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Resumen 

La proliferación de las redes sociales y de espacios de debate en Internet ha alterado 

completamente nuestra percepción sobre conceptos como lo políticamente correcto o los 

límites del humor. Voces que antes no eran escuchadas debido a la falta de medios tienen ahora 

incluso más alcance que los medios de comunicación tradicionales. Aunque esta 

democratización de la información y las opiniones conllevan un gran avance, existe un 

crecimiento proporcional de número de comentarios los cuales tienen intenciones nocivas. 

Sumado a esto, la sensibilidad general de la Sociedad se ha afinado como consecuencia de que 

las nuevas voces que surgen puedan expresar y explicar qué comportamientos son incorrectos 

y por qué. Estos nuevos elementos propios del siglo XXI, ha provocado que muchas empresas 

busquen mecanismos para prevenir los comentarios que suscriban características ofensivas, 

tóxicas y de odio. 

El objetivo de este proyecto es la implementación de un sistema capaz de clasificar un texto 

dentro de una escala que refleje cuán inapropiado es este, entediendo por inapropiado una 

propiedad basada en elementos de toxicidad, obscenidad, amenaza, insulto u apología al odio. 

A su vez, este trabajo tiene la finalidad de desarrollar un estudio comparativo de las posibles 

alternativas de implementación que tendría este sistema. 

El programa ofrece la posibilidad de realizar una predicción del texto facilitado como entrada a 

través de dos métodos: el primero asigna al texto un valor de dos posibles (apropiado o 

inapropiado). Por otra parte, el segundo método permite diseccionar la predicción del texto en 

propiedades más específicas como las comentadas anteriormente. 

Otro aspecto del sistema es el de ofrecer a una persona, con las credenciales pertinentes, 

entrenar el modelo nuevamente con conjuntos de datos introducidos por ella. Por último, 

ciertas operaciones de interés para el usuario como salvar archivos con las predicciones 

realizadas son planteadas. 

En el proyecto se explora principalmente el uso de la inteligencia artificial y el aprendizaje 

automático, basados tanto en modelos matemáticos como en redes neuronales. En mayor 

detalle, el sistema se basa en una tarea de clasificación de texto, como puede ser a su vez la 

clasificación de sentimientos a partir de un texto. Asimismo, se investiga cómo se enmarca este 

sistema dentro de la dirección y planificación de proyectos.  
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Abstract 

The proliferation of social networks and rooms of discussion on the Internet has completely 

altered our idea about concepts such as the politically correct and humour boundaries. The 

voices that were not heard before due to lack of means have these days even more reach than 

traditional media. Although this information and opinion democratization imply huge progress, 

there has been a proportional growth of number of comments with harmful intentions. 

Moreover, the general sensitivity of society has been polished as a consequence of the new 

voices that emerge and can express and explain what behaviours are incorrect and why. These 

new elements, intrinsic to the 21st century, have made some companies attempt to prevent 

those comments that subscribe offensive, toxic and hate characteristics. 

The goal of this project is the implementation of a system capable of classifying a text within a 

scale that reflects how appropriate it is, assuming as inappropriate any message with toxic, 

obscene, threat, insult and/or identity hate elements. Furthermore, this piece of work has the 

intention of developing a thoughtful comparative study about the possible implementation 

alternatives which this system could have. 

The program offers the possibility of doing a prediction of an input text via two methods: The 

first one assigns a value from two possible to the text (appropriate or inappropriate). On the 

other hand, the second method allows to dissect the prediction into more specific properties as 

the ones mentioned previously. 

Another aspect of the system is that it grants the possibility to an individual, with its 

corresponding credentials, of training the model with new datasets as input. Finally, some user-

friendly operations such as saving the predictions into a file are suggested. 

This project explores mainly the use of artificial intelligence and machine learning, based both 

on statistical mathematic models and on artificial neural networks. More specifically, the system 

is enclosed on a text classification task, which includes a common field of work called Natural 

Language Processing (NLP). For instance, sentiment classification is a popular task inside this 

area. Likewise, this work does research about how this sort of system is crafted on project 

management and planification framework.  
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Chapter 1. Project Report 

The main features of this project, as well as other relevant characteristics are described below. 

1.1 Motivation Summary, Objectives and Project 

Scope  

Nowadays, the spread utilization of the Internet and more specifically of social media is 

undeniable. This exposition to the general public, besides the relentless success and benefits, 

inevitably leads to the proliferation of harming practices, both for the people using the web and 

for the Internet itself. Among these practices we can encounter posts that hold inadequate 

behaviours, which have been especially relevant for the last years, and a focal point for many 

studies and analysis.  

The ease for expressing one’s opinion in addition to the anonymity’s apparent safety behind the 

screen, encourages a lot of people to spread negative-connotation messages, which could carry 

harmful intentions. There is a wide spectrum discussing negative opinions. On one hand, there 

are messages that, although negative, their purpose may be considered as a respectful review. 

On the other hand, there are publications whose eventual objective is hate speech, threating, 

harassment, etc. 

The later example has driven to an infinity of debates about the boundaries of free speech. One 

answer shared by several of the most visited websites has been the implementation of filtering 

systems, that allow taking decisions about these sorts of posts. Some companies tend to display 

warnings to the people that may be concerned, whilst other corporations choose to erase the 

messages and even punish the responsible user. 

While it is true that these mechanisms may be interpreted as a limitation of freedom of speech, 

the organizations and their policies are the ones that establish how the filtering methods should 

be used, whether they ought to be used with a strong or weak approach. 

Thus, inappropriate message detection systems do not present any sort of ethical dilemma in 

terms of its use, and they are increasingly necessary in the exponential usage of social networks 

and websites. 

The main goal of this project is to offer whoever person or whichever company the possibility of 

tracking the possible harmful comments inside a set of documents. The system also has the 

objective of being maintainable, given that a company using it may have an already established 

machine learning model that can perform better classification than the ones suggested, or the 

company may want to create a new model from scratch. This project has not the intention of 

providing censorship mechanisms to the companies utilizing it, although this issue is out of the 

system’s reach. 
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1.2 Summary of all Aspects 

On this section, the objectives of later parts of the document are encapsulated. 

Introduction. Project precedents are developed, as well as their justification, goals, and current 

situation. 

Theoretical aspects. Brief explanation of the most abstract concepts upon which this project is 

supported, their importance within it and their origin. 

Project planning and initial budgets. The project framework is shown on this chapter, the 

context in which is proposed and first outlined budgets. 

Analysis. Requirements and documentation corresponding to the analysis phase within the 

project fulfilment. 

System design. The disposition of the different parts of the system are laid out, as it can be its 

infrastructure, communication between subsystems or the description and sketches of the user 

interface, in addition to the detailed process of the testing plan. 

System implementation. On this section, the document explains in detail the different tools and 

technologies used, along a journey through the process of the system implementation. Also, 

problems found during the development are specified. 

Evaluation of alternatives. Discussion and analysis of the state-of-art solutions regarding this 

project’s matter. Also, the different alternatives attempted throughout the system development 

are described and evaluated. 

Testing development. The development of the testing plans already discussed on the system 

design. 

System manuals. Explanations and tutorials on different usage levels, like installation manuals 

or user guide. 

Conclusions and future work. Conclusions from the author regarding the obtained results and 

his expectations, and possible extensions for the system. 

Project planning and final budgets. Idem to the namesake chapter, but on the final phase of 

this project. 

Bibliographic references. Consulted resources for the project development. 

Annexes. They contain the glossary of terms, a description of the attached content, and meeting 

minutes. 
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Chapter 2. Introduction 

In this chapter the main discussions topics are the justification of this project, its main objectives, 

and the analysis of the current state-of-art solutions. 

2.1 Justification of the Project 

This project is born out of need of different organizations exposed to the public of locating those 

messages that are inappropriate. The term inappropriate is baffling, given that it varies 

depending on the context of its use. In this project we can define it as a property socially 

conferred to whichever message that exhibits elements of toxicity, obscenity, threat, insult 

and/or hate speech within its meaning, i.e., a message is inappropriate when most of the people 

analysing it recognizes that its nature is contained inside one or more of the former categories. 

A large quantity of inappropriate messages in, for instance, a social network, translates to a risk 

for the rest of the network, since the publications are potentially detrimental for readers who 

may feel identified with them. 

At first glance, the implementation of a system which detects these messages may seem like a 

controversial measure, because it can drive to a restriction to free speech, besides the fact the 

line drawn for texts considered attacks to an individual or group of individuals’ sensitivity is 

vague and subjective. Although this is an unsolved debate, the discussed system is external to 

it, given that it is, indeed, the organization who is in possession of the system the one that 

decides which strategy to stick to in order to deal with these messages, either by censorship or 

less extreme means. 

Nevertheless, there are messages that have no room in present society and should not be shared 

across any platform, like incitement to hatred against certain groups or threats to certain 

individuals. 

Unfortunately, there have been multiple cases of cyberbullying that have led to dreadful events 

due to the widespread growth of messages with degrading intentions. However, we are 

currently giving more importance to mental health and commencing to talk about this topic, 

that not so long ago was ignored. 

It is pending assignment of society to try to eradicate any sort of offensive attitude towards 

people or groups with the mere purpose of harming, and this system intends to be helpful on 

this matter. 
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2.2 Objectives of the Project 

Next, the goals of the fulfilment of this project are listed: 

1. Create a program capable of detecting a message or group of messages as inappropriate 

through two distinct methods: 

a. Binary classification (appropriate or inappropriate). 

b. A more detailed classification that breaks down the constitution of the message 

in terms of toxicity, obscenity, threat, insult or hate speech. 

2. Allow the user to change the classification method among the options listed previously. 

3. Allow an administrator (with the corresponding credentials) to train the classifiers with 

the intention of improving them and testing them later. 

4. Allow an administrator to correct predictions performed by the both models. 

5. Allow a user to save the predictions performed into a file. 
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2.3 Study of Current Situation 

One of the features of this project, which is quite normal in text classification tasks, is the 

concision of the parameters by which the classification is run. This concern highlights a doubt 

about when a text is considered appropriate for the concept upon which it is classified (if it 

contains rude words, swear words, if it attacks a person or group of people despite using a 

correct vocabulary, etc.) 

This dim definition provokes the disagreement when it comes to categorizing texts, since what 

a person considers inappropriate may not be inappropriate for another person. Therefore, 

available datasets vary drastically on the categories in which documents are classified. 

Some works have focused on identifying if the used language in the text is offensive or hate 

speech like Davidson’s, in which more classic methods are utilized, like logistic regression [1]. 

There are older publications like Smokey, which proposes a hostile message automatic detection 

system [2]. 

On the other hand, several other papers have done research on toxic text classification in other 

languages, like Banik and Rahman who cover Bengali [3], or Álvarez Carmona with Mexican 

Spanish [4]. 

In most of the cases, the model which is used is an artificial neural network trained with different 

datasets. Building a neural network from scratch requires a vast knowledge on deep learning 

and neural networks themselves. So, a common solution is using pre-trained models for the 

classification, like BERT [5]. 

The contribution of this project is the intent on proposing a definition of «inappropriate 

message» that gathers the former studies. It is also appealing to unify in a single system the 

capability of classifying a text with a binary approach or a more itemized approach with 

multilabel classification. Last, one of the main goals of this project is to offer a system that can 

be extended to receive other modules and be maintained with ease. 

2.3.1 Alternatives evaluation 

System alternatives can be spanned according to the sophistication degree we want to agree 

on. Even so, the following subsections describe some of the alternatives regarding the main 

model for classifying text. 

2.3.1.1 Rule-based system (unfeasible) 

A traditional program could be considered among the possible alternatives for implementing 

the system. This idea, however, is easily dispensable, due to the infinite generative nature of 

language, that allows building sentences in countless ways. We could cover a large sample of 

these sentences, but we would always fall short to the possibilities of constructing a phrase. 
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2.3.1.2 Logistic regression 

Given that a part of our system has the goal of classifying text as inappropriate or not, we are 

facing a binary classification task. To solve these sorts of problems, it is frequent the use of linear 

classifiers. In this group of classifiers, logistic regression in one of the most common. Logistic 

regression allows us to make a classification with ease. There are other linear classifiers that 

may serve for the implementation of the system, but this is the one chosen for our task [6]. 

2.3.1.3 Other binary models 

When it comes to selecting a classifier, the research throughout the years shows that it does not 

exist a perfect fit for a given task. Therefore, we must try several options in order to spot the 

most suitable one. To achieve a binary classification, we may look up for different sorts of 

models. Popular classifiers include the perceptron, stochastic gradient descent and naive bayes, 

among others [7]. 

2.3.1.4 Neural networks 

Deep learning is one of the usual go-to options in artificial intelligence problems, and this system 

is not an exception. The capability of neural networks of retracing the error across their neurons, 

is an ideal way of fine-tuning a model to accomplish our task. However, knowledge about this 

model is not trivial. One of the main drawbacks of artificial networks is its high-demanding 

understanding on how it operates, and for that reason it is seen sometimes as an excessive 

approach depending on the task reach [8]. 

2.3.1.5 One vs Rest approach 

This method transforms a multiclass problem into several binary tasks. This mechanism enables 

to use a  simple and known binary model like the one we use for the binary classification and 

train it with a non-binary dataset. Nevertheless, it is a strategy used to «patch» in some way a 

more complex problem, so it probably will not be as effective as a neural network [9]. Also, it is 

not the best approach for multilabel tasks. 

2.3.1.6 Multilabel task transformations 

Multilabel strategy is a complex task that can be very-well implemented using distinct methods, 

like binary relevance, classifier chain, and label powerset. These methods will be described in 

section 2.3.1.6.1, 2.3.1.6.2, and 2.3.1.6.3. All the examples have been acquired from [11]. They 

are similar approaches to the OvR technique, in the sense that they try to transform the problem 

into a binary classification problem, and this may lead to the same issues [10]. 
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2.3.1.6.1 Binary relevance 

This method allows to split a multilabel task into multiple binary classification tasks. Imagine we 

had this small dataset. X1, X2 and X3 are the samples and they had three associated prediction 

values.  

X Target1 Target2 Target3 

X1 0 0 1 

X2 0 0 0 

X3 1 0 1 

Figure 1 Multilabel classification examples 

If we performed binary relevance, we would get three datasets corresponding to each target. 

Thus, we have shifted a single multilabel classification problem into three binary classification 

problems. 

X Target1 

X1 0 

X2 0 

X3 1 
 

X Target2 

X1 0 

X2 0 

X3 0 
 

X Target3 

X1 1 

X2 0 

X3 1 
 

Figure 2 Binary relevance transformation example 

This method works similarly to the One VS Rest method, but it manages non-exclusive targets. 

2.3.1.6.2 Classifier chain 

One of the main disadvantages of the binary relevance transformation is that it loses all 

correlation between labels, which depending on the task it would be interesting to keep. The 

classifier chain approach solves this issue adding as a feature the previous target value 

sequentially. Consider the example on Figure 1. If we used the classifier chain mechanism, we 

would first obtain a dataset with the three samples and the three values of Target1. Then, this 

dataset is used as the input for the next one that will have as Target2 as the target. Finally, this 

second dataset will be the features for the final dataset that will have Target3 as target. 

X Target1 

X1 0 

X2 0 

X3 1 
 

→ 

X Y1 Target2 

X1 0 0 

X2 0 0 

X3 1 0 
 

→ 

X Y1 Y2 Target3 

X1 0 0 1 

X2 0 0 0 

X3 1 0 1 
 

Figure 3 Classifier chain transformation example 

2.3.1.6.3 Label powerset 

This method allows to consider every possible combination of the targets as a singular value. 

The difference is that this method transforms the multilabel task into a multiclass task. We will 
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see how it would look in the example given in Figure 1. In this case, as we only have three of all 

the possible combinations, we will have three classes out of the possible eight. 

X Class 

X1 1 

X2 2 

X3 3 

Figure 4 Label powerset example 

This last method could work for small number of targets but not for large numbers of targets. 

Some multilabel classification tasks work with hundreds of targets, so if for instance we had a 

complete dataset with most of the targets’ possible combinations, the label powerset would 

compute more than 2100 classes, which is computationally inefficient. 
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Chapter 3. Theoretical Aspects 

This chapter details some essential characteristics for the purpose of understanding the logic 

behind several of the key concepts of this project. 

3.1 Artificial intelligence (AI) 

The next three subparts try to discern the concepts of artificial intelligence, machine learning 

and deep learning, that are crucial in these sorts of problems but often confused. 

The Artificial Intelligence concept has several suitable definitions, yet we will stick to the 

definition proposed by John McCarthy in which artificial intelligence is «the ability of a machine 

to mimic the behaviour of the human mind on problem-solving and decision-making» [12]. 

We establish the origin of artificial intelligence in the first half of the 20th century, when Alan 

Turing, one of the fathers of modern computer science brings up the question: «Can machines 

think? » on his study Computing Machinery and Intelligence [13]. His early passing and the few 

resources of that time prevented him from putting into practice his question, but he set the 

theoretical framework and the basis upon which future work would be done. Since then, 

artificial intelligence has evolved drastically and surpassed Turing expectations, and it is 

considered one of most critical goals of future’s computer science [14]. 

3.2 Machine learning (ML) 

Machine learning is a branch of artificial intelligence that gathers the methods and techniques 

for imitating human learning behaviour. In essence, machine learning systems manage historical 

labelled data and attempts to predict outputs which are not programmatically specified. 

We can confer the invention of the term to Arthur L. Samuel in [15], which talks about a machine 

he built to play against in the game of checkers. This research proposes some approaches to 

creating a “learning” machine, like alpha-beta pruning [16] and the minimax algorithm [17] [18]. 

The main distinct feature of machine learning compared to artificial intelligence is that the 

learning and predicting mechanisms are intrinsic to it, whilst there are fields inside artificial 

intelligence that may not include these mechanisms, like some parts of natural language 

processing. 
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3.3 Deep learning (DL) 

Deep learning is a subset of machine learning, where developed systems try to imitate the 

structure of the human brain. Its foundation lies in the neural networks of the brain. 

The origin of deep learning can be set on 1943, when Warren McCulloch and Walter Pitts 

designed a neural-network-based computer [19]. 

Later research would incorporate key attributes of deep learning, like back propagation, learning 

rate, etc. 

Although it may be seen as two identical ideas, machine learning and deep learning have clear 

distinctions between each other, as deep learning algorithms may develop complex patterns 

that machine learning mechanisms would not. 

3.4 Linear regression 

Although is not explicitly used on the built system, understanding linear regression is a good 

starting point to understand the rest of theoretical concepts. 

Regression is a statistical method which allows to predict a dependent value having an 

independent one. In supervised machine learning, that is, machine learning which works with 

known data, classification and regression are the two main types. Classification attempts to 

predict an input with a discrete value, a finite set of results. Regression tries to correlate an input 

with a continuous value, which means infinite possible solutions. 

Linear regression is a mathematical model used in this purpose. The general formula for this 

model is 

𝑓(𝑥) =  𝛽0 +  𝛽1𝑋 

Figure 5 Formula of a simple linear regression  

where 𝑋 is the sample given as input,  𝛽1 is the parameter corresponding to that variable and 

the one we want to fit, and 𝛽0 is a particular bias. As we can see, this is the general equation for 

a line function, which will predict any new input. In short, we want to find a line function which 

represents the tendency of the data, so when new data is presented, the model finds a nearby 

result to the accurate one. 

This function can be generalized to cover multiple independent variables. This case is called 

multiple linear regression, whilst the former one is named simple linear regression. 

In order to rectify the possible error of the model, we need a mechanism that computes how far 

we have ended up from the correct answer and recalculate the parameter (weight) accordingly. 

We compute the cost function. A popular method is the mean square error estimation, which 

elevates to the square the error and reassigns new values to the parameters [20]–[22]. 
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3.5 Logistic regression 

Logistic regression is a statistical model which allows to predict a categorical value given an 

input. Given an independent variable or set of variables, the resolution will be a value in a binary 

set (0 or 1, true or false, yes or no, etc.). Despite having «regression» in its name, it is enclosed 

in classification tasks with discrete values. The behaviour of this model is due to the sigmoid 

function: 

𝑓(𝑥) =
1

1 + 𝑒−(𝛽0+ 𝛽1𝑋)
 

Figure 6 First formula of logistic regression for one variable 

This is a “S” shaped function that allows to clearly split two different groups and normalize the 

output. To achieve a result equal to 0 or 1, we need a threshold that separates both groups. 

This threshold usually lies around 0.5 (anything above or equal to that number would be 1 and 

anything below would be 0), so each possible value weights the same, however this is also a 

parameter we can tune for a granted problem. We could redraft the former function as: 

𝑓(𝑥) = 𝑔(𝛽0 +  𝛽1𝑋) 

Figure 7 Second formula of logistic regression for one variable  

In this case 𝑔(𝑥) would be the sigmoid function. It is unequivocal that logistic regression could 

be seen as a linear regression model with a certain function which permits the discretization of 

the result. 

For the cost functions we have, once again, several options. Maximum likelihood, Newton’s 

method, stochastic gradient descent, etc. Selecting the optimal cost function will depend in the 

problem we want to solve. 

As for every model, we would need a mechanism to prevent overfitting, which is occurs 

whenever training data is classified correctly but unseen data is prone to error. Hence, logistic 

regression uses penalization algorithms which enlarge the penalization to a greater or lesser 

extent [6], [23], [24]. 

3.6 Stochastic Gradient Descent 

To understand Stochastic Gradient Descent, we should know what Gradient Descent is first. 

Gradient Descent is an iterative algorithm whose objective is to find the values for a set of 

independent variables, or features, that produce a minimum point inside a given function. This 

is considered an algorithm of optimization, a mathematical field which consists of finding the 

optimal solution for a set of elements. In machine learning, this function usually is referred as 

the cost function or loss function, which is the function we want to minimize.  
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As this algorithm follows an iterative process, the steps of the algorithm are explained inside an 

example with two features 𝑥 =  (𝑥1, 𝑥2) and one target 𝑦1: 

1. Pick random values for the features. 

2. Calculate the gradient of the function. The gradient of the function is the vector formed 

by the partial derivatives of the target. This would be ∇𝑓 = [

𝜕𝑦1
𝜕𝑥1

𝜕𝑦1
𝜕𝑥2

]. This is a vector that 

represents the slope of this function. 

3. Recalculate the parameters adding the opposite of this gradient (𝑥 = 𝑥 −  𝛼∇f), being 

𝛼 a hyperparameter called “learning rate”. This parameter will establish how much this 

gradient will change the recomputed parameters. In essence, it marks the size of the 

step that the algorithm performs. A small learning rate could lead to excessive 

iterations. A large learning rate could mean no convergence. The value of this 

hyperparameter is key for a good gradient descent algorithm.  

4. Repeat 2 and 3 until the gradient becomes near 0. 

The problem comes when we work with large numbers. If we had a one-million-sample dataset, 

the gradient descent algorithm would have to use for completing a single iteration. Thus, it 

would not be resource-efficient to perform it. Stochastic Gradient Descent (SGD) solves this 

issue by selecting stochastically (randomly) a single sample to perform each iteration [25]–[27]. 

3.7 Neural network 

Artificial neural networks are deep learning models which represent an abstraction of the 

human brain structure from the real world. The atomic structure in a neural network is a node 

called neuron. 

 

 

In this figure the most important characteristics of a neuron are presented. 𝑥𝑖 is the 𝑖𝑡ℎ input, 

𝑤𝑖  is the weight corresponding to the 𝑖𝑡ℎ  input, 𝑥0  and 𝑤0  are a biased input and weight, 

respectively, and 𝑎 is the output of the operation inside the node. 

One of the limitations of a single neuron is that it cannot solve non-linear problems, so they are 

concatenated with other neurons to form sequences, and they are also usually group into layers. 

A layer is a set of neurons that receive the same inputs, and it is usually represented vertically. 

To achieve more interesting alterations on each node the neurons apply activation functions, 

Figure 8 Representation of an artificial neuron 
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which perform non-linear operations, for instance the sigmoid or the hyperbolic tangent 

function. 

The most intriguing feature of neural networks and deep learning models is their ability of being 

self-aware of the error computed and trying to fix it. Backpropagation is a method that assigns 

to each neuron an amount of responsibility they had on the error and does this in an efficient 

way [8], [28]. 

3.8 Bidirectional Encoder Representations from 

Transformers (BERT) 

BERT is a deep learning model developed by Google used in natural language processing tasks. 

The idea behind BERT is to pre-train a model that “understands” the language and prepare it to 

be fine-tuned to the specific problem. It was pretrained against over 3.3 billion words from 

Google Books and Wikipedia and it is composed of several layers and sequences. 

Towards the goal of understanding BERT, we must understand first what Transformers is. Neural 

networks have evolved since its origin. For instance, convolutional neural networks are 

specialized in spatial learning like images, and recurrent neural networks that receive sequences 

like text and have into account the “memory” of previous neurons or layers. In this last case 

nevertheless, this memory has come to be small, since in long sentences the first words would 

have little semantic impact on the latest ones. Transformers attempt to solve this issue, by 

feeding the neural network with positional encoding of the text and applying attention 

mechanisms [29], [30]. 

3.9 Python 

Python is a high-level programming language developed in the decade of 1980 that has gained 

increasingly relevance in the last years. It was developed by Guido van Rossum, when he was 

working in a programming language called ABC. The developer had the clear objective of 

satisfying a particular condition: implement a programming language that could be taught to 

intelligent computer users who had no experience in programming. Van Rossum has always 

assumed that most of the success of implementing Python was his experience in the ABC 

programming language project [31]. 

