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Actinobacteria are the main producers of bioactive natural products essential for human
health. Although their diversity in the atmosphere remains largely unexplored, using
a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria
strains, isolated from 13 different precipitation events at three locations in Northern
and Southern Spain. Rain samples were collected throughout 2013–2016, from events
with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to
estimate the sources and trajectories of the air-mass that caused the rainfall events.
Five-day backward air masses trajectories of the diverse events reveals a main oceanic
source from the North Atlantic Ocean, and in some events long range transport from
the Pacific and the Arctic Oceans; terrestrial sources from continental North America
and Western Europe were also estimated. Different strains were isolated depending on
the precipitation event and the latitude of the sampling site. Taxonomic identification by
16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to
two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces,
thus increasing the number of species of this genus isolated from the atmosphere.
Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were
isolated in some events. These results reinforce our previous Streptomyces atmospheric
dispersion model, which we extend herein to the genus Nocardiopsis. Production of
bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses
of Streptomyces and Nocardiopsis metabolites with natural product databases led to
the identification of multiple, chemically diverse, compounds. Among bioactive natural
products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have
antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory,
immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were
found. Our findings suggest that over time, through samples collected from different
precipitation events, and space, in different sampling places, we can have access to a
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great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural
products, from remote and very distant origins, thus highlighting the atmosphere as
a contrasted source for the discovery of novel compounds of relevance in medicine
and biotechnology.

Keywords: Streptomyces, Nocardiopsis, actinomycetes, antibiotic, antimicrobial, antitumor

INTRODUCTION

In nature, members of the Phylum Actinobacteria continue to
be the main producers of structurally diverse bioactive natural
products, essential for human health. Among Actinobacteria,
species of the Streptomyces genus are the most prolific source
of novel compounds of medical and industrial relevance as
antibiotic and anticancer drugs urgently needed to overcome
clinical resistance and toxicity problems. Although traditionally
considered soil bacteria, there is increasing evidence that
Streptomyces species are ubiquitous, being present not only on
terrestrial ecosystems, but also in some of the most extreme and
less explored environments on our planet such as the oceans
and the atmosphere.

New trends in drug discovery include the search for
novel bioactive Actinobacteria in unexplored or underexplored
environments. Previous reports in oceanic and atmospheric
environments of the Cantabrian Sea region (North Spain,
Northeast Atlantic) revealed that phylogenetically diverse
Actinobacteria, with a great pharmacological potential, are
widespread among intertidal and subtidal seaweeds (Braña et al.,
2015; Sarmiento-Vizcaíno et al., 2016) and also among deep-
sea coral reefs ecosystems (Sarmiento-Vizcaíno et al., 2017b),
where a novel barotolerant actinobacterium, Myceligenerans
cantabricum, was isolated (Sarmiento-Vizcaíno et al., 2015).
Some of these marine strains were the source of nine new
biologically active natural products with antibiotic properties
against clinically relevant antibiotic resistant pathogens and
cytotoxic activities toward diverse human cancer cell lines (Braña
et al., 2017a,b; Sarmiento-Vizcaíno et al., 2017b; Ortiz-López
et al., 2018; Rodríguez et al., 2018).

Strains belonging to three Streptomyces species widespread
among these coastal and deep-sea habitats (Streptomyces
cyaneofuscatus, Streptomyces carnosus, and Streptomyces
albidoflavus) were also isolated from different cloud precipitation
events happened in the Cantabrian Sea Coast (Braña et al.,
2015; Sarmiento-Vizcaíno et al., 2016). Since then, atmospheric
precipitations (hailstone, rainwater and snow) were used
as natural sampling tools for the study of actinobacterial
diversity in the atmosphere. Bioactive strains corresponding
to about 3–4% of known Streptomyces species were isolated
after precipitations and found to produce a great number of
natural products with different biological activities, mainly
as antimicrobial and anticancer agents (Sarmiento-Vizcaíno
et al., 2018). These atmospheric-derived strains also produced
38 molecules not found in Natural products databases, thus
revealing the atmosphere as a novel and promising source for
natural product discovery.

Based on previous observations of cultivable Streptomyces
species isolated in recent years from different precipitation
events on the Cantabrian coast, an atmospheric dispersal model
was proposed to explain the cosmopolitan distribution of
highly halotolerant Streptomyces species (Sarmiento-Vizcaíno
et al., 2016). According to this model, coupled to the Earth’s
hydrological cycle, marine bioaerosols forming clouds contribute
to the transfer of Streptomyces from oceans into the atmosphere,
were they travel dispersed by winds, falling down to the earth
by precipitation. Further support for this model came from a
culture-independent approach, which reported Actinobacteria
among the most dominant phyla in atmospheric precipitations
in Japan, also showing seasonal variations in correlation with
estimated air mass trajectories (Hiraoka et al., 2017). Connections
between oceans, clouds and atmosphere, and their relevance in
atmospheric chemistry and climate were addressed through the
study of sea spray aerosols (Cochran et al., 2017). Actinobacterial
transfer into sea spray aerosols in an experimental ocean-
atmosphere mesocosm was also reported (Michaud et al., 2018).

FIGURE 1 | Sampling locations in Spain. Overview of the European Seas
(Atlantic Ocean). Stars indicate the sampling locations in Northern and
Southern Spain.
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FIGURE 2 | Bioassay diffusion assays. Micrococcus luteus was used as indicator microorganism. The zones of complete inhibition are measured as the diameters in
mm. (A) Agar plugs. (B) AA discs loaded with ethyl acetate extracts of the isolates.

In a culture dependent approach, we provide here further
insights into the phylogenetic and secondary metabolic diversity
of bioactive atmospheric Actinobacteria isolated from rainwater

TABLE 1 | Antibiotic activities of atmospheric Actinobacteria cultures against a
panel of Gram-negative, Gram-positive bacteria and fungi.

Strain Escherichia Micrococcus Streptomyces Saccharomyces

coli luteus 85E cerevisiae

A-43 − 12 11 −

A-50 − 22 10 −

A-53 − 13 18 −

A-69 − − 10 −

A-87 11 24 11 16

A-139* 18 19 13 −

A−167 − 14 10 −

A-169 − − 11 −

A-171 − 11 12 13

A-178 − − 25 −

A-179 13 32 9 −

A-241 − 11 − −

A-249 − − − 24

A-250 22 30 29 43

A-254 − − 12 −

A-256 − 11 13 −

A-257 − − 9 −

A-258 − 33 − −

A-260 − − 11 −

A-261 − 24 20 −

A-262 − 16 10 −

A-263 18 − − −

A-265 − 14 11 −

A-266 − 10 − −

A-268 − 10 11 21

A-269 − 15 26 −

A-271 − 33 28 −

The assays were initially performed with agar plugs from cultures and activities
were estimated as the zones of complete inhibition (diameter in mm). The asterisk
indicates that antibiotic activity was only detected in liquid cultures.

in precipitations events from Westerly winds in Spain over
4 years’ time. This approach involved rainwater sampling
from different locations in Spain, meteorological analyses,
taxonomical and phylogenetic analyses with identification at
species level. Antimicrobial assays, metabolic profiling and LC-
UV-MS analyses of compounds produced were used to assess the
Actinobacteria biosynthetic diversity.

