
UNIVERSITY OF OVIEDO

SCHOOL OF COMPUTER ENGINEERING

FINAL DEGREE PROJECT

“Inappropriate message detection system/Sistema de detección de mensajes

inapropiados”

DIRECTOR: Cristian González García

CODIRECTOR: Vicente García Díaz

AUTHOR: Adrián Pérez Manso

Final Degree Project

2 Project Report | School of Computer Engineering - University of Oviedo

Acknowledgments

To my family and friends.

To my dear friend Luis, for knowing when to act as a mentor and when to act as a friend.

To my grandmother, that could not see me graduating.

To my partner Marta, my constant support.

Final Degree Project

School of Computer Engineering - University of Oviedo | Project Report 3

Resumen

La proliferación de las redes sociales y de espacios de debate en Internet ha alterado

completamente nuestra percepción sobre conceptos como lo políticamente correcto o los

límites del humor. Voces que antes no eran escuchadas debido a la falta de medios tienen ahora

incluso más alcance que los medios de comunicación tradicionales. Aunque esta

democratización de la información y las opiniones conllevan un gran avance, existe un

crecimiento proporcional de número de comentarios los cuales tienen intenciones nocivas.

Sumado a esto, la sensibilidad general de la Sociedad se ha afinado como consecuencia de que

las nuevas voces que surgen puedan expresar y explicar qué comportamientos son incorrectos

y por qué. Estos nuevos elementos propios del siglo XXI, ha provocado que muchas empresas

busquen mecanismos para prevenir los comentarios que suscriban características ofensivas,

tóxicas y de odio.

El objetivo de este proyecto es la implementación de un sistema capaz de clasificar un texto

dentro de una escala que refleje cuán inapropiado es este, entediendo por inapropiado una

propiedad basada en elementos de toxicidad, obscenidad, amenaza, insulto u apología al odio.

A su vez, este trabajo tiene la finalidad de desarrollar un estudio comparativo de las posibles

alternativas de implementación que tendría este sistema.

El programa ofrece la posibilidad de realizar una predicción del texto facilitado como entrada a

través de dos métodos: el primero asigna al texto un valor de dos posibles (apropiado o

inapropiado). Por otra parte, el segundo método permite diseccionar la predicción del texto en

propiedades más específicas como las comentadas anteriormente.

Otro aspecto del sistema es el de ofrecer a una persona, con las credenciales pertinentes,

entrenar el modelo nuevamente con conjuntos de datos introducidos por ella. Por último,

ciertas operaciones de interés para el usuario como salvar archivos con las predicciones

realizadas son planteadas.

En el proyecto se explora principalmente el uso de la inteligencia artificial y el aprendizaje

automático, basados tanto en modelos matemáticos como en redes neuronales. En mayor

detalle, el sistema se basa en una tarea de clasificación de texto, como puede ser a su vez la

clasificación de sentimientos a partir de un texto. Asimismo, se investiga cómo se enmarca este

sistema dentro de la dirección y planificación de proyectos.

Final Degree Project

4 Project Report | School of Computer Engineering - University of Oviedo

Palabras Clave

Mensajes tóxicos, Discurso de odio, Clasificación de texto, Inteligencia artificial, Aprendizaje

automático, Aprendizaje profundo, Procesamiento de lenguaje natural

Final Degree Project

School of Computer Engineering - University of Oviedo | Project Report 5

Abstract

The proliferation of social networks and rooms of discussion on the Internet has completely

altered our idea about concepts such as the politically correct and humour boundaries. The

voices that were not heard before due to lack of means have these days even more reach than

traditional media. Although this information and opinion democratization imply huge progress,

there has been a proportional growth of number of comments with harmful intentions.

Moreover, the general sensitivity of society has been polished as a consequence of the new

voices that emerge and can express and explain what behaviours are incorrect and why. These

new elements, intrinsic to the 21st century, have made some companies attempt to prevent

those comments that subscribe offensive, toxic and hate characteristics.

The goal of this project is the implementation of a system capable of classifying a text within a

scale that reflects how appropriate it is, assuming as inappropriate any message with toxic,

obscene, threat, insult and/or identity hate elements. Furthermore, this piece of work has the

intention of developing a thoughtful comparative study about the possible implementation

alternatives which this system could have.

The program offers the possibility of doing a prediction of an input text via two methods: The

first one assigns a value from two possible to the text (appropriate or inappropriate). On the

other hand, the second method allows to dissect the prediction into more specific properties as

the ones mentioned previously.

Another aspect of the system is that it grants the possibility to an individual, with its

corresponding credentials, of training the model with new datasets as input. Finally, some user-

friendly operations such as saving the predictions into a file are suggested.

This project explores mainly the use of artificial intelligence and machine learning, based both

on statistical mathematic models and on artificial neural networks. More specifically, the system

is enclosed on a text classification task, which includes a common field of work called Natural

Language Processing (NLP). For instance, sentiment classification is a popular task inside this

area. Likewise, this work does research about how this sort of system is crafted on project

management and planification framework.

Final Degree Project

6 Project Report | School of Computer Engineering - University of Oviedo

Keywords

Toxic messages, Hate speech, Text classification, Artificial Intelligence, Machine Learning, Deep

