relations,
resulting in an extended relation DEi that contains the positions for each
sample, as defined in the encoding Ei:

DEi
id a1, a2, · · · an P i

...
...

...
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For each sample, the natural join operation matches the group value
attribute ai to the position assigned to this group by the spatial encoding
Ei. Using the conventions of relational algebra, the set of ni positions for
the encoding Ei, as well as the positions for every sample in D, can be
respectively obtained in a quite straightforward way as:

ΠP iDEi = ΠP i (D on Ei) , (2)

where Πx(Y ) is the projection operator, that returns the set of attributes
x from relation Y .

2.2.4 Aggregation operations
Similarly, the groupby and aggregation operations in relational algebra can
be used to compute the aggregated values of attribute ar for the groups gij
defined for attribute ai, to be visualized at positions pi1, · · · ,pini :

aiGA(ar)(DEi ) , (3)

where G is the “group by” operator, ai is the grouping attribute, andA(·)
is an aggregate function applied to attribute ar , that can be typically sum,
count, average, maximum, minimum or another predefined aggregator.

2.2.5 Morphing operation
Let’s denote CN the set containing all the sets of N points or positions in
Rn. Let’s consider p sets of pointsP i = {pik}k=1,··· ,N , withpik ∈ Rn,
and P i ∈ CN for i = 1, . . . , p. Typically, for n = 2, each set of points
can be thought to describe a spatial configuration or layout composed
of markers in a 2D scatterplot visualization; for larger values of n other
visual attributes like color, size, etc., or even more general parameterized
graphs can be considered. The morphing operation takes the p spatial
configurations (i.e. the p sets of N positions) and parametrically returns
a new spatial configuration according to a set of user-driven interaction
parameters t and a convex mixing functionλ. More formally, the morphing
operation can be defined as µλ,t : CN × · · · × CN → CN , being:

µλ,t(P 1, P 2, . . . , P p)→ Pλ , (4)

where Pλ = {pλk}k=1,··· ,N , and:

pλk =

p∑
i=1

λi(t)p
i
k k = 1, · · · , N. (5)

The mixing function λ : Rq → Rp takes a vector of q

interaction parameters t = t1, . . . , tq to produce p mixing coefficients
λ1(t), . . . , λp(t) such that

∑p
i=1 λi(t) = 1.

Example 1. Linear morphing between two configurations. As a
particular case, for q = 1, p = 2, the morphing operation µλ,t(A,B)

having λ1(t) = 1 − t and λ2(t) = t for t ∈ [0, 1], results
in a dynamically changing set of points that smoothly morph from a
configuration A for t = 0, to a configuration B for t = 1.

Example 2. Softmax morphing among several configurations. Another
specially useful case considering one tuning parameter per encoding (q =

p) is using the softmax function for λ:

λi(t) =
eαti∑p
j=1 e

αtj
, (6)

being α a sensitivity parameter that tunes the degree of approximation
to the standard max function. This function allows the user to smoothly
highlight any specific spatial configuration of data by rising its parameter
ti above the others.

Example 3. Trajectory along a path of encodings. Another interesting
example is using morphing to make a transition along a trajectory or path

defined by a sequence of encodings P 1, . . . , P p considering a single
tuning parameter t ∈ [1, p]:

λi(t) =
φi(t)∑
j φj(t)

, where φi(t) = e−‖t−i‖
2/σ2

(7)

for i = 1, . . . , p. This creates a trajectory that smoothly morphs through
P 1, . . . , P p as t ranges from 1 to p, beingσ a smoothness parameter. This
kind of morphing is useful to reveal dimensionality reduction mappings of
time-evolving data or, more generally, algorithmically generated spatial
representations of data for variations of a meaningful parameter.