MATERIALS AND METHODS

Sampling of Atmospheric Precipitations
Atmospheric precipitations samples, including rainwater,
hailstone and snow were collected within years 2013–2016
at the North of Spain, at the Cantabrian Sea coastal region
of Asturias (Figure 1). This is a remarkably wet and rainy
region, whose climate is under the influence of the Atlantic
Ocean. Samples of 2–3 mL were taken in sterile recipients
at the localities of Gijón (43◦ 32′ N, 5◦ 39′ W), and Oviedo
(43◦ 21′ N, 5◦ 52′ W) and plated on selective agar media as
previously described (Braña et al., 2015; Sarmiento-Vizcaíno
et al., 2016). An additional rain sample (50 mL) was collected
in 2016, in Seville (37◦ 23′ N, 5◦ 59′ W), Andalusia, South of
Spain. Seville has a Mediterranean climate and is considered
one of the warmest cities in continental Europe. During all
precipitation events sampled here the prevailing wind direction
has been Western.

Isolation of Actinobacteria Strains and
Culture Media
A collection of cultivable Actinobacteria strains were obtained
after plating of precipitation samples on selective agar media,
prepared with cycloheximide (80 µg mL−1) as antifungal
and nalidixic acid (20 µg mL−1) as anti-Gram negative
bacteria, using MOPS BLEB 1/6 (Oxoid) basal medium
as previously reported (Sarmiento-Vizcaíno et al., 2016).
Two different media either prepared with distilled water or
with a supplement of 3.5% NaCl were used in selection
plates. After 2–3 weeks of incubation at 28◦C, colonies were
selected based on different morphological features and pigment
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production on R5A agar plates. Isolated pure cultures were
conserved in 20% glycerol at both −20◦ and −70◦C. For
halotolerance studies, MOPS BLEB 1/6 (Oxoid) was used
as the basal medium, adding NaCl at 0, 3.5, 7.0, and
10.5% (w/v) final concentrations. R5A medium was used
for secondary metabolite production as previously described
(Sarmiento-Vizcaíno et al., 2018).

Bioactive Strains Selection
The antimicrobial activities of isolates were determined by agar
diffusion methods using the following indicator microorganisms:
the Gram-positive bacteria Micrococcus luteus ATCC 14452 and
Streptomyces 85E ATCC 55824, the Gram-negative Escherichia
coli ESS, and the yeast Saccharomyces cerevisiae var. carlsbergensis
as previously reported (Sarmiento-Vizcaíno et al., 2018).
Analyses were performed in TSA1/2 (Merck) against bacteria
and in Sabouraud 1/2 (Pronadisa) against yeast. For antibiotic
production Actinobacteria cultures were routinely cultured.
Figure 2 shows an example of bioassays performed against
Micrococcus luteus as indicator bacteria. Agar plugs of 7 mm

diameter from Actinobacteria cultures on solid R5A medium
(Figure 2A) were assay for initial selection of bioactive
isolates. Also Kirby-Bauer based test using with 6-mm-diameter
AA Discs (Whatman), loaded with ethyl acetate extracts of
bioactive isolates, were performed (Figure 2B). Agar plugs assays
detect all diffusible compounds produced by actinobacterial
strains, both polar and apolar, whereas the AA discs bioassays
only detect diffusible apolar molecules which were extracted
with ethyl acetate.

Air Mass Backward Trajectories
Analyses
To estimate the long-range transport journey of air masses that
originated the precipitation events herein studied, backward
trajectories were generated using the HYSPLIT model (Hybrid
Single Particle Lagrangian Integrated Trajectory) from the Global
Data Assimilation System of National Oceanic and Atmospheric
Administration, United States (Stein et al., 2015). To track the
transport pathways of air masses and determine the origin of
diverse air parcels, 5-day backward trajectories (used generally

FIGURE 3 | (Continued)
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FIGURE 3 | Five-day backward trajectories of air masses generating the storms that arrived at Spain and caused the diverse precipitation events. They were
calculated with the NOAA HYSPLIT Model with three different transects with different arriving height as previously reported (Sarmiento-Vizcaíno et al., 2018). The
sampling locations were used as the backward trajectory start point with altitudes over sea level of 30, 1,000, and 3,000 m (Gijón), 300, 1,000, and 3,000 m
(Oviedo), and 7, 1,000, and 3,000 m (Seville). Sampling places are indicated by the black asterisks.
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TABLE 2 | Phylogenetic diversity of atmospheric-derived bioactive Actinobacteria isolates.

Strain EMBL A. N. NaCl% Closest homolog A. N. % homology (bp) Homolog isolation
source

References

Nocardiopsis sp. A-43 LR702033 7 Nocardiopsis alba DSM
43377

X97883 100 (685/685) Honeybees gut,
United States;

mushroom compost
bioaerosol, Poland

Qiao et al., 2012;
Paściak et al., 2014

Streptomyces sp. A-50 LR702034 3.5 Streptomyces
spinoverrucosus NBRC

14228

AB184578 99.8 (985/987) Marine Hu et al., 2012;