Learning, Natural language processing

Final Degree Project

School of Computer Engineering - University of Oviedo | Project Report 7

General index

Table of contents

CHAPTER 1. PROJECT REPORT .. 15

1.1 MOTIVATION SUMMARY, OBJECTIVES AND PROJECT SCOPE ... 15

1.2 SUMMARY OF ALL ASPECTS .. 16

CHAPTER 2. INTRODUCTION .. 17

2.1 JUSTIFICATION OF THE PROJECT .. 17

2.2 OBJECTIVES OF THE PROJECT .. 18

2.3 STUDY OF CURRENT SITUATION .. 19

2.3.1 Alternatives evaluation ... 19

CHAPTER 3. THEORETICAL ASPECTS ... 23

3.1 ARTIFICIAL INTELLIGENCE (AI) ... 23

3.2 MACHINE LEARNING (ML) ... 23

3.3 DEEP LEARNING (DL) .. 24

3.4 LINEAR REGRESSION.. 24

3.5 LOGISTIC REGRESSION ... 25

3.6 STOCHASTIC GRADIENT DESCENT .. 25

3.7 NEURAL NETWORK ... 26

3.8 BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS (BERT) .. 27

3.9 PYTHON ... 27

3.10 SCIKIT LEARN .. 28

3.11 PYTORCH .. 28

3.12 TRANSFORMERS ... 28

CHAPTER 4. PROJECT PLANNING AND INITIAL BUDGETS .. 30

4.1 INITIAL PLANNING .. 30

4.2 INITIAL BUDGET ... 31

4.2.1 Company definition ... 31

4.2.2 Costs budget ... 34

4.2.3 Client budget... 39

CHAPTER 5. ANALYSIS .. 41

5.1 SYSTEM DEFINITION .. 41

5.1.1 System scope specification ... 41

5.2 SYSTEM REQUIREMENTS .. 41

5.2.1 Elicitation .. 41

5.2.2 System Actors Identification ... 44

5.2.3 Use cases specification ... 45

5.3 SUBSYSTEMS IDENTIFICATION IN ANALYSIS PHASE ... 46

Final Degree Project

8 Project Report | School of Computer Engineering - University of Oviedo

5.3.1 Subsystems description ... 47

5.3.2 Interfaces between systems description ... 47

5.4 INITIAL CLASS DIAGRAM IN ANALYSIS PHASE ... 47

5.4.1 Class diagram ... 47

5.4.2 Classes description .. 48

5.5 USE CASES ANALYSIS AND SCENARIOS ... 50

5.5.1 Change classification method ... 50

5.5.2 Detect inappropriate messages .. 51

5.5.3 Save results to a file .. 51

5.5.4 Correct predictions .. 52

5.5.5 Log in as administrator ... 52

5.5.6 Train models ... 53

5.6 SCENARIOS – USE CASES RELATION .. 54

5.7 USER INTERFACE ANALYSIS ... 54

5.7.1 Interface description ... 54

5.7.2 Interface behaviour description .. 60

5.7.3 Navigability diagram .. 61

5.8 TEST PLAN SPECIFICATION .. 61

5.8.1 Unitary testing .. 61

5.8.2 Integration testing .. 61

5.8.3 Usability testing .. 62

5.8.4 Performance testing ... 62

5.8.5 Use cases testing .. 62

CHAPTER 6. SYSTEM DESIGN .. 66

6.1 SYSTEM ARCHITECTURE ... 66

6.1.1 Package diagram .. 66

6.1.2 Component diagram ... 68

6.2 CLASS DESIGN .. 68

6.2.1 Controller package .. 68

6.2.2 Authentication .. 70

6.2.3 Classifiers .. 70

6.2.4 Utils ... 71

6.2.5 Config .. 71

6.2.6 Domain ... 72

6.2.7 User interface ... 73

6.2.8 Global class diagram .. 73

6.3 INTERACTION DIAGRAMS ... 74

6.3.1 Detect inappropriate messages .. 74

6.3.2 Train model use case .. 75

6.3.3 Correct predictions use case ... 76

6.3.4 Log in as administrator use case... 77

6.3.5 Change classification method use case .. 77

6.3.6 Save results to file use case .. 78

6.4 SYSTEM PERSISTENCE .. 78

6.4.1 Database design ... 78

6.5 INTERFACE DESIGN ... 79

6.5.1 Main window .. 79

6.5.2 Authentication window .. 80

6.5.3 Training window ... 80

Final Degree Project

School of Computer Engineering - University of Oviedo | Project Report 9

6.5.4 Confirmation window ... 81

6.6 TEST PLAN TECHNICAL SPECIFICATION ... 81

6.6.1 Unit testing ... 82

6.6.2 Integration tests ... 85

6.6.3 Usability tests ... 85

6.6.4 Accessibility tests .. 88

6.6.5 Performance tests ... 88

CHAPTER 7. SYSTEM IMPLEMENTATION .. 90

7.1 PROGRAMMING LANGUAGES .. 90

7.1.1 Python ... 90

7.2 TOOLS AND PROGRAMS USED FOR THE DEVELOPMENT OF THE SYSTEM .. 91

7.2.1 Visual Studio Code .. 91

7.2.2 Git ... 92

7.3 SYSTEM CREATION .. 92

7.3.1 Binary model ... 92

7.3.2 Itemized model ... 94

7.3.3 Application and interface ... 95

7.3.4 Last modifications ... 95

7.3.5 Found issues .. 95

7.3.6 Detailed class description ... 101

CHAPTER 8. EVALUATION OF ALTERNATIVES ... 102

8.1 STATE OF ART SOLUTIONS AND STATISTICS ... 102

8.1.1 Binary models ... 102

8.1.2 Multilabel models ... 104

8.2 ATTEMPTED ALTERNATIVES .. 105

8.2.1 Binary models ... 105

8.2.2 Multilabel models ... 112

CHAPTER 9. TESTING DEVELOPMENT ... 118

9.1 UNIT TESTS ... 118

9.2 USABILITY TESTS .. 121

9.2.1 User profile ranking .. 121

9.2.2 Guided activities ... 123

9.2.3 Quick questions about the application ... 125

9.2.4 Tester survey ... 128

9.3 ACCESSIBILITY TESTS ... 129

9.4 PERFORMANCE TESTS .. 130

CHAPTER 10. SYSTEM MANUALS .. 132

10.1 INSTALLATION MANUALS ... 132

10.2 EXECUTION MANUALS ... 133

10.3 USER MANUAL .. 133

10.3.1 Non-administrator user manual ... 134

10.3.2 Administrator manual... 141

10.4 PROGRAMMER MANUAL .. 145

10.4.1 Add a new classifier .. 146

10.4.2 Change the interface .. 146

CHAPTER 11. CONCLUSIONS AND FUTURE WORK .. 148

Final Degree Project

10 Project Report | School of Computer Engineering - University of Oviedo

11.1 CONCLUSIONS ... 148

11.2 EXTENSIONS .. 150

CHAPTER 12. PROJECT PLANNING AND FINAL BUDGETS .. 151

12.1 FINAL PLANNING .. 151

12.2 FINAL BUDGET ... 152

12.2.1 Costs budget ... 152

CHAPTER 13. BIBLIOGRAPHIC REFERENCES .. 158

CHAPTER 14. ANNEXES .. 167

14.1 GLOSSARY .. 167

14.2 DELIVERED CONTENT IN ATTACHED FILE .. 168

14.2.1 Contents .. 168

14.2.2 Executable code and installation .. 169

14.3 SOURCE CODE ... 169

14.4 MEETING MINUTES... 170

Final Degree Project

School of Computer Engineering - University of Oviedo | Project Report 11

Figure Index

FIGURE 1 MULTILABEL CLASSIFICATION EXAMPLES .. 21

FIGURE 2 BINARY RELEVANCE TRANSFORMATION EXAMPLE .. 21

FIGURE 3 CLASSIFIER CHAIN TRANSFORMATION EXAMPLE... 21

FIGURE 4 LABEL POWERSET EXAMPLE .. 22

FIGURE 5 FORMULA OF A SIMPLE LINEAR REGRESSION ... 24

FIGURE 6 FIRST FORMULA OF LOGISTIC REGRESSION FOR ONE VARIABLE... 25

FIGURE 7 SECOND FORMULA OF LOGISTIC REGRESSION FOR ONE VARIABLE ... 25

FIGURE 8 REPRESENTATION OF AN ARTIFICIAL NEURON .. 26

FIGURE 9 PYTHON LOGO .. 27

FIGURE 10 SCIKIT LEARN LOGO .. 28

FIGURE 11 PYTORCH LOGO ... 28

FIGURE 12 HUGGINGFACE LOGO .. 29

FIGURE 13 WORK BREAKDOWN STRUCTURE .. 31

FIGURE 14 COMPANY DIRECT COSTS 1 .. 32

FIGURE 15 COMPANY DIRECT COSTS 2 .. 32

FIGURE 16 COMPANY DIRECT COSTS 3 .. 32

FIGURE 17 COMPANY INDIRECT COSTS .. 33

FIGURE 18 COMPANY DEVICES & LICENSES 1 .. 33

FIGURE 19COMPANY DEVICES & LICENSES 2 .. 33

FIGURE 20 SUMMARY OF COMPANY'S PROFITABILITY ... 33

FIGURE 21 COSTS BUDGET RESEARCH AND FOLLOWING ITEM 1 ... 34

FIGURE 22 COSTS BUDGET RESEARCH AND FOLLOWING ITEM 2 ... 35

FIGURE 23 COSTS BUDGET DEVELOPMENT ITEM 1 ... 36

FIGURE 24 COSTS BUDGET DEVELOPMENT ITEM 2 ... 38

FIGURE 25 COSTS BUDGET DOCUMENTATION ITEM 1 ... 38

FIGURE 26 COSTS BUDGET DOCUMENTATION ITEM 2 ... 39

FIGURE 27 COSTS BUDGET SUMMARY ... 39

FIGURE 28 CLIENT BUDGET ... 40

FIGURE 29 CLIENT BUDGET OVERVIEW .. 40

FIGURE 30 SYSTEM USE CASES ... 45

FIGURE 31 DETECT INAPPROPRIATE MESSAGES USE CASE ... 45

FIGURE 32 CHANGE CLASSIFICATION USE CASE ... 45

FIGURE 33 LOG IN AS ADMINISTRATOR USE CASE ... 45

FIGURE 34 TRAIN MODELS USE CASE ... 46

FIGURE 35 CORRECT PREDICTIONS USE CASE ... 46

FIGURE 36 SAVE RESULTS TO FILE USE CASE ... 46

FIGURE 37 SUBSYSTEM DIAGRAM ... 46

FIGURE 38 CLASS DIAGRAM IN ANALYSIS PHASE ... 48

FIGURE 39 CLASSIFICATIONMODULE CLASS .. 48

FIGURE 40 AUTHENTICATIONMODULE CLASS .. 49

FIGURE 41 BINARYCLASSIFIER CLASS ... 49

FIGURE 42 MULTIITEMCLASSIFIER CLASS .. 49

FIGURE 43 BINARYPREDICTION CLASS ... 50

https://unioviedo-my.sharepoint.com/personal/uo265081_uniovi_es/Documents/TFG/memoria_final_copia.docx#_Toc108422661