2.2.6 Spatial configuration of data
Based on the morphing operation, a new encoding relationEλ containing
the lookup table of the blended positions for all possible combinations of
group values from attributes a1, . . . , ap can be obtained in a general way:

Eλ,t = Πa1,...,ap,µλ,t(P1,...,Pp) (E1 × · · · × Ep)

= Πa1,...,ap,Pλ (E1 × · · · × Ep) , (8)

where the Cartesian product gives all possible combinations of attributes
and positions from E1, . . . , Ep, and the projection operator takes the
actual values for the p classes a1, . . . , ap and the new blended positions
given by the morphing operation µλ,t between the positions P i:

Eλ,t
a1, . . . , ap Pλ

...
...

...

Proceeding consistently, the resulting extended dataset with the new
positions is DEλ,t = D on Eλ,t, whose positions for representation are
ΠPλEλ,t and the aggregated values for an attribute ar can be computed
as a1, . . . apGA(ar)(D on Eλ,t).

2.2.7 Examples of typical encodings
Circular encoding. A circular encoding for attributeai locates all elements
belonging to groups gij to a discrete set of ni positions equally distributed
in a circle like a clock:

gij → pij = (cos(2πj/ni), sin(2πj/ni)), j ∈ {1, . . . , ni} . (9)

Linear and matrix encodings. A linear encoding (vertical or horizontal)
for attribute ai locates all elements belonging to groups gij to a discrete
set of ni positions equally distributed in a vertical or horizontal row:

gij → pij = (0, j), j ∈ {1, . . . , ni} (vertical) , (10)

gij → pij = (j, 0), j ∈ {1, . . . , ni} (horizontal) . (11)

A linear morphing operation µλ,t(Ph, P v) between an horizontal and
a vertical encoding for attributes ah and av yields a matrix encoding
consisting of a regular grid with all combinations of possible values for
both encodings.

Dimensionality reduction encodings. Dimensionality reduction encodings
for a given attribute ai map all its elements according to a spatialization
principle (“similar ≈ close"), assigning close positions pij and pik to
elements from groups gij and gik as long as they are similar in some
sense. For this type of encoding the most typical case assumes one group
per sample in the dataset and that a high dimensional feature vector xj
(e.g. composed of expressions of a selected group of genes or miRNA)



“output” — 2024/1/8 — page 5 — #5

5

is available for every sample j. Computation of positions pij can be
done using nonlinear dimensionality reduction algorithms, such as tSNE
(t−stochastic neighbor embedding Van Der Maaten and Hinton (2008)).
The tSNE considers the conditional probability of neighborhood in the
high dimensional space:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
, (12)

and a Student t−distribution of probability of the projected points yi in
the visualization space:

qj|i =
(1 + ‖yi − yj‖2)−1∑
k 6=i(1 + ‖yi − yk‖2)−1

. (13)

The algorithm minimizes the Kullback-Leibler distance KL(pj|i||qj|i)
between both distributions.

2.3 Morphing projections in gene expression analysis

2.3.1 Morphing between tSNE views
Consider the expression vectors x1

j and x2
j , each composed of the

expression levels of different groups of genes for sample j. Both vectors
can be thought to describe the genetic state of sample j according to
different biological processes. Let’s consider sets of points P 1

j = {p1
j}

and P 2
j = {p2

j}, containing the tSNE projections of x1
j and x2

j ,
respectively, for all samples j = 1, . . . , N on a low dimensional space
(e.g. 2D meant for visualization):

x1
j → tSNE→ p1

j x2
j → tSNE→ p2

j .