 

Figure 9 Python logo 
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Two of the main distinctive characteristics of this language are the readability for the human 

and the flexibility to fit different programming paradigms. Python is widely used by artificial 

intelligence developers, due to the existence of a large quantity of libraries for this purpose, and 

moreover, for machine learning. We will describe some of these machine learning libraries in 

the following subchapters. 

3.10 Scikit Learn 

Scikit Learn is a popular machine learning library implemented in Python. It has several options 

of supervised and unsupervised learning. One of the key features of Scikit Learn is that it is 

intuitive to implement and understand with minimum machine learning concepts. Linear 

models, which are the focal elements of Scikit Learn used on this project, are fast, memory-

cheap, and easy-understandable. However, the main concern with this library is its lack of deep 

learning implementations like neural networks. There were attempts of developing libraries 

which would use well-known libraries implementing neural networks with a friendly Scikit Learn 

interface, but they are outdated and not working as expected [32]. 

 

Figure 10 Scikit Learn logo 

3.11 Pytorch 

PyTorch is a widely used Python open-source library specialized in machine learning and deep 

learning. This library is popular due to its scalable structure, where you can implement a simple 

model at first and gradually improve its performance by adding components. It has the capability 

of constructing neural networks, which is the main feature used for the systems regarding 

Pytorch. A considerable issue with this library is the fact that it is not as elementary to use as 

Scikit Learn can be, since it demands higher machine learning skills than the former library [33]. 

 

Figure 11 PyTorch logo 

3.12 Transformers 
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Transformers is a library offered by HuggingFace, a community that creates open-source 

systems to implement machine learning and deep learning programs. HuggingFace is a company 

founded by Clement Delangue and Julien Chaumond in 2016 whose goal is the exploration of 

artificial intelligence. Transformers is a state-of-art machine learning library which is based on 

PyTorch [33], TensorFlow [34] and Jax [35], and it is widely used in both deep-learning and 

Natural Language Processing tasks. Its importance in this project lays in that it contains different 

implementations of BERT models. 

 

Figure 12 HuggingFace logo 
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Chapter 4. Project planning and initial 

budgets 

The chapter presents the planning and budget suggested at the beginning of this project. Also, 

a simulated company model is set, mocking different job roles, salaries and costs and benefits. 

4.1 Initial planning 

The first draft made of this project was finally set on November of 2021, where it is stablished a 

duration of 93 days (around 3 months) that would cover mainly the first quarter of 2022, from 

November 22th, 2021, until March 3rd, 2022, when it is expected to be delivered. 

The plan is developed by only person represented in different roles, based on which would do 

that specific task inside a real-world organization. 

ID Name Start Finish Resource Names 

1 Proyect Mon 22/11/21 Wed 30/03/22 
 

2 Research Mon 22/11/21 Thu 02/12/21 
 

3 Related papers Mon 22/11/21 Wed 24/11/21 Team Leader 

4 Implementation alternatives Thu 25/11/21 Mon 29/11/21 Team Leader 

5 Implementation tools Tue 30/11/21 Thu 02/12/21 Team Leader 

6 Development Fri 03/12/21 Fri 18/03/22 
 

7 System 1 Alternative Fri 03/12/21 Mon 28/02/22 
 

8 Analysis Fri 03/12/21 Wed 08/12/21 
 

9 System definition Fri 03/12/21 Mon 06/12/21 Analyst 

10 Elicitation  Tue 07/12/21 Wed 08/12/21 Analyst 

11 Design Thu 09/12/21 Thu 16/12/21 
 

12 Architecture design Thu 09/12/21 Mon 13/12/21 Software Engineer 

13 Diagrams and models design Tue 14/12/21 Thu 16/12/21 Software Engineer 

14 Development Fri 17/12/21 Tue 08/02/22 
 

15 Implementation Fri 17/12/21 Thu 30/12/21 
 

16 NLP Fri 17/12/21 Thu 23/12/21 Senior Programmer 

17 Machine learning Fri 24/12/21 Thu 30/12/21 Senior Programmer 

18 Training Fri 31/12/21 Wed 19/01/22 Senior Programmer 

19 Validation Thu 20/01/22 Tue 08/02/22 Senior Programmer 

20 Testing Wed 09/02/22 Mon 28/02/22 
 

21 Unit testing Wed 09/02/22 Fri 18/02/22 Tester 

22 Acceptance testing Mon 21/02/22 Mon 28/02/22 Tester 

23 System 2 Alternative Fri 03/12/21 Mon 28/02/22 
 

24 Analysis Fri 03/12/21 Wed 08/12/21 
 

25 System definition Fri 03/12/21 Mon 06/12/21 Analyst 

26 Elicitation  Tue 07/12/21 Wed 08/12/21 Analyst 

27 Design Thu 09/12/21 Thu 16/12/21 
 

28 Architecture design Thu 09/12/21 Mon 13/12/21 Software Engineer 

29 Diagrams and models design Tue 14/12/21 Thu 16/12/21 Software Engineer 

30 Development Fri 17/12/21 Tue 08/02/22 
 

31 Implementation Fri 17/12/21 Thu 30/12/21 
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32 NLP Fri 17/12/21 Thu 23/12/21 Senior Programmer 

33 Machine learning Fri 24/12/21 Thu 30/12/21 Senior Programmer 

34 Training Fri 31/12/21 Wed 19/01/22 Senior Programmer 

35 Validation Thu 20/01/22 Tue 08/02/22 Senior Programmer 

36 Testing Wed 09/02/22 Mon 28/02/22 
 

37 Unit testing Wed 09/02/22 Fri 18/02/22 Tester 

38 Acceptance testing Mon 21/02/22 Mon 28/02/22 Tester 

39 Authentication Tue 01/03/22 Fri 04/03/22 Senior Programmer 

40 Interface Mon 07/03/22 Fri 18/03/22 Senior Programmer 

41 Documentation Fri 03/12/21 Wed 30/03/22 
 

42 Planning and budget Fri 03/12/21 Mon 06/12/21 Team Leader 

43 Report and introduction Tue 07/12/21 Tue 07/12/21 Team Leader 

44 Theoretical aspects Tue 07/12/21 Wed 08/12/21 Team Leader 

45 Analysis Thu 09/12/21 Mon 13/12/21 Analyst 

46 Design Fri 17/12/21 Tue 21/12/21 Software Engineer 

47 Implementation Mon 21/03/22 Wed 23/03/22 Software Engineer 

48 Testing Tue 01/03/22 Wed 02/03/22 Tester 

49 Annexes Thu 24/03/22 Fri 25/03/22 Software Engineer 

50 Conclusions Mon 28/03/22 Wed 30/03/22 Team Leader 

51 Follow-up meetings Thu 25/11/21 Thu 13/01/22 
 

52 Follow-up meeting 1 Thu 25/11/21 Thu 25/11/21 Project Leader; Team Leader 

53 Follow-up meeting 2 Thu 02/12/21 Thu 02/12/21 Project Leader; Team Leader 

54 Follow-up meeting 3 Thu 09/12/21 Thu 09/12/21 Project Leader; Team Leader 

55 Follow-up meeting 4 Thu 16/12/21 Thu 16/12/21 Project Leader; Team Leader 

56 Follow-up meeting 5 Thu 23/12/21 Thu 23/12/21 Project Leader; Team Leader 

57 Follow-up meeting 6 Thu 30/12/21 Thu 30/12/21 Project Leader; Team Leader 

58 Follow-up meeting 7 Thu 06/01/22 Thu 06/01/22 Project Leader; Team Leader 

59 Follow-up meeting 8 Thu 13/01/22 Thu 13/01/22 Project Leader; Team Leader 

Figure 13 Work Breakdown Structure 

4.2 Initial budget 

To explain the budget suggested at the beginning of the implementation of this project, it has 

been established into a made-up company with different roles, that simulate the different parts 

of work of done by the author and director, and salaries which will be discussed in the following 

subchapter, in addition the indirect costs and amortizations. Later, the budget itself is presented, 

both for the costs and client. 

4.2.1 Company definition 

The company that is responsible of the fulfilment of the development of the system required 

consists of six roles: Project Leader, Team Leader, Software Engineer, Analyst, Senior 

Programmer and Tester. In Figure 14, Figure 15, and Figure 16 salaries, productivity, annual 

worked hours, price per hour of each role and total invoice is shown. 

Staff Quantity 
Gross salary/year 
(€) 

Salary cost/year (€) Total (€) 

Project Leader 1 45,000.00   59,850.00   59,850.00   

Senior Programmer 1 22,000.00   29,260.00   29,260.00   
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Software Engineer 1 28,000.00   37,240.00   37,240.00   

Tester 1 22,000.00   29,260.00   29,260.00   

Analyst 1 25,000.00   33,250.00   33,250.00   

Team Leader 1 30,000.00   39,900.00   39,900.00   

     

Total 6   228,760.00   

Figure 14 Company Direct Costs 1 

Prod. (%) Direct cost (€) IC (%) Indirect Cost (€) Hours/year 

20.00% 11,970.00   80.00% 47,880.00   2080 

95.00% 27,797.00   5.00% 1,463.00   2080 

95.00% 35,378.00   5.00% 1,862.00   2080 

95.00% 27,797.00   5.00% 1,463.00   2080 

90.00% 29,925.00   10.00% 3,325.00   2080 

75.00% 29,925.00   25.00% 9,975.00   2080 

     

 162,792.00    65,968.00    

Figure 15 Company Direct Costs 2 

Prod. hours/year 
Prod. Hours/year 
(total) 

Price/hour (€) Billing (€) 
Price/hour (w/o 
benefits) (€) 

416.00   416.00   80.00   33,280.00   64.00   

1,976.00   1,976.00   27.50   54,340.00   22.00   

1,976.00   1,976.00   35.00   69,160.00   28.00   

1,976.00   1,976.00   27.50   54,340.00   22.00   

1,872.00   1,872.00   33.00   61,776.00   26.50   

1,560.00   1,560.00   47.50   74,100.00   38.00   
     

 9,776.00    346,996.00    

Figure 16 Company Direct Costs 3 

Note that the column Price/hour was decided to be calculated as 
𝑠𝑎𝑙𝑎𝑟𝑦 𝑐𝑜𝑠𝑡

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 ℎ𝑜𝑢𝑟𝑠/𝑦𝑒𝑎𝑟
∗ 1,85, 

and for unfeasible values. 

Next, we can see indirect costs of the company in Figure 17, summarizing facilities maintenance 

and transporting and communication expenses. 

Indirect costs Monthly Cost (€) Annual Cost (€) 

Office cleaning                        1,500.00                                            18,000.00    

Electricity consumption                           200.00                                              2,400.00    

Water consumption                              50.00                                                  600.00    

Transport expenses                           200.00                                              2,400.00    

Office renting                        1,000.00                                            12,000.00    

Communication expenses                           600.00                                              7,200.00    
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Office equipment                           100.00                                              1,200.00    

Audits costs                           125.00                                              1,500.00    

Sanitizing and disinfection equipment                              40.00                                                  480.00    

   

Total                                          45,780.00    

Figure 17 Company Indirect Costs 

Afterwards, in Figure 18 and Figure 19 we may observe the material cost, amortizations, and 

utilization period. 

Device/License Units Price (€) Maintenance (€) Total price (€) 

Microsoft 365 
License 

1 20.50    20.50   

Adobe Illustrator 
License 

1 30.00    30.00   

Windows 10 Pro 
License 

1 5.00    5.00   

Microsoft Project 
License 

1 35.00    35.00   

Development 
laptops 

1 1,100.00   100.00   1,200.00   

Office desktop PCs 1 1,200.00   200.00   1,400.00   

Figure 18 Company Devices & Licenses 1 

Total Cost (€) Annual Cost (€) Type Time window Amortization (3 months) 

20.50   246.00   Rent Monthly  

30.00   360.00   Rent Monthly  

5.00   1.00   Amortization 5 0.30   

35.00   7.00   Amortization 5 2.10   

1,200.00   300.00   Amortization 4 68.75   

1,400.00   350.00   Amortization 4 75.00   
   

 
 

TOTAL 1,264.00   
   

Figure 19Company Devices & Licenses 2 

Finally, a summary of the profitability of the company is presented in Figure 20. In this section 

we may observe that the expected benefits represent a 25% of the total cost of the company. 

Direct costs  162.792,00 € 

Indirect costs  113.012,00 € 

Total costs  275.804,00 €  

Target benefits (25%)  68.951,00 €   

Billing needs  344.755,00 €    

Actual billing based on productive hours 346.996,00 € 

Margin between total costs and billing 0.65% 

Figure 20 Summary of Company's profitability 
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4.2.2 Costs budget 

This section describes how the costs budget has been planned in the beginning of this project. 

It has been broken down to three separate items: research and following up, development, and 

documentation. 

• Research and following up. It encapsulates the investigation of the basis upon which 

the system will be supported, searching for state-of-art solutions and current proposed 

papers, evaluating alternatives, and studying the basics of the corresponding theoretical 

aspects. In addition to this, the following-up meetings where the progress is shown are 

specified. See Figure 21 and Figure 22. 

• Development. It summarises the two main systems which will be developed throughout 

this project. These alternatives are broken down into four phases: analysis, design, 

implementation, and testing. Moreover, the authentication subsystem and the user 

interface are detailed. See Figure 23 and Figure 24. 

• Documentation. The elaboration of the different parts of this document. See Figure 25 

and Figure 26. 

Each subitem cost is calculated by the salary of the role executing it. See Figure 16. 

I1 I2 I3 Description Quantity Units 

01   Research   

  001  Related papers   

   01 Team Leader 24 hours 

  002  Implementation alternatives   

   01 Team Leader 24 hours 

  003  Implementation tools   

   01 Team Leader 24 hours 

02   Following up   

  001  Follow-up meetings   

   01 Project Leader 4.5 hours 

   02 Team Leader 4.5 hours 

       

            

Figure 21 Costs Budget Research and following Item 1 

I1 I2 I3 Price Subtotal (3) Subtotal (2) Total 

01                  2,736.00 €  

 001    912.00 €   

  01 38.00 €                  912.00 €     

 002    912.00 €   

  01 38.00 €                  912.00 €     

 003    912.00 €   

  01 38.00 €                  912.00 €     

02                      459.00 €  
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 001    459.00 €   

  01 64.00 €                  288.00 €     

  02 38.00 €                  171.00 €     

        

      TOTAL 3,195.00 € 

Figure 22 Costs Budget Research and following Item 2 

I1 I2 I3 I4 Description Quantity Units 

01    System 1 Alternative   

  001   Analysis   

   0001  System definition   

    01 Analyst 16 hours 

   0002  Elicitation   

    01 Analyst 16 hours 

  002   Design   

   0001  Architecture design   

    01 Software Engineer 24 hours 

   0002  Diagrams and models design   

    01 Software Engineer 24 hours 

  003   Development   

   0001  Implementation   

    01 Senior Programmer 80 hours 

   0002  Training   

    01 Senior Programmer 112 hours 

   0003  Validation   

    01 Senior Programmer 112 hours 

  004   Testing   

   0001  Unit testing   

    01 Tester 64 hours 

   0002  Acceptance testing   

    01 Tester 48 hours 

02    System 2 Alternative   

  001   Analysis   

   0001  System definition   

    01 Analyst 16 hours 

   0002  Elicitation   

    01 Analyst 16 hours 

  002   Design   

   0001  Architecture design   

    01 Software Engineer 24 hours 

   0002  Diagrams and models design   
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    01 Software Engineer 24 hours 

  003   Development   

   0001  Implementation   

    01 Senior Programmer 80 hours 

   0002  Training   

    01 Senior Programmer 112 hours 

   0003  Validation   

    01 Senior Programmer 112 hours 

  004   Testing   

   0001  Unit testing   

    01 Tester 64 hours 

   0002  Acceptance testing   

    01 Tester 48 hours 

03    Authentication   

    01 Senior Programmer 64 hours 

04    Interface   

    01 Senior Programmer 160 hours 

        

              

Figure 23 Costs Budget Development Item 1 

I1 I2 I3 I4 Price Subtotal (4) (€) Subtotal (3) (€) Subtotal (2) (€) Total 

01        11,344.00 

 001      848.00  

  0001    424.00   

   01 26.50 424.00    

  0002    424.00   

   01 26.50 424.00    

 002      1,344.00  

  0001    672.00   

   01 28.00 672.00    

  0002    672.00   

   01 28.00 672.00    

 003      6,688.00  

  0001    1,760.00   

   01 22.00 1,760.00    
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  0002    2,464.00   

   01 22.00 2,464.00    

  0003    2,464.00   

   01 22.00 2,464.00    

 004      2,464.00  

  0001    1,408.00   

   01 22.00 1,408.00    

  0002    1,056.00   

   01 22.00 1,056.00    

02        11,344.00 

 001      848.00  

  0001    424.00   

   01 26.50 424.00    

  0002    424.00   

   01 26.50 424.00    

 002      1,344.00  

  0001    672.00   

   01 28.00 672.00    

  0002    672.00   

   01 28.00 672.00    

 003      6,688.00  

  0001    1,760.00   

   01 22.00 1,760.00    

  0002    2,464.00   

   01 22.00 2,464.00    

  0003    2,464.00   

   01 22.00 2,464.00    

 004      2,464.00  

  0001    1,408.00   

   01 22.00 1,408.00    

  0002    1,056.00   
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   01 22.00 1,056.00    

03        1,408.00 

   01 22.00 1,408.00    

04        3,520.00 

   01 22.00 3,520.00    

         

           TOTAL 27,616.00 

Figure 24 Costs Budget Development Item 2 

I1 I2 Description Quantity Units 

01  Report and introduction 
  

  01 Team Leader 8 hours 

02  Theoretical aspects   

  01 Team Leader 16 hours 

03  Planniing and budget   

  01 Team Leader 16 hours 

04  Analysis   

  01 Analyst 24 hours 

05  Design   

  01 Software Engineer 24 hours 

06  Implementation   

  01 Software Engineer 24 hours 

07  Testing   

  01 Tester 16 hours 

08  Conclusions   

   Project Leader 24 hours 

09  Annexes   

  01 Team Leader 16 hours 

      

          

Figure 25 Costs Budget Documentation Item 1 

I1 I2 Price Subtotal (2) Total 

01                     304.00 €  

  01               38.00 €                  304.00 €    

02                     608.00 €  

  01               38.00 €                  608.00 €    

03                     608.00 €  

  01               38.00 €                  608.00 €    

04                     636.00 €  

  01               26.50 €                  636.00 €    

05                     672.00 €  
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  01               28.00 €                  672.00 €    

06                     672.00 €  

  01               28.00 €                  672.00 €    

07                     352.00 €  

  01               22.00 €                  352.00 €    

08                  1,536.00 €  

                 64.00 €               1,536.00 €    

09                     608.00 €  

  01               38.00 €                  608.00 €    

       

      TOTAL 5,996.00 € 

Figure 26 Costs Budget Documentation Item 2 

Figure 27 Costs Budget summary is a summary of the costs budget. 

Item Item name Total 

01 Research and following up 3.195,00 € 

02 Development 27.616,00 € 

03 Documentation 5.996,00 € 

      
 

Total Cost  36.807,00 € 

Figure 27 Costs Budget summary 

4.2.3 Client budget 

The following table shows the budget proposed to the client, summing up the most high-level 

but concise points on each item. We must take into account that each subtotal is computed as 

the price of each module bearing in mind the 25% of desired benefit, adding then the 

corresponding increment for research and following up expenses, that are not included in any 

item. This calculation does not apply for the Acquired Hardware item, which is mere purchase 

needed for training system, regardless of the benefit wanted.  

Item I1 I2 Item Subtotal (2) (€) Subtotal (1) (€) Total 

01   Development   37,048.75 €  

 01  System 1 Alternative  15,218.75  

  01 Analysis 1,137.65     

  02 Design 1,803.07     

  03 Implementation 8,972.41     

  04 Testing 3,305.62     

 02  System 2 Alternative  15,218.75  

  01 Analysis 1,137.65     

  02 Design 1,803.07     
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  03 Implementation 8,972.41     

  04 Testing 3,305.62     

 03  Authentication  1,888.93    

 04  User interface  4,722.32    

02   Acquired hardware   1,600.00 €  

 01  2 GPUs for training/validation  1,600.00    

03   Documentation   8,044.04 €  

 01  Report and introduction  407.84    

 02  Theoretical aspects  815.67    

 03  Planning and budget  815.67    

 04  Analysis  853.24    

 05  Design  901.53    

 06  Implementation  901.53    

 07  Design  472.23    

 08  Conclusions  2.060.65    

 09  Annexes  815.67    
 

TOTAL CLIENT 46,692.79 €  

 VAT 21% 

 
TOTAL CLIENT (APPLIED VAT) 

            56,498.28 €  
 

Figure 28 Client Budget 

This next table shows project integration within the company described capability. 

Total Costs 36,807.00 € 

Total Client 56,498.28 € 

Profit (~25%) 19,691.28 € 

Research and following up expenses (they 
are not included in any item) 

3,195.00 € 

Profit margin 22.80% 

Figure 29 Client Budget Overview 

  



Final Degree Project 

School of Computer Engineering - University of Oviedo | Analysis 41 

 

Chapter 5. Analysis 

This chapter covers the analysis phase of this project, elicitation, and proper documentation of 

the requisites. 

5.1 System definition 

We will comment the scope specification of the system, the system requirements, and the 

description of the use cases and scenarios, along some diagrams to take a visual glance of the 

system operation. 

5.1.1 System scope specification 

The system is intended to perform a classification based on whether a message or messages 

introduced by the user are inappropriate or not through machine learning mechanisms. The 

system offers two methods to achieve this classification: a binary classification that discretizes 

a message as toxic or not, and an itemized classification that evaluates the text in terms of 

toxicity, obscenity, threatening, insult and/or identity hate. In addition to this, an administrator 

can provide more training data to the system.  

5.2 System requirements 

This subsection details the actors found in the system and the obtained requirements for its 

implementation. 

5.2.1 Elicitation 

These section covers the functional and non-functional requirements acquired from the client. 

5.2.1.1 Functional requirements 

RFSIS.1.  The program will allow the user to input a message to be classified. 

RFSIS.1.1.  The system must present the option for the user of introducing a message or set 

of messages. 

RFSIS.1.1.1.  It will show an area where the user can insert the input message. The 

written text will count as a single message. 

RFSIS.1.1.2.  It will show the option that allows to select the file containing the set of 

messages. 

RFSIS.1.1.3.  Both options are exclusive. If the user picks one option, it cannot pick the 

other one simultaneously. 

RFSIS.1.1.4.  It will check that the input is not empty. 
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RFSIS.1.1.5.  The input will have a fixed maximum length of 500 characters. 

RFSIS.1.1.5.1.  This value may be subject of change by the client. 

RFSIS.1.2.  The system must display the classification methods for the user choice. 

RFSIS.1.2.1.  It will display the binary method. 

RFSIS.1.2.2.  It will display the itemized method. 

RFSIS.1.2.2.1.  The method will consist of six items. 

RFSIS.1.2.2.1.1.  Toxic item. 

RFSIS.1.2.2.1.2.  Severe toxic item. 

RFSIS.1.2.2.1.3.  Obscene item. 

RFSIS.1.2.2.1.4.  Threat item. 

RFSIS.1.2.2.1.5.  Insult item. 

RFSIS.1.2.2.1.6.  Identity hate item. 

RFSIS.1.2.3.  It is mandatory that the user selects one of these methods. It will not 

permit continuing until one is selected. 

RFSIS.1.3.  The system will compute the result given the chosen method. 

RFSIS.1.3.1.  While this calculation lasts, the user will be shown a message reporting the 

situation. 

RFSIS.1.4.  The system will present the result to the user. 

RFSIS.1.4.1.  For the method in RFSIS.1.2.1. , it will show a message depending on the 

prediction. 

RFSIS.1.4.1.1.  The message for an appropriate prediction is ‘Appropriate’. 

RFSIS.1.4.1.2.  The message for a non-appropriate prediction is ‘Inappropriate’. 

RFSIS.1.4.1.3.  The actual messages are subject to change by the client. 

RFSIS.1.4.2.  For the method in RFSIS.1.2.2. , it will show the list of items with their 

individual prediction and the confidence percentage of each item prediction. 

RFSIS.1.4.2.1.  For RFSIS.1.2.2.1.1. it will show ‘Toxic’ or ‘Not Toxic’. 

RFSIS.1.4.2.2.  For RFSIS.1.2.2.1.2. it will show ‘Severe Toxic’ or ‘Not Severe Toxic’. 

RFSIS.1.4.2.3.  For RFSIS.1.2.2.1.3. it will show ‘Obscene’ or ‘Not Obscene’. 

RFSIS.1.4.2.4.  For RFSIS.1.2.2.1.4. it will show ‘Threat’ or ‘Not Threat’. 

RFSIS.1.4.2.5.  For RFSIS.1.2.2.1.5. it will show ‘Insult’ or ‘Not Insult’. 

RFSIS.1.4.2.6.  For RFSIS.1.2.2.1.6. it will show ‘Identity Hate’ or ‘Not Identity Hate’. 

RFSIS.1.4.2.7.  The messages are subject to change by the client. 

RFSIS.1.5.  The system must show an option of redoing a classification with new messages. 

RFSIS.1.5.1.  To perform another classification is mandatory to select this option. 

RFSIS.1.6.  The system will allow the user to save the results to a file. 

RFSIS.1.6.1.  The extension established is .csv. 

RFSIS.1.6.1.1.  It may be subject to change by the client. 

RFSIS.1.6.2.  It will store the text and the values presented to the user previously. 