Final Degree Project

12 Project Report | School of Computer Engineering - University of Oviedo

FIGURE 44 MULTIITEMPREDICTION CLASS .. 50

FIGURE 45 CHANGE CLASSIFICATION METHOD USE CASE AND SCENARIOS ... 50

FIGURE 46 DETECT INAPPROPRIATE MESSAGES USE CASE AND SCENARIOS .. 51

FIGURE 47 SAVE RESULTS TO A FILE USE CASE AND SCENARIOS ... 51

FIGURE 48 CORRECT PREDICTIONS USE CASE AND SCENARIOS .. 52

FIGURE 49 LOG IN AS ADMINISTRATOR USE CASE AND SCENARIOS .. 53

FIGURE 50 TRAIN MODELS USE CASE AND SCENARIOS .. 53

FIGURE 51 RELATION BETWEEN SCENARIOS AND USE CASES .. 54

FIGURE 52 MAIN WINDOW ... 55

FIGURE 53 MAIN WINDOW, START OF APPLICATION ... 55

FIGURE 54 MAIN WINDOW, MESSAGE TYPED IN AREA, CLASSIFICATION NOT YET PERFORMED, NON-ADMINISTRATOR USER

 .. 56

FIGURE 55 MAIN WINDOW, MESSAGE UPLOADED BY FILE, CLASSIFICATION NOT YET PERFORMED, NON-ADMINISTRATOR

USER ... 56

FIGURE 56 MAIN WINDOW, CLASSIFICATION PERFORMED, NON-ADMINISTRATOR USER .. 57

FIGURE 57 MAIN WINDOW, START AS ADMINISTRATOR ... 57

FIGURE 58 MAIN WINDOW, MESSAGE TYPED IN AREA, CLASSIFICATION NOT YET PERFORMED, ADMINISTRATOR 58

FIGURE 59 MAIN WINDOW, MESSAGE UPLOADED BY FILE, CLASSIFICATION NOT YET PERFORMED, ADMINISTRATOR 58

FIGURE 60 MAIN WINDOW, CLASSIFICATION PERFORMED, ADMINISTRATOR .. 59

FIGURE 61 AUTHENTICATION WINDOW ... 59

FIGURE 62 TRAIN MODEL WINDOW .. 60

FIGURE 63 NAVIGABILITY DIAGRAM .. 61

FIGURE 64 CHANGE CLASSIFICATION METHOD USE CASE TEST .. 62

FIGURE 65 DETECT INAPPROPRIATE MESSAGES USE CASE TEST ... 63

FIGURE 66 SAVE RESULTS TO A FILE USE CASE TEST ... 63

FIGURE 67 CORRECT PREDICTIONS USE CASE TEST ... 63

FIGURE 68 LOG IN AS ADMINISTRATOR USE CASE TEST ... 64

FIGURE 69 TRAIN MODELS USE CASE TEST... 65

FIGURE 70 PACKAGE DIAGRAM .. 66

FIGURE 71 COMPONENT DIAGRAM ... 68

FIGURE 72 CONTROLLER PACKAGE CLASS DIAGRAM .. 69

FIGURE 73 AUTHENTICATION PACKAGE CLASS DIAGRAM .. 70

FIGURE 74 CLASSIFIERS CLASS DIAGRAM .. 71

FIGURE 75 DOMAIN CLASS DIAGRAM .. 72

FIGURE 76 USER INTERFACE CLASS DIAGRAM .. 73

FIGURE 77 FULL SYSTEM CLASS DIAGRAM ... 73

FIGURE 78 DETECT INAPPROPRIATE MESSAGES USE CASE INTERACTION DIAGRAM .. 74

FIGURE 79 TRAIN MODEL USE CASE INTERACTION DIAGRAM ... 75

FIGURE 80 CORRECT PREDICTION USE CASE INTERACTION DIAGRAM ... 76

FIGURE 81 LOG IN AS ADMINISTRATOR USE CASE INTERACTION DIAGRAM .. 77

FIGURE 82 DATABASE ENTITY-RELATIONSHIP DIAGRAM .. 79

FIGURE 83 FINAL MAIN WINDOW.. 79

FIGURE 84 FINAL AUTHENTICATION WINDOW .. 80

FIGURE 85 FINAL TRAINING WINDOW .. 80

FIGURE 86 CONFIRMATION WINDOW FOR CORRECTING A PREDICTION .. 81

FIGURE 87 CONFIRMATION WINDOW FOR TRAINING A MODEL .. 81

FIGURE 88 CHANGE CLASSIFICATION METHOD UNIT TEST ... 82

FIGURE 89 DETECT INAPPROPRIATE MESSAGES UNIT TEST .. 83

FIGURE 90 SAVE RESULTS TO FILE UNIT TEST .. 83

FIGURE 91 CORRECT PREDICTIONS UNIT TEST .. 84

Final Degree Project

School of Computer Engineering - University of Oviedo | Project Report 13

FIGURE 92 LOG IN AS ADMINISTRATOR UNIT TEST .. 85

FIGURE 93 TRAIN MODELS UNIT TEST .. 85

FIGURE 94 USER PROFILE RANKING SURVEY .. 86

FIGURE 95 GUIDED ACTIVITIES SURVEY .. 87

FIGURE 96 QUICK QUESTIONS ABOUT THE APPLICATION SURVEY .. 87

FIGURE 97 TESTER SURVEY ... 88

FIGURE 98 PERFORMANCE TESTS.. 89

FIGURE 99 VISUAL STUDIO CODE LOGO ... 91

FIGURE 100 GIT LOGO .. 92

FIGURE 101 NATURAL LANGUAGE PROCESSING GRAPH.. 93

FIGURE 102 CONFUSION MATRIX ... 100

FIGURE 103 DOG/CAT CONFUSION MATRIX .. 101

FIGURE 104 STATISTICS FROM STATE-OF-ART BINARY MODELS .. 104

FIGURE 105 STATISTICS FROM STATE-OF-ART MULTILABEL MODELS .. 105

FIGURE 106 BINARY MODEL ALTERNATIVES ... 108

FIGURE 107 ACCURACY GROUPED BY DATA TRANSFORMATION METHODS ... 110

FIGURE 108 ACCURACY GROUPED BYU PREPROCESSING METHODS ... 111

FIGURE 109 ACCURACY GROUPED BY DATASET .. 111

FIGURE 110 PRECISION GROUPED BY DATASET .. 112

FIGURE 111 MULTILABEL MODEL ALTERNATIVES .. 114

FIGURE 112 LABELS' METRIC VALUES FOR MODEL 4 WITH BAG OF WORDS ... 115

FIGURE 113 LABELS' METRIC VALUES FOR MODEL 4 WITH TF-IDF .. 116

FIGURE 114 LABELS' METRIC VALUES FOR MODEL 5 WITH BAG OF WORDS ... 116

FIGURE 115 LABELS' METRIC VALUES FOR MODEL 5 WITH TF-IDF .. 116

FIGURE 116 CHANGE CLASSIFICATION METHOD UNIT TEST RESULT ... 118

FIGURE 117 DETECT INAPPROPRIATE MESSAGES UNIT TEST RESULT .. 119

FIGURE 118SAVE RESULTS TO FILE UNIT TEST RESULT .. 119

FIGURE 119 CORRECT PREDICTIONS UNIT TEST RESULT .. 120

FIGURE 120 LOG IN AS ADMINISTRATOR UNIT TEST RESULT .. 121

FIGURE 121 TRAIN MODELS UNIT TEST RESULT .. 121

FIGURE 122 USER PROFILE RANKING SURVEY COMPLETED BY JORGE ANTONIO ... 122

FIGURE 123 USER PROFILE RANKING SURVEY COMPLETED BY MARTA ... 123

FIGURE 124 USER PROFILE RANKING SURVEY COMPLETED BY JOSE IGNACIO ... 123

FIGURE 125 GUIDED ACTIVITIES SURVEY COMPLETED BY JORGE ANTONIO ... 124

FIGURE 126 GUIDED ACTIVITIES SURVEY COMPLETED BY MARTA ... 125

FIGURE 127 GUIDED ACTIVITIES SURVEY COMPLETED BY JOSE IGNACIO ... 125

FIGURE 128 QUICK QUESTION ABOUT THE APPLICATION SURVEY COMPLETED BY JORGE ANTONIO 126

FIGURE 129 QUICK QUESTION ABOUT THE APPLICATION SURVEY COMPLETED BY MARTA .. 127

FIGURE 130 QUICK QUESTION ABOUT THE APPLICATION SURVEY COMPLETED BY JOSE IGNACIO 128

FIGURE 131 CUSTOMIZED ACCESSIBILITY CHECKLIST .. 130

FIGURE 132 PERFORMANCE TESTS RESULTS .. 131

FIGURE 133 INSTALLATION MANUAL OPEN CMD .. 132

FIGURE 134 INSTALLATION MANUAL VIRTUAL ENVIRONMENT ACTIVATION .. 133

FIGURE 135 EXECUTION MANUAL INIT.JSON ... 133

FIGURE 136 START OF APPLICATION ... 134

FIGURE 137 STEP 1 TO PREDICT A MESSAGE .. 135

FIGURE 138 FINAL STEP TO PREDICT A MESSAGE .. 135

FIGURE 139 STEP 1 TO PREDICT MESSAGES IN A FILE ... 136

FIGURE 140 STEP 2 TO PREDICT MESSAGES IN A FILE ... 136

FIGURE 141 FINAL STEP TO PREDICT MESSAGES IN A FILE .. 137

Final Degree Project

14 Project Report | School of Computer Engineering - University of Oviedo

FIGURE 142 CHANGE THE METHOD FOR CLASSIFICATION .. 138

FIGURE 143 EXAMPLE OF PREDICTING WITH THE ITEMIZED METHOD ... 138

FIGURE 144 FILE EXPLORER FOR SAVING RESULTS TO A FILE .. 139

FIGURE 145 EXAMPLE OF SAVING PREDICTION TO FILE... 139

FIGURE 146 EXAMPLE OF SAVED PREDICTION .CSV FILE .. 140

FIGURE 147 EXAMPLE OF SAVED PREDICTION .TXT FILE .. 140

FIGURE 148 AUTHENTICATION DIALOG .. 140

FIGURE 149 MAIN WINDOW AFTER LOGGING AS ADMINISTRATOR ... 141

FIGURE 150 PREDICTION PERFORMED AS ADMINISTRATOR ... 141

FIGURE 151 CHOSEN MESSAGE TO CORRECT PREDICTION ... 142

FIGURE 152 CONFIRMATION WINDOW FOR CORRECTION OF A PREDICTION .. 142

FIGURE 153 MESSAGE AFTER CORRECTING THE PREDICTION ... 143

FIGURE 154 TRAIN MODEL WINDOW .. 143

FIGURE 155 CONFIRMATION WINDOW FOR TRAINING A MODEL .. 144

FIGURE 156 CONFIRMATION WINDOW DURING TRAINING ... 144

FIGURE 157 FINALIZED TRAINING WITH INVALID MESSAGES .. 144

FIGURE 158 FINALIZED SUCCESSFUL TRAINING ... 145

FIGURE 159 FINAL WORK BREAKDOWN STRUCTURE .. 152

FIGURE 160 FINAL COSTS BUDGET RESEARCH AND FOLLOWING ITEM 1 .. 152

FIGURE 161 FINAL COSTS BUDGET RESEARCH AND FOLLOWING ITEM 2 .. 153

FIGURE 162 FINAL COSTS BUDGET DEVELOPMENT ITEM 1 ... 154

FIGURE 163 FINAL COSTS BUDGET DEVELOPMENT ITEM 2 ... 155

FIGURE 164 FINAL COSTS BUDGET DOCUMENTATION ITEM 1 ... 156

FIGURE 165 FINAL COSTS BUDGET DOCUMENTATION ITEM 2 ... 157

FIGURE 166 FINAL COSTS BUDGET SUMMARY ... 157

FIGURE 167 CONTENTS OF THE ATTACHED FILE .. 169

FIGURE 168 CONTENTS OF THE COMPRESSED FILE .. 169

FIGURE 169 MEETING MINUTES .. 170

Final Degree Project

School of Computer Engineering - University of Oviedo | Project Report 15

Chapter 1. Project Report

The main features of this project, as well as other relevant characteristics are described below.

1.1 Motivation Summary, Objectives and Project

Scope

Nowadays, the spread utilization of the Internet and more specifically of social media is

undeniable. This exposition to the general public, besides the relentless success and benefits,

inevitably leads to the proliferation of harming practices, both for the people using the web and

for the Internet itself. Among these practices we can encounter posts that hold inadequate

behaviours, which have been especially relevant for the last years, and a focal point for many

studies and analysis.

The ease for expressing one’s opinion in addition to the anonymity’s apparent safety behind the

screen, encourages a lot of people to spread negative-connotation messages, which could carry

harmful intentions. There is a wide spectrum discussing negative opinions. On one hand, there

are messages that, although negative, their purpose may be considered as a respectful review.

On the other hand, there are publications whose eventual objective is hate speech, threating,

harassment, etc.

The later example has driven to an infinity of debates about the boundaries of free speech. One

answer shared by several of the most visited websites has been the implementation of filtering

systems, that allow taking decisions about these sorts of posts. Some companies tend to display

warnings to the people that may be concerned, whilst other corporations choose to erase the

messages and even punish the responsible user.

While it is true that these mechanisms may be interpreted as a limitation of freedom of speech,

the organizations and their policies are the ones that establish how the filtering methods should

be used, whether they ought to be used with a strong or weak approach.

Thus, inappropriate message detection systems do not present any sort of ethical dilemma in

terms of its use, and they are increasingly necessary in the exponential usage of social networks

and websites.

The main goal of this project is to offer whoever person or whichever company the possibility of

tracking the possible harmful comments inside a set of documents. The system also has the

objective of being maintainable, given that a company using it may have an already established

machine learning model that can perform better classification than the ones suggested, or the

company may want to create a new model from scratch. This project has not the intention of

providing censorship mechanisms to the companies utilizing it, although this issue is out of the

system’s reach.

Final Degree Project

16 Project Report | School of Computer Engineering - University of Oviedo

1.2 Summary of all Aspects

On this section, the objectives of later parts of the document are encapsulated.

Introduction. Project precedents are developed, as well as their justification, goals, and current

situation.

Theoretical aspects. Brief explanation of the most abstract concepts upon which this project is

supported, their importance within it and their origin.

Project planning and initial budgets. The project framework is shown on this chapter, the

context in which is proposed and first outlined budgets.

Analysis. Requirements and documentation corresponding to the analysis phase within the

project fulfilment.

System design. The disposition of the different parts of the system are laid out, as it can be its

infrastructure, communication between subsystems or the description and sketches of the user

interface, in addition to the detailed process of the testing plan.

System implementation. On this section, the document explains in detail the different tools and

technologies used, along a journey through the process of the system implementation. Also,

problems found during the development are specified.

Evaluation of alternatives. Discussion and analysis of the state-of-art solutions regarding this

project’s matter. Also, the different alternatives attempted throughout the system development

are described and evaluated.

Testing development. The development of the testing plans already discussed on the system

design.

System manuals. Explanations and tutorials on different usage levels, like installation manuals

or user guide.

Conclusions and future work. Conclusions from the author regarding the obtained results and

his expectations, and possible extensions for the system.

Project planning and final budgets. Idem to the namesake chapter, but on the final phase of

this project.

Bibliographic references. Consulted resources for the project development.

Annexes. They contain the glossary of terms, a description of the attached content, and meeting

minutes.

Final Degree Project

School of Computer Engineering - University of Oviedo | Introduction 17

Chapter 2. Introduction

In this chapter the main discussions topics are the justification of this project, its main objectives,

and the analysis of the current state-of-art solutions.

2.1 Justification of the Project

This project is born out of need of different organizations exposed to the public of locating those

messages that are inappropriate. The term inappropriate is baffling, given that it varies

depending on the context of its use. In this project we can define it as a property socially

conferred to whichever message that exhibits elements of toxicity, obscenity, threat, insult

and/or hate speech within its meaning, i.e., a message is inappropriate when most of the people

analysing it recognizes that its nature is contained inside one or more of the former categories.

A large quantity of inappropriate messages in, for instance, a social network, translates to a risk

for the rest of the network, since the publications are potentially detrimental for readers who

may feel identified with them.

At first glance, the implementation of a system which detects these messages may seem like a

controversial measure, because it can drive to a restriction to free speech, besides the fact the

line drawn for texts considered attacks to an individual or group of individuals’ sensitivity is

vague and subjective. Although this is an unsolved debate, the discussed system is external to

it, given that it is, indeed, the organization who is in possession of the system the one that

decides which strategy to stick to in order to deal with these messages, either by censorship or

less extreme means.

Nevertheless, there are messages that have no room in present society and should not be shared

across any platform, like incitement to hatred against certain groups or threats to certain

individuals.

Unfortunately, there have been multiple cases of cyberbullying that have led to dreadful events

due to the widespread growth of messages with degrading intentions. However, we are

currently giving more importance to mental health and commencing to talk about this topic,

that not so long ago was ignored.

It is pending assignment of society to try to eradicate any sort of offensive attitude towards

people or groups with the mere purpose of harming, and this system intends to be helpful on

this matter.

Final Degree Project

18 Introduction | School of Computer Engineering - University of Oviedo

2.2 Objectives of the Project

Next, the goals of the fulfilment of this project are listed:

1. Create a program capable of detecting a message or group of messages as inappropriate

through two distinct methods:

a. Binary classification (appropriate or inappropriate).

b. A more detailed classification that breaks down the constitution of the message

in terms of toxicity, obscenity, threat, insult or hate speech.

2. Allow the user to change the classification method among the options listed previously.

3. Allow an administrator (with the corresponding credentials) to train the classifiers with

the intention of improving them and testing them later.

4. Allow an administrator to correct predictions performed by the both models.

5. Allow a user to save the predictions performed into a file.

Final Degree Project

School of Computer Engineering - University of Oviedo | Introduction 19

2.3 Study of Current Situation

One of the features of this project, which is quite normal in text classification tasks, is the

concision of the parameters by which the classification is run. This concern highlights a doubt

about when a text is considered appropriate for the concept upon which it is classified (if it

contains rude words, swear words, if it attacks a person or group of people despite using a

correct vocabulary, etc.)

This dim definition provokes the disagreement when it comes to categorizing texts, since what

a person considers inappropriate may not be inappropriate for another person. Therefore,

available datasets vary drastically on the categories in which documents are classified.

Some works have focused on identifying if the used language in the text is offensive or hate

speech like Davidson’s, in which more classic methods are utilized, like logistic regression [1].

There are older publications like Smokey, which proposes a hostile message automatic detection

system [2].

On the other hand, several other papers have done research on toxic text classification in other

languages, like Banik and Rahman who cover Bengali [3], or Álvarez Carmona with Mexican

Spanish [4].

In most of the cases, the model which is used is an artificial neural network trained with different

datasets. Building a neural network from scratch requires a vast knowledge on deep learning

and neural networks themselves. So, a common solution is using pre-trained models for the

classification, like BERT [5].

The contribution of this project is the intent on proposing a definition of «inappropriate

message» that gathers the former studies. It is also appealing to unify in a single system the

capability of classifying a text with a binary approach or a more itemized approach with

multilabel classification. Last, one of the main goals of this project is to offer a system that can

be extended to receive other modules and be maintained with ease.

2.3.1 Alternatives evaluation

System alternatives can be spanned according to the sophistication degree we want to agree

on. Even so, the following subsections describe some of the alternatives regarding the main

model for classifying text.

2.3.1.1 Rule-based system (unfeasible)

A traditional program could be considered among the possible alternatives for implementing

the system. This idea, however, is easily dispensable, due to the infinite generative nature of

language, that allows building sentences in countless ways. We could cover a large sample of

these sentences, but we would always fall short to the possibilities of constructing a phrase.

Final Degree Project

20 Introduction | School of Computer Engineering - University of Oviedo

2.3.1.2 Logistic regression

Given that a part of our system has the goal of classifying text as inappropriate or not, we are

facing a binary classification task. To solve these sorts of problems, it is frequent the use of linear

classifiers. In this group of classifiers, logistic regression in one of the most common. Logistic

regression allows us to make a classification with ease. There are other linear classifiers that

may serve for the implementation of the system, but this is the one chosen for our task [6].

