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Abstract: We review the general theory of the Jacobi last multipliers in geometric terms and then
apply the theory to different problems in integrability and the inverse problem for one-dimensional
mechanical systems. Within this unified framework, we derive the explicit form of a Lagrangian
obtained by several authors for a given dynamical system in terms of known constants of the motion
via a Jacobi multiplier for both autonomous and nonautonomous systems, and some examples are
used to illustrate the general theory. Finally, some geometric results on Jacobi multipliers and their
use in the study of Hojman symmetry are given.
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1. Introduction

The Lagrangian approach to conservative systems originally tried to incorporate
the existence of holonomic constraints by invariant under changes of coordinates and
establishes, as a fundamental principle, the extremal property of the action for the motions.
One usually considers Lagrangians of the so-called mechanical type where the Lagrangian
function L is the difference between a kinetic term and a potential term; however, a theory
for a general form of the Lagrangian function has also been developed. The set of its
corresponding Euler–Lagrange equations is a system of second-order differential equations
(see any classical book on Classical Mechanics [1]):

∂L
∂qi =

d
dt

(
∂L
∂q̇i

)
, i = 1, . . . n.

In order to integrate such a system, knowledge of some of its first-integrals is very
useful. For this aim, the analysis of the symmetries of the Lagrangian can be used via
the well-known Noether theorem. On the other hand, by means of the Lagrangian func-
tion, we can achieve a Hamiltonian formulation and proceed to the quantization of the
mechanical system. There are systems not only in Physics but also in other areas of Science,
such as Biology, Chemistry, or Economy, whose evolution is described by second-order
differential equations, and it would be of a great interest to know whether or not they are
of the variational type, i.e., of the Lagrangian type. The fundamental point is the so-called
inverse problem of mechanics, i.e., the determination, for a given system of second-order
differential equations, of conditions for the existence of a Lagrangian function whose
system of Euler–Lagrange equations is (equivalent to) the given system. The main result
being given by Helmholtz [2,3]: More explicitly, given a system of second-order differential
Equation (1),

q̈i = f i(q, q̇) , i = 1, . . . n, (1)
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Helmholtz established in [2] the conditions for the existence of functions gij(q, q̇), with
det[gij] 6= 0, and a regular Lagrangian L such that gij(q, q̇)(q̈j − f j(q, q̇)) = 0 (summation
on repeated indices is understood) are the Euler–Lagrange equation system of the function
L. In terms of the functions f i, these Helmholtz conditions for the functions gij are given
(see [4,5]) as follows:

(i) gij = gji
(ii) det[gij] 6= 0

(iii)
∂gij

∂vk =
∂gik

∂vj

(iv) Γ(gij) =
1
2

gkj
∂ f k

∂vi +
1
2

gik
∂ f k

∂vj

(v) gik

[
∂ f k

∂qj +
1
4

∂ f k

∂vl
∂ f l

∂vj −
1
2

Γ

(
∂ f k

∂vj

)]
= gjk

[
∂ f k

∂qi +
1
4

∂ f k

∂vl
∂ f l

∂vi −
1
2

Γ

(
∂ f k

∂vi

)]
,

where Γ is the vector field

Γ(q, v) = vi ∂

∂qi + f i(q, v)
∂

∂vi .

In the affirmative case, these five properties lead to the existence of a function L such
that the gij takes the form

gij =
∂2L

∂vi ∂vj .

The non-uniqueness of such Lagrangian functions and the implications of the exis-
tence of alternative Lagrangians is also a relevant point: in some particular cases, there
exist several different (and non gauge equivalent) solutions. In these cases, two alternative
Lagrangians can be used to construct constants of the motion, as proven in [6] for the
one-dimensional case and generalised in [7] for the multidimensional case (see also [8] and
references therein for a geometric approach). The geometric approach to Lagrangian me-
chanics developed during the last forty years [4,9–12], which allows treating the preceding
question, suggests the use of more general Lagrangian functions, sometimes called non-
standard Lagrangians, for instance, for second-order Riccati and Abel equations [13,14].
This subject has received a lot of attention during the last few years, and many applications
have been developed [15–20]. The simplest case is that of a one-dimensional configuration
space, i.e., one second-order differential equation, and then the Helmholtz criterion reduces
to the existence of a function satisfying a differential equation, which turns out to be that
of a Jacobi last multiplier [21]. In fact, in the simpler one-dimensional case, the inverse
problem amounts to determine for a given second-order differential equation, ẍ = F(x, ẋ, t),
a pair of functions, g and L, such that

g(x, ẋ, t) (ẍ− F(t, x, ẋ)) =
d
dt

(
∂L
∂ẋ

)
− ∂L

∂x
=

∂2L
∂ẋ2 ẍ +

∂2L
∂x∂ẋ

ẋ +
∂2L
∂ẋ∂t

− ∂L
∂x

.

Therefore, the function g must be g = ∂2L/∂ẋ2, and furthermore,

gF =
∂L
∂x
− ∂2L

∂x∂ẋ
ẋ− ∂2L

∂ẋ∂t
.

Taking derivatives with respect to ẋ in both members, we find as a necessary condition

∂

∂ẋ
(gF) = − ∂g

∂x
ẋ− ∂g

∂t
,

which can be rewritten as
dg
dt

+ g
∂F
∂ẋ

= 0. (2)



Symmetry 2021, 13, 1413 3 of 30

This equation explicitly shows that the function g must be a Jacobi multiplier, a concept
introduced long time ago by Jacobi [22,23] but forgotten for a long time in the physical
literature, and which is receiving attention in the last few years, and actually, its use has
clarified many interesting points in classical mechanics thanks to the works by Leach, Nucci
and coworkers [24–26].

A method for the search of a Hamiltonian formulation of a given second-order dif-
ferential equation has recently been developed in [27]. Of course, such a Hamiltonian
formulation is not uniquely determined. Actually, the Hamiltonian and the corresponding
formulation is an auxiliary tool in the search for the solution of the given equation, and
the same can be said of a Lagrangian formulation. Even the stronger concept of gauge
equivalence of two Lagrangian does not lead to the same Hamiltonian, and it is only the
motions of configuration space coordinates in both descriptions that coincide, but it is not
true for the new auxiliary variables, that is, the momenta. In the Hamiltonian approach,
given a solution H, we can obtain a new Hamiltonian formulation by making use of a
fouling transformation [6,28]. Moreover, the corresponding quantum model depends
critically on the choice of the Hamiltonian description.

The method proposed in [27] is an ad hoc method, and it is not fully justified be-
cause it is not clear how to use the implicit function theorem in the formula preceding
(2.4) in [27] to find the differentiable function I(x, x′). However, the theory of Jacobi
multipliers [22,23,29,30], which was developed to integrate a system of first-order differen-
tial equations by quadratures when some first-integrals and a Jacobi multiplier are known,
can be extended to systems of second-order differential equations from a geometric per-
spective because if a system of first-order differential equation is replaced by a vector field
in a manifold, whose integral curves are the solution of the system, in a similar way, a given
system of second-order differential equations corresponds to a vector field on its tangent
bundle of a special class of vector fields. In the particular case of a second-order differential
equation, the theory provides a solution for the so-called inverse problem of mechanics
because it asserts the existence of a Lagrangian description for the given equation. The rôle
of the function I(x, x′) appearing in [27] is that of a first-integral (see (2.2) in [27]), which
may be used to determine a Jacobi multiplier and then, as a consequence, a Lagrangian
formulation. This is a well-established procedure, which should replace the incomplete
derivation of Section 2 in [27].

As the theory of Jacobi multipliers is not well known in physics, in spite of its many
applications, the aim of this paper is to give a short updated review of this concept from a
geometric perspective (see also [31–33]) and show by means of illustrative examples some
of its physical applications. The concept of Jacobi multipliers is introduced in Section 2,
where the particular case of a two-dimensional autonomous system of first-order ordinary
differential equations illustrates the theory. Following with these lower dimensional
instances, Jacobi multipliers for the simple case of an autonomous second-order differential
equation and the relation with the inverse problem is analysed in Section 3, and, as an
important application in physics, the theory will be used to re-derive, in Section 4, the
explicit form of a Lagrangian for a dynamics with a given constant of the motion proposed
in [27,34–38]. In order for the paper be self-contained, we have added, in Section 5, a
short summary with the fundamental results of the theory of symplectic manifolds and
its applications in the geometric approach to Hamiltonian and Lagrangian mechanics.
The results of Section 4 are generalised and extended in Section 6 to the non-autonomous
cases, with illustrative examples given in Section 7. As divergence-free vector fields enjoy
interesting integrability properties, a remarkable relationship between an infinitesimal
symmetry and a Jacobi multiplier with applications in integrability is analysed in Section 8.
Finally, Section 9 is devoted to point out the usefulness of Jacobi multipliers in a method
for finding constants of motion that generalises the so-called Hojman symmetry.
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2. Jacobi Last Multipliers

Modern tools of differential geometry have been shown to be very efficient for a
better understanding of differential equations and dynamical systems. Instead of using
affine spaces, one needs to consider the more general concept of differentiable manifold,
and systems of first-order differential equations are replaced by vector fields. Then, the
associated system of differential equations is a way of expressing the set of integral curves of
such a vector field that appear as solutions of such a system in local coordinates. Additional
geometric structures on the manifold, satisfying some compatibility conditions, particularly
invariant structures, are very useful in the integrability of the system. Recall that if (M, Ω) is
a n-dimensional-oriented manifold, and X ∈ X(M) is a vector field, then the Lie derivative
LXΩ is proportional to Ω, and we call the divergence of X the function div X defined by

LXΩ = div X Ω , (3)

or, equivalently, by d(i(X)Ω) = div X Ω because the n-form Ω is closed. Hence, as for each
function f ∈ C∞(M), LX( f Ω) = d(i(X)( f Ω)) = d(i( f X)Ω) = L f XΩ, we see, using the
properties of Lie derivatives, that

div ( f X) = f div X + X( f ) . (4)

In local coordinates (x1, . . . , xn) such that Ω = dx1 ∧ · · · ∧ dxn, if X is the vector field
with local expression,

X(x) = Xi(x)
∂

∂xi , (5)

we recover the usual expression for the divergence of X (recall that summation on repeated
indices is understood):

div X =
∂Xi

∂xi .