RFSIS.1.6.2.1.  If the user introduced a set of messages, the output file will contain 

one classification in each line. 

RFSIS.2.  The system will permit a user to log in as administrator. 

RFSIS.2.1.  The program must present an option in which the user can introduce the 

credentials. 

RFSIS.2.1.1.  The program will ask for the username. 

RFSIS.2.1.1.1.  The username can only contain alphanumeric characters. 
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RFSIS.2.1.2.  The program will ask for the password. 

RFSIS.2.2.  The program must check the validity of the input data. 

RFSIS.2.2.1.  The data cannot be blank. 

RFSIS.2.2.2.  The data will be compared to a database, verifying it matches any 

information inside it. 

RFSIS.2.2.3.  If any validation fails, the program must warn the user. 

RFSIS.2.2.3.1.  The warning message will be ‘Invalid username or password’. 

RFSIS.2.2.4.  The message is subject to change by the client. 

RFSIS.2.2.5.  If the credentials are valid, the program will return the user to the previous 

options. 

RFSIS.2.3.  The program must forbid the user to run as administrator if RFSIS.2.2. is not 

accomplished. 

RFSIS.3.  The system will allow the user to train the models with new data. 

RFSIS.3.1.  The user must be logged in as administrator. 

RFSIS.3.2.  The user will be presented both methods offered which are described in 

RFSIS.1.2.1. and RFSIS.1.2.2. to be trained. 

RFSIS.3.3.  The user will be displayed an option submitting a file with the new data. 

RFSIS.3.3.1.  The file must be in .csv format. 

RFSIS.3.3.1.1.  This may be subject to change by the client. 

RFSIS.3.3.2.  Each line of the file will contain a piece of data. 

RFSIS.3.3.2.1.  The piece of data must contain a text comment. 

RFSIS.3.3.2.1.1.  The program will check it is not blank. 

RFSIS.3.3.2.2.  The piece of data will contain the classification granted for the text. 

RFSIS.3.3.2.2.1.  This classification cannot be blank. 

RFSIS.3.3.2.2.2.  For method in RFSIS.1.2.1. , it will contain a number describing 

the possible values. 

RFSIS.3.3.2.2.2.1.  For appropriate classification it will be 0. 

RFSIS.3.3.2.2.2.2.  For inappropriate classification it will be 1. 

RFSIS.3.3.2.2.3.  For method in RFSIS.1.2.2. , it will contain a number for each 

item. 

RFSIS.3.3.2.2.3.1.  For each item it will be 0 if it is not satisfied. 

RFSIS.3.3.2.2.3.2.  For each item it will be 1 if it is satisfied. 

RFSIS.3.3.2.2.4.  This classification cannot be any other value than the 

described above. 

RFSIS.3.3.2.3.  Each section of the piece of data will be separated by a semicolon. 

RFSIS.3.4.  If the file is valid, the data will be trained against the corresponding model. 

RFSIS.3.5.  The program will report the user the results of the training. 

RFSIS.3.5.1.  The message for a successful training will be ‘Data correctly integrated’. 

RFSIS.3.5.1.1.  This message is subject to change by the client. 

RFSIS.3.5.2.  The message for an unsuccessful training will be ‘Data incorrectly 

integrated’ in addition to the source of the error. 

RFSIS.3.5.2.1.  This message is subject to change by the client. 

RFSIS.4.  The system will allow the user to correct the results of a prediction. 

RFSIS.4.1.  The user must be logged in as administrator. 

RFSIS.4.2.  The user must set the program in the state described in RFSIS.1.4. . 
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RFSIS.4.3.  The program will permit the user to introduce the desired prediction. 

RFSIS.4.3.1.  For the method in RFSIS.1.2.1. , it will show the two possible alternatives 

to be chosen. 

RFSIS.4.3.1.1.  The possible options for the correction are the ones described in 

RFSIS.1.4.1.1. and RFSIS.1.4.1.2. . 

RFSIS.4.3.2.  For the method in RFSIS.1.2.2. , it will display options for each item. 

RFSIS.4.3.2.1.  The possible options for the corrections are the ones described in the 

subitems of RFSIS.1.4.2. . 

RFSIS.4.3.3.  The information introduced cannot be blank. 

RFSIS.4.3.4.  The information introduced cannot have any other value than the ones 

described. 

RFSIS.4.4.  The program will create a file and train the corresponding model with the process 

described in RFSIS.3.  

5.2.1.2 Non-functional requirements 

RNFSIS.1.  The system implementation must attach to well-known design pattern as much as 

possible. 

RNFSIS.2.  The password input for the administrator process described in must be encrypted 

before comparing it to the database. 

RNFSIS.3.  Execution time for prediction must be lower than 1 second per message. 

RNFSIS.4.  Execution time for every new cycle of training of the binary model must be lower than 

1 minute. 

RNFSIS.5.  Execution time for every new cycle of training of the itemized model must be lower 

than 1 minute. 

RNFSIS.6.  The system must accomplish the features listed in section 9.3. 

5.2.2 System Actors Identification 

The system recognizes two different actors able to use it. 

5.2.2.1 Non-administrator user 

It is any user that is not logged in as an administrator. It can run classifications and save the 

results to a file. It can also try to log in as administrator if it has the needed credentials. 

5.2.2.2 Logged-in user (administrator) 

It has the complete utilization of the system. He may perform any operation doable by a non-

administrator user. In addition to this, he can supply the models with new training data. It can 

also correct the prediction of one classification. 
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5.2.3 Use cases specification 

The next diagram shows the possible use cases offered by the system. 

 

Figure 30 System use cases 

Use case name 

Detect inappropriate messages 

Description 

The user may make a classification introducing a message or set of messages. The system 
computes the result and shows it to the user. 
Moreover, the user may save the results to a file. 
If the user is logged as an administrator, it may correct the predictions. 

Figure 31 Detect inappropriate messages use case 

Use case name 

Change classification method 

Description 

The user selects the classification method between the methods offered. This step is 
mandatory in order to perform the Detect inappropriate messages use case. 

Figure 32 Change classification use case 

Use case name 

Log in as administrator 

Description 

Only available for users not logged in as administrator. The user uses credentials to log in as 
an administrator and have access to other features of the system. 

Figure 33 Log in as administrator use case 

Use case name 
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Train models 

Description 

It is mandatory that the user is logged in. The administrator can input data that is validated 
by the program and trained against the model if the validation is successful. The system warns 
the administrator of the result of the operation. 

Figure 34 Train models use case 

Use case name 

Correct a prediction 

Description 

It is mandatory that the user is logged as an administrator. The administrator must make a 
classification first. Then he will have the option of selecting the new prediction values and 
introduce them to retrain the model with these prediction values. 

Figure 35 Correct predictions use case 

Use case name 

Save results to file 

Description 

It is mandatory that at least one classification has had been performed. The user will have the 
option of obtaining the results in a external file. 

Figure 36 Save results to file use case 

5.3 Subsystems identification in analysis phase 

Although this system may be thought as a seldom monolithic system, we could depict it as 

several subsystems interconnected. 

 

Figure 37 Subsystem diagram 

The functionalities of the system are covered in those subsystems. The Classification Subsystem 

acts as a hub where all the operations are distributed to other subsystems. 
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5.3.1 Subsystems description 

We will describe now the subsystems identified in the previous diagram: 

• Classification Subsystem. It is the main area of interaction with the user. It 

communicates with the actual classifying systems in order to achieve the prediction. It 

includes operations like saving the results to a file and correcting prediction results. 

• Authentication Subsystem. It is mandatory in order to run administrator operations. It 

communicates with the classification subsystem. It interacts with the database of 

registered users. 

• Multiitem and Binary Classifiers. They constitute two separate subsystems that 

accomplish the same task differently. They contain training and predicting operations. 

5.3.2 Interfaces between systems description 

The subsystems communicate internally within the system, without any need of cloud network 

or external connexion. 

• The Authentication Subsystem will forward the administrator user to the Classification 

Subsystem so the later can show the corresponding features to the administrator. In the 

case that an authentication is unsuccessful, this subsystem will respond accordingly with 

the options available for non-administrator users. 

• The Classification Subsystem will interact with both the Binary and Multiitem 

Subsystems for making a prediction of an input text. The correction run is also sent to 

these subsystems to make their respective training. 

5.4 Initial class diagram in analysis phase 

Now, the most essential aspects of the class identified in the system are shown, along a brief 

description of them. 

5.4.1 Class diagram 

One of the key concepts of the system is the maintainability of it, and so, the addition of a new 

model should be kept as easy as possible. The strategy design pattern is suitable for this 

situation. This pattern allows a context class (ClassificationModule) to perform the 

same operation (prediction, correction, training…) in different ways. A Classifier interface 

establishes the structure and functionalities a model must implement to be used in this 

application [36]. 



Final Degree Project 

48 Analysis | School of Computer Engineering - University of Oviedo 

 

 

Figure 38 Class diagram in analysis phase 

5.4.2 Classes description 

Next, we have the descriptions of the classes grouped by subsystem. 

5.4.2.1 Classification Subsystem 

Class name 

ClassificationModule 

Description 

Gather the user options, both for non-administrator and administrator users 

Responsibilities 

Make predictions, save results to files, authenticate a user, make a correction of a 
classification and input new data to train the models. The last two are only available for 
administrators 

Proposed attributes 

classifier: Interface that gathers prediction and new data fitting operations 
authModule: Subsystem to permit authentication 

Proposed methods 

predict: Takes the text introduced by the user and calls the corresponding method of the 
classifier attribute. Returns the prediction of the classifier 
saveToFile: Given a prediction, dumps the message and prediction to a file 
authenticate: Allows an non-administrator user to log in as an administrator an opt for more 
advance features 
makeCorrection: Only for administrators. It asks for the presumed true prediction and fits the 
data in the model 
fitNewData: Receives the data to be fit into the corresponding model  

Figure 39 ClassificationModule class 
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5.4.2.2 Authentication subsystem 

Class name 

AuthenticationModule 

Description 

Operations of authentication for users 

Responsibilities 

Authenticate administrators, validate credentials 

Proposed methods 

authenticate: Asks for the credentials input by the user and grants access if data is valid and 
correct 
validate: Validates the input credentials, checking it is not blank 

Figure 40 AuthenticationModule class 

5.4.2.3 Binary Classifier 

Class name 

BinaryClassifier 

Description 

Operations regarding binary classification  

Responsibilities 

Training, predicting and fitting new data 

Proposed methods 

train: This operation is already fulfilled in the classifier. It fits the data and trains the model. 
Later validation is done to measure the performance. 
predict: Takes the text introduced by the user and calls the corresponding method of the 
classifier attribute. Returns the prediction of the classifier 
fitNewData: Receives the data to be fit into the model  

Figure 41 BinaryClassifier class 

Class name 

MultiitemClassifier 

Description 

Operations regarding itemized classification  

Responsibilities 

Training, predicting and fitting new data 

Proposed methods 

train: This operation is already fulfilled in the classifier. It fits the data and trains the model. 
Later validation is done to measure the performance. 
predict: Takes the text introduced by the user and calls the corresponding method of the 
classifier attribute. Returns the prediction of the classifier 
fitNewData: Receives the data to be fit into the model  

Figure 42 MultiitemClassifier class 

Class name 

BinaryPrediction 

Description 

Wrapper for a message and its binary prediction  

Responsibilities 
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Returning the message and prediction 

Proposed methods 

getMessage(): Returns the value of the message 
getPrediction(): Returns the value of the prediction, in this case a single number value 

Figure 43 BinaryPrediction class 

Class name 

MultiitemPrediction 

Description 

Wrapper for a message and its multiitem prediction  

Responsibilities 

Returning the message and prediction 

Proposed methods 

getMessage(): Returns the value of the message 
getPrediction(): Returns the value of the prediction, in this case a list with the number values 

Figure 44 MultiitemPrediction class 

5.5 Use cases analysis and scenarios 

In this section, all use cases and possible scenarios are described, along their preconditions, 

actors involved, and possible exceptions. 

5.5.1 Change classification method 

1. Change classification method 
Preconditions None 

Postconditions 
Scenario 1.1 The system will prepare any following input text to be 
predicted against the corresponding model chosen. This step is 
mandatory to perform a classification 

Actors Non-administrator user or administrator 

Description 
The user is presented the main window of the application 
The user selects the option Change classification method 
The user chooses one of the options 

Variation 
(secondary 
scenarios) 

Scenario 1.2 The user selects an invalid option this problem is 
dependent of the actual selection mechanism). The system must 
control the possible error and allow the user only to pick one of the 
alternatives 

Exceptions An invalid option is chosen 

Figure 45 Change classification method use case and scenarios 
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5.5.2 Detect inappropriate messages 

2. Detect inappropriate messages 
Preconditions Having a selected classification method 

Postconditions The system will compute the results and present it to the user 

Actors Non-authenticated user or administrator 

Description 

Scenario 2.1 The user introduces a message 
The option of uploading a file becomes unavailable 
The user selects the option of perform the classification 
The system will predict the result with the corresponding classifier 
The system will present the results to the user 

Variation 
(secondary 
scenarios) 

Scenario 2.2 The user is presented the main window of the application 
The user chooses the options of uploading the file 
The option of introducing a message becomes unavailable 
The file is parsed. Each line is a message to be classified 
The system performs the prediction of these messages 

Scenario 2.3 The user introduces a blank message 
The system must check this behaviour and forbid and warn the user to 
perform a classification with blank messages 

Scenario 2.4 The user introduces a too long message 
The system must forbid and warn the user to introduce more character 
than the maximum length established 

Exceptions 
Blank message 
Too long message 

Figure 46 Detect inappropriate messages use case and scenarios 

5.5.3 Save results to a file 

3. Save results to a file 

Preconditions 
The user must have performed a classification and been shown the 
results 

Postconditions A new file is generated with information about the prediction 

Actors Non-administrator user or administrator 

Description 

Scenario 3.1 The user is presented the results of the last performed 
classification 
The user selects the options save results to a file 
The system generates a .csv file and dumps the content of the 
prediction into the file. Each line represents a message, whether the 
user chose to introduce a message or set of messages 

Variation 
(secondary 
scenarios) 

None 

Exceptions Exceptions corresponding to the file management 

Figure 47 Save results to a file use case and scenarios 
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5.5.4 Correct predictions 

4. Correct predictions 

Preconditions 
The user must have performed a classification and been shown the 
results. Run as administrator 

Postconditions The corresponding classifier fits the new prediction as new data 

Actors Administrator 

Description 

Scenario 4.1 The administrator is presented the results of the last 
performed classification 
The administrator selects the option Correct predictions 
The system will present to the user a mechanism to introduce the 
presumed true prediction and submit it to the system 
The system reports to the user the success of the operation 

Variation 
(secondary 
scenarios) 

Scenario 4.2 The user introduces invalid predictions or invalid number 
of predictions (this is dependent of the input mechanism) 
The system must validate the data and forbid the user to make an 
invalid correction 

Scenario 4.3 The user cancels the operation after selecting the option 
The system hides the mechanism to correct the predictions 

Exceptions Invalid input predictions 

Figure 48 Correct predictions use case and scenarios 

5.5.5 Log in as administrator 

5. Log in as administrator 
Preconditions None 

Postconditions 
The system grants a higher level of permission to the user and allows 
him to perform more operations 

Actors Non-administrator user 

Description 

Scenario 5.1 The user is presented the main window of the application 
The user selects the Log in as administrator option 
The system displays a new window for entering the username and 
password 
The user introduces the username and password 
The user selects the Enter option 
The system checks the validity of the data 
The system proceeds to compare the data with the data inside of the 
database 
If a match exists, the system returns the user to the main window and 
grants him access to new features 

Variation 
(secondary 
scenarios) 

Scenario 5.2 The user cancels the operation after selecting the Log in 
as administrator option 
The system will return the user to the main window as a non-
administrator user 

Scenario 5.3 The user introduces a blank username or password 
The system validates this data. It warns the user with a proper message 
The user remains in the window as a non-administrator user 
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Scenario 5.4 The user introduces valid data with no match in the 
database 
The system will inform the user. The message will not include which of 
the pieces of data is incorrect, due to security reasons. It will be the 
same if the incorrect pieces of data are the username, password, or 
both 
The user remains in the window as a non-administrator user 

Exceptions 
Invalid username or password, non-alphanumeric username, too long 
username or password, database management problems 

Figure 49 Log in as administrator use case and scenarios 

5.5.6 Train models 

6. Train models 
Preconditions Run as administrator 

Postconditions 
The chosen classifier fits the new data that will be considered for new 
predictions 

Actors Administrator 

Description 

Scenario 6.1 The administrator selects the option Train models 
The system displays a new window with the classification methods and 
an option of uploading a file 
The administrator choses the model 
The administrator submits a file containing the data to be fit 
The system parses the information to be fit to the corresponding 
model 
The system reports to the user the success of the operation 

Variation 
(secondary 
scenarios) 

Scenario 6.2 The administrator cancels the operation after selecting 
the Train models option 
The system returns the administrator to the main window 

Scenario 6.3 The administrator submits an invalid file 
The system validates the file. It warns the administrator of the 
invalidity of the file 
The administrator remains in the current window 

Scenario 6.4 The administrator submits a valid file with blank data or 
wrong prediction values 
The system validates the file data. It warns the administrator of the 
invalidity of this data 
The administrator remains in the current window 

Scenario 6.5 The administrator submits a valid file with the wrong 
number of pieces of data 
The system validates the file data. It warns the administrator with a 
message regarding the problem 
The administrator remains in the current window 

Exceptions 
Invalid file, invalid data, exceptions corresponding to the file 
management 

Figure 50 Train models use case and scenarios 
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5.6 Scenarios – Use cases relation 

Next, we have a table which attempts to take a visual glance of the relation between scenarios 

and use cases. 

Use Cases 

Scenarios 

1 2 3 4 5 6 

1.1 X      

1.2 X      

2.1  X     

2.2  X     

2.3  X     

2.4  X     

3.1   X    

4.1    X   

4.2    X   

4.3    X   

5.1     X  

5.2     X  

5.3     X  

5.4     X  

6.1      X 

6.2      X 

6.3      X 

6.4      X 

6.5      X 

Figure 51 Relation between scenarios and use cases 

5.7 User interface analysis 

The main concern about the user interface is that is must be reduced at its simplest terms. The 

aim of this project is not to elaborate the most complex interface to explore human-computer 

interaction. Nevertheless, the interface must follow the adaptability conventions and fulfil basic 

use experience features. 

5.7.1 Interface description 

The program will consist of three windows with different goals. 

5.7.1.1 Main window 

This will be the first and main window of the interface. It encapsulates the basic operations of 

the program and leads to the other two windows. The options of this window are: 
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• Selecting a classification method. 

• Submitting a message via keyboard. 

• Submitting a message via file. 

• Logging as administrator option. 

• Showing the results of a prediction. 

• Clearing the contents to perform another classification. 

• Saving the results to a file. 

• Correcting a prediction (if user is administrator). 

• Train models option (if user is administrator). 

 

Figure 52 Main window 

The following figures represent the main window on several states. 

5.7.1.1.1 Start of application 

Figure 53 represents the first state of the application.  

 

Figure 53 Main window, start of application 
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5.7.1.1.2 Message typed in area, classification not yet performed, non-

administrator user 

As the message is introduced, the buttons Submitting messages file and Save results to file 

become disabled, and the Classify option is enabled. 

 

Figure 54 Main window, message typed in area, classification not yet performed, non-
administrator user 

5.7.1.1.3 Messages uploaded by file, classification not yet performed, non-

administrator user 

If the message file is submitted instead the text area becomes unavailable. A message confirms 

the submission. 

 

Figure 55 Main window, message uploaded by file, classification not yet performed, non-
administrator user 



Final Degree Project 

School of Computer Engineering - University of Oviedo | Analysis 57 

 

5.7.1.1.4 Classification performed, non-administrator user 

When the classification is performed, both message input options become disabled, and the 

second text area shows the results. The Save results to file option is available now. 

 

Figure 56 Main window, classification performed, non-administrator user 

5.7.1.1.5 Start as administrator 

After fulfilling the authentication form in the Authentication window, the main window will look 

like this. The difference is in the Train models button that is now visible. 

 

Figure 57 Main window, start as administrator 
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5.7.1.1.6 Message typed in area, classification not yet performed, 

administrator 

Same as Figure 54, except the Train models option. 

 

Figure 58 Main window, message typed in area, classification not yet performed, 
administrator  

5.7.1.1.7 Messages uploaded by file classification not yet performed, 

administrator 

Same as Figure 55, except the Train models option. 

 

Figure 59 Main window, message uploaded by file, classification not yet performed, 
administrator 
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5.7.1.1.8 Classification performed, administrator 

When the classification is performed, a new panel in the right bottom corner is shown, with 

options to select the new predictions for the message. 

 

Figure 60 Main window, classification performed, administrator 

5.7.1.2 Authentication window 

This is the window that manages the inputs of the user when attempting the authentication as 

administrator. 

 

Figure 61 Authentication window 

5.7.1.3 Train model window 

This window manages the input file that the administrator submits to fit new data to the 

corresponding classifier. 
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Figure 62 Train model window 

5.7.2 Interface behaviour description 

This system is heavily influenced by the user inputs, so validation and verification are needed to 

avoid malfunctioning. Now we will see the messages that the system reports in response to the 

user possible inputs. 

5.7.2.1 Main window 

• Blank messages files containing blank messages are not valid inputs. The window will 

show a message informing the user saying: “Message is not a valid message”. There is 

no need to validate the contents of the message. 

• Files uploaded for predicting its content should only have one column per line, 

representing the message. The window will display the message “The file does not have 

the correct number of columns” if it is the case. 

5.7.2.2  Authentication window 

• Username or password being blank are not valid and would lead to a message of the 

system report the issue. The message is “Username/password cannot be blank”. 

• Username and password cannot exceed their respective maximum length. If a longer 

input is introduced the system will display “Username/Password has exceeded the 

maximum number of characters”. 

• For valid username and password that do not match any content inside the database 

the system will display “Incorrect username or password”. It is important not to specify 

the concrete piece of data that is incorrect, due to security reasons. A person with 

harmful intentions and with basic knowledge on software could try an attack to the 

database. If the attacker knows the concrete field that is incorrect, it could focus the 

attention into this field. 
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5.7.2.3 Train models window 

• The input of the user will be a file containing the messages and prediction values. If the 

extension is not .csv the message “Input file has wrong extension”. 

• There are several validation steps for a valid file. For blank messages, wrong number of 

categories and wrong prediction values will be reported to the user with the message 

“The prediction of message is not valid for fitting” and the actual data error. 

5.7.3 Navigability diagram 

Analysed all the windows of the system, the navigability of the windows would look like Figure 

63. 

 

Figure 63 Navigability diagram 

5.8 Test plan specification 

In this subchapter we will discuss the test plan itemized in five categories: unitary, integrations, 

system, usability, and code testing. 

5.8.1 Unitary testing 

Unit testing will be used to validate and verify the correct functionality of the modules of the 

system. It is key to test the scenarios previously detailed, both the expected correct user 

interaction and the error-prone ones. 

5.8.2 Integration testing 

For integration testing, the system will be subdued to correct relations between subsystem 

assertion. The authentication submodule should correctly grant access to a user, so the 

application shows the correct options to the user. 
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5.8.3 Usability testing 

The system will be put in review to third-party users which will use the application both as an 

non-administrator user and administrator. Their opinions on the system will be compilated with 

some surveys. 

5.8.4 Performance testing 

There will be tests on prediction and training computation speed and memory usage. 