Point setsP 1 andP 2 reveal the similitudes between the samples according
to the gene activities included in x1 and x2. Similar gene expression
profiles will lead to close positions in a scatterplot representation of the
positions, where clusters contain groups of samples with similar biological
states that, depending on the chosen set of gene expressions, may reveal
cell differentiation (tissues), cancer-related biological processes, etc.
CombiningP 1

j andP 2
j by means of the mixing functionλ asλ1(t) = 1−t

and λ2(t) = t a new set of points Pλ for visualization can be obtained
as:

pλj = (1− t)p1
j + tp2

j . (14)

The resulting point set Pλ smoothly transitions between representations
P 1 and P 2. The representation of Pλ for user-driven values of t gives
insight in the differences between both sets of genes for classifying the
biological activity of the samples. Note that within the context of a visual
display, available context information for each point, such as the cancer
type, severity, metastasis condition, etc. can be encoded using color,
size, tooltips or different markers, so the user will have immediate visual
feedback on subtle differences regarding the ability of both groups of genes
in providing differentiation between target biological conditions.

Fig. 2 (a) shows five steps (frames) of the morphing representation
between two tSNE views of samples with prostate cancer; the left view
(t = 0), shows the tSNE projection based on all available genes in the
dataset, 19112, and the right view (t = 1), shows the tSNE projection
based on expressions of 129 miRNA.

The resulting animated transition between both projections (intermediate
values of t between 0 and 1) reveals “on the fly” different groupings
of the samples of the same cancer using both representations. Apart
from a detectable group A in the gene view revealing samples with a
similar global gene behavior, a particularly noticeable, and potentially
more significant cluster, B, emerges within seconds (a user gesture in the

interface) when giving more weight to the miRNA view, which might have
clinical relevance with implications in diagnosis, prognosis or analysis of
response to treatment, and may also suggest possibilities of biomarkers
with potentially useful clinical applications.

Note also that during navigation between views the user can visually
track a selection the samples along the change; this allows the user to keep
in mind their belonging to the emerging groups, being a powerful aid in
the identification of the common traits of the discovered groups, specially
if combined with tooltip and selection mechanisms.

2.3.2 Morphing between tSNE and clinical views
Clinical data provide essential information to complement gene expression
data, since in most cases the ultimate target is to discover connections
between the gene activity and its clinical manifestation. Typical clinical
variables include cancer type, gender, ethnicity, type of tumor (metastatic),
stage of the tumor, etc. These variables often contain a reduced number of
groups (e.g. two groups male/female for sex) so that all samples are mapped
to positions P clinical = {pclinical

j }. Fig. 2(b) shows four morphing
steps between an all-gene tSNE projection for three cancer types (prostate,
ovarian, melanoma) and a dominant gender encoding with data split around
two different locations {pmale,pfemale}. The morphing sequence shows
how for gender-specific cancers (prostate and ovarian, dark and light blue,
respectively) points are not split towards the two male/female positions in
the gender view on the right, while for melanoma (green), which affects
both genders, the cluster is split into two groups of points that move towards
the two end positions in the gender view. Note that due to the linear nature
of the morphing operation, the relative positions among samples of a same
gender are preserved in the right view, allowing for an independent (and
consistently comparable) analysis on both groups.

3 Results
We present in this section three case studies using MP to explore data
including gene expressions and related clinical metadata. It should be
pointed out that, despite the descriptions presented here are rather detailed,
in all cases the whole discovery process may take only a few seconds.

Case 1 specifically focuses in the workflow and in revealing the
strengths of the method in presenting gene expression and disease
information in a rich number of ways, with agile procedures to change
among qualitatively different perspectives of a problem. The video,
available in the supplementary material, includes first a free use of the tool
(without a predefined goal analysis), demonstrating how its exploratory
richness favors discovery. Then, as an example, it shows how salient
displacement of certain samples between gene and miRNA expression
tSNEs reveals a misclassification in the original TCGA dataset and explains
the reason for that. This second part is detailed below.

Cases 2 and 3, also with accompanying videos in the supplemental
material, describe the discovery process using the MP approach to validate
known results in the literature. It must be pointed out that the focus of the
examples are not the results themselves, but to show how interactivity
and user steered adaptive views speed up the discovery process and pose
a highly competitive alternate way of analysis over other methods in the
exploration tasks.