Vector fields X ∈ X(M) such that div X = 0 are said to be divergence-free vector
fields. In the Euclidean three-dimensional case, they are called solenoidal vector fields. The
concept of Jacobi multiplier for a vector field X in an oriented manifold (M, Ω) introduced
by Jacobi [22,23] is also very helpful to understand some aspects of the inverse problem of
Lagrangian mechanics:

Definition 1. A nonvanishing function R ∈ C∞(M) in an oriented manifold (M, Ω) is said to be
a Jacobi multiplier for X ∈ X(M) if the (n− 1)-form R (i(X)Ω) is closed. In other words, there
exists a (locally defined) (n− 2)-form σ such that

R (i(X)Ω) = dσ . (6)

Note that this condition is equivalent to saying the vector field R X is divergence-
free, i.e.,

div (R X) = 0 , (7)

because
LRXΩ = d(i(R X)Ω) = d(R i(X)Ω) ,

and therefore, Equation (6) implies that LRXΩ = 0. Thus, a vector field X such that div X 6= 0
can be transformed into a divergence-free one spanning the same one-dimensional distribution
by multiplication by a Jacobi multiplier for X. This divergence-free nature allows us to
reduce the number of symmetries needed to the integration process by quadratures, see,
e.g., [22,23,39]. However, in this article, we are particularly interested in the relevance of the
concept in the search of a Lagrangian formulation for the simpler case of a given second-
order differential equation. This may be very important in the search of a possible analogous
quantum system because the traditional quantisation process uses a Hamiltonian quantisation,
or even the Feynman path-integral quantisation is based on a Lagrangian formulation.
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Alternatively, from the above-mentioned property LX(R Ω) = LR XΩ, we see that R
is a Jacobi multiplier for X if and only if the vector field X is divergence-free with respect
to R Ω, i.e., we see the equivalence of searching for Jacobi multipliers on one side and the
more geometric concept of invariant volume-forms on the other: a volume form Ω′ = R Ω
is X-invariant, i.e., LXΩ′ = 0 if and only if R is a Jacobi multiplier for the vector field X
in the oriented manifold (M, Ω). Moreover, this property also shows that R is a Jacobi
multiplier for X in the oriented manifold (M, Ω) if and only if f R is a Jacobi multiplier for
X in the oriented manifold (M, f−1 Ω) for each positive function f .

As another consequence of the property, the set of vector fields admitting R as a
Jacobi multiplier is a real Lie subalgebra because from LX(R Ω) = LY(R Ω) = 0, as
LX+λY(R Ω) = LX(R Ω) + λLY(R Ω), for λ ∈ R, we see that LX+λY(R Ω) = 0, and
then, it is a R-linear space, and, moreover, from the relation for Lie derivatives of forms
LX ◦ LY −LY ◦ LX = L[X,Y], it also follows that

L[X,Y](R Ω) = LXLY(R Ω)−LYLX(R Ω) = 0 .

Another relevant geometric relation is that for any arbitrary pair X, Y of vector fields
in an oriented manifold (M, Ω), we have that

LX(div (Y))−LY(div (X)) = div ([X, Y]), (8)

which follows from the above-mentioned relation by taking the difference of LX(LYΩ) =
LX(div(Y)Ω) = LX(div(Y))Ω + div(Y)div(X)Ω and the corresponding relation
LY(LXΩ) = LY(div(X))Ω + div(X)div(Y)Ω.

Of course, in local coordinates such that Ω = dx1 ∧ · · · ∧ dxn, the condition for R to
be a Jacobi multiplier for the vector field X given by Equation (5) is

∂(RXi)

∂xi = 0 , (9)

which is but the local coordinate expression of condition given in Equation (7) for the
multiplier R, i.e.,

X(R) + R div X = 0 . (10)

Note that this implies that if X is divergence-free, then R is a Jacobi multiplier if and
only if R is a first-integral. More generally, if R is a Jacobi multiplier for the vector field X,
then f R is another multiplier if and only if f is a nonvanishing first-integral of the vector
field X because if Equation (10) holds, then replacing R by f R on the left hand side of
Equation (10), we obtain

( f R)div X + X( f R) = f (R divX + X(R)) + R X( f ) = R X( f ) ,

and, consequently, f R is a Jacobi multiplier if and only if X( f ) = 0. Therefore, a vector
field may admit an infinite number of Jacobi multipliers.

In the lower dimensional case of an autonomous system of first-order ordinary differ-
ential equations {

ẋ = P(x, y)
ẏ = Q(x, y)

, (11)

whose solutions are the integral curves of the associated vector field on R2

X = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
, (12)

the corresponding phase-flow is given by the solutions of the differential equation

dy
dx

=
Q(x, y)
P(x, y)

, (13)
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and then any other vector field proportional to X gives rise to the same flow, i.e., to the
previous differential Equation (13), which is described by the one-dimensional distribution
generated by X. Such a distribution can also be defined by the 1-form

α = P(x, y) dy−Q(x, y) dx , (14)

because α(X) = 0 or by any other proportional one. The integral curves, γ : I → R2,
γ(t) = (x(t), y(t)), of the distribution defined by α are those such that γ∗α = 0, and as

γ∗α = (P(x, y) ẏ−Q(x, y) ẋ) dt = 0,

the one-dimensional distribution determined by Ker α is the one generated by the vector
field X.

Note that the 2-form in R2 defined by ω = dx ∧ dy is symplectic, and the relation
between Equations (12) and (14) is then

i(X)ω = α . (15)

This means that the vector field X is locally Hamiltonian, i.e., the 1-form α is closed if
div X = 0 with respect to ω. Recall that the vector field X is said to be Hamiltonian when α
is exact, see Section 5. The local expression of the divergence of the vector field X given by
Equation (12) with respect to the 2-form ω = dx ∧ dy is div X = ∂P/∂x + ∂Q/∂y.

Definition 2. A non-constant function I : U ⊂ R2 → R is called the first-integral of the system
in Equation (11) or of the corresponding vector field X on the open set U of R2 when it remains
constant along all the integral curves (x(t), y(t)) of X contained in U, i.e., along the curves in U
that are solutions of the system.

Note that a non-constant function I : U ⊂ R2 → R is a first-integral on U of a vector
field X if and only if X|U(I) = 0.

The remarkable point is that when we know a first-integral I : U → R of Equation (11)
such that ∂I/∂y 6= 0 on an open subset U of R2, then the condition I(x, y) = k allows us to
locally express the variable y as a function of x for each value of k ∈ R, which provides us
with the general solution of the Equation (13).

Recall that an integrating factor for a 1-form α is a function R such that R α is exact.
Notice that as R i(X)ω = i(R X)ω, R is an integrating factor for the 1-form α = i(X)ω
associated to the vector field X if and only if R is a Jacobi multiplier for X with respect to
the volume form ω.

There is an important relation between first-integrals for the vector field in Equation (12)
and integrating factors for the 1-form (14) (see, e.g., Ch. X of the classical book in mechanics [1]):

Theorem 1. The function G(x, y) is a first-integral for a vector field (Equation (12)) with PQ, a
nonvanishing function, if and only if there exists an integrating factor R(x, y) for the 1-form α
given by Equation (14) such that R α = dG.

Proof. In fact, if G is a first-integral for Equation (12), then

X(G) =
∂G
∂x

P +
∂G
∂y

Q = 0 ,

and, therefore, as QP 6= 0, we can define the function R by the quotient

R =
Gy

P
= −Gx

Q
, (16)

from here, we see that R α = Gx dx + Gy dy = dG.
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Conversely, if R is an integrating factor for Equation (14) such that R α = dG, then,
taking into account Equation (15), it trivially follows that Gx = −RQ and Gy = RP, and
therefore,

X(G) = PGx + QGy = 0 .

In more geometric terms, as X(F) = i(X)dF, for all functions F ∈ C∞(M), the function
F is a first-integral of the motion for X if and only if the 1-dimensional distribution defined
by Ker(dF) coincides with the one generated by the vector field X. Note also that, in
this case, as the 1-form i(X)ω, where ω = dx ∧ dy, also defines such a 1-dimensional
distribution, there should be a function R such that R i(X)ω = dF, and then, such a
function R is an integrating factor for the 1-form i(X)ω, i.e., R is a Jacobi multiplier for X.

There is an important application of these results to the inverse problem of the me-
chanics of 1-dimensional dynamical systems, namely, the fact that a single second-order
ordinary differential equation, either in the autonomous or in the non-autonomous cases,
can be obtained as a Euler–Lagrange equation of a function L if and only if there exists a
Jacobi multiplier for the associated vector field, as explained in Section 3 for autonomous
systems and in Section 6 for nonautonomous ones.

3. Jacobi Multipliers for Autonomous Second-Order Differential Equations
and Lagrangians

An autonomous second-order differential Equation (SODE), q̈ = F(q, q̇),
representing a one-dimensional mechanical system has associated a system of first-order
differential equations: {

q̇ = v
v̇ = F(q, v)

(17)

whose solutions are the integral curves of the vector field in the tangent bundle TR ≡ R2.