2.3.1.3 Other binary models

When it comes to selecting a classifier, the research throughout the years shows that it does not

exist a perfect fit for a given task. Therefore, we must try several options in order to spot the

most suitable one. To achieve a binary classification, we may look up for different sorts of

models. Popular classifiers include the perceptron, stochastic gradient descent and naive bayes,

among others [7].

2.3.1.4 Neural networks

Deep learning is one of the usual go-to options in artificial intelligence problems, and this system

is not an exception. The capability of neural networks of retracing the error across their neurons,

is an ideal way of fine-tuning a model to accomplish our task. However, knowledge about this

model is not trivial. One of the main drawbacks of artificial networks is its high-demanding

understanding on how it operates, and for that reason it is seen sometimes as an excessive

approach depending on the task reach [8].

2.3.1.5 One vs Rest approach

This method transforms a multiclass problem into several binary tasks. This mechanism enables

to use a simple and known binary model like the one we use for the binary classification and

train it with a non-binary dataset. Nevertheless, it is a strategy used to «patch» in some way a

more complex problem, so it probably will not be as effective as a neural network [9]. Also, it is

not the best approach for multilabel tasks.

2.3.1.6 Multilabel task transformations

Multilabel strategy is a complex task that can be very-well implemented using distinct methods,

like binary relevance, classifier chain, and label powerset. These methods will be described in

section 2.3.1.6.1, 2.3.1.6.2, and 2.3.1.6.3. All the examples have been acquired from [11]. They

are similar approaches to the OvR technique, in the sense that they try to transform the problem

into a binary classification problem, and this may lead to the same issues [10].

Final Degree Project

School of Computer Engineering - University of Oviedo | Introduction 21

2.3.1.6.1 Binary relevance

This method allows to split a multilabel task into multiple binary classification tasks. Imagine we

had this small dataset. X1, X2 and X3 are the samples and they had three associated prediction

values.

X Target1 Target2 Target3

X1 0 0 1

X2 0 0 0

X3 1 0 1

Figure 1 Multilabel classification examples

If we performed binary relevance, we would get three datasets corresponding to each target.

Thus, we have shifted a single multilabel classification problem into three binary classification

problems.

X Target1

X1 0

X2 0

X3 1

X Target2

X1 0

X2 0

X3 0

X Target3

X1 1

X2 0

X3 1

Figure 2 Binary relevance transformation example

This method works similarly to the One VS Rest method, but it manages non-exclusive targets.

2.3.1.6.2 Classifier chain

One of the main disadvantages of the binary relevance transformation is that it loses all

correlation between labels, which depending on the task it would be interesting to keep. The

classifier chain approach solves this issue adding as a feature the previous target value

sequentially. Consider the example on Figure 1. If we used the classifier chain mechanism, we

would first obtain a dataset with the three samples and the three values of Target1. Then, this

dataset is used as the input for the next one that will have as Target2 as the target. Finally, this

second dataset will be the features for the final dataset that will have Target3 as target.

X Target1

X1 0

X2 0

X3 1

→

X Y1 Target2

X1 0 0

X2 0 0

X3 1 0

→

X Y1 Y2 Target3

X1 0 0 1

X2 0 0 0

X3 1 0 1

Figure 3 Classifier chain transformation example

2.3.1.6.3 Label powerset

This method allows to consider every possible combination of the targets as a singular value.

The difference is that this method transforms the multilabel task into a multiclass task. We will

Final Degree Project

22 Introduction | School of Computer Engineering - University of Oviedo

see how it would look in the example given in Figure 1. In this case, as we only have three of all

the possible combinations, we will have three classes out of the possible eight.

X Class

X1 1

X2 2

X3 3

Figure 4 Label powerset example

This last method could work for small number of targets but not for large numbers of targets.

Some multilabel classification tasks work with hundreds of targets, so if for instance we had a

complete dataset with most of the targets’ possible combinations, the label powerset would

compute more than 2100 classes, which is computationally inefficient.

Final Degree Project

School of Computer Engineering - University of Oviedo | Theoretical Aspects 23

Chapter 3. Theoretical Aspects

This chapter details some essential characteristics for the purpose of understanding the logic

behind several of the key concepts of this project.

3.1 Artificial intelligence (AI)

The next three subparts try to discern the concepts of artificial intelligence, machine learning

and deep learning, that are crucial in these sorts of problems but often confused.

The Artificial Intelligence concept has several suitable definitions, yet we will stick to the

definition proposed by John McCarthy in which artificial intelligence is «the ability of a machine

to mimic the behaviour of the human mind on problem-solving and decision-making» [12].

We establish the origin of artificial intelligence in the first half of the 20th century, when Alan

Turing, one of the fathers of modern computer science brings up the question: «Can machines

think? » on his study Computing Machinery and Intelligence [13]. His early passing and the few

resources of that time prevented him from putting into practice his question, but he set the

theoretical framework and the basis upon which future work would be done. Since then,

artificial intelligence has evolved drastically and surpassed Turing expectations, and it is

considered one of most critical goals of future’s computer science [14].

3.2 Machine learning (ML)

Machine learning is a branch of artificial intelligence that gathers the methods and techniques

for imitating human learning behaviour. In essence, machine learning systems manage historical

labelled data and attempts to predict outputs which are not programmatically specified.

We can confer the invention of the term to Arthur L. Samuel in [15], which talks about a machine

he built to play against in the game of checkers. This research proposes some approaches to

creating a “learning” machine, like alpha-beta pruning [16] and the minimax algorithm [17] [18].

The main distinct feature of machine learning compared to artificial intelligence is that the

learning and predicting mechanisms are intrinsic to it, whilst there are fields inside artificial

intelligence that may not include these mechanisms, like some parts of natural language

processing.

Final Degree Project

24 Theoretical Aspects | School of Computer Engineering - University of Oviedo

3.3 Deep learning (DL)

Deep learning is a subset of machine learning, where developed systems try to imitate the

structure of the human brain. Its foundation lies in the neural networks of the brain.

The origin of deep learning can be set on 1943, when Warren McCulloch and Walter Pitts

designed a neural-network-based computer [19].

Later research would incorporate key attributes of deep learning, like back propagation, learning

rate, etc.

Although it may be seen as two identical ideas, machine learning and deep learning have clear

distinctions between each other, as deep learning algorithms may develop complex patterns

that machine learning mechanisms would not.

3.4 Linear regression

Although is not explicitly used on the built system, understanding linear regression is a good

starting point to understand the rest of theoretical concepts.

Regression is a statistical method which allows to predict a dependent value having an

independent one. In supervised machine learning, that is, machine learning which works with

known data, classification and regression are the two main types. Classification attempts to

predict an input with a discrete value, a finite set of results. Regression tries to correlate an input

with a continuous value, which means infinite possible solutions.

Linear regression is a mathematical model used in this purpose. The general formula for this

model is

𝑓(𝑥) = 𝛽0 + 𝛽1𝑋

Figure 5 Formula of a simple linear regression

where 𝑋 is the sample given as input, 𝛽1 is the parameter corresponding to that variable and

the one we want to fit, and 𝛽0 is a particular bias. As we can see, this is the general equation for

a line function, which will predict any new input. In short, we want to find a line function which

represents the tendency of the data, so when new data is presented, the model finds a nearby

result to the accurate one.

This function can be generalized to cover multiple independent variables. This case is called

multiple linear regression, whilst the former one is named simple linear regression.

In order to rectify the possible error of the model, we need a mechanism that computes how far

we have ended up from the correct answer and recalculate the parameter (weight) accordingly.

We compute the cost function. A popular method is the mean square error estimation, which

elevates to the square the error and reassigns new values to the parameters [20]–[22].

Final Degree Project

School of Computer Engineering - University of Oviedo | Theoretical Aspects 25

3.5 Logistic regression

Logistic regression is a statistical model which allows to predict a categorical value given an

input. Given an independent variable or set of variables, the resolution will be a value in a binary

set (0 or 1, true or false, yes or no, etc.). Despite having «regression» in its name, it is enclosed

in classification tasks with discrete values. The behaviour of this model is due to the sigmoid

function:

𝑓(𝑥) =
1

1 + 𝑒−(𝛽0+ 𝛽1𝑋)

Figure 6 First formula of logistic regression for one variable

This is a “S” shaped function that allows to clearly split two different groups and normalize the

output. To achieve a result equal to 0 or 1, we need a threshold that separates both groups.

This threshold usually lies around 0.5 (anything above or equal to that number would be 1 and

anything below would be 0), so each possible value weights the same, however this is also a

parameter we can tune for a granted problem. We could redraft the former function as:

𝑓(𝑥) = 𝑔(𝛽0 + 𝛽1𝑋)

Figure 7 Second formula of logistic regression for one variable

In this case 𝑔(𝑥) would be the sigmoid function. It is unequivocal that logistic regression could

be seen as a linear regression model with a certain function which permits the discretization of

the result.

For the cost functions we have, once again, several options. Maximum likelihood, Newton’s

method, stochastic gradient descent, etc. Selecting the optimal cost function will depend in the

problem we want to solve.

As for every model, we would need a mechanism to prevent overfitting, which is occurs

whenever training data is classified correctly but unseen data is prone to error. Hence, logistic

regression uses penalization algorithms which enlarge the penalization to a greater or lesser

extent [6], [23], [24].

3.6 Stochastic Gradient Descent

To understand Stochastic Gradient Descent, we should know what Gradient Descent is first.

Gradient Descent is an iterative algorithm whose objective is to find the values for a set of

independent variables, or features, that produce a minimum point inside a given function. This

is considered an algorithm of optimization, a mathematical field which consists of finding the

optimal solution for a set of elements. In machine learning, this function usually is referred as

the cost function or loss function, which is the function we want to minimize.

Final Degree Project

26 Theoretical Aspects | School of Computer Engineering - University of Oviedo

As this algorithm follows an iterative process, the steps of the algorithm are explained inside an

example with two features 𝑥 = (𝑥1, 𝑥2) and one target 𝑦1:

1. Pick random values for the features.

2. Calculate the gradient of the function. The gradient of the function is the vector formed

by the partial derivatives of the target. This would be ∇𝑓 = [

𝜕𝑦1
𝜕𝑥1

𝜕𝑦1
𝜕𝑥2

]. This is a vector that

represents the slope of this function.

3. Recalculate the parameters adding the opposite of this gradient (𝑥 = 𝑥 − 𝛼∇f), being

𝛼 a hyperparameter called “learning rate”. This parameter will establish how much this

gradient will change the recomputed parameters. In essence, it marks the size of the

step that the algorithm performs. A small learning rate could lead to excessive

iterations. A large learning rate could mean no convergence. The value of this

hyperparameter is key for a good gradient descent algorithm.

4. Repeat 2 and 3 until the gradient becomes near 0.

The problem comes when we work with large numbers. If we had a one-million-sample dataset,

the gradient descent algorithm would have to use for completing a single iteration. Thus, it

would not be resource-efficient to perform it. Stochastic Gradient Descent (SGD) solves this

issue by selecting stochastically (randomly) a single sample to perform each iteration [25]–[27].

3.7 Neural network

Artificial neural networks are deep learning models which represent an abstraction of the

human brain structure from the real world. The atomic structure in a neural network is a node

called neuron.

In this figure the most important characteristics of a neuron are presented. 𝑥𝑖 is the 𝑖𝑡ℎ input,

𝑤𝑖 is the weight corresponding to the 𝑖𝑡ℎ input, 𝑥0 and 𝑤0 are a biased input and weight,

respectively, and 𝑎 is the output of the operation inside the node.

One of the limitations of a single neuron is that it cannot solve non-linear problems, so they are

concatenated with other neurons to form sequences, and they are also usually group into layers.

A layer is a set of neurons that receive the same inputs, and it is usually represented vertically.

To achieve more interesting alterations on each node the neurons apply activation functions,

Figure 8 Representation of an artificial neuron

Final Degree Project

School of Computer Engineering - University of Oviedo | Theoretical Aspects 27

which perform non-linear operations, for instance the sigmoid or the hyperbolic tangent

function.