3.1 Case study 1: Morphing Projections as an exploratory
tool

This case study starts with the tSNE map of the gene expression for
all the samples in the TCGA set. This map offers a big picture where
samples appear well clustered by tissues due to the strong influence of gene
activity for cell differentiation over other factors. An alternative tSNE map
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Fig. 2. Morphing between two views showing several transition frames: a) tSNE-genes vs. tSNE-miRNA in prostate cancer. MP reveals two different groupings A and B of the samples,
according to gene (left) or miRNA (right) expression levels. Cluster B emerges while the user changes (in a quick gesture, moving a slider) the view weights from genes to miRNA; b)
tSNE-genes vs. gender. Melanoma samples (green) are split in two clusters (male/female). Gender specific tumors (prostate and ovarian, dark and light blue), in turn, are not split.
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Fig. 3. Morphing between two tSNE maps: based on gene expression (left) and on miRNA expression (right). Two clusters have been highlighted: PCPG, containing pheochromocytomas
and paragangliomas, and PAAD, which are pancreatic adenocarcinomas. The left frame shows, inside a red circle, 6 samples located next to the PCPG cluster which are classified in the
TCGA database as PAAD tumors (although the used palette mapping has assigned them similar hues, making them almost indistinguishable). Increasing the encoding for the miRNA tSNE,
reveals that these samples move away together (depicted in the three insets). These samples are, in fact, pancreatic neuroendocrine tumors (panNETs). The morphing operation reveals
that, though they share common gene profiles, they can be differentiated by their miRNA profile. As seen in the accompanying video included in the supplementary material, the whole
exploratory process seen in the figure just takes the time of a drag gesture as the user moves a slider (a few seconds). The picture is updated all along in real time so the user never loses
continuity.

representation can be made using the miRNA expression, where samples
cluster by similar miRNA profiles. A morphing operation between these
two maps allows the user to track samples that fly away their original
cluster, or group together.

This is indeed the case in the example shown in Fig. 3. On the
left, we can see the tSNE map of the gene expression, where two
discrete clusters have been highlighted: PCPG, which are neuroendocrine
tumors of the adrenal medulla or paraganglia (pheochromocytoma and
paraganglioma), and PAAD, which are pancreatic adenocarcinomas,

derived from the exocrine pancreas. Interestingly, 6 PAAD did not
cluster with PAAD, but grouped with PCPGs. Exploration of the National
Cancer Institute GDC data public portal reveals that those 6 PAADs are
not actually pancreatic adenocarcinomas but pancreatic neuroendocrine
tumors (PanNETs). PAAD and PanNETs are two distinct entities that,
although emerge from the same organ, differ in their biological and clinical
properties. Whereas PAAD derive from the exocrine cells of the pancreas
and have poor prognosis, PanNETs derive from the neuroendocrine
pancreatic cells and tend to have better prognosis. Thus, PanNETs
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should not have been included in the PAAD study and, actually, this
misclassification has been claimed by Peran et al. (2018) in a revised
version of the TCGA data.

This example also illustrates that MP allows boost the cognitive
process by the interactive and remarkably expeditious reconfiguration
of the scatterplots combining gene and miRNA expression profiles. As
shown in Fig. 3, increasing the encoding from the miRNA profile-based
tSNE reveals that the 6 PanNET samples contained in the PCPG cluster,
move away together from the PCPG cluster. Thus, by introducing the
miRNA encoding in a continuous and fluid manner, a clear pattern emerges
(“pop-up” effect) allowing the discovery. This is due to one of the Gestalt
principles, the principle of common fate, where stimulus elements are
likely to be perceived as a unit if they move together. In this case
morphing analysis revealed that PanNETs and PCPGs share a similar
gene-expression profile but can be differentiated by their miRNA profile.
Collectively, these data alert that precautions should be taken when using
publicly available databases, and deliver a fast and efficient tool to depurate
big data and provide scientifically sounded hypothesis.