Streptomyces sp. A-53 LR702035 3.5 Streptomyces
phaeofaciens NBRC

13372

AB184360 99.7 (765/767) Soil, Japan Okamoto et al.,
1986

Streptomyces sp. A-69 LR702036 3.5 Streptomyces
sannanensis NBRC

14239

AB184579 99.7 (971/974) Fresh water lake
habitat, India

Singh et al., 2014

Streptomyces sp. A-87 LR702037 10.5 Streptomyces cacaoi
NBRC 12748

AB184115 100 (993/993) Cacao beans Shirling and
Gottlieb, 1968

Streptomyces sp. A-139 LR702038 3.5 Streptomyces
daqingensis
NEAU-ZJC8

KF982696 99.5 (764/768) Saline-alkaline soil,
China

Pan et al., 2016

Streptomyces sp. A-167 LR702039 7 Streptomyces
heliomycini NBRC

15899

AB184712 99.8 (988/990) Marine-derived,
Saudi Arabia

Wang et al., 2017

Nocardiopsis sp. A-169 LR702040 7 Nocardiopsis
synnemataformans

IMMIB D-1215T

Y13593 99.3 (987/994) Marine, terrestrial Bennur et al., 2015

Streptomyces sp. A-171 LR702041 7 Streptomyces griseolus
NBRC 3415

AB184768 100 (964/964) Soil, Russia Grammatikova
et al., 2003

Streptomyces sp. A-178 LR702042 7 Streptomyces
cyaneofuscatus 2–6

KJ571029 99.7 (959/962) Marine, terrestrial and
atmospheric, Spain

Sarmiento-Vizcaíno
et al., 2016; 2018

Streptomyces sp. A-179 LR702043 3.5 Streptomyces
lateritiusLMG 19372

AJ781326 99.8 (969/971) Soil Elson et al., 1988

Streptomyces sp. A-241 LR702044 3.5 Streptomyces collinus
NBRC 12759

AB184123 99.9 (710/711) Soil, Germany Rather et al., 2013

Streptomyces sp. A-249 LR702045 7 Streptomyces griseolus
11–11

KJ571072 99.9 (961/962) Soil Harder et al., 1991

Streptomyces sp. A-250 LR702046 3.5 Streptomyces floridae
NBRC 15405

AB184656 99.8 (950/952) Soil, Himalaya Hussain et al., 2018

Streptomyces sp. A-254 LR702047 3.5 Streptomyces
durmitorensisMS405

DQ067287 99.9 (974/975) Soil, Serbia and
Montenegro

Savic et al., 2007

Nocardiopsis sp. A-256 LR702048 10.5 Nocardiopsis
synnemataformans

IMMIB D-1215T

Y13593 99.3 (987/994) Marine, terrestrial Bennur et al., 2015

Nocardiopsis sp. A-257 LR702049 10.5 Nocardiopsis
synnemataformans

IMMIB D-1215T

Y13593 100 (1002/1002) Marine, terrestrial Bennur et al., 2015

Streptomyces sp. A-258 LR702050 3.5 Streptomyces
graminofaciens NBRC

13455

AB184416 100 (968/968) Soil, Japan Fukuchi et al., 1995

Nocardiopsis sp. A-260 LR702051 7 Nocardiopsis
synnemataformans

IMMIB D-1215T

Y13593 100 (978/978) Marine, terrestrial Bennur et al., 2015

Streptomyces sp. A-261 LR702052 7 Streptomyces
albogriseolus DSM

40003

AY177662 100 (977/977) Sea sediment, China
Sea

Cui et al., 2007

Streptomyces sp. A-262 LR702053 7 Streptomyces
griseorubens NBRC

12780

AB184139 100 (965/965) Soil, China Xu and Yang, 2010

(Continued)
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TABLE 2 | (Continued)

Strain EMBL A. N. NaCl% Closest homolog A. N. % homology (bp) Homolog
isolation source

References

Streptomyces sp. A-263 LR702054 7 Streptomyces albus
NRRL B-1811

NR118467 100 (990/990) Atmosphere, soil,
marine sediment,

Spain

Sarmiento-Vizcaíno
et al., 2018;

Schleissner et al.,
2011; Labeda

et al., 2014

Streptomyces sp. A-265 LR702055 3.5 Streptomyces
heliomycini 173574

EU593729 99.7 (978/981) Marine-derived
Saudi Arabia

Wang et al., 2017

Streptomyces sp. A-266 LR702056 7 Streptomyces
cellulosae NRRL

B-2889T

DQ442495 99.9 (991/992) Soybean root Liu et al., 2013

Streptomyces sp. A-268 LR702057 7 Streptomyces griseolus
NBRC 3415

AB184768 99.9 (963/964) Soil, Russia Grammatikova
et al., 2003

Streptomyces sp. A-269 LR702058 3.5 Streptomyces
sannanensis NBRC

14239

AB184579 99.3 (949/956) Fresh water lake
habitat, India

Singh et al., 2014

Streptomyces sp. A-271 LR702059 3.5 Streptomyces griseus
TBGT

KX269853 99.7 (950/953) Soil; Mariana
Trench sediment

(10,898 m), Pacific
Ocean

Goodfellow and
Williams, 1983;

Pathom-Aree et al.,
2006

in bioaerosol studies) were obtained using the NOAA model.1

To find out the trajectories of atmospheric air masses, the
sampling locations were used as the backward trajectory start
point with altitudes over the sea level of 30, 1,000 and 3,000
m (Gijón), as previously reported (Sarmiento-Vizcaíno et al.,
2018); 300, 1,000, and 3,000 m (Oviedo) and 7, 1,000, and
3,000 m (Seville).

16S RNA Analysis Identification and
Phylogenetic Analysis
For taxonomic identification of the strains, DNA was extracted
with a microbial isolation kit (Ultra Clean, MoBio Laboratories,
Inc.) and standard methods were used for checking the
purity (Russell and Sambrook, 2001). Partial 16S rRNA gene
sequences of the bacterial strains were obtained by using the
616V (forward) and 699R (reverse) primers (Arahal et al.,
2008) in PCR amplification as previously described (Braña
et al., 2015). The nucleotide sequences were compared to
sequences in databases using the BLAST program (Basic Local
Alignment Search Tool) against the NCBI (National Centre for
Biotechnology Information), submitted and deposited in the
EMBL sequence database with accession numbers LR702033-
LR702059. Phylogenetic analysis of the strains based on
16S rRNA sequences was performed as previously reported
(Sarmiento-Vizcaíno et al., 2018).

Chromatographic Analysis
Plugs of R5A plates (about 7 mL) were extracted using ethyl
acetate in neutral and acidic (1% v/v formic acid) conditions.
After evaporation, the organic fraction residue was redissolved
in 100 µL of a mixture of DMSO and methanol (50:50). The
analyses of the samples were performed by reversed phase liquid

1http://ready.arl.noaa.gov/hypub-bin/trajtype.pl?runtype=archive

chromatography as previously described (Braña et al., 2015;
Sarmiento-Vizcaíno et al., 2016).

Identification of Compounds by
LC-UV-Vis and LC-UV-HRMS Analyses
Samples were first analyzed and evaluated using an in-house
HPLC-UV-Vis database. LC-UV-HRMS analyses were carried
out as previously reported (Pérez-Victoria et al., 2016; Sarmiento-
Vizcaíno et al., 2018) and major peaks in each chromatogram
were searched against the MEDINA’s internal database and also
against the Dictionary of Natural Products (DNP) (Chapman &
Hall/CRC, 2015).

RESULTS

Isolation and Characterization of
Bioactive Atmospheric Actinobacteria by
Sampling Multiple Precipitation Events in
Spain
The strains herein studied were obtained from a unique
Actinobacteria collection generated, during 4 years’ time frame
(2013–2016) from diverse atmospheric precipitation events in
Spain, as previously reported (Sarmiento-Vizcaíno et al., 2018).
After a dereplication process involving phenotypical features,
antibiotic activity and also meteorological analyses (see next
section), 27 morphologically different bioactive strains isolated
from rainwater from storm clouds transported by Western winds
were selected for this study. Table 1 shows the results of initial
antibiotic analyses of selected strains against a panel of indicator
microorganisms (bacteria and fungi) by using agar diffusion
assays (Figure 2A). The strains were isolated from samples
collected in 12 rainfall events, and one hailstone event (A-241)
at three different locations in Spain. The three different sampling
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FIGURE 4 | Neighbor-joining phylogenetic tree generated by distance matrix analysis of 16S rRNA gene sequences from atmospheric Actinobacteria (Streptomyces
and Nocardiopsis) strains (highlighted) and nearest phylogenetic relatives. The numbers on branch nodes indicate bootstrap values (1,000 resamplings; only
values > 50% are shown). Bar represents1% sequence divergence.
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places are shown in Figure 1. Among the 27 bioactive isolates,
18 were obtained from samples collected in the North Spain
(43◦ N), 12 in the Cantabrian Sea coast (Gijón) and six strains
at 28 km inland (Oviedo); finally 9 strains were isolated from a
single rainfall event in South Spain (Seville, 37◦ N).

Backward Transport Trajectories
Analyses
Meteorological analyses were performed to estimate the sources
and trajectories of the different air masses that originated the
precipitation events in which the selected strains were isolated.
These sources were estimated using 5 days HYSPLIT backward
trajectories. As shown in Figure 3, most backward trajectories
showed air masses traveled eastward off the Atlantic Ocean
toward continental Europe. As estimated, the air masses reaching
the three sampling sites in Spain were predominantly of marine
origin. In the atmospheric precipitation events herein studied,
different air masses were transported by westerly winds (traveling
at different altitudes) mainly from the Atlantic Ocean. In some
events, that will be further stated, the trajectory also involves
long-range transport from continental America, the Arctic Ocean
and even the Northern Pacific Ocean, to downwind areas, such as
the sampling place in continental Europe.