5.8.5 Use cases testing 

Use case 1: Change classification method 

Test 1.1 Expected Result 

The user changes the method 
to any of the two possible 
methods 

The system will prepare the corresponding classifier 

Test 1.2 Expected Result 

The user changes the method 
to a not contemplated 
method 

The system does not register the change and informs the user 
of the error 

Figure 64 Change classification method use case test 

Use case 2: Detect inappropriate messages 

Test 2.1 Expected Result 

The user tries to classify a 
blank message with no file 
uploaded 

The system informs the user of the error/The user interface 
disables the Classify option 

Test 2.2 Expected Result 

The user tries to classify a 
message that exceeds 
maximum message length 

The system informs the user of the error/The user interface 
prevents the excess of characters typed by the user 

Test 2.3 Expected Result 

The user tries to upload a file 
with wrong extension 

The system catches the error and warns the user about it 

Test 2.4 Expected Result 

The user tries to upload with 
unexpected data 

The system catches the error and warns the user about it 

Test 2.5 Expected Result 

The user types a message and 
tries to upload a file with 
messages 

The system discards the file submission and warns the 
user/The user interface disables the Upload file option 

Test 2.6 Expected Result 

The user uploads a file and 
tries to type a message 

The system discards the input message and warns the 
user/The user interface disables the area to type messages 

Test 2.7 Expected Result 
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The user types a message 
with no file uploaded and 
classifies the message 

The system sends the message to the classifier, which will 
return the prediction that will be shown to the user 
The Save results to file options becomes available 
If the user is an administrator, the option Correct predictions 
becomes available 

Test 2.8 Expected Result 

The user uploads a correct 
file with valid data and with 
no typed message 

The system sends the messages (one per file line) to the 
classifier, which will return the predictions that will be shown 
to the user 
The Save results to file options becomes available 
If the user is an administrator, the option Correct predictions 
becomes available 

Figure 65 Detect inappropriate messages use case test 

Use case 3: Save results to file 

Test 3.1 Expected Result 

The user tries to save results 
to file with no classification 
performed 

The system informs the user of the error/The user interface 
disables the Save results to file option 

Test 3.2 Expected Result 

The user saves results of a 
performed classification to a 
file 

The system automatically creates a file and dumps the 
information of the message or messages and its/their 
classification on the file 

Figure 66 Save results to a file use case test 

Use case 4: Correct predictions 

Test 4.1 Expected Result 

The administrator tries to 
correct a prediction with no 
classification performed 

The system informs the user of the error/The user interface 
disables the Correct predictions option 

Test 4.2 Expected Result 

The administrator introduces 
a correction with wrong 
values or number of values 

The system informs the user of the error/The user interfaces 
only offers the possible values and the mandatory number of 
values 

Test 4.3 Expected Result 

The administrator introduces 
a correct prediction 

The system fits the new data to the model and shows the 
success of the operation to the administrator 

Test 4.4 Expected Result 

The administrator cancels the 
operation of correcting the 
predictions 

The system returns to the previous state and no modification 
is done 

Test 4.5 Expected Result 

A non-administrator user 
tries to correct the prediction 

The system checks beforehand if the user is an 
administrator/The user interface hides this option 

Figure 67 Correct predictions use case test 

Use case 5: Log in as administrator 

Test 5.1 Expected Result 
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The administrator tries to 
access the authenticate 
option 

The system reports the user that it is already authenticated 
as administrator/The user interfaces disables the 
Authenticate option 

Test 5.2 Expected Result 

The user selects the option 
Log in as administrator 

The system asks to the user for the username and password 

Test 5.3 Expected Result 

The user tries to introduce 
blank username or password 

The system communicates the error to the user/The system 
disables the Submit option 

Test 5.4 Expected Result 

The user tries to introduce 
too long username or 
password 

The system communicates the error to the user/The system 
disables the Submit option 

Test 5.5 Expected Result 

The user tries to introduce 
non-alphanumeric characters 
for the username 

The system communicates the error to the user/The system 
prevents the user from typing non-alphanumeric characters 

Test 5.6 Expected Result 

The user introduces valid 
username and password but 
there is not match in the 
database 

The system communicates to the user that the username or 
password does not exist 

Test 5.7 Expected Result 

The user introduces valid and 
correct username and 
password 

The system grants administrator access to the user and 
returns it to the main window 

Test 5.8 Expected Result 

The user cancels the Log in as 
administrator operation 

The system returns the user to the main window with no 
administrator access 
 

Figure 68 Log in as administrator use case test 

Use case 6: Train models 

Test 6.1 Expected Result 

The non-administrator user 
tries to train a model 

The system informs the user about he has no access to that 
operation/The user interface disables the Train models 
option 

Test 6.2 Expected Result 

The administrator selects the 
Train model option 

The system asks the model to be trained and the file 
containing the data 

Test 6.3 Expected Result 

The administrator tries to 
upload an invalid file 

The system shows the error to the user/The system disables 
the Train option 

Test 6.4 Expected Result 

The administrator uploads a 
file with blank data or wrong 
prediction values 

The system shows the error to the user  

Test 6.5 Expected Result 
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The administrator uploads a 
file with wrong number of 
pieces of data 

The system shows the error to the user 

Test 6.6 Expected Result 

The administrator uploads a 
valid file with valid data and 
trains the model 

The system will parse the data and pass it to the classifiers 
that will fit it and consider it to following predictions 

Test 6.7 Expected Result 

The administrator cancels the 
operation 

The system returns the user to the main window 

Figure 69 Train models use case test 
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Chapter 6. System design 

This chapter discusses topics from the design phase of this project, the system architecture, 

shows several diagrams representing the system structure and behaviour, database and user 

interface design and the technical specification of the test planning. 

6.1 System architecture 

This section covers the package distribution and component integration of the system. 

6.1.1 Package diagram 

The following diagram shows the packages identified in the system and their relations. The code 

of colours is the following: 

- Green: For the user interface and output files from saving the results to files. We may 

see they have heavy interaction with the user. 

- Pink: Domain package. 

- Gray: Packages with raw data. 

- Blue: Auxiliar packages. They contain operations shared by several packages. 

- Red: Business logic and calculations are inside these packages. 

 

Figure 70 Package diagram 

6.1.1.1 Controller 

This package will contain the logic of all the operations a user may do, acting like a controller 

which will distribute responsibilities to other modules. The ClassificationModule is considered a 
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class as seen in the chapter 5.4, but it may be split up as more classes which would be more 

cohesive. 

6.1.1.2 Authentication 

The authentication package will handle all the operations regarding the logging of a non-

administrator user. This package is the only one which will access to the database containing 

users’ data. 

6.1.1.3 Classifiers 

This package contains the operations related to the models, like training, predicting, and fitting 

new data. Note that although different systems, the two classifiers are encapsulated in the same 

package. 

6.1.1.4 Utils 

An auxiliar operation package. It takes responsibility of tasks related to several packages like 

managing files and low-level operations like pre-processing text data. It must not contain any 

business logic regarding system requirements. 

6.1.1.5 Config 

Package containing configuration files which contain constants, output formatted messages, etc, 

in addition to the logging configuration. This package is used by several other packages.   

6.1.1.6 Database 

It will contain the actual database which hold the users’ information. 

6.1.1.7 Datasets 

This package will contain the data used to train and test the models. 

6.1.1.8 Domain 

This package contains domain-related classes. For example, a Prediction class would be included 

inside this package. 

6.1.1.9 Output files 

Used for grouping all the files that the user may generate from the option Save results to file 

when performing a classification. 
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6.1.1.10 User interface 

It contains the classes of the user interface. This class should be as low-coupled as possible, given 

that the user interface can be subject to a large quantity of changes or be replaced by, for 

instance, a command-line interface. 

6.1.2 Component diagram 

The component diagram of this project is displayed now. 

 

Figure 71 Component diagram 

The code of colour is the same as the section above. We can see the connections between 

components and which interfaces are needed for each component. Auxiliar components will 

offer operations shared by the logic classes. The user interface will also take use of the Controller 

component interface. The domain component will be used in the controller and classifier ones. 

6.2 Class design 

Now we will see the classes designed categorized in their respective packages. 

6.2.1 Controller package 

For this package only one class has been designed for this package. 
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Figure 72 Controller package class diagram 

The ClassificationController class acts as a hub where are the operations of the user are 

compilated and processed. This class assigns the operation to the corresponding modules. Note 

that the Strategy pattern is applied regarding the classification method. This will be commented 

in the Global class diagram subsection [36]. The attributes for this class are: 

- classifier: An object of the class that contains the operations of the model, like 

training, predicting, and fitting new data. It will change whenever the user uses the 

option Change classification method. 

- authModule: This object corresponds to the class that manages all the authentication 

process. 

- authenticated: Describes whether the user is an administrator or not. 

- last_predictions: The last predictions performed in the system. 

The methods of the class are: 

- changeClassificationMethod(String): Changes the classifier based on the 

model option passed as a String parameter. 

- predict(Iterable<String>) → Iterable<Prediction>: Predicts a set of 

messages and returns their predictions. 

- predictMessagesInFile(String) → Iterable<Prediction>: Predicts 

a set of messages. The String represents the path of the file introduces by the user. 

- saveResultsToFile(): Creates a file in an output folder and saves the content of 

the last_predictions attribute. 

- authenticate(String, String): Calls AuthenticationModule to 

perform the operation. The returned Boolean represents whether the user has been 

authenticated or not. 

- correctPredictions(int, Iterable<Prediction>). Receives the index 

of the prediction and the list of new predictions to train model. Only available for 

administrators. 

- trainModel(String, String). Trains the model represented by the String 

parameter. The String corresponds to the path of the new data to be fit. 

- clearClassification(). Prepare the system to perform another classification. 
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6.2.2 Authentication 

Two classes pertain to this package. 

 

Figure 73 Authentication package class diagram 

The UserRepository class is responsible of doing the low-level database operations, like 

creating and closing the connection and creating and executing the query. The attributes are: 

- databasePath. Path for the connection to find the database. 

- connection. A connection that will be created and closed in every query. 

The methods are: 

- getPasswordByUsername(String). The main operation of the class. It creates a 

query that demands the password of the username given. 

- createConnection()/_closeConnection(). Private methods. 

The AuthenticationModule class contains one UserRepository attribute to perform 

the operations described above. The method of this module receives the password from the 

username provided and checks, with the proper hashing algorithm, if the introduced password 

matches the hashed password of the database. 

6.2.3 Classifiers 

The Classifiers package consists of one interface and two classes implementing it. 
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Figure 74 Classifiers class diagram 

The Model interface specifies a contract upon which the Controller package can agree. The 

methods of this interface are: 

- predict(String, int):  The invoked method by the Controller package. 

- fitNewData(Data): It fits the model with new data that will be considered for 

following classifications. Both Iterable are for the messages and predictions. 

- fitPrediction(Prediction): Receives a Prediction to be fit. 

The classes implementing the interface do the same operations but may do it in different ways. 

The attributes in both classes are intrinsic attributes to these models to perform the 

classifications. 

6.2.4 Utils 

This package will contain several files used in a major part of the system to perform common 

tasks: 

- file_management.py: Used for file dumping, opening, closing and conversion to 

specific data structures. 

- nlp.py: For natural language processing tasks like removing links, Twitter usernames 

and hashtags, lower-casing, etc. 

- validation.py: Used for validation user inputs. 

- stats.py: Computes statistics for a classifier given validation data. 

6.2.5 Config 

Contains the configuration for the system and the logging 

- config.py: Declares constants, directories, queries, and output messages. It useful if 

changes are required. 
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- logconfig.py: The logging configuration used for the different levels of logging are 

explicitly stated here. 

- uiconfig.py: Contains messages for the user interface and the identifiers of the 

window elements. 

6.2.6 Domain 

An interface with two implementing classes were considered for the domain package. 

 

Figure 75 Domain class diagram 

The prediction interface encapsulated all the information needed to be passed from the 

Classifier component to the Interface one. The methods are: 

- getPredictions(): These methods return the raw values of the prediction of the 

corresponding classifier. 

- getMessageForUI() →  String: Method used for obtaining a formatted 

message suitable to the user interface. 

- getPredictionsForUI() → String: Method used for obtaining a formatted 

output suitable to the user interface. 

The classes implementing the interface will alter the getPredictions(), which will return 

different types. The BinaryPrediction class will return a single int value for the 

prediction whilst the MLPrediction class returns a Iterable<int>, each position 

corresponding to an item. Likewise, it happens the same for the prediction attribute. 
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6.2.7 User interface 

The user interface will consist of three main classes, representing each window. 

 

Figure 76 User Interface class diagram 

The MainWindow class will contain the Controller object that receives the user interaction 

petitions, a String representing the submitted file and authentication check. The run() method 

will make the display of the frame. In addition, it will include a AuthenticationWindow and 

a TrainingWindow, used when the corresponding option is selected. These classes algo 

contain their particular run() method. AuthenticationWindow has an 

authenticated Boolean attribute to determine the authentication. 

6.2.8 Global class diagram 

Thus, the following global class diagram is resolved. 

 

Figure 77 Full system class diagram 
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The main functionality of the system is designed with a Strategy pattern [36]. The 

ClassificationController acts as the context and the Model is the actual strategy, 

that is implemented by two concrete strategies. The system attempts to achieve high cohesion 

and low coupling in every class. If there is a decision of changing a particular model, or just 

simply adding another one, it would only have to implement the Model interface and supply 

the agreed methods, and maybe implement an additional Prediction class, depending on 

the case. 

6.3 Interaction diagrams 

This section will show visually the flow of interaction in the use cases available, and a brief 

explanation of each operation. 

6.3.1 Detect inappropriate messages 

The use case of detecting inappropriate messages is shown below in an interaction diagram. 

 

Figure 78 Detect inappropriate messages use case interaction diagram 
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Both options of detecting inappropriate messages are described, and their possible 

ramifications. 

The user types a message and selects the Predict option. This event is captured in the window, 

which will transfer the task to the controller. Then, the controller validates the input message 

and, if it is not valid, will return to the window to display the issue to the user. If it is a valid 

message, the message is forwarded to the corresponding classifier, which will be in charge of 

creating the prediction object. This prediction is then returned to the window to be displayed 

not before the controller adds it to the last_predictions attribute. 

The input of several messages through a file also passes through the controller. It will validate 

the file format and will convert it to a manageable data structure. Otherwise, it will return to 

the window to inform the error. Then it validates the number of columns and if this operation 

fails the error will be also displayed. If it does not, a prediction for each message will be 

computed, as the ones described before. 

6.3.2 Train model use case 

The use case of training a model is shown below in an interaction diagram. 

 

Figure 79 Train model use case interaction diagram 

This is the process flow of training a classifier. The administrator selects the option Train model. 

The event is passed to the controller which will check first the authentication. If the user 

authenticated, an error is passed to the user interface. If it is, the validation follows to check the 

file extension, which in the case it is incorrect, it will be reported to the user. Next, the file is 

converted to a data structure and passed to the classifier to be fit. The classifier examines the 
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validity of the data. This operation is done inside the classifier and not in the controller because 

the classifier has the necessary information for approving the data. First, the number of columns 

is checked. If the number is incorrect, the present error is forwarded to the user. If it is correct, 

the classifier will verify and filter the message and prediction of each piece of data and inform 

the user of the possible error. Then, the classifier transforms the data to its proper format and 

performs the training. After this, the training is completed. 

6.3.3 Correct predictions use case 

The use case of correcting predictions is shown below in an interaction diagram. 

 

Figure 80 Correct prediction use case interaction diagram 

This use case uses a similar approach to the Train model use case process flow. When the 

administrator selects this option in the interface, the captured event is processed by the 

controller, which will be verify if the user is, indeed, and administrator. The program will return 

to the user interface to inform the user if it is not. If it is, the next step is to check if a prediction 

has been performed yet. It has not, the error will be prompted to the user and if it is, the program 

examines if the input prediction is empty. If it is empty, an error is reported to the administrator. 

Now the controller checks for the message given the index provided as parameter. If it does not 
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exist in the last_predictions attribute, it will raise an exception to inform the user. The 

system will transform the prediction to a Prediction object to be passed to the model. The 

model then transforms the prediction to a suitable data structure to manage, and this structure 

is passed to the process of the previous use case. 

6.3.4 Log in as administrator use case 

The use case of authenticating is shown below in an interaction diagram. 

 

Figure 81 Log in as administrator use case interaction diagram 

The authentication process is a simple one. The user introduces the username and password 

and selects the submit option. The window catches the event who will be forwarded to the 

controller. The controller checks the validity of the user inputs, both username and password 

and it will report an error to the user if this validation fails. This validation consists of assertions 

of length blank credentials, too long credentials, and a non-alphanumeric username. Then, the 

information is passed to the authentication module, whose repository will query the password 

of the given username. If nothing is returned, the operation was unsuccessful, and the result is 

shown to the user. If there exists a password for that username, the module will return the true 

value for the comparison between the hash of the input password and the one retrieved. 

6.3.5 Change classification method use case 

Since this use case is much simpler than the described above, there is no need of an interaction 

diagram. The steps are explained as follows: 

- The user selects the option Change classification method and changes the value of it. 

This event is captured by the window. 

- It is then passed to the controller. 

- If it is a wrong value, the system will warn the user and not alter the state. 
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- If it is a good method value, the system will change the classification method to the 

required one. 

6.3.6  Save results to file use case 

Likewise, this use case is not as complex as the first three use cases, so an explanation of the 

process flow is explained now: 

- The user selects the option Save results to file. The event is captured by the window. 

- The event is passed to the controller. 

- If a prediction did not exist in the first place, the system reports the issue to the user. 

- If a prediction did exist, the system will use the file manager to create the output file 

and dump the content of the prediction. 

6.4 System persistence 

The system makes use of two machine-learning models for the binary and the itemized 

classification respectively. These models are stored inside files with extension .pkl, which stands 

for Pickle, a common Python serialization module that allow to store serialized Python objects 

[37].  

When a prediction is corrected or when an administrator trains a model, the operation ends 

with the dumping of the new model to these Pickle files. 

For the authentication module, the administrators are already stored in a local database. 

6.4.1 Database design 

Now, the decision of the DBMS is reasoned. Also, the Entity-Relationship diagram is shown. 

6.4.1.1 Used DBMS description 

The Database Management System chosen is SQLite. It is optimal for our system, given the 

simplicity of the database content. SQLite implements a small, fast, and self-contained database 

engine [38]. 

6.4.1.2 DBMS system integration 

The local database is managed through a class inside the Authentication package called 

UserRepository. This class is responsible of creating the connection, making the necessary 

queries, and closing the connection. Every query is self-contained, which means that it creates 

and closes the connection within itself. 
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6.4.1.3 E-R Diagram 

Given that only users are stored inside the database, there exists only one entity. 

 

Figure 82 Database Entity-Relationship diagram 

The id acts as the primary key, and username and password are the information stored. The 

password is stored as BLOB, since a hash is stored for every tuple. 

6.5 Interface design 

These are the final prototypes of the user interface for every window. For the most part, they 

are identical to the analysis design. However, a new confirmation window for administrator 

operations has been added. 

6.5.1 Main window 

This would be the main window interface. 

 

Figure 83 Final Main Window 

The main window will look like this. There might be a few changes about buttons positioning, 

and text font and colours.  
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6.5.2 Authentication window 

The authentication window looks like this. 

 

Figure 84 Final Authentication Window 

This is the final design for the Authentication window. Some features may change, for instance 

the font, colour, and position of the text. 

6.5.3 Training window 

Figure 85 shows the Train model window. 

 

Figure 85 Final Training Window 
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6.5.4 Confirmation window 

For the administrator operations of correcting a prediction and training a model, a new 

confirmation dialog has been added. It summarizes the parameters of the operation and offers 

the administrators the options of performing or cancelling the task. This operation will block all 

operations due to the backend training, so it is important that it remains opened. 

 

Figure 86 Confirmation window for correcting a prediction 

 

Figure 87 Confirmation window for training a model 

6.6 Test plan technical specification 

In this subsection the test plan discussed in Test plan specification will be developed to be 

implemented later in the implementation phase. 

All the tests will be executed in a local machine with the following characteristics: 

- OS: Windows 10 Education. 

- Motherboard: AMD Ryzen A520M-A Prime AM4. 

- SSD: Kingston SSD SATA3 V300 120GB. 

- RAM: 16 GB DDR4. 

- CPU: AMD Ryzen 5 3500X 3.59 GHz. Six cores. 
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6.6.1 Unit testing 

We will discuss the unit tests for every use case and scenario described in section 5.8.5. 

6.6.1.1 Change classification method 

Use case 1: Change classification method 

Test 1.1 Expected Result 

The user changes the method 
to any of the two possible 
methods 

The controller stores the new in the classifier attribute 

Test 1.2 Expected Result 

The user changes the method 
to a not contemplated 
method 

The user interface only offers Binary and Itemized method 
through a combo box, which is read-only. Also, a default value 
if asserted to prevent blank method 
The controller itself validates that the value is correct 

Figure 88 Change classification method unit test 

6.6.1.2 Detect inappropriate messages 

Use case 2: Detect inappropriate messages 

Test 2.1 Expected Result 

The user tries to classify a 
blank message with no file 
uploaded 

The user interface disables the option Classify whenever a 
message is not typed, and a file is not uploaded 
The controller checks for each mechanism the emptiness of 
the message. If it is empty an exception is thrown 

Test 2.2 Expected Result 

The user tries to classify a 
message that exceeds 
maximum message length 
(500 characters) 

The text area displayed allows only to write until 500 
characters 
The controller validates that the message is at most 500-
character long. If it is longer, an exception is thrown 

Test 2.3 Expected Result 

The user tries to upload a file 
with wrong extension 

The Submit messages file option allows only to upload .csv 
files 
The controller validates that the extension is correct. If it is 
not, an exception is thrown 

Test 2.4 Expected Result 

The user tries to upload with 
unexpected data 

The controller validates the number of columns of the file, 
which should contain only one 
The controller validates for every row of the file that the 
message is a valid character string, that it is not blank and that 
it does not exceed maximum possible length 
For any reason above not being fulfilled, an exception is 
thrown for each message 

Test 2.5 Expected Result 

The user types a message and 
tries to upload a file with 
messages 

The user interface disables the Submit messages file option 
whenever any text is input inside the text area  

Test 2.6 Expected Result 
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The user uploads a file and 
tries to type a message 

The user interface disabled the text area whenever a file is 
uploaded 

Test 2.7 Expected Result 

The user types a message 
with no file uploaded and 
classifies the message 

The controller computes the prediction 
The user interface shows the prediction 
 

Test 2.8 Expected Result 

The user uploads a correct 
file with valid data and with 
no typed message 

The controller predicts for each message a prediction as the 
one described before 

Figure 89 Detect inappropriate messages unit test 

6.6.1.3 Save results to file 

Use case 3: Save results to file 

Test 3.1 Expected Result 

The user tries to save results 
to .csv file with no 
classification performed 

The user interface disables the Save results to .csv file option 
until a classification is performed 
The controller raises an exception 

Test 3.2 Expected Result 

The user saves results to .csv 
of a performed classification 
to a file 

The controller creates a file inside the destination folder, and 
inserts the last prediction, dumping the message and the 
obtained prediction 
For several predictions, each line of the output file will 
contain the message and the obtained prediction 

Test 3.3 Expected Result 

The user tries to save results 
to .txt file with no 
classification performed 

The user interface disables the Save results to .txt file option 
until a classification is performed 
The controller raises an exception 

Test 3.4 Expected Result 

The user saves results to .txt 
of a performed classification 
to a file 

The controller creates a file inside the destination folder, and 
inserts the last prediction, dumping the message and the 
obtained prediction 
For several predictions, each line of the output file will 
contain the message and the obtained prediction 

Figure 90 Save results to file unit test 

6.6.1.4 Correct predictions 

Use case 4: Correct predictions 

Test 4.1 Expected Result 

The administrator tries to 
correct a prediction with no 
classification performed 

The user interface disables the option until a classification is 
performed 
The controller checks if the last_predictions attribute 
is empty 

Test 4.2 Expected Result 

The administrator introduces 
a correction with wrong 
values or number of values 

The user interface offers combo boxes that will only display 
the possible values for a prediction. They also have a default 
value, so the blank prediction is not allowed 
The controller raises an exception 
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Test 4.3 Expected Result 

The administrator introduces 
a correct prediction 

The user interface shows a message to the user indicating the 
success of the operation  

Test 4.4 Expected Result 

The administrator cancels the 
operation of correcting the 
predictions 

The user interface hides the combo boxes for correcting a 
prediction 

Test 4.5 Expected Result 

A non-administrator user 
tries to correct the prediction 

The user interface hides this option for non-administrator 
users 
The controller checks if the user is an administrator 

Figure 91 Correct predictions unit test 

6.6.1.5 Log in as administrator 

Use case 5: Log in as administrator 

Test 5.1 Expected Result 

The administrator tries to 
access the Log in as 
administrator option 

The user interface hides this option for administrators 
The controller checks that the user is not already logged in 

Test 5.2 Expected Result 

The user selects the option 
Log in as administrator 

The Authentication Window is created and run 

Test 5.3 Expected Result 

The user tries to introduce 
blank username or password 

The user interface disables the Submit option until any text is 
written inside the username and the password 
The controller validates if any of the data is blank. If it is, the 
controller raises an exception 

Test 5.4 Expected Result 

The user tries to introduce 
too long username (20 
characters) or password (30 
characters) 

The controller checks that the username and password do not 
exceed the possible maximum length (20 and 30 characters 
respectively). If any does, the controller throws an exception 

Test 5.5 Expected Result 

The user tries to introduce 
non-alphanumeric characters 
for the username 

The controller checks that the username is only 
alphanumeric. If it is not, the controller throws an exception 

Test 5.6 Expected Result 

The user introduces valid 
username and password but 
there is not match in the 
database 

The authentication module returns a negative result (false) 

because the hashed password and the database password do 
not match 
The user interface displays a message for the user 

Test 5.7 Expected Result 

The user introduces valid and 
correct username and 
password 

The authentication module returns a positive result (true) 

The Authentication Window is closed 
The attribute authenticated in the controller is set to 
true 

Test 5.8 Expected Result 

The user cancels the 
Authenticate operation 

The Authentication Window is closed 
The attribute authenticated remain as false 
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Figure 92 Log in as administrator unit test 

6.6.1.6 Train models 

Use case 6: Train models 

Test 6.1 Expected Result 

The non-administrator user 
tries to train a model 

The user interface hides this option for the non-administrator 
user 
The controller checks if the user is logged in 

Test 6.2 Expected Result 

The administrator selects the 
Train model option 

The Train Window is created and run 

Test 6.3 Expected Result 

The administrator tries to 
upload an invalid file 

The user interface only expects .csv files to be uploaded 
The controller checks the extension of the file. If it is 
incorrect, the controller raises an exception 

Test 6.4 Expected Result 

The administrator uploads a 
file with blank data or wrong 
prediction values 

The classifier checks the validity of the data. If it is not valid, 
an exception is thrown for each of the rows 

Test 6.5 Expected Result 

The administrator uploads a 
file with wrong number of 
pieces of data 

The classifier checks the number of columns of the file. If it is 
incorrect, an exception is thrown 

Test 6.6 Expected Result 

The administrator uploads a 
valid file with valid data and 
trains the model 

The user interface displays the success of the operation 

Test 6.7 Expected Result 

The administrator cancels the 
operation 

The Train Window is closed 

Figure 93 Train models unit test 

6.6.2 Integration tests 

These tests are covered inside the Unit testing section, that also verifies correct relation 

between components. 

6.6.3 Usability tests 

The usability tests will cover the overall satisfaction of the client when it comes to using the 

application. A third-party user has also been subdued to the system use. 