3.2 Selection of a cancer type for analysis

The next two case studies are depicted in Fig. 4. In both cases the
procedure starts with the tSNE map of gene expression for all available
cancers. The cancer type attribute is available (along with many other
clinical variables) in the data matrix for which a circular encoding can
be defined. By progressively adding weight to this circular encoding
(increasing tcircancer the mixing weight λcircancer is increased according to
a softmax function Eq. (6)) the original tSNE layout of the samples is
smoothly reorganized towards a circular view where different cancer types
are clustered on regularly spaced positions of the circle. In this view, with
λtSNE � λcircancer, the user can focus on a particular cancer type. Since
linear morphing has been used, this view preserves the mutual distances
among samples in the tSNE, being like having multiple single-cancer
tSNEs.

3.3 Case study 2: Overexpression in Serum Amyloid A1 as
marker for fatal outcome in clear cell renal cancer

In this example we use the MP approach to analyze the effect of a protein
Serum Amyloid A1 (SAA1) over clear cell renal cancer (CCRC – KIRC
in TCGA database). According to the literature (Paret et al. (2010)), this
protein is overexpressed in those tumors with a worst prognosis generally
resulting in metastasis and fatal outcome for patients.

As shown in Fig. 4, the first step is to focus on the clear cell renal cancer
samples, simply zooming over its position in the circular encoding showing
the different cancer types. Later, we can add an horizontal encoding for
the SAA1 gene expression. By smoothly increasing its weight λSAA1, an
horizontally ordered layout of tumor items by SAA1 expression emerges
(tumors with low expression levels of SAA1 to the left, and with high
expression levels to the right). Adding up a new vertical encoding for
tumor stage λstage, tumors of the 4 stages get progressively arranged into
4 horizontal layers, being the upper ones for late-stage tumors. Having
the samples separated by cancer and tumor stage, and being the horizontal
coordinate related to SAA1 expression, the user immediately observes that
samples concentrate on the left side for stages I and II, however, for stage
IV tumors, they concentrate on the right side, meaning higher levels of
expression.

Taking advance to this “tailored” layout, the user can also select two
groups of tumors, one for stage I and another for stage IV, for statistical
confirmation of the previous visual observation. Results show that SAA1
expression levels for stage I tumors yield µ = −1.76, σ = ±3.48, while
stage IV tumors get µ = 1.12, σ = ±3.66. A one-way ANOVA test

(N = 192) yields an F -value= 26.75 and a significance level p-value
< 0.001, which confirms that the previous difference is highly relevant.

3.4 Case study 3: Correlation of miR-210 and CA9 in
tumors with hypoxia

This case study shows how MP allow a visual confirmation of the
correlation between miR-210 (hsa-miR-210-3p) and CA9 expressions in
tumors with hypoxia (McCormick et al. (2013)). First a visual separation
of all cancer types can be obtained using a circular encoding by increasing
λcircancer. Then, adding vertical and horizontal encodings for CA9 and
miR-210 with smaller (user-tuned) mixture coefficients λhormir210, λ

ver
CA9,

naturally results in local xy scatterplots of miR-210 vs CA9 for each
cancer.

The resulting layout can be seen in Fig 4 (c). Immediately, the user
can spot emerging visual correlations on a per-cancer basis. Particularly,
it can be observed that there is a negligible correlation for stomach
cancer, while a visually appreciable correlation can be seen for CCRC
as well as for papillary renal cancer. The layout easily allows the user to
make individual selections for each cancer type. Numerical computation
of correlations on the three selections confirm the observations being
rstomach = 0.13 (p = 0.011), rCCRC = 0.8 (p < 0.001) and
rpapillaryRC = 0.63 (p < 0.001), the last two ones showing a weak
but relevant correlation, consistent with McCormick et al. (2013).