Γ = v
∂

∂q
+ F(q, v)

∂

∂v
. (18)

As above, R2 is endowed with the symplectic form ω = dq ∧ dv and the 1-form
corresponding to such a field is αΓ = i(Γ)ω = v dv− F(q, v) dq. Now, the first-integrals of
the vector field Γ are but the constants of the motion, and the result of Theorem 1 can be
reformulated in this particular case as follows:

Theorem 2. The function G(q, v) is a constant of the motion for Γ if and only if there exists a
Jacobi multiplier R such that R αΓ = dG. In this case, the multiplier given by Equation (16) is

R =
1
v

∂G
∂v

= − 1
F

∂G
∂q

. (19)

The conditions in Equations (7) or (9) for R(q, v) to be a Jacobi multiplier for the given
vector field Γ can be put into another form. According to Equation (9), the positive function
R is a Jacobi multiplier if and only if

∂

∂q
(R v) +

∂

∂v
(R F) = 0 , (20)

i.e., more explicitly, R must be such that

v
∂R
∂q

+
∂R
∂v

F + R
∂F
∂v

= 0 ,
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which taking into account that

dR
dt

= Γ(R) = v
∂R
∂q

+ F
∂R
∂v

,

it can be written as
dR
dt

+ R
∂F
∂v

= Γ(R) + R
∂F
∂v

= 0 , (21)

or in another form,
d log R

dt
+

∂F
∂v

= Γ(log(R)) +
∂F
∂v

= 0 . (22)

Alternatively, it is clear that div Γ = ∂F/∂v, and then Equation (10) reduces to
Equation (21).

Here, one clearly sees that if the force is velocity-independent, F(q), then the system
in Equation (17) has associated a divergence-free vector field Γ, and consequently, its Jacobi
multipliers are the first-integrals.

In the search for a quantum model of the motion, the knowledge of a Lagrangian
formulation of the classical motion may be very useful. The main result of the inverse
problem of one-dimensional mechanics in this concern is:

Theorem 3. The normal form q̈ = F(q, q̇) of the differential equation determining the solutions
of the Euler–Lagrange equation defined by the regular Lagrangian function L(q, v) admits the
function as a Jacobi multiplier:

R =
∂2L
∂v2 . (23)

Conversely, if R(q, v) is a Jacobi multiplier function for a second-order differential equation in
normal form q̈ = F(q, q̇), then there exists a Lagrangian L(q, v) for the system related to R(q, v)
by Equation (23). More specifically, such a Lagrangian L is uniquely defined up to the addition of a
gauge term by

L(q, v) =
∫ v

v0

(v− ζ)R(q, ζ)dζ +
∫ q

q0

(RF)(ζ, v0)dζ , (24)

whatever values v0 of the velocity and q0 of the configuration be used.

Proof. In fact, if there exists a Lagrangian function L, the function F is given by

F(q, v) =
1
R

(
∂L
∂q
− v

∂2L
∂q∂v

)
.

where the function R is given by Equation (23). We can now see that, for such a function R,
the condition of Equation (20) turns out to be identically satisfied because

v
∂R
∂q

+
∂

∂v

(
∂L
∂q
− v

∂2L
∂q∂v

)
= v

∂3L
∂v2∂q

+
∂2L
∂q∂v

− ∂2L
∂q∂v

− v
∂3L

∂v2∂q
= 0 ,

and then, R is a Jacobi last multiplier.
Conversely, let q̈ = F(q, q̇) be the given second-order equation, and let R be a Jacobi

multiplier, i.e., a nonvanishing function satisfying Equation (20). Then, there exists a
function L whose Euler–Lagrange equation is equivalent to the given equation. In fact, let
L be a function such that the condition in Equation (23) be satisfied, i.e., the function L is
such that

∂L
∂v

=
∫ v

v1

R(q, ζ) dζ + φ1(q) , (25)

and then,

L(q, v) =
∫ v

v0

dv′
∫ v′

v1

R(q, ζ) dζ + φ1(q) v + φ0(q) , (26)
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where the lower limits v0 and v1 are fixed but otherwise arbitrary, maybe v0 = v1.
The previous formula for L can be given an alternative form. First of all, by means of

an integration of parts, the double integral can be written, taking v1 = v0, as

∫ v

v0

[∫ v′

v0

R(q, ζ) dζ

]
dv′ = v

∫ v

v0

R(q, ζ) dζ −
∫ v

v0

v′ R(q, v′) dv′ =
∫ v

v0

(v− ζ)R(q, ζ) dζ ,

so that from Equation (26),

L(q, v) =
∫ v

v0

(v− ζ)R(q, ζ)dζ + φ1(q)v + φ0(q) . (27)

It is worth noting that the functions φ1 and φ0 appearing in this expression for L are
not completely arbitrary because they must be fixed in such a way that the Euler–Lagrange
equation with such Lagrangian L must be equivalent to the given SODE q̈ = F(q, q̇). The
term φ1(q)v is a gauge term so that it can be forgotten, i.e., we can choose φ1 ≡ 0, and then
L would be written, up to the addition of a gauge term, as

L(q, v) =
∫ v

v0

(v− ζ)R(q, ζ) dζ + φ0(q) , (28)

where the function φ0(q) is almost uniquely determined by demanding that L be a La-
grangian for the given SODE, that is to say, as

∂L
∂v

=
∫ v

v0

R(q, ζ) dζ and
∂L
∂q

=
∫ v

v0

(v− ζ)
∂R
∂q

(q, ζ) dζ + φ′0(q) ,

we have that, along the motion,

0 =
d
dt

(
∂L
∂v

)
− ∂L

∂q
= R(q, v)F(q, v) +

∫ v

v0

ζ
∂R
∂q

(q, ζ) dζ − φ′0(q). (29)

However, as R is assumed to be a Jacobi multiplier, Equation (20) holds, i.e.,

∂(Rv)
∂q

(q, ζ) = −∂(RF)
∂v

(q, ζ),

and we can write Equation (29) as follows:

RF(q, v)−
∫ v

v0

∂(RF)
∂v

(q, ζ)dζ − φ′0(q) = 0 ,

from where we arrive at RF(q, v0)− φ′0(q) = 0, i.e., Euler–Lagrange equation is equivalent
to φ′0(q) = (RF)(q, v0), no matter of the value v0 of the velocity v, from where we obtain

φ0(q) =
∫ q

q0

(RF)(ζ, v0) dζ . (30)

The expression in Equation (28) for the Lagrangian determined by the Jacobi multiplier
R reduces to Equation (24) for this value of the function φ0. Therefore, we can find a
Lagrangian by means of two quadratures.

The final expression in Equation (24) for the Lagrangian and its extension to the
time-dependent case are due to Yan [40] (see also [36,41]).
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Corollary 1. If a system with one degree of freedom admits two different regular Lagrangians L1
and L2, then the function f defined by

f
∂2L1

∂v2 =
∂2L2

∂v2 (31)

is a constant of the motion. Conversely, if f is a constant of the motion and L1 is a Lagrangian for the
second-order differential equation, then

R = f
∂2L1

∂v2

is a Jacobi multiplier, and there exists another Lagrangian function L2 such that Equation (31) holds.

Proof. If the function f is the quotient of two different Jacobi multipliers, f is a first-integral,
and conversely if f is a first-integral and L1 is a Lagrangian, then R given by the above
expression is also a Jacobi multiplier.

The result of this corollary is usually attributed in the physics literature to Currie and
Saletan [6] but actually dates back to Jacobi’s time.

4. Applications to Some SODE’s and Associated Lagrangians

A particular example of the SODE equation was recently discussed in [26,42], where
the following type of Liénard differential equations [43] is studied:

ẍ + f (x) ẋ + g(x) = 0 , (32)

with an associated system {
ẋ = v
v̇ = − f (x) v− g(x)

, (33)

i.e., F(x, v) = − f (x) v− g(x).
If we try to determine a Jacobi multiplier of the form R(x, v) = u(x, v)β with u, which

is a function of the form u(x, v) = v + ϕ(x) and β ∈ R, then the condition in Equation (22)
for the Jacobi multiplier becomes

β
u̇
u
− f (x) = 0 ,

and taking into account the assumed form for the function u and making use of the equation
of motion (Equation (32)), we obtain

β[− f (x)v− g(x) + ϕ′(x) v]− f (x)(v + ϕ(x)) = 0 ,

and therefore,
−β g(x) = f (x)ϕ(x) , (β + 1) f (x) = β ϕ′(x) .

The first equation implies that the function ϕ(x) must be ϕ(x) = −β g(x)/ f (x), and
then, the second equation implies the necessary condition for the existence of such a
solution, usually called the Chiellini condition [44]:

− β2 d
dx

(
g(x)
f (x)

)
= (β + 1) f (x) , (34)

and consequently, if Equation (34) is satisfied, the function

R(x, v) =
(

v− β
g(x)
f (x)

)β
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is a Jacobi multiplier for Equation [26,42].
The Lagrangian describing the system can easily be obtained by computing the

integrals in the general formula in Equation (24). An integration of parts in the first
integral in Equation (24), with v0 = 0, yields

∫ v

0
(v− ζ)

(
ζ − β

g(x)
f (x)

)β

dζ =
1

(β + 1)(β + 2)

(
v− β

g(x)
f (x)

)β+2

− 1
(β + 1)(β + 2)

(
−β

g(x)
f (x)

)β+2

,

up to the addition of a gauge term. On the other hand, by using Chiellini’s condition (34),
the second integral is

∫ x

x0

R(ζ, 0)F(ζ, 0)dζ =
(−β)β+2

(β + 1)(β + 2)

(
g(x)
f (x)

)β+2

+ const

Finally, the Lagrangian for Equation (32) associated to the multiplier is just

L(x, v) =
1

(β + 1)(β + 2)

(
v− β

g(x)
f (x)

)β+2

. (35)

For instance, consider the following equation [26,45–47]:

ẍ + k x ẋ +
k2

9
x3 + λ x = 0 ,

which corresponds to f (x) = k x and g(x) =
k2

9
x3 + λ x, and therefore,

d
dx

(
g(x)
f (x)

)
=

d
dx

(
k
9

x2 +
λ

k

)
=

2
9

k x =
2
9

f .