6.6.3.1  User profile ranking 

This survey measures the level of experience of a user. It is important than the distinct levels of 

expertise are able to understand the system scope and what it can do. 
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How often do you use a computer? 

1. Everyday 
2. Several times a week 
3. Occasionally 
4. Hardly ever 
5. I have never used a computer 

 

What is your main activity using a computer? 

1. It is part of my job or occupation 
2. Mainly for free time 
3. Using office software 
4. Reading news and/or emails 
5. I use it for nearly everything 

 

Have you ever used a similar software? 

1. Yes, I have 
2. No, although I have used software that perform similar tasks 
3. No 

 

What do you look forward the most in a program? 

1. To be easy to use 
2. To perform a lot of tasks 
3. To be fast 
4. To have a nice interface 
5. To be transparent on the operations it performs 

 

Figure 94 User profile ranking survey 

6.6.3.2 Guided activities 

This survey looks to reflect the advantages and disadvantages of our application, through the 

main features of the system. 

Writing a message and predicting it 

Things I liked: 
 
Things I would like to be improved: 

Uploading a file with messages and predicting them 

Things I liked: 
 
Things I would like to be improved: 

Obtaining a file with the computed predictions 

Things I liked: 
 
Things I would like to be improved: 

Correcting the prediction of a computed classification (Administrators only) 

Things I liked: 
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Things I would like to be improved: 

Uploading a file to train a model (Administrators only) 

Things I liked: 
 
Things I would like to be improved: 

Figure 95 Guided activities survey 

6.6.3.3 Quick questions about the application 

Ease of use Always Most of the time Occasionally Never 

Do you know where you are inside 
the application? 

    

Is there any help when using the 
application if any doubts arise? 

    

Do you consider the application to 
be easy to use? 

    

Functionality Always Most of the time Occasionally Never 

Does the prediction suit the 
messages introduced? 

    

Does the model reflect a better 
prediction after correcting or 
training the model? 

    

Is the files’ data format intuitive 
and suitable? 

    

Does every task work as 
expected? 

    

If any task fails, do you find the 
error messages descriptive 
enough? 

    

Is the response time of the 
application adequate? 

    

Interface quality 

Graphic aspects 
Very 

adequate 
Adequate 

Little 
adequate 

Not 
adequate 

The font size and type is     

Used colours are     

Interface design Yes No Sometimes 

Is the interface easy to use?    

Is the windows design clear?    

Do you think that the application is well-
structured? 

   

Are messages describing thoroughly the 
specific situation? 

   

Observations 

The user may detail some experience not covered in the survey 

Figure 96 Quick questions about the application survey 
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6.6.3.4 Tester survey 

This survey is filled by the tester as a conclusion of the responses collected in all the previous 

surveys. Last column shows decisions taken from the survey results. 

Observed aspect Notes Possible solutions 

The user handles 
the task in a fast 
way 

  

Minor errors   

Major errors   

The predictions 
are fitting to the 
true ones 

  

Files’ data format 
is intuitive to the 
user 

  

Output files show 
content clearly 
and plainly 

  

User interface is 
suitable 

  

Figure 97 Tester survey 

6.6.4 Accessibility tests 

Accessibility tests are rarer in desktop applications. All standards and guides are intended for 

web applications. However, in section 9.3 a customized checklist cherrypicked from [39] will be 

complimented. 

6.6.5 Performance tests 

These are the proposed performance tests to benchmark the system. 

Test Workload Result 

1.1 Initial training of 
binary model 

Binary dataset [40] 
 

1.2 Initial training of 
multilabel model 

Multilabel dataset [41] 
 

1.3 Predict messages 
(binary)  

10000 
 

1.4 Predict messages 
(multilabel) 

10000 
 

1.5 Predict messages 
from file (binary) 

10000 
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1.6 Predict messages 
from file (multilabel) 

10000 
 

1.7 Saving predictions 
to file .csv 

10000 
 

1.8 Saving predictions 
to file .txt 

10000 
 

Figure 98 Performance tests 
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Chapter 7. System implementation 

In this chapter the implementation of the system is discussed, along the technologies and tools 

used, standards and guidelines followed, and problems found during the implementation.  

7.1 Programming languages 

This section is a list of the programming languages and libraries used in this project accompanied 

by brief descriptions of each of them. 

7.1.1 Python 

Python has been used for the totality of the implementation of this project, more specifically 

version 3.10 Python [42]. It is a high-level programming language widely spread in machine 

learning applications. It is flexible in its programming paradigm, and it is easy to learn. One of 

the advantages of Python is the large quantity of libraries that implement machine learning 

modules, some of which were used in the development of the system and will be described in 

the following subchapters. 

In the last decade, usage of Python has grown exponentially. Some causes are that it is easy to 

learn and read, the expanding and supportive community, has a large number of well-

documented libraries and it is suitable to be used in data science and analytics [43]. 

7.1.1.1 Scikit Learn 

This Python library is commonly used within machine learning projects [32]. It is useful because 

of its soft learning curve, its simple syntax and fast processing. It has been used in order to 

implement both binary and itemized models. 

Scikit Learn has the key advantage of being easy to understand to the unexperienced developer. 

The library comes with a wide documentation and supportive community. This is the reason for 

having taken Scikit Learn as the main modelling option in this project. However, its main 

drawback is the lack of deep learning modules. The community tried to implement a deep 

learning Scikit-Learn-approached module that integrated with Keras and PyTorch, but that 

project was abandoned and has no support [44]. 

7.1.1.2 Pytorch 

Pytorch is a widely used Python library that supports deep learning systems. It is more complex 

than Scikit Learn, but offers the possibility of constructing artificial neural networks, which are 

not possible in Scikit Learn. 
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Along TensorFlow [34] and Keras [45], they are the most common deep learning implementation 

libraries of the market. These libraries allow developing scalable deep learning systems since the 

developer may construct a simple baseline model which will gradually expand into a more 

complex and capable model. 

7.1.1.3 Transformers 

Transformers is a Python library specialized in Transformers deep learning models. It offers 

several specialized Transformers models, and algo offers base models which may be fine-tuned 

to a specific task. Several BERT models are available in this library. 

Transformer deep learning models have altered the machine learning and deep learning fields. 

They have more computing capability due to their ability to process the input as whole instead 

of sequentially, and to keep the positional information of the inputs. 

7.1.1.4 PySimpleGUI 

This library is the one chosen for implementing the user interface. It encapsulates the 

implementation of tkinter [46], Qt [47], Remi [48] and WxPython [49], which are common 

Python libraries. This library is based on list nesting in order to display the desired layout. 

7.2 Tools and programs used for the development 

of the system 

7.2.1 Visual Studio Code 

Visual Studio Code is the IDE option to develop the application [50]. It is language-independent 

and possesses a large quantity of plugins that make easier the development. Moreover, this IDE 

integrates nicely with the GIT version control system. 

 

Figure 99 Visual Studio Code Logo 
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7.2.2 Git 

Git is an open-source version control software developed by Linus Torvalds in 2005 [51]. It is the 

most common version control system in software development, because its better performance 

and capability in comparison to the other alternatives. 

 

Figure 100 Git Logo 

7.3 System creation 

The first goal to be achieved inside the implementation of the system was to obtain two 

functional models that classified messages as appropriate and inappropriate. To make a 

difference between the two, the idea was to create a more “straight-forward” model that 

classified the message as one of the mentioned categories, and a more specific model which 

would detail why a message is inappropriate. 

7.3.1 Binary model 

The binary model was the easiest one in terms of implementation. When it came to selecting a 

fitting dataset, the number of alternatives was massive, and so there were a lot of suitable 

datasets for this system. However, this vastness of datasets became a drawback, which will be 

discussed later in the Found issues subchapter. The dataset chosen has near 60000 

classifications made from downloaded tweets [40]. 

Decided the dataset, the next task was to choose the most adequate library to implement the 

classifier. The selection was Scikit Learn by recommendation of the tutor. Given its easy-to-use 

approach a first model was quickly implemented. 

Scikit Learn offers a great number of models to be trained. These are the models that were at 

least proven to fit the binary model: 

- LogisticRegression. 

- Perceptron. 

- SGDClassifier. 

The data obtained from the dataset should be transformed in some way to better fit the 

computer processing capabilities. Most of the machine learning models accept to different sets 

of data: the features and the targets. Feature is any information that we provide the model 

classify it, for instance the message. There could be other features calculated from the former, 
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like length of the message, number of occurrences of certain words, etc. Targets are the 

classification itself (if it is appropriate or not), and in this case we have only one. 

Targets come in several formats depending on the dataset. There are datasets that define the 

target with words like “appropriate” or “toxic”. In the case of our dataset, the target was already 

established as a number (0 for appropriate, 1 for inappropriate). This is a good improvement, 

since computers manage numbers faster than words. 

Features normally go into a more thorough process. This transformation was an issue that will 

be described in detailed in the Found issues section. The final decision of the features 

transformation was to use a bag-of-words approach, which basically means to create a N x M 

matrix, being N the number of samples of the dataset and M the number of total words 

compilated of message. Inside each cell of the matrix, the number of occurrences of the m word 

in the n message is stored [52]. 

There is also a step in which the dataset is split in a training subset and a validation subset. This 

is done to prevent the model from overfitting, that means that the model precisely classifies the 

provided data but is prone-to-error to unseen data, which is a symptom of a bad performance. 

The next step after establishing the training process of the dataset was to perform natural 

language processing tasks. A substantial amount of time was dedicated to this phase. This step 

is important because we are trimming the amount of information that the computer has to 

process. There is a lot of layers in a text which does not supply any semantic information, like 

punctuation and stop words. 

Contraire to general belief, the more that you refined this processing did not result in better 

results. There is an optimal point on which certain NLP tasks would lead to the maximum 

performance of the model. 

 

Figure 101 Natural language processing graph 

The natural language processing tasks performed include: 

- Accents removal. 

- Punctuation removal. 

- Stop words removal. 

- Hashtags, usernames, and hyperlinks processing. 

- Undo contractions. 
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- Regular expression fulfilment. 

- Tokenization. 

- Lemmatization and stemming. 

Then, it became a process of refinement of the already established model, like changing 

hyperparameters inside the LogisticRegression and SGD classifier, the ratio of training/validation 

data, the transformation process, etc. Finally, the SGD classifier was the selection for the binary 

model. The statistic backing this decision are commented in section 8.2.1. 

7.3.2 Itemized model 

This was the part which consumed most of the time of the system implementation, and it 

brought most of the problems and delays of the project fulfilment. 

The dataset research was not difficult. The Jigsaw Toxic Comment Classification Challenge 

posted this competition in Kaggle in 2018 including this dataset. It contained a training set of 

150000 entries and a validation set of 40000 [41]. There are some other datasets that are offered 

in the web with itemized hate-speech-related classifications, but most of them were a sort of 

modification from the Jigsaw one. 

The main concern with the library selection was that the intended approach was to create an 

artificial neural network that could perform this itemized classification. Since native Scikit Learn 

does not handle deep learning, Pytorch was the option for implementing it. However, due to 

issues, which are discussed below, related to the neural network poor performance and weak 

computational capability, the neural network model was discarded, and the decision was to go 

back to the Scikit Learn library. 

The models used had to be more complex, given the more complexity of this system. This sort 

of classification tasks, which are called multilabel classification tasks, are not the main goal of 

Scikit Learn, which is more focused into different tasks like binary classification, regression, and 

clustering. However, it offers a MultiOutputClassifier [53] that receives a classifier and computes 

a multioutput (multilabel) classification. This was quite suitable for our system, since a binary 

model based on a LogisticRegression classifier had been already implemented. 

Feature transformation on this model follow the same pattern and problems than the binary 

one. The solution was to use a slightly different approach to bag-of-words, which was use TF-

IDF, which stands for Term Frequency times Inverse Document Frequency [54]. This solution 

changes occurrences to frequencies and penalizes words that appear too much in a lot of 

documents, like connectors. 

Finally, some hyperparameter refinement was performed to achieve better results. The final 

decide model was the MultiOutputClassifier assembled with the SGD classifier. This decision is 

reasoned in section 8.2.2. 
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7.3.3 Application and interface 

The ending part of the process was to create an application that could encapsulate the 

prediction capability of both models. Some features were added to this application to offer more 

utility, like saving the predictions to an output file, uploading a file with several messages, and 

allowing an administrator to correct the models. 

The key principles upon which the system was created was high-cohesive and low-coupled 

classes, clear separation between interface, logic and persistence levels, and a strategy pattern 

applied to the system. The strategy pattern allows a class to perform the same operation in 

different ways, which is the case in our system. The main advantage is that for other model to 

be added, it would only be needed to implement the Classifier interface with the necessary 

methods and probably a Prediction class to pass it to the interface. 

The interface was the last part of the system implementation. Although the first idea was to 

create a simple interface with no sophisticated animations or transitions, the inexperience and 

PySimpleGUI illegibility took large roles when it came to the interface implementation.  

7.3.4 Last modifications 

After results listed in section 9.2 of the usability tests done, some modifications were added to 

the system to better suit users’ demands. 

- An option that allows to save the results of a prediction in a user-friendly format into a 

.txt file. 

- Both .txt and .csv file save processes now allow the user to select the destination of the 

file. 

- An option of refreshing the current prediction. Since the only way to perform the same 

prediction is to press the Clear All option and rewrite it, this option allows to skip these 

steps. Also, it is useful after the correction of a prediction to see the alterations. 

- Two options, both in the main window next to the Submit messages file option and in 

the training window to offer some help on the files’ format. Also, a tooltip is shown with 

an example of a file row for each of the models. 

- Some of the text within the window has been augmented for better readability. 

- Some elements have been relocated for better display. 

7.3.5 Found issues 

During the whole process of the implementation, several problems were encountered, which 

will be analysed in the following subsections. 
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7.3.5.1 Subjectivity of the term “inappropriate” 

7.3.5.1.1 Description 

This problem is carried throughout the entirety of this project. The term is defined as 

«something which is not suitable for a particular situation». Then, the problem arises on this 

situation. Something can be inappropriate in a situation but be appropriate for another one. 

In text classification this term becomes even more misleading. Although it is true that there are 

common boundaries upon which everyone would agree like racial or misogynistic slurs, these 

boundaries become dimmer when the text has not clear harmful intentions.  

For instance, consider an angry review of a film. Would the sentence «This film is s***» be an 

inappropriate sentence? Some may argue that the final word would determine the classification. 

However, the sentence could also say «This film is trash», and in that case the word «trash» is 

not considered a bad word in English, but the critique is the same. Moreover, the sentence could 

be «This film is so bad that everyone who worked doing it should be fired». In this case, the 

sentence does not contain a single word which could be individually understood as 

inappropriate. The whole semantic confers offensiveness to the sentence, and in this case, it 

could be said that is even more offensive than the first two sentences. There could be major 

agreement in the first example, but the last one is not so obvious. 

This unprecise term leads to a whole range of available datasets on the Internet. Some keywords 

used for searching them were «hate speech», «offensive comments», «toxic comments», etc. 

For the most part, these datasets are put to test to several individuals that classify them as 

offensive/inoffensive or toxic/non-toxic to later do an arithmetic mean. And this is again the 

issue, that the different opinions lead to different results. 

For the itemized model it becomes even more exacerbated, due to several targets being 

discussed instead of only one. This will generate other issue that is commented below. 

7.3.5.1.2 Proposed solution 

The unescapable nature of the term leads to state a formal definition in the context of this 

project. «Inappropriate» is a property socially conferred to whichever message that exhibits 

elements of toxicity, obscenity, threat, insult, and/or hate speech within its meaning. In essence, 

a message is inappropriate if most of the people can classify it in at least one of these categories.  

Both datasets attach to this definition. For the binary dataset, all messages were analysed by 

several people classifying it as toxic or non-toxic. The itemized dataset is classified in terms of 

toxicity, severe toxicity, obscenity, threat, insult, and identity hate. 
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7.3.5.2 Multilabel unbalanced dataset 

7.3.5.2.1 Description 

The Jigsaw Challenge dataset is the most used dataset in toxic comment classification tasks. One 

of its main characteristics is that data is not balanced at all. Around 89% of the comments are 

classified as not harmful, which is having all targets to 0. From the 11% remaining, the most 

common label is the “toxic” one and the rarest is the “threat” label. This issue is known as 

dataset unbalance. 

Let’s see an example to demonstrate why this is an issue. Imagine a model that classifies an 

image as a dog or as a cat. We want to provide the model with similar number of samples of 

both classes so it can “nourish” equally from them. If we had a training dataset that had 90% of 

dog samples and 10% of cat samples, and trained it, the classifier would correctly identify most 

of the dogs, but for an unseen image of a cat, it would probably classify it as a dog too, so this 

model performs poorly. 

There are mechanisms to overcome this problem, like oversampling, which consist of creating 

new artificial data mixing features, in this case sentences, between them and generating more 

samples. However, a user in the Kaggle competition pointed out that this unbalance is necessary 

for the model because the unbalance provides information to the model about the frequency of 

toxic comments. For instance, you want the model to know that threat messages are less 

common than toxic ones, and so be more confident when predicting it [55]. 

7.3.5.2.2 Proposed solution 

The only solution was to handle this unbalanced dataset as an unavoidable issue. 

7.3.5.3 Lack of computational power 

7.3.5.3.1 Description 

The implementation of the system was developed in two different computers: 

- A desktop PC with Windows 10, 16GB of DDR4 RAM, a Kingston V300 SSD of 120GB, an 

AMD Ryzen 5 3500X CPU and a NVIDIA GeForce GTX 760 graphic card. 

- A laptop with Windows 10, 8GB of DDR4 RAM, an Intel i5-6300HQ CPU and a NVIDIA 

GeForce GTX 950M graphic card. 

These computers are well-functional, and they are 8 and 5 years old respectively. For the 99% 

of tasks, they work perfectly fine. However, machine learning and deep learning are resource-

demanding processes that require great computational capability.  

The training phase of a machine learning model is usually done with a graphic card, given it is 

fast when working with matrices. To prepare the graphic card for this tasks, CUDA (Compute 

Unified Device Architecture) is mandatory [56]. The GPU of the first computer is not supported 
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by CUDA, and so it is not able to perform training operations. The laptop GPU is indeed 

supported by CUDA, but it is not a powerful graphic card. 

Artificial neural networks are even more resource-demanding since they must perform back 

propagation algorithms. The options are to train it in the desktop’s CPU or to do it in the laptop’s 

GPU. The CPU takes around last 30 times longer than the laptop’s GPU, and so it is not feasible 

to do it. In the laptop, times were more reasonable (20 hours per iteration), but the performance 

was not great. This issue is commented below. 

7.3.5.3.2 Proposed solution 

Since neural networks require great resources, the alternative was not to use a neural network, 

but a simpler model implemented in Scikit-Learn. 

7.3.5.4 Neural networks do not perform well 

7.3.5.4.1 Description 

Several neural networks configurations written in Pytorch were attempted. These neural 

networks did not achieve any substantial performance, being for some cases extremely poor 

and achieving accuracy, precision and recall of 0. 

Speaking in technical terms, the activation function for the output of the neural network was a 

sigmoid function with a 0.5 threshold. The observations made established that any message, 

regardless of its content, would have a sigmoid activation of less than 0.1, so every prediction 

would be a 0 (a positive prediction). If the threshold was shifted to be lower to, for instance, 0.1, 

it would make a “rebound effect” and classify most of the messages with a negative prediction 

for every target. 

Neural networks poor performance is cause of several factors. The first one is shallow knowledge 

about neural networks. To be able to construct a working artificial neural network, it is key to 

understand activation functions, embeddings, attention layers or even self-contained structures 

that could be a layer in our neural networks, like GRU or LSTM models [57], [58]. The second 

factor is the one described above, which is the demanding computational power to train a neural 

network. They require large amounts of iterations adjust to the suggested task. The third one is 

having a small period of time available to run the training. 

Nevertheless, a final neural network structure was attempted. This neural network was found 

in a GitHub repository of the user “jonad” [59].  

The results of using this structure were relatively good. Despite of this sudden improvement, it 

did not perform remarkably better than the MultiOutputClassifier with LogisticRegression of 

Scikit Learn, so the final choice was to stick to the later, given it is way faster to train and predict. 

7.3.5.4.2 Proposed solution 

As commented before, the solution was to get rid of the neural network idea and make a Scikit 

Learn multioutput model. 



Final Degree Project 

School of Computer Engineering - University of Oviedo | System implementation 99 

 

7.3.5.5 BERT model does not perform well 

7.3.5.5.1 Description 

This may be seen a subset of the problem above. A BERT model was used for some neural 

networks’ structures and did not perform well. The possible causes were commented previously. 

7.3.5.5.2  Proposed solution 

The alternative was not to use the BERT model, but a simpler model implemented in Scikit-Learn. 

7.3.5.6 Data transformation 

7.3.5.6.1 Description 

As we have commented in the Binary model section, the transformation picked was bag-of-

words and the TF-IDF approach. These methods are resource-cheap and fast, but they have a 

huge disadvantage. The matrix computed for both methods measure the occurrence or 

frequency of the words in the samples but lose all meaning. The last example shown in the 

description of the Subjectivity of the term “inappropriate” issue spoke about how there are 

sentences that are offensive without using bad vocabulary, so there is a loss of semantic with 

those approaches. 

A common alternative for transforming text is word embeddings. A word embedding is 

essentially a vector that represents the word. If we saw a visual representation of these vectors, 

assuming they are three-dimensional, we could see that similar words like “king” and “queen” 

are close in the space, but words like “videogame” are farther. Word embeddings come from 

pretrained machine learning models that have generated them. Hundreds of thousands of 

words are represented by vectors of dimension hundred, two hundred or even more 

dimensions. Popular word embeddings are word2vec [60], glove [61] and fasttext [62]. They 

keep the meaning of the words, but they more resource-intensive and last longer to compute 

for the specific task they are used in. 

Word embeddings were tried in both Scikit Learn and Pytorch implementations. Scikit Learn did 

compute decent results, but the ones with bag-of-words or TF-IDF were better, and Pytorch 

neural networks suffered from the problem of performance described Neural networks do not 

perform well. 

7.3.5.6.2 Proposed solution 

The data transformation phase remained in the bag-of-words and TF-IDF methods. 
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7.3.5.7 Best metric for measuring overall performance 

7.3.5.7.1 Description 

When evaluating a machine learning model, it is common to rely on accuracy as the best 

indicative of overall performance. Despite the fact it is a good metric, depending on and 

improving exclusively this metrics disregarding all the other ones is counterproductive. High 

accuracy is not always a sign of a good model. 

To understand the issue, we will see how metrics are calculated for a binary classification. A 

confusion matrix summarizes the results of a classification of a set of messages. 

 

Figure 102 Confusion matrix 

In each cell a specific value is stored: 

- TP: True Positives, are the number of samples predicted as positive that are actually 

positive. 

- FP: False Positives, are the number of samples predicted as positive that are actually 

negative. 

- FN: False Negatives, are the number of samples predicted as negative that are actually 

positive. 

- TN: True Negatives, are the number of samples predicted as negative that are actually 

negative. 

We will see an example explaining this matter. Picture the model mentioned before that can 

classify images as being a cat or being a dog. We now consider that a new set of unseen data is 

presented to the model. This data contains 9 images of a dog and 1 of a cat. This model performs 

badly and recognizes every image as a dog. This is the resulting confusion matrix: 
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Figure 103 Dog/cat confusion matrix 

The accuracy is calculated as 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, so it would be an accuracy of 90%. We could say that 

the model is good because it achieves an accuracy of 90% for unseen data, but we can see that 

the real issue is that this specific set of data contained mostly dogs, and so the high value of the 

metric. 

In addition to this, accuracy is not suitable for multilabel classification. Our itemized model 

classifies a message into six non-exclusive binary targets. Now, imagine a classification of a 

message outputs that it is toxic, obscene, and insulting. We could represent it in a vector as 

[1,0,1,0,1,0]. When we see the true value of prediction of the message we get [1,1,1,0,1,0], that 

is toxic, severe toxic, obscene, and insulting. The accuracy metrics would consider this prediction 

as wrong, but we can see that it is only partially wrong, given that it was well classified except 

for the severe toxic target. 

Then, it is mandatory to focus on other metrics to measure the performance of a model. 

7.3.5.7.2 Proposed solution 

For the binary model, accuracy is evaluated along other metrics were considered like Precision, 

Recall and F1 score [63]. For the multilabel model accuracy is not as valuable, so the focus is 

shifted towards metrics like F1 score, Precision, Recalls and Hamming Loss [64]. 

7.3.6 Detailed class description 

Inside attached file, we can see a doc/ folder, and a pydoc/ subfolder which contains the 

documentation generated with Pydoc [65]. We should open the src.html file to be able to 

browse through all the files. 
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Chapter 8. Evaluation of alternatives 

This chapter exposes some solutions and statistics found on the web about toxic comment 

classification. Later, the different alternatives tried on both models are discussed along the 

metrics to evaluate them. 

8.1 State of art solutions and statistics 

These solutions were found mostly the research phase, and some of them throughout the whole 

process of fulfilling of this project. We will divide them into the binary models and the 

multilabel/itemized ones. 

8.1.1 Binary models 

A table showing the different solutions for binary models is presented. Bold values are the 

highest among the corresponding metric. The next list shows the paper names: 

1. Detecting toxic behaviour in social media and online news [66].  

2. Toxicity Detection on Bengali Social Media Comments using Supervised Models [3]. 

3. MC-BERT4HATE: Hate Speech Detection using Multi-channel BERT for Different Languages 

and Translations [5]. 