Taxonomic Identification and
Phylogenetic Analyses of Bioactive
Isolates
Identification of airborne-derived bioactive strains was
determined by sequencing fragments of their 16S rRNA
gene. Nucleotide sequences were then deposited in the EMBL
database, and corresponding accession numbers are shown on
Table 2. Phylogenetic analyses of isolates (Figure 4), based on
16S rRNA gene alignments, demonstrate that all isolates belong
to two different genera among the Phylum Actinobacteria, since
they share 99–100% identity with known actinobacterial species.
As shown in Table 2, the identified strains have their closest
homologs in previous species isolated from very diverse oceanic
and terrestrial habitats. Among 27 studied isolates, 23 belonged to
the Streptomyces genus, as previous reports in this environment.
Interestingly, all these species are different from the ones isolated
in a hailstone precipitation event from clouds transported by
prevalent Northwestern winds (Sarmiento-Vizcaíno et al., 2018),
thus suggesting that depending on the wind direction different
strains can be isolated.

In addition, isolates belonging to the actinobacterial genus
Nocardiopsis were herein identified in two precipitation
events. A Nocardiopsis alba homolog, isolated in one of the

TABLE 3 | Antibiotic activities of ethyl acetate extracts of the strains.

Strain Escherichia coli Micrococcus luteus Streptomyces 85E Saccharomyces cerevisiae

Nocardiopsis sp. A-43 − 17/19 ND −

Streptomyces sp. A-50 − 20/19 ND −

Streptomyces sp. A-53 −/8 14/22 ND −

Streptomyces sp. A-69 − 9/− ND −

Streptomyces sp. A-87 10/9 24/24 ND 18/15

Streptomyces sp. A-139 −/18 −/19 ND −

Streptomyces sp. A-167 13/− 11/− − −

Nocardiopsis sp. A-169 − − − 11/11

Streptomyces sp. A-171 18/− 13/− 25/26 −

Streptomyces sp. A-178 9/10 24/19 34/21 −

Streptomyces sp. A-179 − 10/− − −

Streptomyces sp. A-241 − 30/25 − −

Streptomyces sp. A-249 ND 25/19 −/10 21/19

Streptomyces sp. A-250 ND 44/38 41/45 38/40

Streptomyces sp. A-254 ND 22/21 28/28 −

Nocardiopsis sp.A-256 ND 23/27 − 10/13

Nocardiopsis sp. A-257 ND 13/14 − 10/11

Streptomyces sp. A-258 ND 44/44 − −

Nocardiopsis sp. A-260 − −/12 −/13 −

Streptomyces sp. A-261 − 32/30 −/11 −

Streptomyces sp. A-262 ND −/12 − −

Streptomyces sp. A-263 17/18 −/12 −/10 −

Streptomyces sp. A-265 − 10/15 − −/9

Streptomyces sp. A-266 − 19/17 − −

Streptomyces sp. A-268 − 24/17 − 17/15

Streptomyces sp. A-269 − 30/31 − −

Streptomyces sp. A-271 −/12 23/28 30/22 −

Extracts obtained from 7 mL of culture, obtained in neutral and acidic conditions, were resuspended in 50 µL of DMSO-methanol (1:1) from which 15 µL were loaded
onto AA discs. The discs were allowed to fully dry before applying to the indicator strain culture.
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FIGURE 5 | UV210 nm chromatogram of samples A-254 and A-256 with peaks annotated showing dereplicated components. Dereplicated components in sample
A-254: (1) Cyclo(prolylvalyl), (2) Cyclo(leucylprolyl), (3) Cyclo(phenylalanylprolyl), (4) Cyclo(prolytryptophyl), (5) C21H38NO9(related to ravidomycin but with a molecular
formula not found in the Dictionary of Natural Products), (6) Deacetylravidomycin, (7) C30H33NO9(related to ravidomycin but with a molecular formula not foundin the
Dictionary of Natural Products), (8) Ravidomycin, (9) C40H57NO10(molecular formula not found in the Dictionary of Natural Products), (10) Tetronomycin, (11)
Salaceyin A and (12) Salaceyin B. Dereplicated components in sample A-256: (1) Bisucaberin B, (2) Cyclo(leucylprolyl), (3) Kahakamide A, (4) Endophenazine D, (5)
Dihydroxyphenazine, (6) 1-Hydroxy-6-methoxyphenazine, (7) 1-Phenazinecarboxylic acid, (8) Piperafizine B, (9) 3-Benzylidene-6-(4-methoxybenzylidene)-2,5-
piperazinedione, (10) 4′-Methoxyneihumicin or XR 330.

North sampling places (Gijón), and several Nocardiopsis
synnemataformans homologs in the South sampling place
(Seville), which differ approximately in 6 latitudinal degrees.
Nocardiopsis species were previously reported both in terrestrial
and aquatic ecosystems (Bennur et al., 2015; Table 2) and are
considered of pharmaceutical and biotechnological relevance due

to its ability to produce diverse bioactive secondary metabolites
(Bennur et al., 2016; Ibrahim et al., 2018).

A generalized feature of all Actinobacteria here studied
is their ability to tolerate high NaCl concentrations, in
the range 3.5–10.5% (Table 2). This high halotolerance is
in agreement with previous reports within Streptomyces
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TABLE 4 | Identified compounds produced by atmospheric derived Actinobacteria
strains and their biological activities.

Compound LC/MS Strain Biological activities

1-(2-Aminophenyl)ethanone/
Phenylacetamide*

A-50 Antibacterial (Lu et al., 2020)

1-(Hydroxymethyl)-1H-indole-3-
carboxylic
acid

A-263 Antifouling (Wang et al., 2020)

1-Hydroxy-6-methoxyphenazine A-256,
A-257

Antimicrobial? Cook et al.,
1971)

10-Oxide-1,8-Phenazinediol/5-
Oxide-1,6-Phenazinediol/2,3,7-
Phenazinetriol*

A-260 Antibiotic, antitumor,
antimalaria, and antiparasitic
activities (Laursen and
Nielsen, 2004)

1-Methoxyphenazine A-257 Antichlamydial activity (Bao
et al., 2020)

1-Phenazinecarboxylic acid A-169,
A-256

Antifungal (Ye et al., 2010)

1-Phenazinol/2-Phenazinol* A-260 Antibiotic (Vivian, 1956; Lu
et al., 2013)

2,3,7-Phenazinetriol A-257 Antibiotic, antitumor,
antimalaria, and antiparasitic
activities (Laursen and
Nielsen, 2004)

2096D A-263 Antiparasitic (Kelly et al.,
2020)

2-(Acetoxymethyl)quinoline A-179 Potential photoprotective
(Sánchez-Suárez et al., 2020)

2-Hydroxy-1-(1H-indol-3-
yl)ethanone/1H-Indole-3-carboxy
Me ester/3-Indolylacetic
acid/Skatole-2-carboxylic acid*

A-241 Antibacterial and antihelmintic
(Himaja et al., 2010)

3-(Hydroxyacetyl)-1H-indole/1H-
Indole-3-acetic
acid/3-Methyl-1H-indole-2-
carboxylic acid/Methyl
1H-Indole-3-carboxylate*