4 Discussion
A key aspect of the MP approach relies on combining it with interaction
mechanisms. In (Yi et al. (2007)) the authors describe seven categories
of interaction (select, explore, reconfigure, encode, abstract/elaborate,
filter, connect) that give a comprehensive view of interaction mechanisms
used in data visualization. Most of these categories are embraced by the
MP approach. For a fixed set of values of the interaction parameters ti,
the resulting scatterplot allows the user to perform a broad spectrum of
these interaction operations. Thus, the user can select a subset of the
points (for instance, a group of samples sharing a clinical condition, like
having metastasis, belonging to a given population group, or having a
certain range of expression values for a given gene or miRNA); these
interesting points can be highlighted over the non-selected points, and
this selection may be kept on upcoming rearrangements of the scatterplot,
revealing the roles of the selected samples in other views that may be based
on completely different contexts. Also, using scatterplots as the basis of
representation, the approach admits interaction mechanisms falling in the
abstract/elaborate category of Yi, such as zoom operations and tool-tips
showing detailed information, as well as explore mechanisms like panning.

However, one of its most relevant and distinctive features over other
approaches relies on allowing highly reconfigurable scatterplots. By
manipulating the interaction parameters t1, t2, . . . , tq , from which a
set of mixing coefficients λ1, . . . , λp are computed using the mixing
functionλ(t), the user modifies in a smooth manner the current scatterplot
composed of a weighted combination of meaningful spatial encodings (e.g.
tSNE-based 2D maps of samples, circular or linear encodings describing
particular gene expressions, cancer types, gender or races, etc., that act
as basis views or layouts), producing animated transitions that provide an
immediate feedback. User actions on the ti during this operation become,
in this way, closely coupled to what the user sees, thereby producing
a powerful virtuous cycle in the analytics process that fully engages
visuomotor mechanisms of the cognitive process.

Inspired in the generic model on visualization proposed by Van Wijk
in (Van Wijk (2005)), Fig. 5 describes the workflow of the MP approach
described above. The amount of knowledgeK gained by the user depends
on the visual information (the current scatterplot) fed to the user through
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(c)

Increase weight of “SAA1” (horizontally), then “tumor stage” (vertically)

Add “CA9” (vertically) and “miR-210-3p” (horizontally) then zoom

r =0.63 𝑝<0.001

r =0.8 𝑝<0.001

r =0.13 𝑝=0.11

tSNE (all cancers) “cancer type”
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Increase weight of “cancer type” encoding (circular)

SAA1 expression level
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Fig. 4. Case studies using morphing approach for discovery of relevant facts. In a) the user selects the target cancer by increasing the weight of cancer type; case 1 is described in b), showing
the discovery of overexpressed serum amyloid A1 gene (SAA1) in late stages of clear cell renal cancer (CCRC / KIRC), first selecting the target cancer and then increasing the weights of
vertical tumor stage encoding; case 2 is shown in c) showing the visual discovery of relevant correlations between hypoxia related expressions, by increasing the weights of vertical and
horizontal encodings of miR-210 and CA9 levels.

the perception system P , and the current user’s knowledge. Also, based
on current knowledge K, the user modifies the view through interactive
exploration, E, that include the classical interaction mechanisms zoom,

selection, pan, etc., and reconfiguration of the current view by means of
the interaction parameters ti according to the morphing operation.
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4.1 Computational limitations and suitability for big data

The workload of the numerical computation, based on simple math
operations, is negligible with respect to graphical burden. The
computational efficiency of our approach is mainly limited by the number
of items being displayed in the graphical display and the need to comply
with a reasonable latency to support fluid animated transitions. In our
experiments a web-based interface using canvas to display elements
(developed under Python/Bokeh, with javascript callbacks) is able to
display orders of 104 items (e.g. tumour samples, etc.) in a fluid manner.
However, using desktop interfaces and advanced GPU-based graphical
libraries could improve this substantially.