The most intriguing feature of neural networks and deep learning models is their ability of being

self-aware of the error computed and trying to fix it. Backpropagation is a method that assigns

to each neuron an amount of responsibility they had on the error and does this in an efficient

way [8], [28].

3.8 Bidirectional Encoder Representations from

Transformers (BERT)

BERT is a deep learning model developed by Google used in natural language processing tasks.

The idea behind BERT is to pre-train a model that “understands” the language and prepare it to

be fine-tuned to the specific problem. It was pretrained against over 3.3 billion words from

Google Books and Wikipedia and it is composed of several layers and sequences.

Towards the goal of understanding BERT, we must understand first what Transformers is. Neural

networks have evolved since its origin. For instance, convolutional neural networks are

specialized in spatial learning like images, and recurrent neural networks that receive sequences

like text and have into account the “memory” of previous neurons or layers. In this last case

nevertheless, this memory has come to be small, since in long sentences the first words would

have little semantic impact on the latest ones. Transformers attempt to solve this issue, by

feeding the neural network with positional encoding of the text and applying attention

mechanisms [29], [30].

3.9 Python

Python is a high-level programming language developed in the decade of 1980 that has gained

increasingly relevance in the last years. It was developed by Guido van Rossum, when he was

working in a programming language called ABC. The developer had the clear objective of

satisfying a particular condition: implement a programming language that could be taught to

intelligent computer users who had no experience in programming. Van Rossum has always

assumed that most of the success of implementing Python was his experience in the ABC

programming language project [31].

Figure 9 Python logo

Final Degree Project

28 Theoretical Aspects | School of Computer Engineering - University of Oviedo

Two of the main distinctive characteristics of this language are the readability for the human

and the flexibility to fit different programming paradigms. Python is widely used by artificial

intelligence developers, due to the existence of a large quantity of libraries for this purpose, and

moreover, for machine learning. We will describe some of these machine learning libraries in

the following subchapters.

3.10 Scikit Learn

Scikit Learn is a popular machine learning library implemented in Python. It has several options

of supervised and unsupervised learning. One of the key features of Scikit Learn is that it is

intuitive to implement and understand with minimum machine learning concepts. Linear

models, which are the focal elements of Scikit Learn used on this project, are fast, memory-

cheap, and easy-understandable. However, the main concern with this library is its lack of deep

learning implementations like neural networks. There were attempts of developing libraries

which would use well-known libraries implementing neural networks with a friendly Scikit Learn

interface, but they are outdated and not working as expected [32].

Figure 10 Scikit Learn logo

3.11 Pytorch

PyTorch is a widely used Python open-source library specialized in machine learning and deep

learning. This library is popular due to its scalable structure, where you can implement a simple

model at first and gradually improve its performance by adding components. It has the capability

of constructing neural networks, which is the main feature used for the systems regarding

Pytorch. A considerable issue with this library is the fact that it is not as elementary to use as

Scikit Learn can be, since it demands higher machine learning skills than the former library [33].

Figure 11 PyTorch logo

3.12 Transformers

Final Degree Project

School of Computer Engineering - University of Oviedo | Theoretical Aspects 29

Transformers is a library offered by HuggingFace, a community that creates open-source

systems to implement machine learning and deep learning programs. HuggingFace is a company

founded by Clement Delangue and Julien Chaumond in 2016 whose goal is the exploration of

artificial intelligence. Transformers is a state-of-art machine learning library which is based on

PyTorch [33], TensorFlow [34] and Jax [35], and it is widely used in both deep-learning and

Natural Language Processing tasks. Its importance in this project lays in that it contains different

implementations of BERT models.

Figure 12 HuggingFace logo

Final Degree Project

30 Project planning and initial budgets | School of Computer Engineering - University
of Oviedo

Chapter 4. Project planning and initial

budgets

The chapter presents the planning and budget suggested at the beginning of this project. Also,

a simulated company model is set, mocking different job roles, salaries and costs and benefits.

4.1 Initial planning

The first draft made of this project was finally set on November of 2021, where it is stablished a

duration of 93 days (around 3 months) that would cover mainly the first quarter of 2022, from

November 22th, 2021, until March 3rd, 2022, when it is expected to be delivered.

The plan is developed by only person represented in different roles, based on which would do

that specific task inside a real-world organization.

ID Name Start Finish Resource Names

1 Proyect Mon 22/11/21 Wed 30/03/22

2 Research Mon 22/11/21 Thu 02/12/21

3 Related papers Mon 22/11/21 Wed 24/11/21 Team Leader

4 Implementation alternatives Thu 25/11/21 Mon 29/11/21 Team Leader

5 Implementation tools Tue 30/11/21 Thu 02/12/21 Team Leader

6 Development Fri 03/12/21 Fri 18/03/22

7 System 1 Alternative Fri 03/12/21 Mon 28/02/22

8 Analysis Fri 03/12/21 Wed 08/12/21

9 System definition Fri 03/12/21 Mon 06/12/21 Analyst

10 Elicitation Tue 07/12/21 Wed 08/12/21 Analyst

11 Design Thu 09/12/21 Thu 16/12/21

12 Architecture design Thu 09/12/21 Mon 13/12/21 Software Engineer

13 Diagrams and models design Tue 14/12/21 Thu 16/12/21 Software Engineer

14 Development Fri 17/12/21 Tue 08/02/22

15 Implementation Fri 17/12/21 Thu 30/12/21

16 NLP Fri 17/12/21 Thu 23/12/21 Senior Programmer

17 Machine learning Fri 24/12/21 Thu 30/12/21 Senior Programmer

18 Training Fri 31/12/21 Wed 19/01/22 Senior Programmer

19 Validation Thu 20/01/22 Tue 08/02/22 Senior Programmer

20 Testing Wed 09/02/22 Mon 28/02/22

21 Unit testing Wed 09/02/22 Fri 18/02/22 Tester

22 Acceptance testing Mon 21/02/22 Mon 28/02/22 Tester

23 System 2 Alternative Fri 03/12/21 Mon 28/02/22

24 Analysis Fri 03/12/21 Wed 08/12/21

25 System definition Fri 03/12/21 Mon 06/12/21 Analyst

26 Elicitation Tue 07/12/21 Wed 08/12/21 Analyst

27 Design Thu 09/12/21 Thu 16/12/21

28 Architecture design Thu 09/12/21 Mon 13/12/21 Software Engineer

29 Diagrams and models design Tue 14/12/21 Thu 16/12/21 Software Engineer

30 Development Fri 17/12/21 Tue 08/02/22

31 Implementation Fri 17/12/21 Thu 30/12/21

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and
initial budgets

31

32 NLP Fri 17/12/21 Thu 23/12/21 Senior Programmer

33 Machine learning Fri 24/12/21 Thu 30/12/21 Senior Programmer

34 Training Fri 31/12/21 Wed 19/01/22 Senior Programmer

35 Validation Thu 20/01/22 Tue 08/02/22 Senior Programmer

36 Testing Wed 09/02/22 Mon 28/02/22

37 Unit testing Wed 09/02/22 Fri 18/02/22 Tester

38 Acceptance testing Mon 21/02/22 Mon 28/02/22 Tester

39 Authentication Tue 01/03/22 Fri 04/03/22 Senior Programmer

40 Interface Mon 07/03/22 Fri 18/03/22 Senior Programmer

41 Documentation Fri 03/12/21 Wed 30/03/22

42 Planning and budget Fri 03/12/21 Mon 06/12/21 Team Leader

43 Report and introduction Tue 07/12/21 Tue 07/12/21 Team Leader

44 Theoretical aspects Tue 07/12/21 Wed 08/12/21 Team Leader

45 Analysis Thu 09/12/21 Mon 13/12/21 Analyst

46 Design Fri 17/12/21 Tue 21/12/21 Software Engineer

47 Implementation Mon 21/03/22 Wed 23/03/22 Software Engineer

48 Testing Tue 01/03/22 Wed 02/03/22 Tester

49 Annexes Thu 24/03/22 Fri 25/03/22 Software Engineer

50 Conclusions Mon 28/03/22 Wed 30/03/22 Team Leader

51 Follow-up meetings Thu 25/11/21 Thu 13/01/22

52 Follow-up meeting 1 Thu 25/11/21 Thu 25/11/21 Project Leader; Team Leader

53 Follow-up meeting 2 Thu 02/12/21 Thu 02/12/21 Project Leader; Team Leader

54 Follow-up meeting 3 Thu 09/12/21 Thu 09/12/21 Project Leader; Team Leader

55 Follow-up meeting 4 Thu 16/12/21 Thu 16/12/21 Project Leader; Team Leader

56 Follow-up meeting 5 Thu 23/12/21 Thu 23/12/21 Project Leader; Team Leader

57 Follow-up meeting 6 Thu 30/12/21 Thu 30/12/21 Project Leader; Team Leader

58 Follow-up meeting 7 Thu 06/01/22 Thu 06/01/22 Project Leader; Team Leader

59 Follow-up meeting 8 Thu 13/01/22 Thu 13/01/22 Project Leader; Team Leader

Figure 13 Work Breakdown Structure

4.2 Initial budget

To explain the budget suggested at the beginning of the implementation of this project, it has

been established into a made-up company with different roles, that simulate the different parts

of work of done by the author and director, and salaries which will be discussed in the following

subchapter, in addition the indirect costs and amortizations. Later, the budget itself is presented,

both for the costs and client.

4.2.1 Company definition

The company that is responsible of the fulfilment of the development of the system required

consists of six roles: Project Leader, Team Leader, Software Engineer, Analyst, Senior

Programmer and Tester. In Figure 14, Figure 15, and Figure 16 salaries, productivity, annual

worked hours, price per hour of each role and total invoice is shown.

Staff Quantity
Gross salary/year
(€)

Salary cost/year (€) Total (€)

Project Leader 1 45,000.00 59,850.00 59,850.00

Senior Programmer 1 22,000.00 29,260.00 29,260.00

Final Degree Project

32 Project planning and initial budgets | School of Computer Engineering - University
of Oviedo

Software Engineer 1 28,000.00 37,240.00 37,240.00

Tester 1 22,000.00 29,260.00 29,260.00

Analyst 1 25,000.00 33,250.00 33,250.00

Team Leader 1 30,000.00 39,900.00 39,900.00

Total 6 228,760.00

Figure 14 Company Direct Costs 1

Prod. (%) Direct cost (€) IC (%) Indirect Cost (€) Hours/year

20.00% 11,970.00 80.00% 47,880.00 2080

95.00% 27,797.00 5.00% 1,463.00 2080

95.00% 35,378.00 5.00% 1,862.00 2080

95.00% 27,797.00 5.00% 1,463.00 2080

90.00% 29,925.00 10.00% 3,325.00 2080

75.00% 29,925.00 25.00% 9,975.00 2080

 162,792.00 65,968.00

Figure 15 Company Direct Costs 2

Prod. hours/year
Prod. Hours/year
(total)

Price/hour (€) Billing (€)
Price/hour (w/o
benefits) (€)

416.00 416.00 80.00 33,280.00 64.00

1,976.00 1,976.00 27.50 54,340.00 22.00

1,976.00 1,976.00 35.00 69,160.00 28.00

1,976.00 1,976.00 27.50 54,340.00 22.00

1,872.00 1,872.00 33.00 61,776.00 26.50

1,560.00 1,560.00 47.50 74,100.00 38.00

 9,776.00 346,996.00

Figure 16 Company Direct Costs 3

Note that the column Price/hour was decided to be calculated as
𝑠𝑎𝑙𝑎𝑟𝑦 𝑐𝑜𝑠𝑡

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 ℎ𝑜𝑢𝑟𝑠/𝑦𝑒𝑎𝑟
∗ 1,85,

and for unfeasible values.

Next, we can see indirect costs of the company in Figure 17, summarizing facilities maintenance

and transporting and communication expenses.