A-69,
A169,
A-258

Plant growth regulatory
(Arteca, 1996)

35-Amino-32,33,34-
bacteriohopanetriol

A-262 Sterol equivalent (Welander
Paula et al., 2009)

3-Benzyl-6-isopropyl-2,5-
piperazinedione

A-69 Unknown

3-Benzylidene-6-(3-hydroxy-2-
methylpropylidene)-1-methyl-2,5-
piperazinedione/Lansai
C*

A-263 Anti-inflammatory (Thongchai
et al., 2010)

3-Benzylidene-6-(4-
methoxybenzylidene)-2,5-
piperazinedione

A-43,
A-256

3-Indolylacetic acid A-260 Plant hormone (Arteca, 1996)
3-Isobutylidene-6-(4-
methoxybenzylidene)-2,5-
piperazinedione

A-43 Antibiotic (Bycroft and Payne,
2013)

4,5-Dihydrogeldanamycin A-120 Anticancer (Wu et al., 2012)
4-(5-Formyloxy-3-hydroxyhexyl)-
3-methyl-2-oxetanone

A-266 Unknown

4-Hydroxy-2-methylquinazoline A-169 Unknown
5-(6-Methyloctyl)-2(5H)-
furanone/5-(6-Methyloctyl)-2(3H)-
furanone/2,4,6-Trimethyl-2,4-
decadienoic
acid/5-Methyl-3-(5-methylheptyl)-
2(5H)-furanone/11-Methyl-2,5-
dodecadienoic
acid*

A-265 Regulatory signal molecule
(He et al., 2010)

(Continued)

TABLE 4 | (Continued)

Compound LC/MS Strain Biological activities

5-Hydroxy-5-
(hydroxymethyl)hexadecanoic
acid

A-262 Unknown

6-(3-Methyl-2-butenyl)-1H-indole-
3-acetaldehyde
oxime

A-69 Unknown

8,10,12-Trihydroxy-2,4-
dodecadienoic
acid/4-(5-Formyloxy-3-
hydroxyheptyl)-3-methyl-2-
oxetanone/8,10,12-Trihydroxy-
2,4-dodecadienoic
acid*

A-271 Unknown

A 88696F/Jerangolide
E/3,4-Dihydro-6,8-dihydroxy-3-
tridecyl-1H-2-benzopyran-1-one*

A-262 Antifungal (Hans et al., 1997)

Actinonin A-87 Anti-Gram-positive and
Gram-negative foodborne
pathogens (Jung et al., 2017)

Actiphenol A-250 Antibiotic (Schrey et al., 2012)
Aggreceride A A-262 Platelet aggregation inhibitor

(Omura et al., 1986)
Aggreceride B A-262 Platelet aggregation inhibitor

(Omura et al., 1986)
Alaninolysine A-260 Unknown
Albocycline A-269 Antibiotic (Nagahama et al.,

1967)
Albocycline M1/M2/M4/M5/M7* A-269 Antibiotic (Managamuri et al.,

2017)
Albocycline M3/M6* A-269 Antibiotic (Bycroft and Payne,

2013)
Albonoursin A-263 Antibiotic, antitumor

(Fukushima et al., 1973)
Alkyldihydropyrone
B/Alkyldihydropyrone
A/Cyclohomononactic
acid/1,3-Dihydroxy-4-methyl-6,8-
decadien-5-one*

A-261 Cytotoxic against the
leukemia cell lines (Aizawa
et al., 2014); antifungal
(Stadler et al., 2001)

Alteramide A A-249,
A-268

Cytotoxic (Shigemori et al.,
1992); antifungal (Moree
et al., 2014)

Alteramide B A-268 Antifungal (Ding et al., 2016)
Angumycinone A/Boshracin
D/Aranciamycin H/Antibiotic YT
127/Gaudimycin
A/Hatomarubigin
F/Ochracenomicin A*

A-249 Antibiotic (Igarashi et al.,
1995; Kharel et al., 2012;
Park et al., 2014); anticancer
(Luzhetskyy et al., 2008)

Anhydrocycloheximide A-250 Antifungal (Sullia and Griffin,
1977)

Antibiotic AKD 2A A-262 Antibiotic, both antibacterial
and antifungal (Akeda et al.,
1995)

Antibiotic DC 81/Caerulomycin
G*

A-262 Antibiotic (Kim, 2013);
Cytotoxic (Fu et al., 2011)

Antibiotic FD 991 A-250 Antibiotic (Bycroft and Payne,
2013)

Antibiotic L 156588 A-258 Gastrin and brain
cholecystokinin antagonists
(Lam et al., 1991)

Antibiotic LL-BH872α/Geralcin
E/5-Methyl-2-oxo-4-
imidazolidinehexanoic
acid*

A-171 Antibiotic (Bianchi et al.,
2003)

(Continued)

Frontiers in Microbiology | www.frontiersin.org 11 November 2021 | Volume 12 | Article 773095

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-773095 November 3, 2021 Time: 11:41 # 12

Sarmiento-Vizcaíno et al. Bioactive Actinobacteria Transported by Rainwater

TABLE 4 | (Continued)

Compound LC/MS Strain Biological activities

Antibiotic TMC 1A/B * A-241 Antibiotic, moderate
cytotoxicity (Kohno et al.,
1996)

Antibiotic TMC 1F A-241 Antibiotic, moderate
cytotoxicity (Kohno et al.,
1996)

Antibiotic WS 7338A A-87 Antibiotic, endotelin receptor
antagonist (Miyata et al.,
1992

Antibiotic WS 9326A A-50 Tachykinin antagonist
(Hashimoto et al., 1992)

Antibiotic WS 9326B A-50 Tachykinin antagonist
(Hashimoto et al., 1992)

Aranciamycin E/1-Butyl-3,6,8-
trihydroxyanthraquinone-2-
carboxylic acid/Fridamycin
E/Gaudimycin B/C/β1-
Rhodomycinone/Komodoquinone
B/2-O-Demethyl-8-demethoxy-
10-deoxysteffimycinone*

A-249 Antitumor (Luzhetskyy et al.,
2008); antibiotic (Chen et al.,
2011; Bycroft and Payne,
2013)

Aranciamycin H/Boshracin
D/Angumycinone
A/Hatomarubigin F/Gaudimycin
A/Antibiotic YT
127/Ochracenomicin A*

A-268 Antitumor (Luzhetskyy et al.,
2008); antibiotic (Igarashi
et al., 1995; Kawasaki et al.,
2010)

Aureusimine B A-69 Antibiotic, against
Staphylococcus aureus
biofilms (Secor et al., 2012)

Bafilomycin A1 A-249 Vacuolar-type ATPase
inhibitor, apoptosis (Tan et al.,
2018)

Bafilomycin A1/C1* A-268 Vacuolar-type ATPase
inhibitor, apoptosis (Tan et al.,
2018); antifungal (Frändberg
et al., 2000)

Bafilomycin B1/E* A-249,
A-268

Antifungal (Frändberg et al.,
2000)

Bafilomycin C1 A-249 Antifungal (Frändberg et al.,
2000)

Bafilomycin D A-268 Antibiotic, cytotoxic (Vu et al.,
2018)

Benzylcarbamic
acid/Streptokordin/2-
Acetamidophenol/4-
hydroxyphenylacetaldoxime*