There are two values of β such that (β + 1)/β2 = −2/9, i.e.,

2 β2 + 9 β + 9 = 0 ,

which are given by β1 = −3 and β2 = −3/2. For β = −3, we obtain ϕ(x) =
k
3

x2 +
3
k

λ,

while for β = −3/2, we get ϕ(x) =
k
6

x2 +
3
2k

λ. Consequently, two Jacobi multipliers for
the system are

R1(x, v) =
[

v + 3
(

k
9

x2 +
λ

k

)]−3
, R2(x, v) =

[
v +

3
2

(
k
9

x2 +
λ

k

)]−3/2
.

The corresponding Lagrangians (Equation (35)) are given up to a gauge term by:

L1 =
1
2

1
v + k

3 x2 + 3
k λ

and L2 = −4

√
v +

k
6

x2 +
3
2k

λ .

As indicated in the more general case, the function φ0 in both cases is constant.
A particular example is the case λ = 0 [48], and when k = 3, we find the above-

mentioned second-order element of the Riccati chain (see, e.g., [13,21,26])

ẍ + 3 x ẋ + x3 = 0 ,
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which, as indicated before, admits two Jacobi multipliers given by

R1(x, v) =
(

v + x2
)−3

, R2(x, v) =
(

v +
1
2

x2
)−3/2

,

and, up to a constant factor, the corresponding Lagrangians (Equation (35)) are

L1 =
1

v + x2 , L2 =

√
v +

1
2

x2 .

As far as the important application of Jacobi multipliers to the inverse problem of
the mechanics of one-dimensional systems we are interested in, a remarkable result is
the following:

Theorem 4. If G(q, v) is a constant of the motion for the autonomous second-order differential
equation vector field (Equation (18)), then there is a regular Lagrangian for the associated vector
field given (see [34–37]) up to a gauge term by

L(q, v) = v
∫ v

v0

G(q, ζ)

ζ2 dζ. (36)

Proof. In fact, as G(q, v) is a constant of the motion, there exists a Jacobi multiplier R given
by Equation (19). The preceding Theorem 2 shows us that the related Lagrangian L is given
by Equation (24), with R related to G by Equation (19), and then

L(q, v) =
∫ v

v0

v− ζ

ζ

∂G
∂v

(q, ζ) dζ −
∫ q

q0

∂G
∂q

(ζ, v0) dζ.

After an integration of parts in the first of the integrals, we immediately obtain the
Lagrangian in Equation (36) for the given vector field. Moreover, as

∂L
∂v

=
∫ v

v0

G(q, ζ)

ζ2 dζ +
G(q, v)

v
,

the energy E = v(∂L/∂v)− L is just the constant of the motion G(q, v) because

v
∂L
∂v
− L = v

∫ v

v0

G(q, ζ)

ζ2 dζ + G− v
∫ v

v0

G(q, ζ)

ζ2 dζ = G.

A trivial example is the free particle, for which G = v2 and L = v2.

Notice that the above result from Equation (36) also means that, in the autonomous
case, as according to Theorem 2, the knowledge of one constant of the motion determines a
Jacobi multiplier, and then as a result of Theorem 3, we also have a Lagrangian description
of the dynamics. The result of this theorem can be useful when one can find a first-integral
for the given second-order differential equation vector field. As a first instance, when
the function F(q, v) appearing in the expression of the SODE vector field Γ is factorisable,
i.e., of the form F(q, v) = f (q) h(v), then a first-integral I(q, v) is a solution of the partial
differential equation

v
∂I
∂q

+ f (q) h(v)
∂I
∂v

= 0,

with an associated system
dq
v

=
dv

f (q) h(v)
,

i.e.,

f (q) dq =
v dv
h(v)

,
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from which we have the first-integral

I(q, v) =
∫ v ζ

h(ζ)
dζ −

∫ q
f (ζ) dζ.

For instance, the Mathews–Lakshmanan oscillator [49–52]

q̈ = F(q, q̇) =
−a + λq̇2

1 + λ q2 q , a, λ ∈ R, (37)

is the particular instance corresponding to

f (q) =
q

1 + λ q2 , h(v) = −a + λv2,

and we obtain a first-integral

I(q, v) =
∫ v

v0

ζ

−a + λζ2 dζ −
∫ q ζ

1 + λ ζ2 dζ =
1

2λ

(
log(−a + λv2)− log(1 + λ q2)

)
and, therefore, any first-integral is a function of

I(q, v) =
λ v2 − a
1 + λ q2 .

Remark that Equation (36) allows us to write the corresponding Lagrangian as a real
multiple of

L(q, v) = v
∫ v

0

λ ζ2 − a
1 + λ q2

1
ζ2 dζ =

λ v2 + a
1 + λ q2 ,

which shows that I is the energy corresponding to this Lagrangian. Moreover, the usual
Lagrangian for Equation (37) is

L′(q, v) =
1
2

v2 − a q2

1 + λ q2 ,

which satisfies L− 2λL′ = a.
Another example studied in [27] is the homogeneous differential equation:

ẍ = ẋ g
(

ẋ
x

)
,

i.e., the function F in Equation (18) is given by

F(x, v) = v g
( v

x

)
,

and the SODE vector field by

Γ(x, v) = v
∂

∂x
+ v g

( v
x

) ∂

∂v
.

A constant of motion I(x, v) is a solution of the partial differential equation

v
∂I
∂x

+ v g
( v

x

) ∂I
∂v

= 0,

with the associated system
dx
v

=
dv

vg(v/x)
,
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and, therefore, if in the first-order differential equation

dv
dx

= g
( v

x

)
,

we change the variable v by z = v/x, and the preceding equation transforms into

dz
dx

=
g(z)− z

x
,

and we see that the constant of motion I must be a function of

I(x, v) = log x−
∫ v/x dζ

g(ζ)− ζ
.

The particular example analysed in [27] corresponds to

F(x, v) = 2v
√

v
x
+

v2

x
⇐⇒ g(ζ) = 2

√
ζ + ζ,

from which we obtain

I(x, v) = log x−
∫ v/x dζ

2
√

ζ
= log x−

√
v
x

.

The Lagrangian corresponding to such a constant of motion is given by

L(x, v) = v
∫ v log x−

√
ζ
x

ζ2 dζ = − log x + 2
√

v
s

.x,

up to a gauge term.
Once the function L has been found through the Jacobi multiplier R, we can pass to

the Hamiltonian formulation by means of the Legendre transformation. Note, however,
that the Hamiltonian H depends on the choice of the gauge ambiguity for the Lagrangian.

The method developed in [27] for the search of a Hamiltonian formulation of a given
SODE constructed by a constant of motion immediately follows from the Lagrangian
Equation (36). Actually, the generalised momentum is

p =
∂L
∂v

=
∫ v

v0

G(q, ζ)

ζ2 dζ +
G(q, v)

v
=
∫ v

v0

1
ζ

∂G
∂v

(q, ζ)dζ +
G(q, v0)

v0
,

where an integration by parts has been carried out.
This result is to be compared with Equation (2.5) in [27]. Our result includes a function

ϕ(q) uniquely determined by the constant of motion G itself. Such a function reappears
when we change L to the gauge equivalent Lagrangian L′ = L + ϕ(q)v. The Hamiltonian
function H = pv− L is

H(q, p) = G(q, v(q, p)),

from which the corresponding Hamilton equations can be obtained.
Consider, as an example, the previous example. The Legendre transformation can be

carried out, giving rise to

p =
1√
xv

,

while the Hamiltonian is

H(x, p) = I
(

x,
1

xp2

)
= log x− 1

xp
,
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from where the corresponding Hamilton equations can be obtained. The original second-
order differential equation can also be recovered.

5. A Quick Geometric Presentation of Hamiltonian and Lagrangian Frameworks

We recall that (M, ω) is a symplectic manifold if M is a finite-dimensional differ-
entiable manifold and ω is a nondegenerate 2–form, which satisfies dω = 0 (that is,
ω ∈ Z2(M)). The dimension of M is necessarily even, dim M = 2n. For general results,
reference textbooks are, for instance, [9,11,12]. By nondegeneracy of ω, we mean that for
every point u ∈ M the map ω̂u : Tu M → T∗u M, given by: 〈ω̂u(v), v′〉 = ωu(v, v′) with
v, v′ ∈ Tu M, has a maximal rank, i.e., ω∧n 6= 0. Such a map ω̂ is a base-preserving fibred
map, and hence, it induces a mapping between the linear spaces of sections which, with
a slight abuse of notation, we will also write ω̂ : X(M) → ∧1(M). All these symplectic
manifolds are locally similar because Darboux proved that for each point u ∈ M, there
is a local chart (U, φ) such that if φ = (q1, . . . , qn; p1, . . . , pn), then ω|U = dqi ∧ dpi. Such
coordinates are said to be Darboux coordinates.

As closed, and in particular, exact, 1-forms are distinguished elements in
∧1(M), the

corresponding vector fields are called locally Hamiltonian vector fields and Hamiltonian
vector fields, respectively. If H ∈ C∞(M), the Hamiltonian vector field XH associated with
the Hamiltonian H is the unique vector field that satisfies ω̂(XH) = i(XH)ω = dH. The
set of Hamiltonian vector fields will be denoted XH(M, ω) and that of locally Hamiltonian
vector fields XLH(M, ω), i.e., XLH(M, ω) = ω̂−1(Z1(M)) and XH(M, ω) = ω̂−1(B1(M)).
Observe that ω̂−1 is an isomorphism of real linear spaces. The Cartan homotopy identity ,
i.e., LXα = i(X)dα + d[i(X)α], for any α ∈ ∧p(M), shows that LXH ω = 0, and, moreover,
X ∈ X(M), is such that LXω = 0 if and only if i(X)ω is a closed 1–form, i.e., X ∈
XLH(M, ω). In Darboux coordinates, the Hamiltonian vector field XH corresponding to
the function H is given by

XH =
∂H
∂pi

∂

∂qi −
∂H
∂qi

∂

∂pi
,

and therefore, the equations determining its integral curves are similar to Hamilton
equations. We can define the Poisson bracket of two functions F, G ∈ C∞(M) in a
2n-dimensional symplectic manifold (M, ω) as being the function {F, G} given by:

{F, G} = ω(XF, XG) = dF(XG) = −dG(XF) ,

which in Darboux coordinates, for ω, looks like the usual one:

{F, G} = ∂F
∂qi

∂G
∂pi
− ∂F

∂pi

∂G
∂qi .