Indirect costs Monthly Cost (€) Annual Cost (€)

Office cleaning 1,500.00 18,000.00

Electricity consumption 200.00 2,400.00

Water consumption 50.00 600.00

Transport expenses 200.00 2,400.00

Office renting 1,000.00 12,000.00

Communication expenses 600.00 7,200.00

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and
initial budgets

33

Office equipment 100.00 1,200.00

Audits costs 125.00 1,500.00

Sanitizing and disinfection equipment 40.00 480.00

Total 45,780.00

Figure 17 Company Indirect Costs

Afterwards, in Figure 18 and Figure 19 we may observe the material cost, amortizations, and

utilization period.

Device/License Units Price (€) Maintenance (€) Total price (€)

Microsoft 365
License

1 20.50 20.50

Adobe Illustrator
License

1 30.00 30.00

Windows 10 Pro
License

1 5.00 5.00

Microsoft Project
License

1 35.00 35.00

Development
laptops

1 1,100.00 100.00 1,200.00

Office desktop PCs 1 1,200.00 200.00 1,400.00

Figure 18 Company Devices & Licenses 1

Total Cost (€) Annual Cost (€) Type Time window Amortization (3 months)

20.50 246.00 Rent Monthly

30.00 360.00 Rent Monthly

5.00 1.00 Amortization 5 0.30

35.00 7.00 Amortization 5 2.10

1,200.00 300.00 Amortization 4 68.75

1,400.00 350.00 Amortization 4 75.00

TOTAL 1,264.00

Figure 19Company Devices & Licenses 2

Finally, a summary of the profitability of the company is presented in Figure 20. In this section

we may observe that the expected benefits represent a 25% of the total cost of the company.

Direct costs 162.792,00 €

Indirect costs 113.012,00 €

Total costs 275.804,00 €

Target benefits (25%) 68.951,00 €

Billing needs 344.755,00 €

Actual billing based on productive hours 346.996,00 €

Margin between total costs and billing 0.65%

Figure 20 Summary of Company's profitability

Final Degree Project

34 Project planning and initial budgets | School of Computer Engineering - University
of Oviedo

4.2.2 Costs budget

This section describes how the costs budget has been planned in the beginning of this project.

It has been broken down to three separate items: research and following up, development, and

documentation.

• Research and following up. It encapsulates the investigation of the basis upon which

the system will be supported, searching for state-of-art solutions and current proposed

papers, evaluating alternatives, and studying the basics of the corresponding theoretical

aspects. In addition to this, the following-up meetings where the progress is shown are

specified. See Figure 21 and Figure 22.

• Development. It summarises the two main systems which will be developed throughout

this project. These alternatives are broken down into four phases: analysis, design,

implementation, and testing. Moreover, the authentication subsystem and the user

interface are detailed. See Figure 23 and Figure 24.

• Documentation. The elaboration of the different parts of this document. See Figure 25

and Figure 26.

Each subitem cost is calculated by the salary of the role executing it. See Figure 16.

I1 I2 I3 Description Quantity Units

01 Research

 001 Related papers

 01 Team Leader 24 hours

 002 Implementation alternatives

 01 Team Leader 24 hours

 003 Implementation tools

 01 Team Leader 24 hours

02 Following up

 001 Follow-up meetings

 01 Project Leader 4.5 hours

 02 Team Leader 4.5 hours

Figure 21 Costs Budget Research and following Item 1

I1 I2 I3 Price Subtotal (3) Subtotal (2) Total

01 2,736.00 €

 001 912.00 €

 01 38.00 € 912.00 €

 002 912.00 €

 01 38.00 € 912.00 €

 003 912.00 €

 01 38.00 € 912.00 €

02 459.00 €

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and
initial budgets

35

 001 459.00 €

 01 64.00 € 288.00 €

 02 38.00 € 171.00 €

 TOTAL 3,195.00 €

Figure 22 Costs Budget Research and following Item 2

I1 I2 I3 I4 Description Quantity Units

01 System 1 Alternative

 001 Analysis

 0001 System definition

 01 Analyst 16 hours

 0002 Elicitation

 01 Analyst 16 hours

 002 Design

 0001 Architecture design

 01 Software Engineer 24 hours

 0002 Diagrams and models design

 01 Software Engineer 24 hours

 003 Development

 0001 Implementation

 01 Senior Programmer 80 hours

 0002 Training

 01 Senior Programmer 112 hours

 0003 Validation

 01 Senior Programmer 112 hours

 004 Testing

 0001 Unit testing

 01 Tester 64 hours

 0002 Acceptance testing

 01 Tester 48 hours

02 System 2 Alternative

 001 Analysis

 0001 System definition

 01 Analyst 16 hours

 0002 Elicitation

 01 Analyst 16 hours

 002 Design

 0001 Architecture design

 01 Software Engineer 24 hours

 0002 Diagrams and models design

Final Degree Project

36 Project planning and initial budgets | School of Computer Engineering - University
of Oviedo

 01 Software Engineer 24 hours

 003 Development

 0001 Implementation

 01 Senior Programmer 80 hours

 0002 Training

 01 Senior Programmer 112 hours

 0003 Validation

 01 Senior Programmer 112 hours

 004 Testing

 0001 Unit testing

 01 Tester 64 hours

 0002 Acceptance testing

 01 Tester 48 hours

03 Authentication

 01 Senior Programmer 64 hours

04 Interface

 01 Senior Programmer 160 hours

Figure 23 Costs Budget Development Item 1

I1 I2 I3 I4 Price Subtotal (4) (€) Subtotal (3) (€) Subtotal (2) (€) Total

01 11,344.00

 001 848.00

 0001 424.00

 01 26.50 424.00

 0002 424.00

 01 26.50 424.00

 002 1,344.00

 0001 672.00

 01 28.00 672.00

 0002 672.00

 01 28.00 672.00

 003 6,688.00

 0001 1,760.00

 01 22.00 1,760.00

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and
initial budgets

37

 0002 2,464.00

 01 22.00 2,464.00

 0003 2,464.00

 01 22.00 2,464.00

 004 2,464.00

 0001 1,408.00

 01 22.00 1,408.00

 0002 1,056.00

 01 22.00 1,056.00

02 11,344.00

 001 848.00

 0001 424.00

 01 26.50 424.00

 0002 424.00

 01 26.50 424.00

 002 1,344.00

 0001 672.00

 01 28.00 672.00

 0002 672.00

 01 28.00 672.00

 003 6,688.00

 0001 1,760.00

 01 22.00 1,760.00

 0002 2,464.00

 01 22.00 2,464.00

 0003 2,464.00

 01 22.00 2,464.00

 004 2,464.00

 0001 1,408.00

 01 22.00 1,408.00

 0002 1,056.00

Final Degree Project

38 Project planning and initial budgets | School of Computer Engineering - University
of Oviedo

 01 22.00 1,056.00

03 1,408.00

 01 22.00 1,408.00

04 3,520.00

 01 22.00 3,520.00

 TOTAL 27,616.00

Figure 24 Costs Budget Development Item 2

I1 I2 Description Quantity Units

01 Report and introduction

 01 Team Leader 8 hours

02 Theoretical aspects

 01 Team Leader 16 hours

03 Planniing and budget

 01 Team Leader 16 hours

04 Analysis

 01 Analyst 24 hours

05 Design

 01 Software Engineer 24 hours

06 Implementation

 01 Software Engineer 24 hours

07 Testing

 01 Tester 16 hours

08 Conclusions

 Project Leader 24 hours

09 Annexes

 01 Team Leader 16 hours

Figure 25 Costs Budget Documentation Item 1

I1 I2 Price Subtotal (2) Total

01 304.00 €

 01 38.00 € 304.00 €

02 608.00 €

 01 38.00 € 608.00 €

03 608.00 €

 01 38.00 € 608.00 €

04 636.00 €

 01 26.50 € 636.00 €

05 672.00 €

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and
initial budgets

39

 01 28.00 € 672.00 €

06 672.00 €

 01 28.00 € 672.00 €

07 352.00 €

 01 22.00 € 352.00 €

08 1,536.00 €

 64.00 € 1,536.00 €

09 608.00 €

 01 38.00 € 608.00 €

 TOTAL 5,996.00 €

Figure 26 Costs Budget Documentation Item 2

Figure 27 Costs Budget summary is a summary of the costs budget.

Item Item name Total

01 Research and following up 3.195,00 €

02 Development 27.616,00 €

03 Documentation 5.996,00 €

Total Cost 36.807,00 €

Figure 27 Costs Budget summary

4.2.3 Client budget

The following table shows the budget proposed to the client, summing up the most high-level

but concise points on each item. We must take into account that each subtotal is computed as

the price of each module bearing in mind the 25% of desired benefit, adding then the

corresponding increment for research and following up expenses, that are not included in any

item. This calculation does not apply for the Acquired Hardware item, which is mere purchase

needed for training system, regardless of the benefit wanted.

Item I1 I2 Item Subtotal (2) (€) Subtotal (1) (€) Total

01 Development 37,048.75 €

 01 System 1 Alternative 15,218.75

 01 Analysis 1,137.65

 02 Design 1,803.07

 03 Implementation 8,972.41

 04 Testing 3,305.62

 02 System 2 Alternative 15,218.75

 01 Analysis 1,137.65

 02 Design 1,803.07

Final Degree Project

40 Project planning and initial budgets | School of Computer Engineering - University
of Oviedo

 03 Implementation 8,972.41

 04 Testing 3,305.62

 03 Authentication 1,888.93

 04 User interface 4,722.32

02 Acquired hardware 1,600.00 €

 01 2 GPUs for training/validation 1,600.00

03 Documentation 8,044.04 €

 01 Report and introduction 407.84

 02 Theoretical aspects 815.67

 03 Planning and budget 815.67

 04 Analysis 853.24

 05 Design 901.53

 06 Implementation 901.53

 07 Design 472.23

 08 Conclusions 2.060.65

 09 Annexes 815.67

TOTAL CLIENT 46,692.79 €

 VAT 21%

TOTAL CLIENT (APPLIED VAT)

 56,498.28 €

Figure 28 Client Budget

This next table shows project integration within the company described capability.

Total Costs 36,807.00 €

Total Client 56,498.28 €

Profit (~25%) 19,691.28 €

Research and following up expenses (they
are not included in any item)

3,195.00 €

Profit margin 22.80%

Figure 29 Client Budget Overview

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 41

Chapter 5. Analysis

This chapter covers the analysis phase of this project, elicitation, and proper documentation of

the requisites.

5.1 System definition

We will comment the scope specification of the system, the system requirements, and the

description of the use cases and scenarios, along some diagrams to take a visual glance of the

system operation.

5.1.1 System scope specification

The system is intended to perform a classification based on whether a message or messages

introduced by the user are inappropriate or not through machine learning mechanisms. The

system offers two methods to achieve this classification: a binary classification that discretizes

a message as toxic or not, and an itemized classification that evaluates the text in terms of

toxicity, obscenity, threatening, insult and/or identity hate. In addition to this, an administrator

can provide more training data to the system.

5.2 System requirements

This subsection details the actors found in the system and the obtained requirements for its

implementation.

5.2.1 Elicitation

These section covers the functional and non-functional requirements acquired from the client.

5.2.1.1 Functional requirements

RFSIS.1. The program will allow the user to input a message to be classified.

RFSIS.1.1. The system must present the option for the user of introducing a message or set

of messages.

RFSIS.1.1.1. It will show an area where the user can insert the input message. The

written text will count as a single message.

RFSIS.1.1.2. It will show the option that allows to select the file containing the set of

messages.

RFSIS.1.1.3. Both options are exclusive. If the user picks one option, it cannot pick the

other one simultaneously.

RFSIS.1.1.4. It will check that the input is not empty.

Final Degree Project

42 Analysis | School of Computer Engineering - University of Oviedo

RFSIS.1.1.5. The input will have a fixed maximum length of 500 characters.

RFSIS.1.1.5.1. This value may be subject of change by the client.

RFSIS.1.2. The system must display the classification methods for the user choice.

RFSIS.1.2.1. It will display the binary method.

RFSIS.1.2.2. It will display the itemized method.

RFSIS.1.2.2.1. The method will consist of six items.

RFSIS.1.2.2.1.1. Toxic item.

RFSIS.1.2.2.1.2. Severe toxic item.

RFSIS.1.2.2.1.3. Obscene item.

RFSIS.1.2.2.1.4. Threat item.

RFSIS.1.2.2.1.5. Insult item.

RFSIS.1.2.2.1.6. Identity hate item.