It must be pointed out, however, that the morphing projections
framework admits aggregation operations, as described in Eq. (3),
making it suitable for big data applications. Applications could be
developed using aggregations that compact many items into a single group
(binned aggregation), and Abstract/Elaborate (aggregate/disaggregate)
interactions to switch between detail or big picture, in this way the number
of displayed elements may be several orders of magnitude smaller than the
overall analyzed items, allowing to tackle big data problems.

5 Conclusions
As biomedical data grows, researchers in the field are in need of more
and more powerful techniques to manipulate this overwhelming amount
of data. While there has been an enormous boost in machine learning and
visualization techniques, these usually offer static views of this data, are
sometimes complex to use, and do not take full advantage of the expert’s
knowledge in the analysis process.

Adding a smooth real-time interaction that allows the expert to re-
arrange the visualized data according to different criteria is a powerful
approach to both improve the analysis process, and the expert’s knowledge,
and it is a very efficient way to lay down relevant questions and establish
new research hypotheses.

In this work we have presented the use of a technique called morphing
projections, which relies on a set of basis views (typically 2D scatterplots)
consisting of spatial encodings that lay out the samples according to
meaningful attributes, or by sample similarities, that are blended by
the user along the analysis process into a live animated view that is
a combination of the basis views in different user-defined proportions.
Morphing projections combines high doses of interaction with a highly
visual approach, allowing the user to reconfigure the views “on the
fly” to focus on demand into different sets of attributes of interest. Its
capabilities were illustrated with two case studies in the field of genomics
that reproduced some findings in the literature.

The main strength of this technique relies in that it combines in a
seamless way one or more state-of-the-art techniques for data visualization
of gene expression like the t-SNE (or any other dimensionality reduction
techniques) and other 2D scatterplot visualizations, making it able for the
user to compose in seconds, for instance, views with local tSNE plots
arranged by cancer type, race, gender, disease stage or any other criteria,
to do complex selections at any moment on the current view for posterior
analysis, or to track the trajectories of the selected samples for user-driven
changes in the layout according to different criteria.

Indeed, for instance, in case study 1, we learnt that PanNETs differ
from PCPGs and PAADs in their miRNA expression profile. This is a
novel, not previously reported finding. Any future investigations aimed
at uncovering disease-related mechanisms, clinically useful biomarkers,
or therapeutic targets, should be aware of these common and specific
molecular traits of PAADs, PanNETS and PCPGs.

It must be pointed out, however, that the main role of MP is to facilitate
the exploration of large biomedical datasets (providing a fast, friendly and

interactive visual analysis of the data), not to generate medical results or
evidences. The use of the tool allows to raise hypotheses that could lead to
the generation of new knowledge, but this will always depend on the quality
of the data and the good judgment of the user along the process. In this
regard, we have shown, in the section on results, the exploratory process
(use cases) that would be followed by a user whose decision making were
based on expert medical criteria. Also, as part of a fair methodological use
of a visual approach, the conclusions obtained must be accompanied by
the assumptions and hypotheses used to generate them to avoid common
pitfalls (such as cherry picking or data dredging); it should also be kept in
mind that MP is an early stage in a longer process, where the observations
should not be taken as conclusive and must be subsequently validated by
other means.

We have also presented a rigorous formulation of the morphing
projections idea in two ways. First, including a mathematical framework
of the morphing operations with a close connection to relational algebra,
that lays the basis for future generalizations of the approach, and, in
addition, allows to pose the method operations in terms of primitives
available in numerous software libraries and tools of the field, facilitating
the development of new exporatory tools. And second, presenting the
connections of our approach to the factors that improve the user’s cognitive
process for data analysis, highlighting the user-interaction and data
visualization features of the approach.

Supplementary material
The following supplementary material to this paper has been provided: a)
videos for the case studies described in the paper; b) a small demo web
app with the ability to reproduce the reported cases; c) the details and code
of the whole procedure described in section 2.1.
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