A-260 Cytotoxic (Jeong et al., 2006);
antifungal, anti-inflammatory,
antitumor, anti-platelet,
anti-arthritic (Guo et al., 2020)

Christolane
C/9-Hydroxystreptazolin/13-
Hydroxystreptazolin/Cytoxazone*

A-262 Antibiotic (Gómez et al.,
2012); cytokine modulator
(Kakeya et al., 1998)

Cyclo(isoleucylprolyl) A-178,
A-241

Unknown

Cyclo(leucylprolyl) Several
strainsA

Antibiotic, cytotoxic (Santos
et al., 2015)

Cyclo(phenylalanylprolyl) A-178 Antibiotic (Santos et al., 2020)
Cyclo(prolyltryptophyl) Several

strainsB
Broad spectrum antibacterial
activity (Blunt and Munro,
2008)

Cyclo(prolyltyrosyl) A-261 Cytotoxic (Blunt and Munro,
2008)

Cyclo(prolylvalyl) Several
strainsC

Antifungal (Kumar et al.,
2014)

Cyclo(valylprolyl) A-139 Antibacterial (Alshaibani et al.,
2017)

(Continued)

TABLE 4 | (Continued)

Compound LC/MS Strain Biological activities

Cycloheximide A-250 Antifungal (Siegel et al., 1966)
Deacetylravidomycin A-254 Light dependent antitumor

and antibiotic (Greenstein
et al., 1986)

Dihydro-3-hydroxy-3-(1-hydroxy-
2,4-hexadienyl)-4-
(hydroxymethyl)-2(3H)-
furanone/Xanthocidin*

A-262 Antibiotic (Asahi et al., 1966)

Dihydro-4-(hydroxymethyl)-3-(1-
hydroxy-5-methylheptyl)-2(3H)-
furanone/Dihydro-4-
(hydroxymethyl)-3-(1-hydroxy-6-
methylheptyl)-2(3H)-
furanone/Dihydro-5-
(hydroxymethyl)-3-(1-hydroxy-6-
methylheptyl)-2(3H)-
furanone/Dihydro-4-
(hydroxymethyl)-3-(1-
hydroxyoctyl)-2(3H)-furanone*

A-171 Antibiotic (Bycroft and Payne,
2013)

Dihydro-5-(6-hydroxy-6-
methyloctyl)-2(3H)-furanone/7-
Methoxy-4-dodecenoic
acid*

A-262 Unknown

Dihydroxyphenazine A-256,
A-257,
A-260

Antibacterial and
anti-Trypanosoma brucei
(Dashti et al., 2014)

Dinactin A-266,
A-271

Antibiotic (Silva et al., 2014);
cytokine production inhibitor
(Umland et al., 1999)

E 492 A-50 Anti-inflammatory (Ma et al.,
2018)

E 975 A-50 Anti-inflammatory (Ma et al.,
2018)

Echinomycin A-250 Antitumor, antimicrobial (Kim
et al., 2004)

Endophenazine D A-256 Antibiotic (Gebhardt et al.,
2002)

Feigrisolide C A-266,
A-271

Antiviral, antibacterial (Tang
et al., 2000), antifungal
against Plasmopara viticola
zoospores (Islam et al., 2016)

Feigrisolide D A-266,
A-271

Antibacterial (Tang et al.,
2000)

Ferrioxamine E A-169 Siderophore (Berner et al.,
1988)

Fumaramidmycin/N-[1-Hydroxy-
2-(1H-indol-3-yl)-2-
oxoethyl]acetamide*

A-50 Antibacterial (Maruyama
et al., 1975)

Furanones A-241 Antibiotic and antibiofilm (de
Nys et al., 2006)

Geldanamycin A-120 Antifungal, anticancer,
neurotrophic and
neuroprotective (Tadtong
et al., 2007)

Germicidin A A-53 Spore germination, hypha
elongation (Aoki et al., 2011)

Germicidin D A-50 Spore germination, hypha
elongation (Aoki et al., 2011)

Glycerol
2-(15-methylhexadecanoate)/
Aggreceride C*

A-262 Platelet aggregation inhibitor
(Omura et al., 1986)

Homononactic acid A-271 Insecticidal (Jizba et al., 2008)

(Continued)
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TABLE 4 | (Continued)

Compound LC/MS Strain Biological activities

Ikarugamycin epoxide A-249 Antibiotic against
Gram-positive bacteria and
fungi, strongly cytotoxic
(Bertasso et al., 2003)

Ilamycin A/C1/C2 A-159 Cytotoxic (Ma et al., 2017)
Ilamycin B1 A-159,

A-261
Unknown

JBIR 07/JBIR
08/N-Nonanoylhomoserine
lactone/N-(7-
Methyloctanoyl)homoserine
lactone*

A-261 Autoinducer, signaling
molecule (Patel et al., 2016)

Kahakamide A A-256 Antimicrobial (Schumacher
et al., 2001)

Lansai D A-263 Anti-inflammatory
(Taechowisan et al., 2010)

Lipoamide C A-261 Antimicrobial (Berrue et al.,
2009)

Lyngbic acid A-268 Unknown
Maniwamycin A A-171 Antifungal (Nakayama et al.,

1989)
N-(2-hydroxyphenyl)acetamide A-257 Immunosupressant (Jawed

et al., 2010)
Pentaminomycin D A-87 Autophagy inducer (Hwang

et al., 2020)
Pentaminomycin E A-87 Unknown
Methylsulfomycin I A-105 Antibiotic (Vijaya Kumar et al.,

1999)
Monactin A-266,

A-271
Antibiotic (Jizba et al., 1991)

N-Acetyl-4-
hydroxybenzylamine/N-(2-
Methoxyphenyl)acetamide/N-
Methylphenylacetohydroxamic
acid*

A-69 Unknown

N-Acetylisoleucine A-265 Unknown
N-Acetyl-N-methyl-D-fucosamine A-261 Unknown
N-Acetyltyramine A-266 Antitumor human melanoma

and leukemia (Kanou et al.,
1998), Antifungal (Garcez
et al., 2000), radical
scavenging (Heidari and
Mohammadipanah, 2018)

Narbosine B A-171 Antiviral (Henkel et al., 1991)
Naseseazine A A-87 Unknown
Naseseazine B A-87 Antiplasmodial (Gomes et al.,

2019

N-Butanoylhomoserine lactone A-171,
A-249

Quorum-sensing signal
molecule in Gram-negative
bacteria (Chan et al., 2011)

N-N-Dimethyladenosine A-268 Inhibitor of AKT signaling in
lung cancer cell lines (Vaden
et al., 2017)

Non-actic acid A-266,
A-271

Antibiotic and antitumor
(Meyers et al., 1965)

Non-actins A-178,
A-266,
A-271

Ammonium ionophore,
antibacterial, antiviral,
antitumor (Zhan and Zheng,
2016)

O1,O2,O3,O4,N-Penta-Ac
Valiolamine

A-139 Unknown

Ostreogrycin B A-258 Antibiotic (Cocito, 1979)

(Continued)

TABLE 4 | (Continued)

Compound LC/MS Strain Biological activities

Piperafizine B A-169,
A-256

Cytotoxicity potentiator
(Kamei et al., 1990)