Remark that if X, Y ∈ XLH(M, ω), the commutator [X, Y] is a Hamiltonian vector field,
with Hamiltonian ω(Y, X), because from the relation i(X)LYα − LYi(X)α = i([X, Y])α,
valid for any form α, we obtain:

i([X, Y])ω = i(X)LYω−LYi(X)ω = −LYi(X)ω,

and, therefore,

i([X, Y])ω = −i(Y)d[i(X)ω]− d[i(Y)i(X)ω] = −d[ω(X, Y)] .

Consequently, the set XLH(M, ω) is a Lie algebra, and XH(M, ω) is an ideal in
XLH(M, ω). The preceding property means that if F, G ∈ C∞(M), then we have that
d{F, G} = −i([XF, XG])ω, i.e., [XF, XG] = X{G,F}.
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This Poisson bracket {·, ·} is a skewsymmetric R–bilinear map on C∞(M) such that it
satisfies Jacobi’s identity as a consequence of ω being closed. In fact, if F, G, H ∈ C∞(M),

(dω)(XF, XG, XH) = XFω(XG, XH)− XGω(XF, XH) + XHω(XF, XG)

−ω([XF, XG], XH) + ω([XF, XH ], XG)−ω([XG, XH ], XF) ,

and taking into account that XFω(XG, XH) = XF{G, H} = {{G, H}, F} and that
ω([XF, XG], XH), using that [XF, XG] = X{G,F}, it can also be rewritten in the form
ω([XF, XG], XH) = ω(X{G,F}, XH) = {{G, F}, H}, as well as the corresponding expres-
sions for each cyclic reordering, we find that

(dω)(XF, XG, XH) = 2[{{G, H}, F}+ {{H, F}, G}+ {{F, G}, H}] = 0 .

Recall that the values of Hamiltonian vector fields in each point span the tangent
space in the point, and therefore, the Jacobi identity holds if and only if ω is closed. The
two main examples of Hamiltonian dynamical systems are those of Hamiltonian systems
in the cotangent bundle T∗Q of a manifold Q and those defined by regular Lagrangians
in the tangent bundle TQ. In fact, the cotangent bundle π : T∗Q → Q is endowed with
a canonical 1-form θ ∈ ∧1(T∗Q) defined by θα = π∗αα. Then, ω = −dθ is a canonical
symplectic form on T∗Q. The geometric framework for the study of Lagrangian mechanics
is that of tangent bundles [4,10,53]. The tangent bundle τ : TQ → Q is characterised by
two geometric tensors: the vertical endomorphism S, a (1,1)-tensor field on TQ, also called
tangent structure, which satisfies Im S = Ker S; and an integrability condition, where its
Nijenhuis tensor NS is null, and the Liouville vector field ∆ generates dilations along fibres
in TQ [54].

If (U, ϕ) is a local chart on Q and pri : Rn → R are the natural projections on
the i-th-factor and qi = pri ◦ ϕ, we define the coordinate system (U, q1, . . . , qn) on Q,
and the corresponding chart in U = τ−1(U) given by (U , ϕ, ϕ∗), defines a coordinate
system (U, q1, . . . , qn, v1, . . . , vn) on TQ. Correspondingly, we consider the coordinate
basis of X(U), usually denoted {∂/∂qj | j = 1, . . . , n}, and its dual basis for

∧1(U),
{dqj | j = 1, . . . , n}. Then, a vector v in a point q ∈ U is v = vj (∂/∂qj)|q, i.e., vi = dqi(v),
while a covector α in a point q ∈ U is α = pj (dqj)|q, with pi = α(∂/∂qi)|q. With this
notation, the coordinate expressions of the vertical endomorphism S and the Liouville
vector field ∆ are [4,10]:

S(q, v) =
∂

∂vi ⊗ dqi, ∆(q, v) = vi ∂

∂vi , (38)

while the coordinate expression of the 1-form θ is

θ(q, p) = pi dqi, (39)

which shows that ω = −dθ is a canonical symplectic form on T∗Q.
The vector field ∆ and the tensor field S can be used to select a special kind of vector

field whose integral curves are given by lifting solutions of second-order differential
equations. These vector fields called second-order differential equation vector fields D ∈
X(TQ) (hereafter shortened as SODE vector fields) are characterised by S(D) = ∆. The
expression of a SODE vector field D in the above-mentioned local coordinates is

D(q, p) = vi ∂

∂qi + f i(q, v)
∂

∂vi , (40)
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Recall also that given a Lagrangian L ∈ C∞(TQ), we can define a 1-form θL = dL ◦ S
and the exact 2-form ωL = −dθL. When ωL is regular the Lagrangian L is said to be regular,
and then the dynamics are given by the uniquely defined SODE vector field ΓL such that

i(ΓL)ωL = dEL ⇐⇒ LΓL θL − dL = 0, (41)

where the energy function EL ∈ C∞(TQ) is defined by EL = ∆(L) − L. The curves
in Q that are projections of the integral curves of ΓL are the solutions of the system of
Euler–Lagrange equations.

Remark that the condition i(ΓL)ωL = dEL implies that LΓL ωL = 0 because LΓL ωL =
d(i(ΓL)ωL). In usual local tangent bundle coordinates, the expressions of θL and EL are

θL =
∂L
∂vi dqi, EL = vi ∂L

∂vi − L, (42)

while that of ωL is:

ωL =
∂2L

∂qj∂vi dqi ∧ dqj +
∂2L

∂vk∂vj dqj ∧ dvk. (43)

We can give intrinsic proof of the direct part of Theorem 3 (see, e.g., [55]). Recall first
that in the geometric approach to Lagrangian mechanics, we have summarised in Section 5
when one starts with a 1-dimensional configuration space, Q ≡ R, and hence, TQ ≡ R×R,
and the expressions of S and θL in local coordinates (q, v) are

S =
∂

∂v
⊗ dq , θL =

∂L
∂v

dq .

Then, given a function L ∈ C∞(TQ) as Lagrangian,

ωL =
∂2L
∂v2 dq ∧ dv =

∂2L
∂v2 ω,

where ω is the symplectic form ω = dq ∧ dv in TQ, and then ωL is a regular Lagrangian
when ∂2L/∂v2 6= 0 because ωL is a symplectic form. The dynamical vector field ΓL is
defined by i(ΓL)ωL = dEL, which implies the condition LΓL ωL = 0, and then

d
(

∂2L
∂v2 i(ΓL)ω

)
= d(i(ΓL)ωL) = 0.

This shows that R = ∂2L/∂v2 is a Jacobi multiplier for the vector field ΓL in the
oriented manifold (TQ, ω).

The generalisation of this result to the n-dimensional case is immediate. If a SODE
vector field Γ admits a Lagrangian description by a regular function L, then i(Γ)ωL = dEL
and, consequently, LΓωL = 0, from which we see that the volume form (ωL)

∧n is an
invariant volume form. In a given chart (q1, . . . , qn, v1, . . . , vn) of TQ induced from one
(q1, . . . , qn) in Q, we have an associated volume form Ω = dq1 ∧ · · · ∧ dqn ∧ dv1 ∧ · · · ∧ dvn,
and as (ωL)

∧n is a constant multiple of det W Ω, where W is the matrix with elements
Wij = ∂2L/∂vi∂vj, we see that det W is a Jacobi multiplier for the vector field Γ with respect
to the volume form Ω.
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6. Jacobi Multipliers for Non-Autonomous Second-Order Differential Equations
and Lagrangians

The results in the preceding section can be extended and generalised to the non-
autonomous case. A non-autonomous second-order differential equation q̈ = F(t, q, q̇) has
associated a system of first-order differential equations:

ṫ = 1
q̇ = v
v̇ = F(t, q, v)

(44)

whose solutions are the integral curves of the vector field in the manifold R3 ≡ R× TR

Γ =
∂

∂t
+ v

∂

∂q
+ F(t, q, v)

∂

∂v
. (45)

The manifold R3 is supposed to be endowed with the natural volume form Ω =
dt ∧ dx ∧ dv and then div Γ = ∂F/∂v, and consequently, the positive function R is a Jacobi
multiplier for such a field with respect to Ω if and only if

Γ(R) + R
∂F
∂v

= 0 , (46)

which can also be written as Equations (21) and (22) with the new meanings for dR/dt
and Γ(R). Note that, once again, f R satisfies the same equation as R if f is a constant of
the motion.

Remark that the condition in Equation (2) for the function g, as mentioned in the
introduction, is exactly that the function g be a Jacobi multiplier. Moreover, we can state an
analogous property to that of Theorem 3:

Theorem 5. The normal form q̈ = F(t, q, q̇) of the differential equation determining the solutions
of the Euler–Lagrange equation, defined by a regular Lagrangian L, admits, as a Jacobi multiplier,
the function

R(t, q, v) =
∂2L
∂v2 . (47)

Conversely, if R(t, q, v) is a Jacobi multiplier for the vector field in Equation (45), then the
associated SODE q̈ = F(t, q, q̇) admits a regular Lagrangian L related to R by Equation (47). More
specifically, a regular Lagrangian L for the dynamics is explicitly given in terms of R by

L(t, q, v) =
∫ v

v0

(v− ζ)R(t, q, ζ)dζ +
∫ q

q0

F(t, ζ, v0)R(t, ζ, v0)dζ , (48)

no matter the values of v0 and q0.