4. Deep Learning for Hate Speech Detection in social media [67]. 

5. Overview of MEX-A3T at IberLEF 2019: Authorship and aggressiveness analysis in Mexican 

Spanish tweets [4]. 

6. Kaggle’s user doing the classification of Toxic tweets  [68]. 

Paper Model Precision Accuracy Recall AUC F1 Macro F1 

1 

GRU + 
Attention 

0.86 0.84 0.53   0.66 

GRU + 
Capsule 

0.73 0.84 0.73   0.73 

MultiCNN 0.86 0.83 0.49   0.63 

BERT 0.85 0.87 0.66   0.74 

BERT-P 0.85 0.85 0.6   0.71 

Ensemble 
BERT 

0.84 0.87 0.66   0.74 

2 

Naive Bayes  0.818     

SVM  0.8473     

Logistic 
Regression 

 0.8522     

LSTM  0.9413     

CNN  0.953     
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3 

MC-BERT 
fine-tuning 

(HatEval) 

 0.769    0.77 

English BERT 
fine-tuning 
(HatEval) 

 0.752    0.75 

Chinese BERT 
fine-tuning 
(HatEval) 

 0.7    0.69 

Multilingual 
BERT fine-

tuning 
(HatEval) 

 0.755    0.75 

MC-BERT 
fine-tuning 
(GemEval) 

 0.801    0.76 

English BERT 
fine-tuning 
(GemEval) 

 0.798    0.77 

Chinese BERT 
fine-tuning 
(GemEval) 

 0.76     

Multilingual 
BERT fine-

tuning 
(GemEval) 

 0.779    0.74 

MC-BERT 
fine-tuning 
(HaSpeeDe) 

 0.8    0.78 

English BERT 
fine-tuning 
(HaSpeeDe) 

 0.798    0.77 

Chinese BERT 
fine-tuning 
(HaSpeeDe) 

 0.799    0.78 

Multilingual 
BERT fine-

tuning 
(HaSpeeDe) 

 0.822    0.8 

4 CNN + LSTM  0.925     

5 

CNN + LSTM, 
Multilayer 
perceptron 

(PRLHT) 

 0.7   0.63  

SVM  0.68   0.59  

Naive Bayes  0.69   0.61  

SVM  0.71   0.63  



Final Degree Project 

104 Evaluation of alternatives | School of Computer Engineering - University of Oviedo 

 

SVM + 
Multilayer 
perceptron 

 0.73   0.65  

CNN; LSTM; 
GRU VRAIN 

 0.61   0.51  

6 BiGRU  0.925 0.925   0.93 

Figure 104 Statistics from state-of-art binary models 

A general issue with machine learning solutions on the Internet is that the most popular metric 

for evaluating the models is the accuracy. Having a good accuracy, although is not a bad 

performance, is not guaranteed of a good one either as isolated evaluation. This concern is 

discussed in the Best metric for measuring overall performance subsection. 

We can observe the different values that several proposed models of the accuracy. Some studies 

also provide the recall and F1-score metrics. An interesting aftermath can be inferred: deep 

learning methods, which are more resource-expensive, do not imply better results than the 

machine learning methods. We can see that for paper 1 a CNN [69] with an attention layer is 

proposed and an accuracy of 84% is achieved. In paper 2, a Logistic Regression model reaches 

an 85.22% of accuracy. Bear in mind once again that accuracy does not tell the whole story. As 

we can see, the CNN of paper 1 has also a good precision (86%), and it could be possible that 

the Logistic Regression model had a poor precision value. We cannot establish a formal 

comparison with lack of information. We can only partially evaluate the models on common 

metrics.  

One interesting case is paper ¡Error! No se encuentra el origen de la referencia., which uses a 

bidirectional gated recurrent unit deep learning model [70] to perform the classification of the 

same dataset used in our binary model [40]. It has also the best performing recall F1-score of 

the solutions. 

However, the proposed model in this project firmly exceeds those values. We will see the 

specific values in the Binary models section. 

8.1.2 Multilabel models 

These are the multilabel models studied. Bold values are the highest among the corresponding 

metric. The next list shows the paper names: 

1. Jigsaw Challenge 2nd place [71]. 

2. Jigsaw Challenge 3rd place [72]. 

3. Jigsaw Challenge 5th place [73]. 

4. Application of Recurrent Neural Networks in Toxic Comment Classification [74]. 

Paper Method Precision Accuracy Recall AUC 

F1 
Macro F1 
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1 RNN + 
DPCNN + 

GBM 

 
0.98822 

    

2 BiLSTM + 
BiGRU 

 
0.9872 

    

3 Two level 
BiGRU 

 
0.9865 

    

4 Baseline 0.48 - 
0.8672 

 
0.08 - 

0.7783 
0.9797 

  

 
GRU 0 - 0.8277 

 
0 - 0.8079 0.9782 

  

Figure 105 Statistics from state-of-art multilabel models 

Note that all models were trained with the Jigsaw challenge dataset [41]. The first three models 

were taken from the Jigsaw competition itself. The competition awarded the ranking position in 

terms of accuracy, so it is the only metric available for those models. Their accuracy is quite high, 

given that their models are quite complex. Most of the high ranks were populated by teams with 

expert knowledge of deep learning that dedicated large amounts of time and resources in this 

competition. They apply advanced mechanisms like TTA [75], dense word embeddings and 

model assembling. A common characteristic of these models is that the text preprocessing phase 

was not devoted a lot of time. The main concern for the teams was to create the right neural 

network structure and try several word embeddings that better fit their specific model. 

There is also a fourth solution that was not taken from the Kaggle competition. This solution 

proposed two models: a baseline model implemented in Keras [45] and a gated recurrent unit 

[57]. An interesting feature of this paper is that it did not present an accuracy measure. For the 

metric values presented the vary drastically depending on the target measured. This is probably 

due to the dataset unbalance, which is discussed in the Multilabel unbalanced dataset issue 

description. Nevertheless, the value for the AUC [76] is considerably big. 

Our multilabel model does not reach those high values. Class imbalance played a major role in 

this issue, as it is commented in the Multilabel unbalanced dataset issue description. We will see 

the specific values of our statistic in the 8.2.2 section. 

8.2 Attempted alternatives 

In this section, the different alternatives attempted during the implementation of both binary 

and multilabel systems is commented along some statistics to explain the decision of choosing 

the final models. 

8.2.1 Binary models 

All tried binary models were implemented in Scikit Learn, since one of the first classifiers 

implemented performed well, so the decision was to perform alterations to different Scikit Learn 

models, in the data transformation and the text preprocessing part. 
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This table shows different alternatives attempted. Bold values are the best in each metric. A 

legend is presented explaining the table content. 

These are the header abbreviations: 

- DT. Data transformation method. 

- NLP. Natural language processing tasks. 

- ACC. Accuracy metric. 

- PREC. Precision metric. 

- F1. F1 score metric. 

These are the different models: 

- 1. Logistic Regression LBFGS Solver [77] L2 Regularization [24]. 

- 2. Logistic Regression Liblinear Solver L2 Regularization. 

- 3. Logistic Regression SAG Solver L2 Regularization. 

- 4. Logistic Regression SAGA Solver L2 Regularization. 

- 5. Perceptron [78] L2 Regularization. 

- 6. Perceptron L1 Regularization. 

- 7. Stochastic Gradient Descent [25], [79] Hinge loss function [26]. 

- 8. Stochastic Gradient Descent Modifier Huber loss function. 

- 9. Stochastic Gradient Descent Perceptron loss function. 

- 10. Stochastic Gradient Descent Huber loss function. 

The different datasets: 

- -1-. Labelled Data [80]. 

- -2-. Final Balanced Dataset [40].  

- -3-. List of bad words [81]. 

The NLP tasks used: 

- TOK. Tokenization [82]. 

- SR. Stop words Removal. 

- PR. Punctuation Removal. 

- ULUR. Username, Link and Unicode symbols Removal. 

- STEM. Stemming [83]. 

- CE. Contractions’ expansion. 

- LOW. Text to lowercase. 

The different data transformation methods: 

- (1). Bag of words [54], n_gram_range = {1,2} [84]. 

- (2). Bag of words, n_gram_range = {1,1}. 

- (3). Bag of words, n_gram_range = {1,3}. 

- (4). TF-IDF [54], n_gram_range = {1,2}. 

- (5). TF-IDF, n_gram_range = {1,1}. 

- (6). TF-IDF, n_gram_range = {1,3}. 
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- (7). Bag of words, n_gram_range = {1,2} Binary1 Strip Accents 

Finally, the colours represent different stages of the trial of these alternatives: 

- Blue. The first models tried when implementing the binary model. 

- Green. Combination of the dataset with some external lexicon. 

- Red. Execution of almost every possible combination of dataset, data transformation 

method and NLP tasks. See ¡Error! No se encuentra el origen de la referencia.. 

- Yellow. Best data transformation method and combination of NLP tasks. 

 

Mode
l 

Dataset NLP DT ACC PREC REC F1 Time 

1 -1- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.80944 0.75054 0.80944 0.80884 0.76s 

1 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.95013 0.92024 0.95013 0.94988 15.91s 

2 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.95022 0.92043 0.95022 0.94997 12.98s 

3 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.95013 0.92039 0.95013 0.94988 25.15s 

4 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.94995 0.92015 0.94995 0.9497 34.24s 

3 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(2) 0.94889 0.91749 0.94889 0.94866 16.19s 

3 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(3) 0.94889 0.91885 0.94889 0.94862 39.62s 

3 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(4) 0.93902 0.89902 0.93902 0.93877 12.92s 

3 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(5) 0.94026 0.90587 0.94026 0.93986 11.64s 

3 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(6) 0.93488 0.88867 0.93488 0.93472 14.07s 

 
1  The binary parameter means that the bag of words does only track if the words appear in each 
document, disregarding the number of occurrences 
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5 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.90007 0.93634 0.90007 0.8994 12.5s 

6 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.92898 0.87815 0.92898 0.92882 12.83s 

7 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.95163 0.92094 0.95163 0.95143 12.73s 

8 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.95189 0.92027 0.95189 0.95172 12.7s 

9 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.94264 0.90494 0.94264 0.94241 12.52s 

10 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.9259 0.88866 0.9259 0.92501 12.8s 

3 -2- -3- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.94995 0.91962 0.94995 0.94971 28.2s 

8 -2- -3- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.94484 0.90402 0.94484 0.94476 14.44s 

3 -2- 
TOK + 
STEM 

(1) 0.94713 0.91568 0.94713 0.94685 80s 

3 -2- 

TOK + SR + 
CE + PR + 
ULUR + 
STEM 

(1) 0.94704 0.91526 0.94704 0.94677 81.19s 

3 -2- 
TOK + SR + 
PR + ULUR 

+ STEM 
(1) 0.9466 0.91458 0.9466 0.94632 81.4s 

3 -2- 

TOK + 
LOW + SR 

+ PR + 
ULUR + 
STEM 

(7) 0.95321 0.9241 0.95321 0.95302 63.45s 

8 -2- 

TOK + 
LOW + SR 

+ PR + 
ULUR + 
STEM 

(7) 0.95365 0.92291 0.95365 0.95351 62.6s 

Figure 106  Binary model alternatives 
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The first dataset ever tried on the implementation of the binary model was the dataset used in 

[1]. Although it is intended to be for multiclass classification [85] with three classes, it was 

transformed to a binary dataset, converting hate speech and offensive language classes to the 

same class. Also, the first model was a logistic regression with the default solver. This model 

performed well and was executed instantaneously. 

Then, a new balanced dataset [40] was found in Kaggle. This dataset compilated some 

unbalanced datasets that the author had found throughout his work. As the results were better 

in every aspect but the time, the first dataset was no longer tested. 

After finding this dataset, other logistic regression solvers were attempted, and the best one 

was the Stochastic Gradient Descent (SAG) solver, which as Scikit Learn shows, is optimal for big 

sets of data [86]. Regularization was kept to L2 since it’s the most aggressive to prevent 

overfitting. This classifier was tried with different bag of words and TF-IDF combination, being 

the bag of words with a ngram range of {1,2} the most suitable one. 

Other models were tried like the Perceptron and the Stochastic Gradient Descent classifiers. The 

Stochastic Gradient Descent with the ‘modified huber’ loss function performed better than any 

previous model.  

Moreover, a test was performed on third-party lexicons to be added as an additional 

classification feature. 

After several trials, an optimal preprocessing and data transformation method was established. 

In this case, the Stochastic Gradient Descent still performed the best. 

The red rows of the table show the best three models obtained in the execution of a file 

attempting several combinations. This process is described ¡Error! Marcador no definido.¡Error! 

No se encuentra el origen de la referencia.. 

8.2.1.1 Binary model combinations 

In a point of the development process of the binary model, a script that executed eighty possible 

combinations of dataset, preprocessing, and data transformation method. The output of this 

script is in the file alltests.log file attached inside the directory doc/logs/. 

For the datasets, both [40] and [41] were utilized. Although the latter is a multilabel dataset it 

was converted to a binary one, by making comments with no toxicity, obscenity, threat, insult, 

or identity hate the appropriate ones, so the rest are inappropriate. 

For the NLP tasks ten different possibilities were offered, and the data transformation methods 

possibilities were bag-of-words, doc2vec [87], fasttext [62] and glove [61]. 

As the file contains some abbreviations, they are described here: 

- FBD. Final Balanced Dataset [40]. 

- jigsaw. Jigsaw Dataset. 

- clean_text1. TOK + SR + PR + ULUR + STEM. 
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- clean_text2. Every option was modifiable: 

o no lower: Text is not converted to lowercase. 

o ws: White spaces are kept. 

o no numbers: Numbers are kept. 

o no abrev exp: Contractions are not expanded. 

o no tw processing: Twitter-related information is kept. Hashtags are not 

separated into words. 

o sw: Stopwords are kept. 

o no token: Tokenization is not performed. 

- bow. Bag of words 

- d2v. doc2vec 

As to show the statistics would be overwhelming, some conclusive charts are presented. 

First, Figure 107 shows the different combination grouped by their data transformation method. 

We can see that bag of words is the most consistent method in all the combinations. Word 

embeddings tend to perform better on the [41] dataset. 

 

Figure 107 Accuracy grouped by data transformation methods 

Next, the results grouped by preprocessing possible combinations is shown in Figure 108. We 

can see that they hardly change the overall result of the dataset accuracy. A conclusion of this 

graph could be that NLP tasks had little impact on the accuracy of the models. 
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Figure 108 Accuracy grouped byu preprocessing methods 

Finally, the results were clustered by the used dataset. At first glance, the Jigsaw binarized 

datasets models tend to perform more consistently in Figure 109. 

 

However, if we focus on another metric like precision in Figure 110, the opposite happens. 

Figure 109 Accuracy grouped by dataset 
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Figure 110 Precision grouped by dataset 

8.2.2 Multilabel models 

The alternatives of multilabel models were implemented in both Scikit Learn [32] and PyTorch 

[33]. Figure 111 shows these alternatives. Bold values highlight the highest values on the 

corresponding metric. A legend is presented in order to understand the information inside: 

Header abbreviations: 

- DT. Data transformation method selected. 

- ACC. Accuracy metric [63]. 

- PREC. Precision metric. 

- REC. Recall metric. 

- F1. F1 Score metric. 

- HL. Hamming loss metric [64]. 

- JS. Jaccard score metric [88]. 

These are the different models used: 

- 1. BinaryRelevance [10] + Logistic Regression [6] SAG Solver [77] L2 Regularization [24]. 

- 2. ClassifierChain + Logistic Regression SAG Solver L2 Regularization. 

- 3. Label Powerset + Logistic Regression SAG Solver L2 Regularization. 

- 4. OneVSRest [9] + Logistic Regression SAG Solver L2 Regularization. 

- 5. OneVSRest + Stochastic Gradient Descent [25], [26] Modified Huber Loss Function 

[26]. 

- 6. BERT [30], [60] + Dropout [89] of 0.3 + Linear Layer [90]. 

- 7. Embedding [60] + Dropout of 0.3 + Linear Layer. 

- 8. Bidirectional LSTM [58] + Attention Layer [91]. 

- 9. Multioutput [53] + Logistic Regression SAG Solver L2 Regularization. 
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- 10. Multioutput + Stochastic Gradient Descent Modified Huber Loss Function. 

The dataset used is [41], which is discussed in section 7.3.2. 

The text preprocessing was the same in every model: Tokenization [82] + Text to lowercase + 

Hashtag split into several words + Stop words removal + Punctuation removal + 

Username/Links/Unicode symbols removal + Stemming [83]. 

The data transformation methods: 

- (1). Bag of words [52] n gram range (1,2) min_df = 102. 

- (2). Bag of words n gram range (1,2) Binary. 

- (3). TF-IDF [54] n gram range (1,2) Binary. 

- (4). BERT Tokenizer [92]. 

- (5). Glove [61] Word Embedding (50-dimensional vectors). 

- (6). Glove Word Embedding (200-dimensional vectors). 

- (7). TF-IDF n gram range (1,1) min_df = 25. 

Finally, the colour code is the following: 

- Blue. Scikit Learn transformation methods. It has been achieved with a non-native Scikit 

Learn library called “skmultilearn” [93]. 

- Green. One VS Rest (OvR) wrapper for binary models. 

- Red. PyTorch artificial neural networks. 

- Yellow. Scikit Learn Multioutput wrapper for binary models. 

 

Model DT ACC PREC REC F1 HL JS Time 

1 (1) 0.87968 0.40399 0.62574 0.60792 0.02978 0.44181 2097s 

2 (1) 0.89567 0.37485 0.58732 0.57076 0.03112 0.41078 2410s 

3 (1) 0.89088 0.34861 0.50628 0.55037 0.03053 0.38582 4319s 

 
2 This parameter indicates the number of minimum of documents where each word should appear to be 
taken into account 
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4 (2) 0,97284 0,31851 0,97284 0,97435 0.03117 0.95356 2179s 

4 (3) 0.97393 0.28018 0.97393 0.97305 0.02606 0.95448 436s 

5 (2) 0.96955 0.27 0.96955 0.97003 0.03046 0.94927 374s 

5 (3) 0.97473 0.26006 0.97473 0.97298 0.02528 0.95489 426s 

6 (4) 0 0 0 0 N/M N/M 80h 

7 (5) 0 0 0 0 N/M N/M 80h 

8 (6) 0.91145 0.5 0.28 0.34167 N/M N/M 80h 

9 (7) 0.89454 0.4506 0.63174 0.64417 0.02556 0.48109 265s 

10 (7) 0.89757 0.44586 0.61373 0.63564 0.02516 0.47445 258s 

Figure 111 Multilabel model alternatives 
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We will take a glance at the overall comparison between binary and multilabel systems. The 

time execution is higher in the multilabel models. This is due to the dataset being larger and 

denser, since the model must track six different targets instead of one in the case of binary 

models. The measures are consistently lower. Nevertheless, we have to be careful about making 

bold statements about these models being considerably worse than the binary models. Bear in 

mind that some metrics in multilabel classification may be misleading. This issue is commented 

in section 7.3.5.7. 

The first approach was to explore the limits of Scikit Learn regarding multilabel classification. 

The library called “skmultilearn” was found during implementation. This library offers the 

possibility of transforming multilabel problems into binary problems, which are suitable to Scikit 

Learn. Binary relevance, classifier chain and label powerset are concepts explained in the 

theoretical aspect sections 2.3.1.6.1, 2.3.1.6.2, and 2.3.1.6.3. These methods perform similarly, 

but we can observe that the label powerset method lasts much longer, given that it computes 

every possible combination of targets. 

Then, the One vs Rest approach was attempted for the multilabel model. The value for these 

metrics is the average of all the values of the corresponding metric for each label. Figure 112, 

Figure 113, Figure 114, and Figure 115 show the specific labels’ metric values of each OvR model. 

 

Figure 112 Labels' metric values for model 4 with Bag of words 
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Figure 113 Labels' metric values for model 4 with TF-IDF 

 

Figure 114 Labels' metric values for model 5 with Bag of words 

 

Figure 115 Labels' metric values for model 5 with TF-IDF 

We can see that these models performed considerably better than the rest of models. However, 

their precision values are the lowest (outside the neural networks ones). The value of the 
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precision metric is calculated as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
, so the main concern of this metric is to penalize wrong 

predictions. Thus, these models tend to predict most of the messages as appropriate. This is 

probably due to the dataset imbalance, which is commented in section 7.3.5.2. 

As one of the main objectives was to create a multilabel mode, the first thought was to 

implement an artificial neural network. This was done through PyTorch. Only three neural 

networks were able to complete their training. Each of them has been trained over four 20-hour 

epochs (iterations). The first two neural networks have not accomplished any metric value 

higher than 0. This is due to several factors that are discussed in section 7.3.5.4. For the final 

neural network, a model tried found in [59] was implemented. This is the only deep learning 

model to perform greatly on the dataset. However, it lacks great values on recall and F1 score 

metrics. 

Finally, both best performing binary models were put to test inside a Mulitoutput wrapper that 

Scikit Learn offers. For the data transformation, a GridSearchCV [94] was performed. This 

algorithm looks for the best performing parameters inside the data transformation method, in 

this case TF-IDF, for a given metric. These last models are the ones who perform the most 

consistently throughout all metrics. These metrics are similar to the first three models’, but they 

perform the training ten times faster than the binary relevance and classifier chain and twenty 

times faster than the label powerset. 

The final model was 10, given that it performed as the most consistent model. Deciding between 

9 and 10 was harder, because the statistical differences are small. However, the SGD classifier 

provides a partial_fit method that allows to retrain the model without losing previous 

coefficients [26]. The logistic regression does not offer this possibility, so every prediction 

correction or retraining would have to be done appending it to the original dataset and passing 

it to the classifier, so response time is the key factor. 

  



Final Degree Project 

118 Testing development | School of Computer Engineering - University of Oviedo 

 

Chapter 9. Testing development 

The results of the different test are shown in this chapter. 

9.1 Unit tests 

These are the results of all the test cases listed in section 6.6.1. 

Use case 1: Change classification method 

Test 1.1 Expected Result Passed 

The user changes the 
method to any of the 
two possible 
methods 

The controller stores the new in the 
classifier attribute 

True 

Test 1.2 Expected Result Passed 

The user changes the 
method to a not 
contemplated 
method 

The controller itself validates that the 
value is correct 

True 

Figure 116 Change classification method unit test result 

Use case 2: Detect inappropriate messages 

Test 2.1 Expected Result Passed 

The user tries to 
classify a blank 
message with no file 
uploaded 

The controller checks for each 
mechanism the emptiness of the 
message. If it is empty an exception 
is thrown 

True 

Test 2.2 Expected Result Passed 

The user tries to 
classify a message 
that exceeds 
maximum message 
length (500 
characters) 

The controller validates that the 
message is at most 500-character 
long. If it is longer, an exception is 
thrown 

True 

Test 2.3 Expected Result Passed 

The user tries to 
upload a file with 
wrong extension 

The controller validates that the 
extension is correct. If it is not, an 
exception is thrown 

True 

Test 2.4 Expected Result Passed 

The user tries to 
upload with 
unexpected data 

The controller validates the number 
of columns of the file, which should 
contain only one 
The controller validates for every 
row of the file that the message is a 
valid character string, that it is not 
blank and that it does not exceed 
maximum possible length 

True 
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For any reason above not being 
fulfilled, an exception is thrown for 
each message 

Test 2.5 Expected Result Passed 

The user types a 
message with no file 
uploaded and 
classifies the 
message 

The controller computes the 
prediction 
The user interface shows the 
prediction 
 

True 

Test 2.6 Expected Result Passed 

The user uploads a 
correct file with valid 
data and with no 
typed message 

The controller predicts for each 
message a prediction as the one 
described before 

True 

Figure 117 Detect inappropriate messages unit test result 

Use case 3: Save results to file 

Test 3.1 Expected Result Passed 

The user tries to save 
results to file with no 
classification 
performed 

The controller raises an exception True 

Test 3.2 Expected Result Passed 

The user saves 
results of a 
performed 
classification to a file 

The controller creates a file inside 
the output folder, and inserts the 
last prediction, dumping the 
message and the obtained 
prediction 
For several predictions, each line of 
the output file will contain the 
message and the obtained 
prediction 

True 

Test 3.3 Expected Result  

The user tries to save 
results to .txt file 
with no classification 
performed 

The controller raises an exception True 

Test 3.4 Expected Result  

The user saves 
results to .txt of a 
performed 
classification to a file 

The controller creates a file inside 
the destination folder, and inserts 
the last prediction, dumping the 
message and the obtained 
prediction 
For several predictions, each line of 
the output file will contain the 
message and the obtained 
prediction 

True 

Figure 118Save results to file unit test result 

Use case 4: Correct predictions 
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Test 4.1 Expected Result Passed 

The administrator 
tries to correct a 
prediction with no 
classification 
performed 

The controller checks if the 
last_predictions attribute is 
empty 

True 

Test 4.2 Expected Result Passed 

The administrator 
introduces a 
correction with 
wrong values or 
number of values 

The controller raises an exception True 

Test 4.3 Expected Result Passed 

The administrator 
introduces a correct 
prediction 

There are no errors in the return value  True 

Test 4.4 Expected Result Passed 

A non-administrator 
user tries to correct 
the prediction 

The controller checks if the user is 
logged in 

True 

Figure 119 Correct predictions unit test result 

Use case 5: Log in as administrator 

Test 5.1 Expected Result Passed 

The administrator 
tries to access the 
Log in as 
administrator option 

The controller checks that the user is 
not already logged in 

True 

Test 5.2 Expected Result Passed 

The user tries to 
introduce blank 
username or 
password 

The controller validates if any of the 
data is blank. If it is, the controller 
raises an exception 

True 

Test 5.3 Expected Result Passed 

The user tries to 
introduce too long 
username (20 
characters) or 
password (30 
characters) 

The controller checks that the 
username and password do not 
exceed the possible maximum length 
(20 and 30 characters respectively). If 
any does, the controller throws an 
exception 

True 

Test 5.4 Expected Result Passed 

The user tries to 
introduce non-
alphanumeric 
characters for the 
username 

The controller checks that the 
username is only alphanumeric. If it is 
not, the controller throws an 
exception 

True 

Test 5.5 Expected Result Passed 

The user introduces 
valid username and 
password but there 

The authentication module returns a 
negative result (false) because the 

True 
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is not match in the 
database 

hashed password and the database 
password do not match 
 

Test 5.6 Expected Result  

The user introduces 
valid and correct 
username and 
password 

The authentication module returns a 
positive result (true) 
The attribute authenticated in 
the controller is set to true 

 

Figure 120 Log in as administrator unit test result 

Use case 6: Train models 

Test 6.1 Expected Result Passed 

The non-
administrator  user 
tries to train a model 

The controller checks if the user is 
logged in 

True 

Test 6.2 Expected Result Passed 

The administrator 
tries to upload an 
invalid file 

The controller checks the extension 
of the file. If it is incorrect, the 
controller raises an exception 

True 

Test 6.3 Expected Result Passed 

The administrator 
uploads a file with 
blank data or wrong 
prediction values 

The classifier checks the validity of 
the data. If it is not valid, an 
exception is thrown for each of the 
rows 

True 

Test 6.4 Expected Result Passed 

The administrator 
uploads a file with 
wrong number of 
pieces of data 

The classifier checks the number of 
columns of the file. If it is incorrect, 
an exception is thrown 

True 

Test 6.5 Expected Result Passed 

The administrator 
uploads a valid file 
with valid data and 
trains the model 

There are no errors in the return 
value 

True 

Figure 121 Train models unit test result 

9.2 Usability tests 

Now, the results of the surveys completed by the testing user will be shown. Bold options 

represent the user answer. The tests have been complimented by three people with different 

computer experience. 