Prodigiosins A-241 Antifungal, antimalarial,
antitumor,
immunosuppressive
(Williamson et al., 2006;
Stankovic et al., 2014;
Darshan and Manonmani,
2015)

Questiomycin A/Crystalloiodinine
B/1,8-Dihydroxyphenazine/1,9-
Dihydroxyphenazine/2,3-
Dihydroxyphenazine/1-
Hydroxyphenazine
10-oxide*

A-169 Antibacterial (Shimizu et al.,
2004), anticancer (Che et al.,
2011)

Ravidomycin A-254 Antibiotic, antitumor (Sehgal
et al., 1983)

Respinomycin D A-178 Antibiotic, antitumor (Ubukata
et al., 1993)

Salaceyin A A-254 Cytotoxic (Kim et al., 2006),
antifungal (Park et al., 2007)

Salaceyin B A-254 Cytotoxic (Kim et al., 2006),
antifungal (Park et al., 2007)

Terferol (5′-Methoxy-[1,1′:4′,1′ ′-
terphenyl]-2′,3′-diol)/3′-Methoxy-
[1,1′:4′,1′ ′-terphenyl]-2′,6′-
diol/3′-Methoxy-[1,1′:4′,1′ ′-
terphenyl]-2′,5′-diol*

A-53 Unknown

Tetrahydro-5-methyl-6-(1-
methylbutyl)-3-(2-methylpropyl)-
2H-pyran-2-one/13-Methyl-4-
tetradecenoic
acid/12-Methyl-4-tetradecenoic
acid*

A-258 Unknown

Tetranactin A-266,
A-271

Antibiotic,
immunosuppressive and
anti-proliferative (Tanouchi
and Shichi, 1988)

Tetronomycin A-254 Antibiotic (Keller-Juslén et al.,
1982)

Tirandamycin A A-171 Antiamoebic (Espinosa et al.,
2012), antibiotic (Meyer,
1971)

Tirandamycin B A-171 Antibiotic (Meyer, 1971)
Trinactin A-266,

A-271
Antibiotic,
immunosuppressive
(Tanouchi and Shichi, 1987)

Violapyrone F A-241 Unknown
Virginiamycin M1 A-258 Antibiotic (Cocito, 1979)
Undecylprodigiosin A-241 Antibiotic, cytotoxic (Petrović

et al., 2017),
immunosuppressor (Songia
et al., 1997; Williamson et al.,
2006)

Virginiamycin M2 A-258 Antibiotic (Cocito, 1979)

Xenocyloin C A-261 Antibiotic (Paul et al., 1981),
insecticidal (Proschak et al.,
2014)

XR 330 A-43,
A-256

Inhibitor of plasminogen
activator inhibitor-1 activity
(Bryans et al., 1996)

(Continued)
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TABLE 4 | (Continued)

Compound LC/MS Strain Biological activities

XR 334 A-169 Inhibitor of plasminogen
activator inhibitor-1 activity
(Bryans et al., 1996)

α,5-Dimethyl-2-oxo-4-
imidazolidinehexanoic
acid

A-171 Unknown

α-Methyldethiobiotin A-50 Antibiotic (Hanka et al., 1972)

The asterisk means that more than one compound was identified. The
highlightened strains correspond to Nocardiopsis species, the rest
are Streptomyces species.
A: A-43, A-53, A-69, A-139, A-167, A-169, A-249, A-250, A-254, A-256, A-257,
A-258, A-260, A-261, A-262, A-263, A-265, A-266, A-268, A-269, A-271.
B: A-69, A-249, A-250, A-254, A-258, A268.
C: A-241, A-250, A-254, A-258, A-269.

(Sarmiento-Vizcaíno et al., 2018) and in Nocardiopsis species,
which are considered as the most abundant halophilic
actinobacteria (Hamedi et al., 2013).

Metabolite Profiling Analysis and
Identification of Bioactive Secondary
Metabolites Produced
Chemical diversity of atmospheric Actinobacteria was assessed
by metabolic profiling analyses of ethyl acetate extracts of
bioactive strains, obtained in neutral and acidic conditions,
screened for antibiotic production using agar diffusion with AA
discs (Figure 2B), against a panel of indicator microorganisms
(Table 3). Strong antibiotic activities were observed in all extracts,
which were particularly active against M. luteus. The extracts
were then analyzed for production of secondary metabolites by
LC-UV and LC/HRMS analyses in combination with searches
in UV and MS databases or the DNP after generation of
a molecular formula of each peak based on HRMS results.
Most of the strains show complex metabolic profiles producing
multiple secondary metabolites in R5A medium (Supplementary
Material 1). Figure 5 displays UV210 nm chromatograms
corresponding to Nocardiopsis sp. A-256 and Streptomyces sp. A-
254 samples.

Comparative analysis of Streptomyces and Nocardiopsis
metabolites detected with natural product databases led to
the identification of a total of 169 compounds detected after
LC/MS dereplication in the ethyl acetate extracts of all strains
metabolites, 139 were identified in the Dictionary of Natural
Products, as shown in Table 4. Concerning the biological activity
of identified natural products, the most frequent are antibiotics,
with a total of 77 antibacterial and antifungal compounds, and
also 32 antitumor or cytotoxic agents, 9 antiparasitic, 5 anti-
inflammatory, 5 immunosuppressive, 3 antiviral, 2 insecticidal, 1
neuroprotective, 1 antiarthritic,1 plant hormone, 1 siderophore,
1 photoprotective and other products of diverse pharmacological
and biotechnological relevance. Some compounds were only
found to be produced by strains belonging to the Nocardiopsis
genus, such as the antibacterial and anti-Trypanosoma brucei
dihydroxyphenazine (A-256, A-257, A-260); the plant hormone
Indol Acetic Acid (strain A-260), the antimicrobial kahakamide

A, and the immunosuppressant N-(2-hydroxyphenyl)acetamide
(A-257), among others.

Of great interest, 30 compounds had molecular formulae
determined by HRMS not reported for any molecule included in
Natural Products Databases (Supplementary Material 2). These
molecules, 28 produced by Streptomyces species and two by
Nocardiopsis sp. A-169, deserve further research since they might
be new natural products and thus candidates for the discovery of
new biologically active substances. Table 5 shows the number of
identified compounds, the number of novel molecules produced
by each strain, and the results of meteorological analyses to
estimate the sources and trajectories of the different air masses
that caused the precipitation events, estimated with a 5-day
NOAA Hysplit Model (Figure 3). Concerning novel molecules,
20 were produced by strains isolated in the Northern Spain
sampling places and 10 by strains isolated in Southern Spain.
The air masses of the Southern precipitation event (strains A-
258, A-261, A-262, A-266) originate in the Atlantic Ocean. The
air masses corresponding to the Northern Spain precipitation
events were also sourced in the Atlantic Ocean (strains A-167,
A-169, A-249, and A-171), but in some cases (strains A-53,
A-254, A-269, A-271) they originate in the Arctic Ocean, and
continental America, strain A-87 in United States and strain
A-139 in Canada.