The proof of this statement goes along the same steps as those of Theorem 2 for
the autonomous case, using the condition of Equation (46) for the multiplier instead of
Equation (21) when needed.

In fact, if the given SODE is equivalent to the Euler–Lagrange equation defined by
L(t, q, v), then

∂2L
∂v2 F = − ∂2L

∂q∂v
v− ∂2L

∂t∂v
+

∂L
∂q

,
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so that it is easy to check that R = ∂2L/∂v2 satisfies the condition of Equation (46) because

∂R
∂t

+ v
∂R
∂q

+
∂

∂v

(
∂L
∂q
− v

∂2L
∂q∂v

− ∂2L
∂t∂v

)
=

=
∂3L

∂v2∂t
+ v

∂3L
∂v2∂q

+
∂2L
∂q∂v

− ∂2L
∂q∂v

− v
∂3L

∂v2∂q
− ∂3L

∂v2∂t
= 0 ,

that is to say, R is a Jacobi multiplier for the vector field in Equation (45) determined by
the SODE.

As far as the converse part of the Theorem is concerned, note that the multiplier R
and the functions φ1 and φ0 appearing in the proof of Theorem 3 are now also allowed to
depend on t. A term, such as φ(t, q)v, splits into a gauge term and a function of (t, q) alone.

There is an intrinsic derivation of the direct part of Theorem 5. Recall that the geo-
metric approach to Lagrangian formulation in a one-dimensional configuration space Q is
developed in the evolution space R× TQ and that there is a 1-form θ in R× TQ, called
the contact form, with local expression in a chart on R× TQ induced from one chart in
Q, given by θ = dq− v dt, such that together with the 1-fom Ψ = dv− F dt are such that
{dt, θ, Ψ} is the dual basis of the basis of vector fields {Γ, ∂/∂q, ∂/∂v}. Then, if the vector
field in Equation (45) admits a Lagrangian fomulation, Γ is determined by i(Γ)ΩL = 0 and
the condition i(Γ)dt = 1, where

ΘL = L dt +
∂L
∂v

θ, ΩL = −dΘL.

However, as ΩL = −dΘL is an exact form, LΓΩL = d(i(Γ)ΩL) = 0, and therefore, as
LΓ(dt) = 0, the vector field Γ is divergence-free with respect to the volume form dt ∧ΩL.
Taking into account that dt ∧ dθ = 0, we will have that

dt ∧ΩL = −dt ∧
(

d
(

∂L
∂v

)
∧ θ

)
=

∂2L
∂v2 dt ∧ dq ∧ dv,

from which we see that i(Γ)(dt ∧ΩL) = ΩL is exact, and this implies that ∂2L/∂v2 is a
Jacobi multiplier for the vector field Γ with respect to the volume form defined in the chart
dt ∧ dq ∧ dv.

There is a useful result for Equation (44) and its associated vector field in Equation (45)
similar to that of Theorem 2 for Equation (17) and its associated vector field in Equation (18).

First, recall the relevant concepts of absolute and relative integral invariant p-forms
(see, e.g., [12]), a theory started by Poincaré in [56].

Definition 3. We say that a differential p-form λ in a manifold M is invariant under a vector
field X if LXλ = 0, and an absolute integral invariant of a vector field X ∈ X(M) if L f Xλ = 0,
for any function f ∈ C∞(M), i.e., if λ is invariant under the vector field X and i(X)λ = 0, or
equivalently, if i(X)λ = 0 and i(X)dλ = 0. Finally, λ it is said to be a relative integral invariant
if the (p + 1)-form dλ is an absolute integral invariant of X, i.e., simply i(X)dλ = 0.

As a well-known example, if (M, ω) is a symplectic manifold, the 2-form ω is an
absolute integral invariant of each locally Hamiltonian vector field, and if ω is exact,
ω = dθ. In the particular case of a 0-form in R2, i.e., a function G ∈ C∞(R2), each
relative integral invariant function is also an absolute integral invariant function, i.e., the
differentiable function G is a first-integral of X. Now, the first-integrals of the vector field
Γ, given by Equation (18), are the constants of the motion and the result of Theorem 2
can be reformulated as follows: The function G(q, v) is a relative integral invariant of the
vector field Γ, given by Equation (18), if and only if there exists a Jacobi multiplier R (with
respect to the volume form Ω = dq ∧ dv) such that R i(Γ)Ω = dG. The generalisation to
the time-dependent case is as follows:
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Theorem 6. A 1-form λ in R3 ≡ R× TR is a relative integral invariant of the SODE vector
field (45) if and only if there exists a Jacobi multiplier R for Γ (with respect to the volume form
Ω = dt ∧ dq ∧ dv) such that R i(Γ)Ω = dλ.

Proof. If R is a Jacobi multiplier such that R i(Γ)Ω = dλ, then it trivially follows that
i(Γ)dλ = 0, i.e., the 1-form λ is a relative integral invariant. Conversely, as by Equation (45),
i(Γ)dt = 1, we have that if λ is a 1-form, then dt∧ dλ is a volume form, and from the relation

i(Γ)(dt ∧ dλ) = (i(Γ)dt) dλ− dt ∧ (i(Γ)dλ) = dλ− dt ∧ (i(Γ)dλ),

we see that if λ is a relative integral invariant of the vector field Γ, as i(Γ)dλ = 0, we have
i(Γ)(dt ∧ dλ) = dλ, i.e., the vector field Γ is divergence-free with respect to the volume
form dt∧ dλ, because LΓ(dt∧ dλ) = d(i(Γ)(dt ∧ λ)) = d(dλ) = 0, and the function R such
that dt ∧ dλ = R Ω is a Jacobi multiplier for Γ with respect to the volume form Ω, because
LΓ(R Ω) = LR ΓΩ.

If the coordinate expression of the 1-form λ on R3 is λ = A dt + B dq + C dv, for
which dλ = (Bt − Aq)dt ∧ dq + (Ct − Av)dt ∧ dv + (Cq − Bv)dq ∧ dv, we have dt ∧ dλ =
(Cq − Bv)Ω, and if λ is a relative integral invariant of the vector field Γ, then the function

R =
∂C
∂q
− ∂B

∂v
(49)

is a Jacobi multiplier for Γ with respect to the volume form Ω because R i(Γ)Ω = dλ.
Note that as

i(Γ)dλ = (Bt − Aq)(dq− v dt) + (Ct − Av)(dv− F dt) + (Cq − Bv)(v dv− F dq),

λ is a relative integral invariant of Γ if and only if
v(Bt − Aq) + F(Ct − Av) = 0 ,
(Bt − Aq)− F(Cq − Bv) = 0 ,
(Ct − Av) + v(Cq − Bv) = 0 ,

and therefore, assuming that Fv 6= 0, we can define R equivalently by

R =
1
F

(
∂B
∂t
− ∂A

∂q

)
=

1
v

(
∂A
∂v
− ∂C

∂t

)
. (50)

As a consequence of the result of this theorem, the search for Jacobi multipliers for Γ
reduces to that of relative integral invariant 1-forms.

Corollary 2. Let G(t, q, v) and K(t, q, v) be two functionally independent functions. Then the
1-form λ = G dK is a relative integral invariant of Γ if and only if both G and K are constants of the
motion, i.e., absolute invariant integrals for Γ. In this case, the corresponding Jacobi multiplier is

R =

∣∣∣∣∂G
∂q

∂K
∂v
− ∂G

∂v
∂K
∂q

∣∣∣∣ = ∣∣∣∣∂(G, K)
∂(q, v)

∣∣∣∣, (51)

with associated Lagrangian

L(t, q, v) =
∫ v

v0

(v− ζ)

∣∣∣∣∂(G, K)
∂(q, v)

∣∣∣∣
(t,q,ζ)

dζ +
∫ q

q0

F(t, ζ, v0)

∣∣∣∣∂(G, K)
∂(q, v)

∣∣∣∣
(t,ζ,v0)

dζ . (52)

Proof. Note first that as the functions G and K are assumed to be functionally indepen-
dent, then the 1-form λ = G dK is such that dλ = dG ∧ dK is different from zero. As
i(Γ)(dG ∧ dK) = (i(Γ)dG)dK − (i(Γ)dK)dG, the 1-form G dK is a relative integral invari-
ant if i(Γ)dG = i(Γ)dK = 0, i.e., G and K are relative integral invariant, because of the
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functional independence of the functions G and K. The expression (51) of the associated
Jacobi multiplier R is obtained from Equation (49) by taking into account that, in this case,
A = GKt, B = GKq and C = GKv. The Lagrangian is obtained by putting Equation (51)
into Equation (48).

As the multiplier R, determined by an integral invariant, admits other equivalent
expressions in Equation (50), in this case, we can write Equation (51) as

R =
1
v

(
∂G
∂v

∂K
∂t
− ∂G

∂t
∂K
∂v

)
=

1
v

∣∣∣∣∂(G, K)
∂(v, t)

∣∣∣∣, (53)

R =
1
F

(
∂G
∂t

∂K
∂q
− ∂G

∂q
∂K
∂t

)
=

1
F

∣∣∣∣∂(G, K)
∂(t, q)

∣∣∣∣, (54)

and, consequently, the Lagrangian L can equivalently be written as

L(t, q, v) =
∫ v

v0

v− ζ

ζ

∣∣∣∣∂(G, K)
∂(v, t)

∣∣∣∣
(t,q,ζ)

dζ +
∫ q

q0

F(t, ζ, v0)

v0

∣∣∣∣∂(G, K)
∂(v, t)

∣∣∣∣
(t,ζ,v0)

dζ ,

L(t, q, v) =
∫ v

v0

v− ζ

F(t, q, ζ)

∣∣∣∣∂(G, K)
∂(t, q)

∣∣∣∣
(t,q,ζ)

dζ +
∫ q

q0

∣∣∣∣∂(G, K)
∂(t, q)

∣∣∣∣
(t,ζ,v0)

dζ ,

respectively.
These equivalent forms of the Lagrangian determined by the Jacobi multiplier associ-

ated to two independent first-integrals were obtained by Leubner [36]. Other results can be
derived from here. Actually, the time-independent Lagrangian Equation (36) generated by
a constant of the motion G(q, v) may be obtained from Equation (53) by taking into account
that from G, we can construct a second constant of the motion K such that Kt = 1, see [36].