9.2.1 User profile ranking 

Each of the users has completed this survey. 

Name: Jorge Antonio 

How often do you use a computer? 
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1. Everyday 
2. Several times a week 
3. Occasionally 
4. Hardly ever 
5. I have never used a computer 

 

What is your main activity using a computer? 

1. It is part of my job or occupation 
2. Mainly for free time 
3. Using office software 
4. Reading news and/or emails 
5. I use it for nearly everything 

 

Have you ever used a similar software? 

1. Yes, I have 
2. No, although I have used software that perform similar tasks 
3. No 

 

What do you look forward the most in a program? 

1. To be easy to use 
2. To perform a lot of tasks 
3. To be fast 
4. To have a nice interface 
5. To be transparent on the operations it performs 

 

Figure 122 User profile ranking survey completed by Jorge Antonio 

Name: Marta 

How often do you use a computer? 

1. Everyday 
2. Several times a week 
3. Occasionally 
4. Hardly ever 
5. I have never used a computer 

 

What is your main activity using a computer? 

1. It is part of my job or occupation 
2. Mainly for free time 
3. Using office software 
4. Reading news and/or emails 
5. I use it for nearly everything 

 

Have you ever used a similar software? 

1. Yes, I have 
2. No, although I have used software that perform similar tasks 
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3. No 
 

What do you look forward the most in a program? 

1. To be easy to use 
2. To perform a lot of tasks 
3. To be fast 
4. To have a nice interface 
5. To be transparent on the operations it performs 

 

Figure 123 User profile ranking survey completed by Marta 

Name: Jose Ignacio 

How often do you use a computer? 

1. Everyday 
2. Several times a week 
3. Occasionally 
4. Hardly ever 
5. I have never used a computer 

 

What is your main activity using a computer? 

1. It is part of my job or occupation 
2. Mainly for free time 
3. Using office software 
4. Reading news and/or emails 
5. I use it for nearly everything 

 

Have you ever used a similar software? 

1. Yes, I have 
2. No, although I have used software that perform similar tasks 
3. No 

 

What do you look forward the most in a program? 

1. To be easy to use 
2. To perform a lot of tasks 
3. To be fast 
4. To have a nice interface 
5. To be transparent on the operations it performs 

 

Figure 124 User profile ranking survey completed by Jose Ignacio 

9.2.2 Guided activities 

Every user has complimented this questionnaire. 

Name: Jorge Antonio 

Writing a message and predicting it 
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Things I liked: 
  The option to itemize a prediction into several categories 
Things I would like to be improved: 
  Model names in the user interface could be clearer 

Uploading a file with messages and predicting them 

Things I liked: 
  - 
Things I would like to be improved: 
  I don’t like using double quotes to write the messages 

Obtaining a file with the computed predictions 

Things I liked: 
  - 
Things I would like to be improved: 
  - 

Correcting the prediction of a computed classification (Administrators only) 

Things I liked: 
  - 
Things I would like to be improved: 
  Progress bar so I know I have to wait 

Uploading a file to train a model (Administrators only) 

Things I liked: 
  - 
Things I would like to be improved: 
  Help button to know the file format 

Figure 125 Guided activities survey completed by Jorge Antonio 

 

Name: Marta 

Writing a message and predicting it 

Things I liked: 
  Easy to know how to use it 
Things I would like to be improved: 
  To be able to edit the message after classifying it 

Uploading a file with messages and predicting them 

Things I liked: 
  Also, easy to use 
Things I would like to be improved: 
  It would be nice if the program accepted other more human-friendly extensions like .txt 

Obtaining a file with the computed predictions 

Things I liked: 
  - 
Things I would like to be improved: 
  The task would be better if it let you select the path 

Correcting the prediction of a computed classification (Administrators only) 

Things I liked: 
  -  
Things I would like to be improved: 
  The Correct prediction text should be bigger 

Uploading a file to train a model (Administrators only) 

Things I liked: 
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  -  
Things I would like to be improved: 
  As uploading a message, it would be better if it let you submit other extensions 

Figure 126 Guided activities survey completed by Marta 

Name: Jose Ignacio 

Writing a message and predicting it 

Things I liked: 
  Easy to use 
Things I would like to be improved: 
  - 

Uploading a file with messages and predicting them 

Things I liked: 
  - 
Things I would like to be improved: 
  The message about file submission should be clearer 

Obtaining a file with the computed predictions 

Things I liked: 
  - 
Things I would like to be improved: 
  - 

Correcting the prediction of a computed classification (Administrators only) 

Things I liked: 
  The confirmation window where I can see the overall operation 
Things I would like to be improved: 
  - 

Uploading a file to train a model (Administrators only) 

Things I liked: 
  The confirmation window where I can see the overall operation 
Things I would like to be improved: 
  I would want to be provided an example inside the program on how each row should be  

Figure 127 Guided activities survey completed by Jose Ignacio 

9.2.3 Quick questions about the application 

All users have done the following survey. 

Name: Jorge Antonio 

Ease of use Always Most of the time Occasionally Never 

Do you know where you are inside 
the application? 

 X   

Is there any help when using the 
application if any doubts arise? 

  X  

Do you consider the application to 
be easy to use? 

 X   

Functionality Always Most of the time Occasionally Never 

Does the prediction suit the 
messages introduced? 

  X  
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Does the model reflect a better 
prediction after correcting or 
training the model? 

 X   

Is the files’ data format intuitive 
and suitable? 

 X   

Does every task work as 
expected? 

X    

If any task fails, do you find the 
error messages descriptive 
enough? 

 X   

Is the response time of the 
application adequate? 

 X   

Interface quality 

Graphic aspects 
Very 

adequate 
Adequate 

Little 
adequate 

Not 
adequate 

The font size and type is  X   

Used colours are   X  

Interface design Yes No Sometimes 

Is the interface easy to use? X   

Is the windows design clear? X   

Do you think that the application is well-
structured? 

X   

Are messages describing thoroughly the 
specific situation? 

X   

Observations 

The user interface and colours are a little bit cold and could be improved 

Figure 128 Quick question about the application survey completed by Jorge Antonio 

Name: Marta 

Ease of use Always Most of the time Occasionally Never 

Do you know where you are inside 
the application? 

 X   

Is there any help when using the 
application if any doubts arise? 

  X  

Do you consider the application to 
be easy to use? 

X    

Functionality Always Most of the time Occasionally Never 

Does the prediction suit the 
messages introduced? 

 X   

Does the model reflect a better 
prediction after correcting or 
training the model? 

X    

Is the files’ data format intuitive 
and suitable? 

 X   

Does every task work as 
expected? 

X    

If any task fails, do you find the 
error messages descriptive 
enough? 

 X   
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Is the response time of the 
application adequate? 

 X   

Interface quality 

Graphic aspects 
Very 

adequate 
Adequate 

Little 
adequate 

Not 
adequate 

The font size and type is   X  

Used colours are  X   

Interface design Yes No Sometimes 

Is the interface easy to use? X   

Is the windows design clear? X   

Do you think that the application is well-
structured? 

X   

Are messages describing thoroughly the 
specific situation? 

X   

Observations 

I have understood how the application works with no previous knowledge on artificial 
intelligence and I’d probably use it in some of my projects. 

Figure 129 Quick question about the application survey completed by Marta 

Name: Jose Ignacio 

Ease of use Always Most of the time Occasionally Never 

Do you know where you are inside 
the application? 

 X   

Is there any help when using the 
application if any doubts arise? 

  x  

Do you consider the application to 
be easy to use? 

X    

Functionality Always Most of the time Occasionally Never 

Does the prediction suit the 
messages introduced? 

 X   

Does the model reflect a better 
prediction after correcting or 
training the model? 

 X   

Is the files’ data format intuitive 
and suitable? 

  X  

Does every task work as 
expected? 

X    

If any task fails, do you find the 
error messages descriptive 
enough? 

X    

Is the response time of the 
application adequate? 

  X  

Interface quality 

Graphic aspects 
Very 

adequate 
Adequate 

Little 
adequate 

Not 
adequate 

The font size and type is  X   

Used colours are  X   

Interface design Yes No Sometimes 

Is the interface easy to use? X   

Is the windows design clear? X   
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Do you think that the application is well-
structured? 

X   

Are messages describing thoroughly the 
specific situation? 

X   

Observations 

- 

Figure 130 Quick question about the application survey completed by Jose Ignacio 

9.2.4 Tester survey 

The developer responsible of creating and distributing the test has completed the next summary 

of the testing phase. 

Observed aspect Notes Possible solutions 

The user handles 
the task in a fast 
way 

All users have asserted that the 
application performs tasks quickly 

 

Minor errors In 9.2.2, an error that allowed 
pressing the Classify option several 
times for the same message was 
found 

The Classify option is now only 
available once after writing or 
uploading a file 

Major errors N/D  

The predictions 
are fitting to the 
true ones 

Users that performed predictions 
in 9.2.2 had shown that the 
predictions are acceptable, but 
could be better 

A deep learning model could 
generate better results, but the 
problems listed in 7.3.5 have made 
a deep learning model unreachable. 
So, the current models are kept 

Files’ data format 
is intuitive to the 
user 

Users agree that data’s format is 
proper. However, some complains 
suggested to also accept .txt files 

As the most agreed format for 
machine learning datasets is .csv 
files containing rows of data, this 
has not been changed 

Output files show 
content clearly 
and plainly 

Users demanded more extension 
like .txt 

The application now offers a .txt 
saving option 

User interface is 
suitable 

Users have accepted the user 
interface style. However, there 
were some complains about font 
size and style 
 

The interface has been altered to 
satisfy these complains 

The window should be possible to 
be maximized 

This is a constraint given by the user 
interface library, so it has not been 
changed 

When doing the training, an 
example should be shown in the 
interface 

A message is shown now explaining 
an example of how a file row should 
be written 

Some users have demanded an 
option to refresh the prediction 
without writing or submitting the 
message again 

A functionality has been added in 
the logic that allows to make the 
last predictions performed 
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Users had asked for any kind of 
help within the application for 
format of the message and 
training files 

Two options have been added to 
the final design of the user interface 
which display the format of these 
files 

Table 1 Completed tester survey 

9.3 Accessibility tests 

Given that the developed system is a desktop application and in order to prove the accessibility 

of the application, a new customized checklist acquired from alterations of the WCAG 1.0 

standards is complimented [39]. For the contrast ratio, we can take a look at [95]. 

Checklist points Achieved Not achieved 

Sensory characteristics (A) [96] 

Do not identify content based on its colour, size, 
shape, position, sound, or other sensory 
characteristics 

X  

Do no convey information solely through icons or 
symbols 

X  

Use of colour (A) [97] 

Required fields and fields with errors must include 
some non-color way to identify them 

X  

Contrast (Minimum (AA) [98] 

Text (including images of text) have a contrast ratio of 
at least 4.5:1. For text and images of that is at least 
24px and normal weight or 19px and bold, use a 
contrast ratio that is at least 3:1. 

X  

Text spacing (AA) [99] 

Avoid using pixels for defining the height and spacing 
of text boxes 

X  

Keyboard (A) [100] 

All functionalities should be available to a keyboard 
without requiring specific timing of keystrokes, unless 
the functionality cannot be provided by a keyboard 
alone 

X  

No keyboard trap (A) [101] 

Ensure keyboard focus is never trapped on an 
element without an obvious way to move focus out of 
the element. Make sure the user can move focus to 
and from all focusable elements using a keyboard only 

 X 

Timing adjustable (A) [102] 

Do not require time limits to complete tasks unless 
absolutely necessary. If a time limit is necessary, the 
time limit should be at least 20 hours, or it can be 
extended, adjusted, or disabled. 

X  
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Pause, Stop, Hide (A) [103] 

Items on the page should not automatically move, 
blink, scroll, or update, including carousels. If content 
does automatically move, blink, scroll, or update, 
provide a way to pause, stop, or hide the moving, 
blinking, scrolling, or updating. 

X  

Focus Visible (A) [104] 

Provide keyboard focus styles that are highly visible, 
and make sure that a visible element has focus at all 
times when using a keyboard. Do not rely on browser 
default focus styles. 

X  

Pointer Cancellation (A) [105] 

Avoid triggering functionality on down-events, such 
as onmousedown. Use events such as onclick instead. 

X  

Label in Name (A) [106] 

The accessible name for a UI element must contain 
any visual label for the element. Accessible names for 
UI elements should match visual labels as closely as 
possible. 

X  

On Input (A) [107] 

When a user inputs information or interacts with a 
control, the window should not cause a change in 
page content, spawn a new browser window, submit 
a form, case further change in focus, or cause any 
other change that disorients the user. If an input 
causes such a change, the user must be informed 
ahead of time. 

X  

Error Identification (AA) [108] 

Make errors easy to discover, identity, and correct 
X  

Labels or Instructions (A) [109] 

Use semantic, descriptive labels for inputs. Visually 
position labels in a consistent way that makes 
associating labels with form controls easy 

X  

Provide text instructions at the beginning of a form or 
set of fields that describes the necessary input. 

X  

Error Suggestion (AA) [110] 

If an input error is detected and if suggestions for 
correction are known, provide suggestions for fixing 
the submission. 

X  

Figure 131 Customized accessibility checklist 

9.4 Performance tests 
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These are the results of the fulfilled performance tests listed in section 6.6.5. 

Test Workload Result 

1.1 Initial training of 
binary model 

Binary dataset [40] 
RAM Usage: 274.3 MiB 
Time elapsed: 66.96s 

1.2 Initial training of 
multilabel model 

Multilabel dataset [41] 
RAM Usage: 503. 1 MiB 
Time elapsed: 269.29s 

1.3 Predict messages 
(binary)  

10000 
RAM Usage: 239.32 MiB 
Time elapsed: 20.07s 

1.4 Predict messages 
(multilabel) 

10000 
RAM Usage: 219.24 MiB 
Time elapsed: 81.2s 

1.5 Predict messages 
from file (binary) 

10000 
RAM Usage: 239.2 MiB 
Time elapsed: 16.45s 

1.6 Predict messages 
from file (multilabel) 

10000 
RAM Usage: 220.23 MiB 
Time elapsed: 21.36s 

1.7 Saving predictions to 
file .csv 

10000 
RAM Usage: 238.99 MiB 
Time elapsed: 0.2s 

1.8 Saving predictions to 
file .txt 

10000 
RAM Usage: 239.02 MiB 
Time elapsed: 0.22s 

Figure 132 Performance tests results 
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Chapter 10.  System manuals 

These chapter presents the different manuals available about the system, for non-administrator 

users, administrators, and programmers. 

10.1 Installation manuals 

The system is attached as a compressed file inside the delivered content. First, we should unzip 

this file any directory. It will create the folder hate-speech-detection which contains all 

the needed files to run the system. 

Before running anything, we need the 3.10.2 Python version in order to execute the program. It 

can be downloaded in [42]. It is important that we select the Add Python 3.10 to PATH 

so we can execute the command outside the installation directory. 

Then, we can open a command-line prompt inside the hate-speech-detection folder, by 

writing cmd in the file explorer and press Enter. 

 

Figure 133 Installation manual Open CMD 

In order to encapsulate all the following installations, we create a virtual environment to contain 

the modules. If Python has been well configured, the command to run would be: 

python -m venv .venv  

This creates a folder named .venv inside the project directory that contains some Python 

related files. We have to execute a file inside this new folder with the following command: 

.venv\Scripts\activate  
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Now we should have a (.venv) before the current directory. 

 

Figure 134 Installation manual Virtual environment activation 

Now we will install all the needed modules for the program to be run.. These modules are listed 

in the requirements.txt file provided in the attached content ready to be passed as an 

argument for a suitable command. The command to be run is: 

pip install -r requirements.txt 

10.2 Execution manuals 

After all the installation steps in 10.1, we can run the program. The executing file is main.py, 

which is inside the src/ folder. If we are in the project root folder the command to execute the 

program is 

python .\src\main.py 

This should make a window appear after a few seconds and we can now interact with the 

application. For the subsequent executions of the system, we should modify the init.json 

file and set the download option inside the nltk option to false. This step is not mandatory, 

but it is recommended for efficiency reasons. 

 

Figure 135 Execution manual init.json 

10.3 User manual 
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This manual will in detail describe the steps to execute the possible tasks that the program 

offers. These tasks are the ones listed: 

- Choose a classification method (Binary method or itemized method). 

- Predict a message. 

- Predict messages in a file. 

- Save results to the file. 

- Log in as administrator (Non-administrator users only). 

- Correct predictions of a performed classification (Administrators only). 

- Train any of the models with new data (Administrators only). 

All the tasks but the last two are doable for every user and will be described in 10.3.1. Then, the 

Administrator manual will be presented explaining the two last operations. 

10.3.1 Non-administrator user manual 

In this manual, the tasks of changing the classification method, predicting messages, and saving 

the predictions to a file are detailed. 

10.3.1.1 Start of the application 

In case we have run the program for the first time in our local machine with the -t option, it 

will take around 7-10 minutes for the models to be created and stored. After that, the interface 

presented will look like this: 

 

Figure 136 Start of application 

The first text area allows the user to type in any message. There are also options to change the 

method for classifying the messages, a button to submit a file with messages, a button to start 

over another classification and an option to log as an administrator. The text area below will 

show the prediction results. 
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10.3.1.2 Predicting a message 

To perform a classification of a single message, the user can type in any text in the first text area.  

 

Figure 137 Step 1 to predict a message 

After writing the message, press the Classify button. This will show in the second text area the 

number of the message (the user may see that his message has a number attached to the left) 

and the message corresponding prediction. It may show a No prediction text if the message 

exceeds the number of maximum characters, which is 500. 

 

Figure 138 Final step to predict a message 

After that, the user may save the result to a file. To perform another classification, press the 

button Clear All to return to the Start of application. The user can press the refresh button to 

perform the same operation again. 
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10.3.1.3 Predict messages in a file 

Press the button Submit messages file in order to select a file containing the messages. A file 

explorer will be open. 

 

Figure 139 Step 1 to predict messages in a file 

The user chooses then the desired file. The file explorer will be closed, and the system will display 

a message confirming the submission. If the user wants to change the file, it may press the 

button Clear All and repeat the process. 

 

Figure 140 Step 2 to predict messages in a file 

Now the user may see the file submission confirmation. The system will enable the Classify 

option. Press the option and the results will be presented. 
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Figure 141 Final step to predict messages in a file 

The system will display in the Prediction area each prediction of every message. If the file 

contained wrong text values, the system would automatically inform the user and predict the 

rest of valid messages. To perform another classification, press the Clear All option to return to 

the Start of application. 

10.3.1.3.1 File format 

The file format is explained in the option with the ⓘ icon. 

The system will accept a concrete format for the messages submission file. If it does not fulfil 

these requirements, the file is discarded. 

- The file must have a .csv extension. 

- The file must contain a message per row. 

- The file must enclose each message between double quotes (“”). 

10.3.1.4 Change the classification method 

The system currently offers two models to classify a message, a binary model classifier and an 

itemized classifier. The former classifies the message as appropriate or not. The later provides 

more detail, predicting toxicity, obscenity, threat, insult, and identity hate values. Press the 

down arrow in the option Select classification method. It will display both options. 
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Figure 142 Change the method for classification 

This next figure shows an example of a prediction performed with the itemized method. 

 

Figure 143 Example of predicting with the itemized method 

10.3.1.5 Save predictions to file 

The user can save the performed predictions in both .csv and .txt formats. In order to be able to 

make this operation, the user must have performed a classification as indicated in Figure 138, 

Figure 141, or Figure 143. The Save results to file options will be available. After pressing any of 

them, a file explorer will appear to select the destination of the file. 
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Figure 144 File explorer for saving results to a file 

We will be shown a message detailing the name of the file. 

 

Figure 145 Example of saving prediction to file 

If we open this file (named with the current timestamp), we will see the information of the 

prediction. The .csv file has a format suitable for being input into a dataset. The output shows 

numbers to represent the prediction. The reason behind this decision is that most of the 

machine learning models accept number as input to perform classifications. This file would be a 

perfect input for any machine learning model that manages the same sort of task. 
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Figure 146 Example of saved prediction .csv file 

The .txt file shows a more human-friendly message. 

 

Figure 147 Example of saved prediction .txt file 

10.3.1.6 Log as administrator 

The last available option for a user which is not logged as an administrator is to log in to reach 

the rest of the possible operations. Press the Log as administrator button to access to the log-in 

dialog. 

 

Figure 148 Authentication dialog 

The user must introduce a valid username and password to log as an administrator. If any error 

occurs, the dialog will show the issue to the user. If the authentication is correct, the user will 

return to the main window as an administrator. 
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Figure 149 Main window after logging as administrator 

The user has the option now of training the models and correcting any prediction performed 

beforehand. 

10.3.2 Administrator manual 

After logging in as administrator, the user has the option to alter the models’ functionality via 

training them or correcting predictions of performed classifications. 

For logging in as administrator we can use username «admin1» and password «admin1». 

10.3.2.1 Correcting a prediction 

The administrator must have performed a classification as indicated in Figure 138, Figure 141, 

or Figure 143. An option to choose the number of a message should appear on the right part of 

the main window. 

 

Figure 150 Prediction performed as administrator 
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If we display the option Nº of the message, we will see a list of numbers corresponding to the 

number of valid predicted messages. The user may select one to alter the prediction. 

 

Figure 151 Chosen message to correct prediction 

Choose from each option of the prediction the desired value and press Submit. If the operation 

wants to be cancelled, the user may select the Cancel option. 

If the user submits the new prediction values, a new confirmation dialog will be displayed for 

the process of the operation. It will contain information regarding the correction of the 

prediction and options for performing or cancelling it. Press Confirm to proceed to the 

correction. 

 

Figure 152 Confirmation window for correction of a prediction 

The result is shown after confirming the operation after a few seconds. 
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Figure 153 Message after correcting the prediction 

10.3.2.2 Training model with new data 

As to training any of the models, the user may select the Train model option, which will display 

a new dialog. 

 

Figure 154 Train model window 

In this dialog, select the model wanted to be trained and upload the file containing the new data. 

If the user wants, he can abort the operation with the Cancel button. Some help is given with a 

message explaining how the file must display its rows. When the Submit button is pressed, a 

new confirmation dialog will appear. It will show an operation summary and options to confirm 

and cancel the task.  
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Figure 155 Confirmation window for training a model 

After confirming the operation, the window may look as Figure 156, depending on the quantity 

of input data. Do not close the new dialog since the system is performing the training task. 

 

Figure 156 Confirmation window during training 

After the operation ends, the dialog will show the success of the operation. If any row of the file 

contained incorrect or invalid data, the system automatically discards that piece of data, and 

informs the user after the operations finalizes. 

 

Figure 157 Finalized training with invalid messages 
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Figure 158 Finalized successful training 

10.3.2.2.1 File format 

This list is available on the option with the ⓘ icon. To perform this task, the file containing the 

unseen data must accomplish specific features. 

- The file must have .csv extension. 

- The file must contain only the message and the prediction values. 

- The message must be enclosed between double quotes (“”). 

- The file must contain columns separated by commas. The number of columns depends 

on the model to be trained. 

o The binary model receives one column for the message and another column for 

the value of the prediction. This value must be 0 or 1. 

o The itemized model receives one column for the message and another six for 

the targets. The target values must be 0 or 1. 

- The format for each row must be the following: 

o For the binary model: <prediction_value>,”<message>”. For 

instance: 0,”he was a boy”. 

o For the itemized model: “<message>”,<1>,<2>,<3>,<4>,<5>,<6>: 

▪ 1: Toxic value. 