RFSIS.1.2.3. It is mandatory that the user selects one of these methods. It will not

permit continuing until one is selected.

RFSIS.1.3. The system will compute the result given the chosen method.

RFSIS.1.3.1. While this calculation lasts, the user will be shown a message reporting the

situation.

RFSIS.1.4. The system will present the result to the user.

RFSIS.1.4.1. For the method in RFSIS.1.2.1. , it will show a message depending on the

prediction.

RFSIS.1.4.1.1. The message for an appropriate prediction is ‘Appropriate’.

RFSIS.1.4.1.2. The message for a non-appropriate prediction is ‘Inappropriate’.

RFSIS.1.4.1.3. The actual messages are subject to change by the client.

RFSIS.1.4.2. For the method in RFSIS.1.2.2. , it will show the list of items with their

individual prediction and the confidence percentage of each item prediction.

RFSIS.1.4.2.1. For RFSIS.1.2.2.1.1. it will show ‘Toxic’ or ‘Not Toxic’.

RFSIS.1.4.2.2. For RFSIS.1.2.2.1.2. it will show ‘Severe Toxic’ or ‘Not Severe Toxic’.

RFSIS.1.4.2.3. For RFSIS.1.2.2.1.3. it will show ‘Obscene’ or ‘Not Obscene’.

RFSIS.1.4.2.4. For RFSIS.1.2.2.1.4. it will show ‘Threat’ or ‘Not Threat’.

RFSIS.1.4.2.5. For RFSIS.1.2.2.1.5. it will show ‘Insult’ or ‘Not Insult’.

RFSIS.1.4.2.6. For RFSIS.1.2.2.1.6. it will show ‘Identity Hate’ or ‘Not Identity Hate’.

RFSIS.1.4.2.7. The messages are subject to change by the client.

RFSIS.1.5. The system must show an option of redoing a classification with new messages.

RFSIS.1.5.1. To perform another classification is mandatory to select this option.

RFSIS.1.6. The system will allow the user to save the results to a file.

RFSIS.1.6.1. The extension established is .csv.

RFSIS.1.6.1.1. It may be subject to change by the client.

RFSIS.1.6.2. It will store the text and the values presented to the user previously.

RFSIS.1.6.2.1. If the user introduced a set of messages, the output file will contain

one classification in each line.

RFSIS.2. The system will permit a user to log in as administrator.

RFSIS.2.1. The program must present an option in which the user can introduce the

credentials.

RFSIS.2.1.1. The program will ask for the username.

RFSIS.2.1.1.1. The username can only contain alphanumeric characters.

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 43

RFSIS.2.1.2. The program will ask for the password.

RFSIS.2.2. The program must check the validity of the input data.

RFSIS.2.2.1. The data cannot be blank.

RFSIS.2.2.2. The data will be compared to a database, verifying it matches any

information inside it.

RFSIS.2.2.3. If any validation fails, the program must warn the user.

RFSIS.2.2.3.1. The warning message will be ‘Invalid username or password’.

RFSIS.2.2.4. The message is subject to change by the client.

RFSIS.2.2.5. If the credentials are valid, the program will return the user to the previous

options.

RFSIS.2.3. The program must forbid the user to run as administrator if RFSIS.2.2. is not

accomplished.

RFSIS.3. The system will allow the user to train the models with new data.

RFSIS.3.1. The user must be logged in as administrator.

RFSIS.3.2. The user will be presented both methods offered which are described in

RFSIS.1.2.1. and RFSIS.1.2.2. to be trained.

RFSIS.3.3. The user will be displayed an option submitting a file with the new data.

RFSIS.3.3.1. The file must be in .csv format.

RFSIS.3.3.1.1. This may be subject to change by the client.

RFSIS.3.3.2. Each line of the file will contain a piece of data.

RFSIS.3.3.2.1. The piece of data must contain a text comment.

RFSIS.3.3.2.1.1. The program will check it is not blank.

RFSIS.3.3.2.2. The piece of data will contain the classification granted for the text.

RFSIS.3.3.2.2.1. This classification cannot be blank.

RFSIS.3.3.2.2.2. For method in RFSIS.1.2.1. , it will contain a number describing

the possible values.

RFSIS.3.3.2.2.2.1. For appropriate classification it will be 0.

RFSIS.3.3.2.2.2.2. For inappropriate classification it will be 1.

RFSIS.3.3.2.2.3. For method in RFSIS.1.2.2. , it will contain a number for each

item.

RFSIS.3.3.2.2.3.1. For each item it will be 0 if it is not satisfied.

RFSIS.3.3.2.2.3.2. For each item it will be 1 if it is satisfied.

RFSIS.3.3.2.2.4. This classification cannot be any other value than the

described above.

RFSIS.3.3.2.3. Each section of the piece of data will be separated by a semicolon.

RFSIS.3.4. If the file is valid, the data will be trained against the corresponding model.

RFSIS.3.5. The program will report the user the results of the training.

RFSIS.3.5.1. The message for a successful training will be ‘Data correctly integrated’.

RFSIS.3.5.1.1. This message is subject to change by the client.

RFSIS.3.5.2. The message for an unsuccessful training will be ‘Data incorrectly

integrated’ in addition to the source of the error.

RFSIS.3.5.2.1. This message is subject to change by the client.

RFSIS.4. The system will allow the user to correct the results of a prediction.

RFSIS.4.1. The user must be logged in as administrator.

RFSIS.4.2. The user must set the program in the state described in RFSIS.1.4. .

Final Degree Project

44 Analysis | School of Computer Engineering - University of Oviedo

RFSIS.4.3. The program will permit the user to introduce the desired prediction.

RFSIS.4.3.1. For the method in RFSIS.1.2.1. , it will show the two possible alternatives

to be chosen.

RFSIS.4.3.1.1. The possible options for the correction are the ones described in

RFSIS.1.4.1.1. and RFSIS.1.4.1.2. .

RFSIS.4.3.2. For the method in RFSIS.1.2.2. , it will display options for each item.

RFSIS.4.3.2.1. The possible options for the corrections are the ones described in the

subitems of RFSIS.1.4.2. .

RFSIS.4.3.3. The information introduced cannot be blank.

RFSIS.4.3.4. The information introduced cannot have any other value than the ones

described.

RFSIS.4.4. The program will create a file and train the corresponding model with the process

described in RFSIS.3.

5.2.1.2 Non-functional requirements

RNFSIS.1. The system implementation must attach to well-known design pattern as much as

possible.

RNFSIS.2. The password input for the administrator process described in must be encrypted

before comparing it to the database.

RNFSIS.3. Execution time for prediction must be lower than 1 second per message.

RNFSIS.4. Execution time for every new cycle of training of the binary model must be lower than

1 minute.

RNFSIS.5. Execution time for every new cycle of training of the itemized model must be lower

than 1 minute.

RNFSIS.6. The system must accomplish the features listed in section 9.3.

5.2.2 System Actors Identification

The system recognizes two different actors able to use it.

5.2.2.1 Non-administrator user

It is any user that is not logged in as an administrator. It can run classifications and save the

results to a file. It can also try to log in as administrator if it has the needed credentials.

5.2.2.2 Logged-in user (administrator)

It has the complete utilization of the system. He may perform any operation doable by a non-

administrator user. In addition to this, he can supply the models with new training data. It can

also correct the prediction of one classification.

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 45

5.2.3 Use cases specification

The next diagram shows the possible use cases offered by the system.

Figure 30 System use cases

Use case name

Detect inappropriate messages

Description

The user may make a classification introducing a message or set of messages. The system
computes the result and shows it to the user.
Moreover, the user may save the results to a file.
If the user is logged as an administrator, it may correct the predictions.

Figure 31 Detect inappropriate messages use case

Use case name

Change classification method

Description

The user selects the classification method between the methods offered. This step is
mandatory in order to perform the Detect inappropriate messages use case.

Figure 32 Change classification use case

Use case name

Log in as administrator

Description

Only available for users not logged in as administrator. The user uses credentials to log in as
an administrator and have access to other features of the system.

Figure 33 Log in as administrator use case

Use case name

Final Degree Project

46 Analysis | School of Computer Engineering - University of Oviedo

Train models

Description

It is mandatory that the user is logged in. The administrator can input data that is validated
by the program and trained against the model if the validation is successful. The system warns
the administrator of the result of the operation.

Figure 34 Train models use case

Use case name

Correct a prediction

Description

It is mandatory that the user is logged as an administrator. The administrator must make a
classification first. Then he will have the option of selecting the new prediction values and
introduce them to retrain the model with these prediction values.

Figure 35 Correct predictions use case

Use case name

Save results to file

Description

It is mandatory that at least one classification has had been performed. The user will have the
option of obtaining the results in a external file.

Figure 36 Save results to file use case

5.3 Subsystems identification in analysis phase

Although this system may be thought as a seldom monolithic system, we could depict it as

several subsystems interconnected.

Figure 37 Subsystem diagram

The functionalities of the system are covered in those subsystems. The Classification Subsystem

acts as a hub where all the operations are distributed to other subsystems.

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 47

5.3.1 Subsystems description

We will describe now the subsystems identified in the previous diagram:

• Classification Subsystem. It is the main area of interaction with the user. It

communicates with the actual classifying systems in order to achieve the prediction. It

includes operations like saving the results to a file and correcting prediction results.

• Authentication Subsystem. It is mandatory in order to run administrator operations. It

communicates with the classification subsystem. It interacts with the database of

registered users.

• Multiitem and Binary Classifiers. They constitute two separate subsystems that

accomplish the same task differently. They contain training and predicting operations.

5.3.2 Interfaces between systems description

The subsystems communicate internally within the system, without any need of cloud network

or external connexion.

• The Authentication Subsystem will forward the administrator user to the Classification

Subsystem so the later can show the corresponding features to the administrator. In the

case that an authentication is unsuccessful, this subsystem will respond accordingly with

the options available for non-administrator users.

• The Classification Subsystem will interact with both the Binary and Multiitem

Subsystems for making a prediction of an input text. The correction run is also sent to

these subsystems to make their respective training.

5.4 Initial class diagram in analysis phase

Now, the most essential aspects of the class identified in the system are shown, along a brief

description of them.

5.4.1 Class diagram

One of the key concepts of the system is the maintainability of it, and so, the addition of a new

model should be kept as easy as possible. The strategy design pattern is suitable for this

situation. This pattern allows a context class (ClassificationModule) to perform the

same operation (prediction, correction, training…) in different ways. A Classifier interface

establishes the structure and functionalities a model must implement to be used in this

application [36].

Final Degree Project

48 Analysis | School of Computer Engineering - University of Oviedo

Figure 38 Class diagram in analysis phase

5.4.2 Classes description

Next, we have the descriptions of the classes grouped by subsystem.

5.4.2.1 Classification Subsystem

Class name

ClassificationModule

Description

Gather the user options, both for non-administrator and administrator users

Responsibilities

Make predictions, save results to files, authenticate a user, make a correction of a
classification and input new data to train the models. The last two are only available for
administrators

Proposed attributes

classifier: Interface that gathers prediction and new data fitting operations
authModule: Subsystem to permit authentication

Proposed methods

predict: Takes the text introduced by the user and calls the corresponding method of the
classifier attribute. Returns the prediction of the classifier
saveToFile: Given a prediction, dumps the message and prediction to a file
authenticate: Allows an non-administrator user to log in as an administrator an opt for more
advance features
makeCorrection: Only for administrators. It asks for the presumed true prediction and fits the
data in the model
fitNewData: Receives the data to be fit into the corresponding model

Figure 39 ClassificationModule class

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 49

5.4.2.2 Authentication subsystem

Class name

AuthenticationModule

Description

Operations of authentication for users

Responsibilities

Authenticate administrators, validate credentials

Proposed methods

authenticate: Asks for the credentials input by the user and grants access if data is valid and
correct
validate: Validates the input credentials, checking it is not blank

Figure 40 AuthenticationModule class

5.4.2.3 Binary Classifier

Class name

BinaryClassifier

Description

Operations regarding binary classification

Responsibilities

Training, predicting and fitting new data

Proposed methods

train: This operation is already fulfilled in the classifier. It fits the data and trains the model.
Later validation is done to measure the performance.
predict: Takes the text introduced by the user and calls the corresponding method of the
classifier attribute. Returns the prediction of the classifier
fitNewData: Receives the data to be fit into the model

Figure 41 BinaryClassifier class

Class name

MultiitemClassifier

Description

Operations regarding itemized classification

Responsibilities

Training, predicting and fitting new data

Proposed methods

train: This operation is already fulfilled in the classifier. It fits the data and trains the model.
Later validation is done to measure the performance.
predict: Takes the text introduced by the user and calls the corresponding method of the
classifier attribute. Returns the prediction of the classifier
fitNewData: Receives the data to be fit into the model

Figure 42 MultiitemClassifier class

Class name

BinaryPrediction

Description

Wrapper for a message and its binary prediction

Responsibilities

Final Degree Project

50 Analysis | School of Computer Engineering - University of Oviedo

Returning the message and prediction

Proposed methods

getMessage(): Returns the value of the message
getPrediction(): Returns the value of the prediction, in this case a single number value

Figure 43 BinaryPrediction class

Class name

MultiitemPrediction

Description

Wrapper for a message and its multiitem prediction

Responsibilities

Returning the message and prediction

Proposed methods

getMessage(): Returns the value of the message
getPrediction(): Returns the value of the prediction, in this case a list with the number values

Figure 44 MultiitemPrediction class

5.5 Use cases analysis and scenarios

In this section, all use cases and possible scenarios are described, along their preconditions,

actors involved, and possible exceptions.