7. More Illustrative Examples

As a first example, we recall that the classical equation of motion of a damped har-
monic oscillator is

q̈ + λ q̇ + ω2 q = 0, λ, 0 < ω ∈ R, (55)

which is described by the vector field in R × TR ≡ R3 given by Equation (45), with
F(q, v) = −(λv + ω2q),

Γ =
∂

∂t
+ v

∂

∂q
− (λ v + ω2 q)

∂

∂v
, (56)

and then, if we consider the volume form in R3 Ω = dt ∧ dq ∧ dv, div Γ is constant,
div Γ = −λ, which shows that [57] R = eλt is a Jacobi multiplier for the vector field Γ.
Consequently, there will exist a Lagrange function L(t, q, v) such that

∂2L
∂v2 = eλt.

Other possible Jacobi multipliers have been found in [57].
More generally, if the vector field Γ is such that div Γ = µ(t) ∈ R, then the function

R = exp
(
−
∫ t

µ(t′)dt′
)

(57)

is a Jacobi multiplier because Γ(R) + R div Γ = −µ R + µ R = 0. For instance, a slight
generalisation of the damped harmonic oscillator is given by the differential equation

q̈ + ψ(t) q̇ + ω2 q = 0, (58)
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which is described by the vector field on R3

Γ =
∂

∂t
+ v

∂

∂q
− (ψ(t) v + ω2 q)

∂

∂v
, (59)

and if we consider the volume form in Ω = dt∧ dq∧ dv, divΓ is a function of t, divΓ = −ψ(t),
and it shows that if ϕ(t) =

∫ t
ψ(ζ) dζ, then eϕ(t) is a Jacobi multiplier for Γ, which was already

found by Jacobi. The corresponding Lagrangian L is obtained from Equation (48) by choosing
v0 = 0 and q0 = 0:

L(t, q, v) = eϕ(t) 1
2

(
v2 −ω2 q2

)
. (60)

In the particular case of ψ(t) = λ, the well-known Lagrangian proposed by Bate-
man [58] and later on by Caldirola [59] is recovered as a particular case.

To work out more examples, we only need to look for a Jacobi multiplier R for the
given mechanical system and apply the general Equation (48) for the Lagrangian. As
we do not need to find the general solution of Equation (46), but it suffices to find only
particular solutions of Equation (46) for the multiplier. We can impose restrictions on the
form of R. For instance, when studying a second-order differential equation in normal
form q̈ = F(t, q, q̇), with an associated vector field (45), the condition for the function

R = exp
(
−
∫ t

µ(t′)dt′
)

to be a Jacobi multiplier reduces to

∂F
∂v

= µ(t),

and then F(t, q, v) = µ(t)v + ϕ(t, q). In this case, the Lagrangian L(t, q, v) for the second-
order differential equation is such that

∂2L
∂v2 = exp

(
−
∫ t

µ(t′) dt′
)

,

and then L is, up to the addition of a gauge term, of the form

L(t, q, v) = exp
(
−
∫ t

µ(t′) dt′
)

v2

2
+ φ(t, q).

The function φ(t, q) is determined by demanding that the Euler–Lagrange equation

must be satisfied, yielding φ(t, q) = R(t)
∫ q

ϕ(t, ζ)dζ. Then

L(t, q, v) = R(t)
(

1
2

v2 +
∫ q

ϕ(t, ζ)dζ

)
.

Of course, this result can be obtained directly from Equation (48).
There are other interesting examples of physical interest. For instance, Emden–Fowler-

type equations (see, e.g., [60,61] and references therein)

ẍ + a(t)ẋ + b(t)xn = 0,

arise in many problems in mathematical physics and astrophysics [62,63]. This is the case
of the Lane–Emden equation

ẍ +
k
t

ẋ + c tl xn = 0 , k, c ∈ R, l, n ∈ N,

or the original equation introduced by Emden, which corresponds to the particular choice
k = 2, c = 1, l = 0:

t ẍ + 2ẋ + t xn = 0 , (61)
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for which
F(x, v) = −2

t
v− xn,

and then, in this case, µ(t) = −2/t, and therefore, there exists a Jacobi multiplier that
depends only on t, R(t) = t2, and its associated Lagrangian is, up to a gauge term,

L(t, x, v) = t2
(

1
2

v2 − xn+1

n + 1

)
.

Other alternative Jacobi multipliers were determined in [64].
We can also characterise the functions F for which the corresponding SODE vector

field admits a Jacobi multiplier R such that it only depends on t and x. In such a case, the
Jacobi multiplier equation is

∂ log R
∂t

+ v
∂ log R

∂x
+

∂F
∂v

= 0,

from which we see that the function F must be of the form F(t, x, v) = A(t, x)v+ B(t, x)v2 +
C(t, x), where

∂ log R
∂t

= −A,
∂ log R

∂x
= −2B,

and the integrability condition for the existence of such a Jacobi multiplier R(t, x) is that
∂A/∂x = 2 ∂B/∂t.

As a particular instance appearing in General Relativity, let us consider the case of the
so-called Buchdahl Equation [65]

ẍ =
3ẋ2

x
+

ẋ
t

,

which corresponds to the particular choice

A =
1
t

, B =
3
x

, C(x) = 0,

satisfying the compatibility condition for the existence of the Jacobi multiplier, ∂A/∂x =
0 = ∂B/∂t. The Jacobi multiplier R is determined by the conditions

∂ log R
∂t

= −1
t

,
∂ log R

∂x
= − 6

x
,

i.e.,

R(t, x) =
1

tx6 ,

with the associated Lagrangian given by Equation (48), i.e., up to a gauge term,

L(t, x, v) =
v2

2tx6 .

As a second example of this type, let us consider the SODE [66]:

txẍ + xẋ + t(2x + 1)ẋ2 = 0. (62)

which corresponds to the choice

A = −1
t

, B = −2x + 1
x

, C(x) = 0.
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and therefore, the compatibility condition for the existence of the Jacobi multiplier is satis-
fied because ∂A/∂x = 0 = ∂B/∂t. The Jacobi multiplier R is determined by the conditions

∂ log R
∂t

=
1
t

,
∂ log R

∂x
= 2

2x + 1
x

,

with the solution
R(t, x) = t x2e4x, (63)

and associated Lagrangian given by Equation (48), i.e., up to a gauge term,

L(t, x, v) =
1
2

t x2 e4x v2 .

We can use this example to illustrate the more involved procedure based on the
corollary of Theorem 6. First of all, observe that, after multiplying Equation (62) by e2x, it is
reduced to the equivalent form d(e2x t x ẋ)/dt = 0 so that

G1(t, x, v) = e2x t x v

is a constant of the motion. Another constant of the motion is obtained by solving the
equation e2xtxẋ = const for ẋ and integrating with respect to time,

K(t, x, v) = log t− 2x− 1
4 t x v

.

Using, for a matter of convenience, the constant of the motion G = log G1 instead of
G1, we obtain, according to Equation (53), the Jacobi multiplier

R =
1
v

∣∣∣∣∂(G, K)
∂(v, t)

∣∣∣∣ = 1
tv2 ,

with the associated Lagrangian Equation (48)

L(t, x, v) = −1
t

log(e2xxv) ,

as obtained by choosing suitable values for the constants of integration and eliminating the
gauge terms in Equation (48). Remark that the quotient of both Jacobi multipliers is G2

1 , i.e.,
a constant of the motion, as expected.

8. Infinitesimal Symmetries and Jacobi Multipliers

Our emphasis in the theory of Jacobi multipliers was in its applications to the inverse
problem of mechanics, mainly for the interest in the Lagrangian formulation as a first step
in the process of obtaining an appropriate Hamiltonian formulation for its quantisation,
but we do not forget that the concept of the Jacobi (last) multiplier was introduced to
integrate a given system by quadratures. More specifically, the result obtained by Jacobi
can be summarised as follows (see [55] for a recent geometric presentation):

If a Jacobi multiplier µ and a set of (n − 2) functionally independent first-integrals,
{I1, . . . , In−2}, for a given vector field X on an oriented n-dimensional manifold (M, Ω) are
known, the determination of the integral curves of the vector field X is reduced to quadratures.

In this and the next section, we point out other interesting results concerning the
integrability by quadratures that have not been considered from a geometric perspective.

As it has been shown, the usefulness of the constants of motion in the theory of Jacobi
multipliers, and quite often, these first-integrals are related to infinitesimal symmetries,
one can guess that the infinitesimal symmetries can also play a rôle in the theory. We first
start with the simpler 2-dimensional case to recall a celebrated theorem by Lie.

In the simple 2-dimensional case, there is a clear relationship between the existence of
an infinitesimal symmetry Y and the existence of a Jacobi multiplier because, given such a
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vector field Y, the function R = (i(Y)i(X)ω)−1 is a Jacobi multiplier for X, with respect
to the volume form ω. In fact, the main property relating Lie symmetries and integrating
factors is due to Lie [67]:

Theorem 7. (Lie) Let be Y ∈ X(R2) and α ∈ ∧1(R2) such that i(Y)α is a nonvanishing function.
Then R = [i(Y)α]−1 is an integrating factor for α if and only if the vector field Y is an infinitesimal
symmetry of the distribution defined by the 1-form α, i.e., LYα = f α with f ∈ C∞(R2).