▪ 2: Severe toxic value. 

▪ 3: Obscene value. 

▪ 4: Threat value. 

▪ 5: Insult value. 

▪ 6: Identity hate value. 

o For instance: “this is a message”,0,0,0,0,0,0. 

10.4 Programmer manual 

This subsection will suggest the methodology relative to the maintainability of the system, and 

how some of the changes should be made. 
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10.4.1 Add a new classifier 

The developer in charge of creating a new classifier for the system must implement the interface 

Classifier, and have the following methods: 

- getModelOpt() → String: For identifying the model in the user interface. 

- predict(String, int) → Prediction: Receives the message and the number 

of message and returns the values of the prediction inside a Prediction object. 

- fitNewData(Data) →  List<String>: Receives the data and makes the 

necessary changes to the model to fit this new data. The list returned is the list of 

possible errors. 

- fitPrediction(Prediction) → List<String>: It receives a Prediction 

object to be fitted and returns the list of possible errors. 

- toPrediction(String, int, List<int>) → Prediction: Converts the 

input parameters into a Prediction object. 

In most of the cases it would be mandatory to implement another Prediction class. If the 

model shares the same name and number of labels, the already Prediction classes may be 

used. To implement a Prediction class the following methods are required: 

- getMessageForUI() → String: returns a user-friendly String representation of 

the message of the prediction. 

- getPredictionForUI() → String: returns a user-friendly String representation 

of the prediction. 

- getPredictionForTxt() → String: returns a String formatted to be the 

output of the prediction in the .txt file. 

- getHeaderForOutputFile() →  List<String>: For the output file when 

saving the results, returns the header first line of the new file. 

- constructPredictionForOutputFile() → List<Object>: For the output 

file when saving the results, returns the row representing the prediction. 

After implementing a Classifier and Prediction class, the user only has to alter the 

_model_opt_to_model(model_opt) and _refresh_model() to consider the new 

model. 

To modify the interface the developer would have to do some changes in the 

handle_n_msg_combo_event(window, values) and 

handle_submit_correct_pred_event(window, values) methods, and display 

the new model option in the Select classification method combo box. 

10.4.2 Change the interface 

The developer may be responsible of integrating the system to a new user interface. In this case, 

this new interface should blend with the controller, who acts as an interface between the user 

interface and the rest of the application. These interface methods are: 
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- predict(List<String>) → List<Prediction>, List<String>: This 

method receives the list of messages to be predicted and returns the list of predictions 

and a list of errors. 

- predictMessagesInFile(String) → List<Prediction>, 

List<String>: Receives the path to the messages file and returns the list of 

predictions and a list of errors. 

- redoLastPrediction() →  List<Prediction>, List<String>: 

Performs once again the predictions stored in last_predictions. It will not 

compute previous invalid predictions. 

- changeClassificationMethod(String) → List<String>: Receives the 

model option represented as String and changes the method. Returns a list of errors. 

- authenticate(String, String) → List<String>: Receives the input 

username and password and returns a list of errors. 

- correctPredictions(int, List<int>) → List<String>: Receives the 

number of the message and the new values of the prediction as a list. Returns a list with 

errors. 

- trainModels(String, String) → List<String>: Receives the model 

option represented as a String and the path to the file with the new data. Returns a 

list of errors. 

- saveResultsToCsv(String path) → List<String>: Saves into a .csv file 

the last performed predictions. The parameter represents the destination. A list of 

errors is returned. 

- saveResultsToTxt(String path) → List<String>: Saves into a .txt file 

the last performed predictions with a user-friendly format. The parameter represents 

the destination. A list of errors is returned. 

- clearClassification(): Empties the attribute containing the last predictions. 
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Chapter 11. Conclusions and future 

work 

This chapter summarizes the overall perception of the fulfilled project and details some possible 

improvements. 

11.1 Conclusions 

The result of this project is a system based on artificial intelligence and machine learning with 

the principles of extensibility and maintainability, in a management and planification 

framework, throughout research and analysis of the state-of-art solutions and proposed 

alternatives. All the knowledge acquired throughout the degree was put into test in the making 

of this project. 

When comparing our system to the commented articles and papers, we can establish some 

afterthoughts. For instance, our binary model performs better than the logistic regression model 

in [1] at first glance. Also, it works even or better than the convolutional network proposed in 

[3] or the models proposed by the several teams in [4]. For the multilabel model, we could 

compare it with [74], and we can see that the paper proposed better performing models. This is 

due to the better capability of the GRU [57] neural network proposed. However, the system 

offers the possibility of using with a user interface both binary and multilabel models and of 

retraining or correcting predictions performed by them. Overall, I think I had offered a solid 

scalable system that may be the baseline for future work. 

I have found the fulfilment of this project laborious. All the parts through which an application 

passes were completely developed by me, from outlining which features would be interesting 

to a program of this nature to the analysis, design, implementation, and testing of them. The 

system was created from little previous artificial intelligence knowledge. Also, the number of 

issues obstructing the progress of the project were numerous, and some of them inexorable. 

I have learnt to clearly differentiate between machine and deep learning. I have understood how 

difficult the task of training a model is, and in the case of this specific text classification task, how 

many variables are involved when making a good text processing algorithm. For the first time in 

my software career, I have been limited to the capability of the machines I have within my reach, 

due to deep learning models being high resource-demanding. I have gained experience on 

evaluating when a model is performing properly or poorly. Last, I have learnt the different 

methods for transforming data into structures that are suitable for the machine. 

The completion of this project makes me have mixed-up feelings. On one hand I have being quite 

erratic when it came to working on this project. The first months were tedious and low-

motivating, since researching and looking up information is not quite appealing to me. The “raw” 

programming part is the one I look up to. Provided a problem find the optimal solution in terms 

of execution time, readability, extensibility, maintainability, etc, and through trial-and-error 
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process reach that solution. On the other hand, I have a sense of fulfilment, and some relief, 

that I did have completed this project without leaving big concerns aside. I have done most of 

the things I wanted to do. 

Overall, I have gained experienced on the fields I have worked on that I am sure will be of utility 

in my professional career. 
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11.2 Extensions 

Some possible improvements of the system are listed now: 

- A complex deep learning model to detect hard ambiguous messages. An artificial neural 

network trained in several epochs would eventually know how to classify these 

ambiguous messages with more precision. 

- A nicer user interface with a fashionable style and clearer mechanisms like a loading 

animation when performing administrator operations. A user interface with stylish 

elements may be more appealing and so the system would have a bigger reach. 

- A deployment of the system in the web, so any user worldwide can access it using only 

the browser. Web applications are consistently growing in contrast to the extinction of 

desktop applications, since they are more accessible, they do not have to be 

downloaded to be used and the tools to implement web interfaces integrate well with 

web programming languages. 

- A multilingual model, to detect messages from a provided language. Given we had 

enough training datasets, we could eventually predict a message selecting its language. 

This feature in addition to the web page extension would have a global outreach. 

- Research how a regression model would perform this task. Regression models offer the 

possibility of obtaining a continuous value instead of a discrete one. This would, 

theoretically, mean more accurate predictions, given that the obtained result would 

have more precision differentiating it from other results. 
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Chapter 12. Project planning and final 

budgets 

Project planning and budget on the final phase of its fulfilment are described in this chapter. 

12.1 Final planning 

The final planning of the project fulfilment is presented in this chapter. The final duration of this 

project was 8 months, from November 22nd, 2021, to Monday, 11th 2022. 

ID Task Name Start Finish Resource Names 

1 Project Mon 22/11/21 Mon 11/07/22 
 

2 Research Mon 22/11/21 Thu 03/02/22 
 

3 Related papers Mon 22/11/21 Fri 07/01/22 Team Leader 

4 Implementation alternatives Mon 10/01/22 Fri 21/01/22 Team Leader 

5 Implementation tools Mon 24/01/22 Thu 03/02/22 Team Leader 

6 Development Fri 04/02/22 Tue 05/07/22 
 

7 System 1 Alternative Fri 04/02/22 Fri 29/04/22 
 

8 Analysis Fri 04/02/22 Wed 09/02/22 
 

9 System definition Fri 04/02/22 Mon 07/02/22 Analyst 

10 Elicitation Tue 08/02/22 Wed 09/02/22 Analyst 

11 Design Thu 10/02/22 Thu 17/02/22 
 

12 Architecture design Thu 10/02/22 Mon 14/02/22 Software Engineer 

13 Diagrams and models design Tue 15/02/22 Thu 17/02/22 Software Engineer 

14 Development Fri 18/02/22 Mon 25/04/22 
 

15 Implementation Fri 18/02/22 Mon 25/04/22 
 

16 NLP Fri 18/02/22 Thu 03/03/22 Senior Programmer 

17 Machine learning Fri 04/03/22 Mon 25/04/22 Senior Programmer 

18 Testing Tue 26/04/22 Fri 29/04/22 
 

19  Unit testing Tue 26/04/22 Wed 27/04/22 Tester 

20 Acceptance testing Thu 28/04/22 Fri 29/04/22 Tester 

21 System 2 Alternative Fri 04/02/22 Fri 03/06/22 
 

22 Analysis Fri 04/02/22 Wed 09/02/22 
 

23 System definition Fri 04/02/22 Mon 07/02/22 Analyst 

24 Elicitation Tue 08/02/22 Wed 09/02/22 Analyst 

25 Design Thu 10/02/22 Thu 17/02/22 
 

26 Architecture design Thu 10/02/22 Mon 14/02/22 Software Engineer 

27 Diagrams and models design Tue 15/02/22 Thu 17/02/22 Software Engineer 

28 Development Fri 04/03/22 Mon 30/05/22 
 

29 Implementation Fri 04/03/22 Mon 30/05/22 
 

30 Machine learning Fri 04/03/22 Mon 30/05/22 Senior Programmer 

31 Testing Tue 31/05/22 Fri 03/06/22 
 

32 Unit testing Tue 31/05/22 Wed 01/06/22 Tester 

33 Acceptance testing Thu 02/06/22 Fri 03/06/22 Tester 

34 Systems integration Mon 06/06/22 Thu 23/06/22 
 

35 Authentication Fri 24/06/22 Fri 24/06/22 Senior Programmer 

36 Interface Mon 27/06/22 Tue 05/07/22 Senior Programmer 

37 Documentation Thu 25/11/21 Mon 11/07/22 
 

38 Planning and budget Fri 04/02/22 Mon 07/02/22 Team Leader 

39 Report and introduction Tue 08/02/22 Tue 08/02/22 Team Leader 

40 Theoretical aspects Tue 08/02/22 Wed 09/02/22 Team Leader 

41 Analysis Thu 10/02/22 Tue 15/02/22 Analyst 

42 Design Fri 18/02/22 Wed 23/02/22 Software Engineer 
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43 Implementation Wed 06/07/22 Fri 08/07/22 Software Engineer 

44 Testing Mon 06/06/22 Thu 09/06/22 Tester 

45 Annexes Mon 11/07/22 Mon 11/07/22 Software Engineer 

46 Conclusions Mon 11/07/22 Mon 11/07/22 Team Leader 

47 Follow-up meetings Thu 25/11/21 Tue 05/07/22 
 

48 Follow-up meetings 1 Thu 25/11/21 Thu 25/11/21 Project Leader; Team Leader 

49 Follow-up meetings 2 Thu 09/12/21 Thu 09/12/21 Project Leader; Team Leader 

50 Follow-up meetings 3 Thu 23/12/21 Thu 23/12/21 Project Leader; Team Leader 

51 Follow-up meetings 4 Thu 03/02/22 Thu 03/02/22 Project Leader; Team Leader 

52 Follow-up meetings 5 Thu 17/02/22 Thu 17/02/22 Project Leader; Team Leader 

53 Follow-up meetings 6 Thu 03/03/22 Thu 03/03/22 Project Leader; Team Leader 

54 Follow-up meetings 7 Thu 17/03/22 Thu 17/03/22 Project Leader; Team Leader 

55 Follow-up meetings 8 Thu 31/03/22 Thu 31/03/22 Project Leader; Team Leader 

56 Follow-up meetings 9 Thu 28/04/22 Thu 28/04/22 Project Leader; Team Leader 

57 Follow-up meetings 10 Thu 12/05/22 Thu 12/05/22 Project Leader; Team Leader 

58 Follow-up meetings 11 Thu 26/05/22 Thu 26/05/22 Project Leader; Team Leader 

59 Follow-up meetings 12 Thu 09/06/22 Thu 09/06/22 Project Leader; Team Leader 

60 Follow-up meetings 13 Thu 23/06/22 Thu 23/06/22 Project Leader; Team Leader 

61 Follow-up meetings 14 Tue 05/07/22 Tue 05/07/22 Project Leader; Team Leader 

Figure 159 Final Work Breakdown Structure 

The tasks of Training and Validation from both systems have been joined with the Machine 

Learning tasks, since they were done almost at the same time. A new task named System 

integration was added to this planning. This task represents the application itself described in 

the Analysis and System design sections. 

12.2 Final budget 

Now the final costs budget is presented. 

12.2.1 Costs budget 

The costs budget has changed accordingly to the new planning alterations. 

I1 I2 I3 Description Quantity Units 

01   Research   

  001  Related papers   

   01 Team Leader 280 hours 

  002  Implementation alternatives   

   01 Team Leader 80 hours 

  003  Implementation tools   

   01 Team Leader 72 hours 

02   Following up   

  001  Follow-up meetings   

   01 Project Leader 7 hours 

   02 Team Leader 7 hours 

       

       

Figure 160 Final Costs Budget Research and following Item 1 
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I1 I2 I3 Price Subtotal (3) Subtotal (2) Total 

01                16,416.00 €  

  001              10,640.00 €    

   01                    38.00 €             10,640.00 €     

  002                3,040.00 €    

   01                    38.00 €                3,040.00 €     

  003                2,736.00 €    

   01                    38.00 €                2,736.00 €     

02                      714.00 €  

  001                    714.00 €    

   01                    64.00 €                   448.00 €     

   02                    38.00 €                   266.00 €     

    
   

  

    
 

  TOTAL 17,130.00 € 

Figure 161 Final Costs Budget Research and following Item 2 

I1 I2 I3 I4 Description Quantity Units 

01    System 1 Alternative  
 

  001   Analysis  
 

   0001  System definition  
 

    01 Analyst 16 hours 

   0002  Elicitation   

    01 Analyst 16 hours 

  002   Design   

   0001  Architecture design   

    01 Software Engineer 24 hours 

   0002  Diagrams and models design   

    01 Software Engineer 24 hours 

  003   Development   

   0001  Implementation   

    01 Senior Programmer 376 hours 

  004   Testing   

   0001  Unit testing   

    01 Tester 16 hours 

   0002  Acceptance testing   

    01 Tester 16 hours 

02    System 2 Alternative   

  001   Analysis   

   0001  System definition   

    01 Analyst 16 hours 
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   0002  Elicitation   

    01 Analyst 16 hours 

  002   Design   

   0001  Architecture design   

    01 Software Engineer 24 hours 

   0002  Diagrams and models design   

    01 Software Engineer 24 hours 

  003   Development   

   0001  Implementation   

    01 Senior Programmer 496 hours 

  004   Testing   

   0001  Unit testing   

    01 Tester 16 hours 

   0002  Acceptance testing   

    01 Tester 16 hours 

03    System integration   

    01 Senior Programmer 112 hours 

04    Authentication   

    01 Senior Programmer 8 hours 

05    Interface   

    01 Senior Programmer 56 hours 

        

              

Figure 162 Final Costs Budget Development Item 1 

I1 I2 I3 I4 Price Subtotal (4) Subtotal (3) Subtotal (2) Total 

01        11,168.00 € 

  001      848.00 €   

   0001    424.00 €    

    01 26.50 € 424.00 €     

   0002    424.00 €    

    01 26.50 € 424.00 €     

  002      1,344.00 €   

   0001    672.00 €    

    01 28.00 € 672.00 €     

   0002    672.00 €    

    01 28.00 € 672.00 €     
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  003      8,272.00 €   

   0001    8,272.00 €    

    01 22.00 € 8,272.00 €     

  004      704.00 €   

   0001    352.00 €    

    01 22.00 € 352.00 €     

   0002    352.00 €    

    01 22.00 € 352.00 €     

02        13,808.00 € 

  001      848.00 €   

   0001    424.00 €    

    01 26.50 € 424.00 €     

   0002    424.00 €    

    01 26.50 € 424.00 €     

  002      1,344.00 €   

   0001    672.00 €    

    01 28.00 € 672.00 €     

   0002    672.00 €    

    01 28.00 € 672.00 €     

  003      10,912.00 €   

   0001    10,912.00 €    

    01 22.00 € 10,912.00 €     

  004      704.00 €   

   0001    352.00 €    

    01 22.00 € 352.00 €     

   0002    352.00 €    

    01 22.00 € 352.00 €     

03        2,464.00 € 

    01 22.00 € 2,464.00 €     

04        176.00 € 

    01 22.00 € 176.00 €     

05        1,232.00 € 

    01 22.00 € 1,232.00 €     

     

    
  

              TOTAL 26,384.00 € 

Figure 163 Final Costs Budget Development Item 2 
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I1 I2 Description Quantity Units 

01  Report and introduction 
  

   Team Leader 8 hours 

02  Theoretical aspects   

  01 Team Leader 16 hours 

03  Planning and budget   

  01 Team Leader 16 hours 

04  Analysis   

  01 Analyst 32 hours 

05  Design   

  01 Software Engineer 32 hours 

06  Implementation   

  01 Software Engineer 24 hours 

07  Testing   

  01 Tester 32 hours 

08  Conclusions   

   Project Leader 8 hours 

09  Annexes   

  01 Team Leader 8 hours 

      

          

Figure 164 Final Costs Budget Documentation Item 1 

I1 I2 Price Subtotal (2) Total 

01    304.00 € 

   38.00 € 304.00 €   

02                    608.00 €  

  01                    38.00 €                   608.00 €    

03                    608.00 €  

  01                    38.00 €                   608.00 €    

04                    848.00 €  

  01                    26.50 €                   848.00 €    

05                    896.00 €  

  01                    28.00 €                   896.00 €    

06                    672.00 €  

  01                    28.00 €                   672.00 €    

07                    704.00 €  

  01                    22.00 €                   704.00 €    

08                    512.00 €  

                      64.00 €                   512.00 €    

09                    304.00 €  

  01                    38.00 €                   304.00 €    
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      TOTAL 5,152.00 € 

Figure 165 Final Costs Budget Documentation Item 2 

This is the final costs budget summary. 

Item Item name Total 

01 Research and following up 17,130.00 € 

02 Development 26,384.00 € 

03 Documentation 5,152.00 € 

      
 

Total Cost  48,666.00 € 

Figure 166 Final Costs Budget summary 
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Chapter 14. Annexes 

14.1  Glossary 

- Administrator. An authenticated user. An administrator can perform tasks like training 

a model with unseen data and correcting a prediction performed by any classifier. 

- Appropriate. Property of a message which is not inappropriate. See Inappropriate. 

- Accuracy. Metric used for evaluating a model. It is calculated as  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. 

- Artificial intelligence. Ability of a machine to mimic the behaviour of the human mind 

on problem-solving and decision-making [12]. 

- Authenticate. Log in as an administrator. 

- Authentication. The process of logging in as administrator. 

- BERT model. Deep learning model developed by Google used in natural language 

processing tasks and prepared to be fine-tuned to a specific problem. 

- Binary model. Model that receives an input and produces an output that may have two 

possible values. 

- Classification (machine learning). Field inside machine learning in which a model tries 

to predict a discrete value from a set of unseen data. 

- Classification (prediction). See prediction. 

- Classifier. Algorithm that manages classification tasks. See Classification (machine 

learning). 

- Confusion matrix. Metric used for evaluating a model performance. It consists of a data 

structure that stores the instances of correct and incorrect predictions with respect to 

the true ones. 

- Deep learning. Field inside machine learning where systems developed try to imitate 

the structure of the human brain. Its foundation lies in the neural networks of the brain. 

- False negative/FN. The number of instances that were predicted as negative but were 

positive. 

- False positive/FP. The number of instances that were predicted as positive but were 

negative. 

- Feature (classifier). Set of data provided to a classifier to be predicted. 

- F1 Score. Metrics used for evaluating a model. It is calculated as 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. 

- Inappropriate. Property socially conferred to whichever message that exhibits elements 

of toxicity, obscenity, threat, insult and/or hate speech within its meaning. 

- Itemized model. Model that receives an input and produces a fixed number of outputs 

that may have two possible values. 

- Jigsaw competition. Competition held in Kaggle in 2018 regarding toxic comment 

classification. 

- Label. Independent variable that will have the value of a prediction. 

- Linear regression. Mathematical model which allows to predict a dependent value with 

a set of independent ones. 
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- Logistic regression. Statistical model which allows to predict a categorical value given 

an input. 

- Machine learning. Field inside artificial intelligence that gathers the methods and 

techniques for imitating human learning behaviour. 

- Model. See Classifier. 

- Multilabel model. See Itemized model. 

- Neural network. Deep learning model which represents an abstraction of the human 

brain structure from the real world having the neuron as its atomic unit. 

- NLP. Natural Language Processing. It involves all the algorithms to manipulate and 

analyse the human language-related interactions with a machine. 

- Overfitting. Characteristic present in models that correctly classify training data but are 

prone-to-error with unseen data. 

- Precision. Metric used for evaluating a model. It is calculated as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
. 

- Prediction. The result of a model which has been provided a set of features. 

- Python. High-level programming language widely used in machine and deep learning 

applications. 

- PyTorch. Python library that offers deep learning modules to implement neural 

networks. 

- Recall. Metric used for evaluating a model. It is calculated as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
. 

- Scikit Learn. Python library that offers machine learning functionality to implement 

models to be fine-tuned. 

- Strategy pattern. Design pattern widely used in software engineering that allows a 

context class to perform the same operation with different algorithms. 

- Target. See Label. 

- Transformers. Python library offered by the HuggingFace company to implement state-

of-art machine learning and deep learning programs. 

- TN/True negatives. The number of correctly predicted negative instances. 

- TP/True Positive. The number of correctly predicted positive instances. 

 

 

14.2 Delivered content in attached file 

This section lists all the content attached to this document. 

14.2.1 Contents 

Figure 167 shows the content of the attached file. 

File/Folder Content 

hate-speech-detection.zip This compressed file contains the source 
code of the project. It also contains a 
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README.txt explaining all the steps to start 
the application, a requirements file and a 
JSON file with initialization configuration. 

doc/ This folder will contain all the documentation 
regarding this project. There are two 
subfolders inside it. 

doc/project/ Contains the Microsoft Project file where all 
the planning has been set and the Microsoft 
Excel file with initial and final budgets. 

doc/pydoc/ Contains the generated documentation of 
the source code. 

doc/logs/ This folder contains logs from executed 
scripts during implementation. 

Adrian-Perez-Manso-hate-speech-
detection.pdf 

The current document. 

file examples/ This folder contains examples for all the use 
cases where the user may submit a file into 
the system. 

README.txt Installation and execution steps 

Figure 167 Contents of the attached file 

If we unzip the compressed file, we will have the following directory: 

File/Folder Content 

database/ Folder that contains the database of users. 

datasets/ Folder that contains the different datasets for 
the binary and multilabel models. 

help/ Folder that contains some guidance about 
the files’ format that may be submitted to the 
system. 

models/ Folder that contains the serialized objects 
needed for the two models. 

src/ Folder that contains the source code. 
Contains the main.py file. 

testfiles/ Folder with example files for testing. 

init.json File with execution configuration. Explained 
in 10.2. 

requirements.txt File with the needed modules to be installed. 
Explained in 10.1. 

Figure 168 Contents of the compressed file 

14.2.2 Executable code and installation 

We can execute the program by running Python with the main.py file inside the src/ folder. 

If any detail is necessary, follow steps in sections 10.1 and 10.2. 

14.3 Source code 
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The source code of the application is inside the hate-speech-detection.zip 

compressed file inside the attached content. 

14.4  Meeting minutes 

All the meetings with the tutor are shown in Figure 169. 

Meeting Date Mean Content 

Meeting 1 November 11th, 2021 Microsoft Teams First immediate goals 

Meeting 2 November 25th, 2021 Microsoft Teams Updates on research, 
planning and budget  

Meeting 3 December 9th, 2021 Microsoft Teams Updates on research, 
planning and budget 

Meeting 4 December 23rd, 2021 Microsoft Teams Updates on research, 
planning and budget 

Meeting 5 February 3rd, 2022 Microsoft Teams Updates on research, 
planning and budget 

Meeting 6 February 17th, 2022 Microsoft Teams First system 
implementations 

Meeting 7 March 3rd, 2022 Microsoft Teams Update on system 
implementation and found 
problems 

Meeting 8 March 17th, 2022 Microsoft Teams Update on system 
implementation and found 
problems 

Meeting 9 March 31st, 2022 Microsoft Teams Update on system 
implementation and found 
problems 

Meeting 10 April 28th, 2022 Microsoft Teams Update on system 
implementation and found 
problems 

Meeting 11 May 12th, 2022 Microsoft Teams Update on system 
implementation and found 
problems 

Meeting 12 May 26th, 2022 Microsoft Teams Update on system 
implementation and found 
problems 

Meeting 13 June 9th, 2022 Microsoft Teams Update on system 
implementation and found 
problems 

Meeting 14 June 23rd, 2022 Microsoft Teams Document revision and 
problems found 

Meeting 15 July 5th, 2022 Microsoft Teams Document and application 
revision 

Figure 169 Meeting minutes 
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