DISCUSSION

Exploration of the diversity of Actinobacteria producing
biologically active natural products in the atmosphere was
herein addressed by sampling multiple precipitation events
with prevalent Westerly winds over 4 years in different
sampling sites in Spain. Most of the isolates obtained from
rainwater samples tolerate high salt concentrations and are
homologs of known species isolated from very diverse terrestrial
and marine ecosystems throughout the planet, in places as
deep as the Mariana Trench sediments (10,898 m depth) in
the Pacific Ocean, and as high as the Himalaya Mountains
(8,849 m) (Table 2). Taxonomic identification and phylogenetic
analyses of the atmospheric-derived Actinobacteria reported
here, revealed Streptomyces as the most dominant genus, thus
increasing the number of cultivable Streptomyces species able
to survive and disperse via the atmosphere. Bioactive members
of the rare actinobacterial genus Nocardiopsis were also isolated
homologous to two species, Nocardiopsis alba and Nocardiopsis
synnemataformans. The global number of Nocardiopsis species
described so far on Earth is estimated in 50–53.2

The most relevant feature of the atmospheric Actinobacteria
strains studied is that they are producers of multiple chemically
diverse secondary metabolites, as analyzed by LC-UV-MS. Ten
of the strains produced more than ten compounds each,
up to a maximum of 15 (Table 5). From a total of 169
compounds detected after LC/MS dereplication, 82.25% were
identified in the Dictionary of Natural Products, whereas,
remarkably, the remaining 17.75%, not found in DPN, might
be new molecules and deserve further research. After a

2https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
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TABLE 5 | Number of compounds and sources of the producing Actinobacteria strains isolated from rainwater precipitations.

Strain Number of products Sampling place Sampling date Air masses backward trajectories analysesa

Unidentified Identified

Nocardiopsis sp. A-43 5 Gijón 04/11/2013 California, United States South states from West to the East, Labrador
(Canada), Atlantic Ocean.

Streptomyces sp. A-50 8 Gijón 19/12/2013 Northwest Passage (Artic Ocean), Atlantic Ocean, Spain

Streptomyces sp. A-53 2 3 Gijón 19/12/2013 Northwest Passage (Artic Ocean), Atlantic Ocean, Spain

Streptomyces sp. A-69 7 Gijón 15/12/2014 Pacific Ocean, Oregon, United States (from West to East), Terranova,
Atlantic Ocean.

Streptomyces sp. A-87 1 6 Gijón 15/12/2014 Louisiana, Missisipi, Alabama, Georgia, South Carolina (United States),
Atlantic Ocean, Labrador Terranova (Canada), Atlantic Ocean,
Greenland, United Kingdom, France, Cantabrian Sea

Streptomyces sp. A-139 4 3 Gijón 18/01/2015 Manitoba, Ontario, Quebec, Terranova, Labrador (Canada), Atlantic
Ocean, Arctic Ocean Iceland, Portugal, Spain

Streptomyces sp. A-167 2 3 Gijón 15/09/2015 Atlantic Ocean, Portugal, Spain

Nocardiopsis sp. A-169 2 9 Gijón 15/09/2015 Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-171 1 8 Gijón 5/10/2015 Atlantic Ocean, Portugal, Mediterranean Sea

Streptomyces sp. A-178 4 Gijón 3/1/2016 Arctic Ocean (Baffin Bay), Hudson Bay, Quebec (Canada), Arctic
Ocean, Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-179 1 Gijón 5/1/2016 Pacific Ocean, Alaska (United States), North East Canada, Atlantic
Ocean

Streptomyces sp. A-241 6 Gijón 27/02/2016 Michigan, New York, Maine (United States), Quebec (Canada), Atlantic
Ocean

Streptomyces sp. A-249 1 11 Oviedo 13/09/2016 Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-250 11 Oviedo 13/09/2016 Atlantic Ocean, Portugal, Spain

Streptomyces sp. A-254 3 9 Oviedo 15/09/2016 Arctic Ocean, Atlantic Ocean, Cantabrian Sea

Nocardiopsis sp. A-256 10 Seville 13/09/2016 Atlantic Ocean, Spain

Nocardiopsis sp. A-257 6 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-258 3 10 Seville 13/09/2016 Atlantic Ocean, Spain

Nocardiopsis sp. A-260 7 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-261 4 9 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-262 2 13 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp.A-263 6 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-265 4 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-266 1 12 Seville 13/09/2016 Atlantic Ocean, Spain

Streptomyces sp. A-268 11 Oviedo 13/09/2016 Atlantic Ocean, Portugal, North Spain

Streptomyces sp. A-269 2 7 Oviedo 15/09/2016 Arctic Ocean, Atlantic Ocean, Cantabrian Sea

Streptomyces sp. A-271 2 11 Oviedo 15/09/2016 Arctic Ocean, Atlantic Ocean, Cantabrian Sea

aSummary of the backward trajectories estimated with a 5-day NOAA Hyspli Model as shown in Figure 3.

literature search, 55% of the identified compounds were found
to be biologically active as antibiotics (both against Gram-
positive and Gram- negative bacteria and against fungi) and
23% have antitumor or cytotoxic activities; compounds with
antiparasitic, anti-inflammatory, immunosuppressive, antiviral,
insecticidal, neuroprotective, antiarthritic and other diverse
biological activities were also detected in the extracts. The
number of the compounds produced by these strains is
estimated to be much higher than the one presented here, since
only diffusible apolar molecules produced in a single culture
conditions were analyzed, and possible diffusible polar or volatile
molecules were not studied.

Meteorological analyses of the air masses involving 5 days
HYSPLIT backward trajectories indicate a main oceanic source
from the North Atlantic Ocean and also terrestrial sources from
continental North America and Western Europe. In some events

even long-range transport from the Pacific and the Arctic Oceans
were also estimated. These bacteria remain viable after their
atmospheric transport by winds across oceans and continents at
planetary level. They could travel downwind and be dispersed
via the atmosphere during long periods of time before they
fall down to earth by precipitation. These findings provide
further support for the Streptomyces atmospheric dispersal
cycle (Sarmiento-Vizcaíno et al., 2016), which is herein extended
to other members of the phylum Actinobacteria, such as
Nocardiopsis genus.

The Streptomyces species herein identified are different
from the ones previously isolated in a North-western
wind precipitation event, sampled in North Spain and
sourced in West Greenland and North Iceland and Canada
(Sarmiento-Vizcaíno et al., 2018), thus indicating the relevance
of winds in Streptomyces biogeographical distribution. Also,
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different Nocardiopsis species were isolated in different
sampling places, which approximately differ in 6 latitudinal
degrees, 37◦ N in South Spain to 43◦ N in North Spain
sampling place. Latitude has been shown to delineate
Streptomyces biogeography patterns in North America terrestrial
environments (Choudoir et al., 2016).

Our findings make evident that across time, during
different precipitation events, and space, by changing the
latitude of the sampling place, we can have access to a
striking diversity of Actinobacteria producing an extraordinary
reservoir of bioactive natural products from remote and
very distant origins, thus highlighting the relevance of the
atmosphere as a here and now stablished source for the
discovery of novel compounds of relevance in medicine
and biotechnology.

CONCLUSION

Results here obtained on Actinobacteria isolated in rainwater
from storm clouds transported by Western winds in Spain
highlights the relevance of the atmosphere as a main
source of diverse Streptomyces and Nocardiopsis species,
and increases our knowledge of the biogeography of these
Actinobacteria genera on Earth. Our findings included also
an amazing reservoir of bioactive molecules produced by
these Actinobacteria, and take another step forward on the
potential of atmospheric precipitations for the discovery
of natural products active as antibiotic and antitumor
agents, among others.
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