Proof. We can take into account that

d
[

α

i(Y)α

]
= −d[i(Y)α]

[i(Y)α]2
∧ α +

dα

i(Y)α
,

which can also be written as

d
[

α

i(Y)α

]
=

1
[i(Y)α]2

[(−LYα + i(Y)dα) ∧ α + (i(Y)α) dα],

where use has been made of d(i(Y)α) = LYα− i(Y)dα.
Now, as α is a 1-form,

i(Y)(α ∧ dα) = (i(Y)α) dα + (i(Y)dα) ∧ α,

and as α ∧ dα is a 3-form, it must be equal to zero, and then

d
[

α

i(Y)α

]
= − 1

[i(Y)α]2
((LYα) ∧ α).

Therefore, α/(i(Y)α) is closed if and only if (LYα) ∧ α = 0, i.e., LYα is proportional
to α.

Another proof is as follows: If X is a vector field such that α(X) = 0, then X is linearly
independent of Y at each point because α(Y) is a nonvanishing function. Then, the 1-form
β = α/(i(Y)α) is such that β(X) = 0 and β(Y) = 1 by construction. Therefore,

dβ(X, Y) = Xβ(Y)−Yβ(X) + β([X, Y]) = β([X, Y]).

Here, we see that dβ = 0 if and only if β([X, Y]) = 0, which is equivalent to α([X, Y]) =
0. However, as (i(X) ◦ LY −LY ◦ i(X))α = i([X, Y])α = 0, and α(X) = 0, we obtain that
i(X)LYα = 0, i.e., the vector field Y is a symmetry of the distribution defined by α.

We remark that if the vector field Y is a strict symmetry of X, i.e., [X, Y] = 0, then Y is
an infinitesimal symmetry of the distribution defined by the 1-form α, and the result of the
theorem follows, but the result is also valid in the more general case in which there exists a
function λ such that [X, Y] = λ X. These vector fields Y ∈ X(M) that are symmetries of the
distribution generated by X are sometimes called normalizers of X.

In this particular case, we are considering α is the 1-form α = i(X)ω. The associated
first-integral, as indicated in Theorem 1, is the (locally defined) function F such that

α

i(Y)α
= dF,

and the function F can be found by one quadrature.
The generalisation of this theorem to higher dimensional manifolds can be found

in [68,69]:

Theorem 8. If n vector fields X1,. . . ,Xn, which are linearly independent at each point of an open
set U ⊂ Rn, generate a solvable Lie algebra and are such that [X1, Xi] = λi X1 with λi ∈ R, then
the differential equation ẋi = X1 xi is solvable by quadratures in U.
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However, the main theorem that extends to the n-dimensional case, the Lie results for
the construction of the Jacobi multiplier when (n− 1) infinitesimal symmetries are known
in [67,70]:

Theorem 9. Let {Y1, . . . , Yn−1} be a set of n− 1 vector fields whose values are linearly independent
at each point of the n-dimensional oriented manifold (M, Ω) and are normalizers of the vector field
X ∈ X(M). If the function h = i(Y1) · · · i(Yn−1)i(X)Ω is a nonvanishing function, then h−1 is a
Jacobi multiplier for the vector field X ∈ X(M).

Proof. We first recall that for any vector field Y ∈ X(M) and any form β ∈ ∧(M), we
have that

LXi(Y)β = i(Y)LX β + i([X, Y])β ,

and if we apply this relation with Y = Y1 and β = i(Y2) · · · i(Yn−1)i(X)Ω, we obtain that

LXh = i(Y1)LX [i(Y2) · · · i(Yn−1)i(X)Ω] + i([X, Y1])i(Y2) · · · i(Yn−1)i(X)Ω .

The second term of the right hand side vanishes because [Y1, X] is proportional to X
and i(X)i(X)Ω = 0, and therefore, only the first term remains:

Xh = LXh = i(Y1)LX [i(Y2) · · · i(Yn−1)i(X)Ω] .

Iterating the process, with the vector fields Y2, then Y3, and so on, we will arrive to

LXh = i(Y1) · · · i(Yn−1)LXi(X)Ω .

Now, as LXi(X)Ω = i(X)LXΩ = div X i(X)Ω, we find that

Xh = div X i(Y1) · · · i(Yn−1)i(X)Ω = h div X.

Finally, remark that if h is a nonvanishing function such that Xh = h div X, then the
function R = h−1 satisfies the Jacobi multiplier condition.

Note that if we use coordinates such that Ω = dx1 ∧ · · · dxn, then h is, up to a real
factor, equal to

h̄ =

∣∣∣∣∣∣∣∣∣
X1 · · · · · · Xn

Y1
1 · · · · · · Yn

1
...

...
...

...
Y1

n−1 · · · · · · Yn
n−1

∣∣∣∣∣∣∣∣∣ , (64)

where Xi denote the components of the vector field X and Yi
α the components of the vector

field Yα.
This result has been presented in [64,71–74].

9. Jacobi Multipliers and Hojman Symmetry

Apart from the usual way of finding first-integrals from infinitesimal symmetries
via the Noether theorem, and a second procedure based on the existence of alternative
geometric structures for the description of the vector field providing us a recursion operator,
there is a third approach started by Hojman [75] and González-Gascón in [76], which is
becoming more and more important because of its applications in f (R)-gravity and FRW
cosmology [77–83]. It was introduced first for divergence-free vector fields in an oriented
manifold (M, Ω), in the particular case of a SODE and then generalised to arbitrary SODE
vector fields. The general result is a consequence of the fundamental relation in Equation (8).
The geometric approach to this generalised Hojman symmetry was recently given in [84].
As a consequence of relation in Equation (8), if the vector field X ∈ X(M) in an oriented
manifold (M, Ω) is divergence-free and the vector field Y is an infinitesimal symmetry of
X, i.e., [X, Y] = 0, we have that div (Y) is a constant of the motion for X. When, instead, the
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vector field Y is an infinitesimal symmetry of the 1-dimensional distribution generated by
X, i.e., there exists a function h such that [Y, X] = h X, we have that the function div (Y) + h
is a constant of the motion for X. Actually, if div (X) = 0, then LXΩ = 0, and hence, as
[X, Y] = −h X,

LX(LYΩ) = LY(LXΩ) + L−h XΩ = −LX(h Ω) = −X(h)Ω,

and therefore, as LX(LYΩ) = LX(div (Y)Ω) = LX(div (Y))Ω, we obtain that
LX(div (Y) + h) = 0, and therefore, the following function is a constant of the motion I
for X:

I = div (Y) + h. (65)

If the vector field is not divergence-free, we can use the Jacobi multiplier theory, and
as for any nonvanishing function R, the constants of motion of X coincide with those of
R X, in the particular case of a Jacobi multiplier R for X, the vector field X̄ = R X is such
that when [Y, X] = h X, we have that [Y, X̄] = h̄ X̄ with h̄ = (Y(R)/R) + h, and hence, we
have the constant of motion for X̄ and, therefore, for X, given by

I = div (Y) + h̄ = div (Y) + Y(log R) + h. (66)

These general results can be applied to specific examples, and we recover as particular
examples many previously found constants of motion (see [84]). For instance, one can
apply the general theory to both Hamiltonian and Lagrangian formulations of autonomous
systems or generic second-order differential equations. In this respect, the Jacobi multiplier
given by the determinant of the Hessian matrix W in the Lagrangian case explains the
result obtained by Lutzky [85] as a particular case of the constant of motion given by
Equation (66).

In the case of nonautonomous systems, as the dynamical vector fields must be re-
placed by 1-dimensional distributions, the more general condition [Y, X] = h X, which
means that the vector field Y preserves the 1-dimensional distribution generated by
X is relevant in the context of symmetry for such systems. We can study particular
examples of non-autonomous systems of first-order differential equations [75,76] and
also Hamiltonian systems as in [86], non-autonomous systems of second-order differen-
tial equations [75,76,87,88] and, in particular, systems admitting a Lagrangian formula-
tion [85,88].

10. Conclusions

A geometrical approach to the theory of Jacobi multipliers has been developed: after
introducing the usual definition, it was pointed out that the search for Jacobi multipliers is
equivalent to the determination of invariant volume-forms.

As a first application of the general theory, we used this concept in the inverse problem
of classical mechanics because, as it has been shown in Section 3, when a Jacobi multiplier
for a given second-order differential equation is known, it it possible to find a Lagrangian
formulation for such a system. This is particularly interesting in the quantization process.
Of course, such Lagrangians, which can be found by means of two quadratures, are, in
general, non-standard Lagrangians, as has been illustrated with several examples. The
Lagrangian case for autonomous n-dimensional systems has also been considered, and
it was shown that the determinant of the Hessian matrix is a Jacobi multiplier. The
theory has been extended to the non-autonomous case where a similar result holds, and
an explicit formula for the determination of a Lagrangian for the particular case of a
non-autonomous second-order differential equation is given. The bijection between first-
integrals of 2-dimensional systems and Jacobi multipliers is then extended to the case of a
non-autonomous second-order differential equation as a bijection between relative integral
invariants on one side and Jacobi multipliers on the other. Several interesting examples
illustrate the theory.
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As a second application, the relation for 2-dimensional systems among infinitesi-
mal symmetries of the distribution generated by the given vector field X and its Jacobi
multipliers is extended in one direction: it is shown how it is possible to obtain a Jacobi
multiplier when (n− 1) infinitesimal symmetries of the distribution generated by X are
known. Finally, the relevance of Jacobi multipliers in the search for first integrals of a
vector field X, i.e., the recently developed geometric approach to Hojman symmetry, is
summarised. In fact, a Jacobi multiplier for the vector field X allows us to use a conformally
related divergence-free vector field instead of X, and then, the infinitesimal symmetries of
this one provide us first integrals for X.
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