5.5.1 Change classification method

1. Change classification method
Preconditions None

Postconditions
Scenario 1.1 The system will prepare any following input text to be
predicted against the corresponding model chosen. This step is
mandatory to perform a classification

Actors Non-administrator user or administrator

Description
The user is presented the main window of the application
The user selects the option Change classification method
The user chooses one of the options

Variation
(secondary
scenarios)

Scenario 1.2 The user selects an invalid option this problem is
dependent of the actual selection mechanism). The system must
control the possible error and allow the user only to pick one of the
alternatives

Exceptions An invalid option is chosen

Figure 45 Change classification method use case and scenarios

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 51

5.5.2 Detect inappropriate messages

2. Detect inappropriate messages
Preconditions Having a selected classification method

Postconditions The system will compute the results and present it to the user

Actors Non-authenticated user or administrator

Description

Scenario 2.1 The user introduces a message
The option of uploading a file becomes unavailable
The user selects the option of perform the classification
The system will predict the result with the corresponding classifier
The system will present the results to the user

Variation
(secondary
scenarios)

Scenario 2.2 The user is presented the main window of the application
The user chooses the options of uploading the file
The option of introducing a message becomes unavailable
The file is parsed. Each line is a message to be classified
The system performs the prediction of these messages

Scenario 2.3 The user introduces a blank message
The system must check this behaviour and forbid and warn the user to
perform a classification with blank messages

Scenario 2.4 The user introduces a too long message
The system must forbid and warn the user to introduce more character
than the maximum length established

Exceptions
Blank message
Too long message

Figure 46 Detect inappropriate messages use case and scenarios

5.5.3 Save results to a file

3. Save results to a file

Preconditions
The user must have performed a classification and been shown the
results

Postconditions A new file is generated with information about the prediction

Actors Non-administrator user or administrator

Description

Scenario 3.1 The user is presented the results of the last performed
classification
The user selects the options save results to a file
The system generates a .csv file and dumps the content of the
prediction into the file. Each line represents a message, whether the
user chose to introduce a message or set of messages

Variation
(secondary
scenarios)

None

Exceptions Exceptions corresponding to the file management

Figure 47 Save results to a file use case and scenarios

Final Degree Project

52 Analysis | School of Computer Engineering - University of Oviedo

5.5.4 Correct predictions

4. Correct predictions

Preconditions
The user must have performed a classification and been shown the
results. Run as administrator

Postconditions The corresponding classifier fits the new prediction as new data

Actors Administrator

Description

Scenario 4.1 The administrator is presented the results of the last
performed classification
The administrator selects the option Correct predictions
The system will present to the user a mechanism to introduce the
presumed true prediction and submit it to the system
The system reports to the user the success of the operation

Variation
(secondary
scenarios)

Scenario 4.2 The user introduces invalid predictions or invalid number
of predictions (this is dependent of the input mechanism)
The system must validate the data and forbid the user to make an
invalid correction

Scenario 4.3 The user cancels the operation after selecting the option
The system hides the mechanism to correct the predictions

Exceptions Invalid input predictions

Figure 48 Correct predictions use case and scenarios

5.5.5 Log in as administrator

5. Log in as administrator
Preconditions None

Postconditions
The system grants a higher level of permission to the user and allows
him to perform more operations

Actors Non-administrator user

Description

Scenario 5.1 The user is presented the main window of the application
The user selects the Log in as administrator option
The system displays a new window for entering the username and
password
The user introduces the username and password
The user selects the Enter option
The system checks the validity of the data
The system proceeds to compare the data with the data inside of the
database
If a match exists, the system returns the user to the main window and
grants him access to new features

Variation
(secondary
scenarios)

Scenario 5.2 The user cancels the operation after selecting the Log in
as administrator option
The system will return the user to the main window as a non-
administrator user

Scenario 5.3 The user introduces a blank username or password
The system validates this data. It warns the user with a proper message
The user remains in the window as a non-administrator user

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 53

Scenario 5.4 The user introduces valid data with no match in the
database
The system will inform the user. The message will not include which of
the pieces of data is incorrect, due to security reasons. It will be the
same if the incorrect pieces of data are the username, password, or
both
The user remains in the window as a non-administrator user

Exceptions
Invalid username or password, non-alphanumeric username, too long
username or password, database management problems

Figure 49 Log in as administrator use case and scenarios

5.5.6 Train models

6. Train models
Preconditions Run as administrator

Postconditions
The chosen classifier fits the new data that will be considered for new
predictions

Actors Administrator

Description

Scenario 6.1 The administrator selects the option Train models
The system displays a new window with the classification methods and
an option of uploading a file
The administrator choses the model
The administrator submits a file containing the data to be fit
The system parses the information to be fit to the corresponding
model
The system reports to the user the success of the operation

Variation
(secondary
scenarios)

Scenario 6.2 The administrator cancels the operation after selecting
the Train models option
The system returns the administrator to the main window

Scenario 6.3 The administrator submits an invalid file
The system validates the file. It warns the administrator of the
invalidity of the file
The administrator remains in the current window

Scenario 6.4 The administrator submits a valid file with blank data or
wrong prediction values
The system validates the file data. It warns the administrator of the
invalidity of this data
The administrator remains in the current window

Scenario 6.5 The administrator submits a valid file with the wrong
number of pieces of data
The system validates the file data. It warns the administrator with a
message regarding the problem
The administrator remains in the current window

Exceptions
Invalid file, invalid data, exceptions corresponding to the file
management

Figure 50 Train models use case and scenarios

Final Degree Project

54 Analysis | School of Computer Engineering - University of Oviedo

5.6 Scenarios – Use cases relation

Next, we have a table which attempts to take a visual glance of the relation between scenarios

and use cases.

Use Cases

Scenarios

1 2 3 4 5 6

1.1 X

1.2 X

2.1 X

2.2 X

2.3 X

2.4 X

3.1 X

4.1 X

4.2 X

4.3 X

5.1 X

5.2 X

5.3 X

5.4 X

6.1 X

6.2 X

6.3 X

6.4 X

6.5 X

Figure 51 Relation between scenarios and use cases

5.7 User interface analysis

The main concern about the user interface is that is must be reduced at its simplest terms. The

aim of this project is not to elaborate the most complex interface to explore human-computer

interaction. Nevertheless, the interface must follow the adaptability conventions and fulfil basic

use experience features.

5.7.1 Interface description

The program will consist of three windows with different goals.

5.7.1.1 Main window

This will be the first and main window of the interface. It encapsulates the basic operations of

the program and leads to the other two windows. The options of this window are:

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 55

• Selecting a classification method.

• Submitting a message via keyboard.

• Submitting a message via file.

• Logging as administrator option.

• Showing the results of a prediction.

• Clearing the contents to perform another classification.

• Saving the results to a file.

• Correcting a prediction (if user is administrator).

• Train models option (if user is administrator).

Figure 52 Main window

The following figures represent the main window on several states.

5.7.1.1.1 Start of application

Figure 53 represents the first state of the application.

Figure 53 Main window, start of application

Final Degree Project

56 Analysis | School of Computer Engineering - University of Oviedo

5.7.1.1.2 Message typed in area, classification not yet performed, non-

administrator user

As the message is introduced, the buttons Submitting messages file and Save results to file

become disabled, and the Classify option is enabled.

Figure 54 Main window, message typed in area, classification not yet performed, non-
administrator user

5.7.1.1.3 Messages uploaded by file, classification not yet performed, non-

administrator user

If the message file is submitted instead the text area becomes unavailable. A message confirms

the submission.

Figure 55 Main window, message uploaded by file, classification not yet performed, non-
administrator user

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 57

5.7.1.1.4 Classification performed, non-administrator user

When the classification is performed, both message input options become disabled, and the

second text area shows the results. The Save results to file option is available now.

Figure 56 Main window, classification performed, non-administrator user

5.7.1.1.5 Start as administrator

After fulfilling the authentication form in the Authentication window, the main window will look

like this. The difference is in the Train models button that is now visible.

Figure 57 Main window, start as administrator

Final Degree Project

58 Analysis | School of Computer Engineering - University of Oviedo

5.7.1.1.6 Message typed in area, classification not yet performed,

administrator

Same as Figure 54, except the Train models option.

Figure 58 Main window, message typed in area, classification not yet performed,
administrator

5.7.1.1.7 Messages uploaded by file classification not yet performed,

administrator

Same as Figure 55, except the Train models option.

Figure 59 Main window, message uploaded by file, classification not yet performed,
administrator

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 59

5.7.1.1.8 Classification performed, administrator

When the classification is performed, a new panel in the right bottom corner is shown, with

options to select the new predictions for the message.

Figure 60 Main window, classification performed, administrator

5.7.1.2 Authentication window

This is the window that manages the inputs of the user when attempting the authentication as

administrator.

Figure 61 Authentication window

5.7.1.3 Train model window

This window manages the input file that the administrator submits to fit new data to the

corresponding classifier.

Final Degree Project

60 Analysis | School of Computer Engineering - University of Oviedo

Figure 62 Train model window

5.7.2 Interface behaviour description

This system is heavily influenced by the user inputs, so validation and verification are needed to

avoid malfunctioning. Now we will see the messages that the system reports in response to the

user possible inputs.

5.7.2.1 Main window

• Blank messages files containing blank messages are not valid inputs. The window will

show a message informing the user saying: “Message is not a valid message”. There is

no need to validate the contents of the message.

• Files uploaded for predicting its content should only have one column per line,

representing the message. The window will display the message “The file does not have

the correct number of columns” if it is the case.

5.7.2.2 Authentication window

• Username or password being blank are not valid and would lead to a message of the

system report the issue. The message is “Username/password cannot be blank”.

• Username and password cannot exceed their respective maximum length. If a longer

input is introduced the system will display “Username/Password has exceeded the

maximum number of characters”.

• For valid username and password that do not match any content inside the database

the system will display “Incorrect username or password”. It is important not to specify

the concrete piece of data that is incorrect, due to security reasons. A person with

harmful intentions and with basic knowledge on software could try an attack to the

database. If the attacker knows the concrete field that is incorrect, it could focus the

attention into this field.

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 61

5.7.2.3 Train models window

• The input of the user will be a file containing the messages and prediction values. If the

extension is not .csv the message “Input file has wrong extension”.

• There are several validation steps for a valid file. For blank messages, wrong number of

categories and wrong prediction values will be reported to the user with the message

“The prediction of message is not valid for fitting” and the actual data error.

5.7.3 Navigability diagram

Analysed all the windows of the system, the navigability of the windows would look like Figure

63.

Figure 63 Navigability diagram

5.8 Test plan specification

In this subchapter we will discuss the test plan itemized in five categories: unitary, integrations,

system, usability, and code testing.

5.8.1 Unitary testing

Unit testing will be used to validate and verify the correct functionality of the modules of the

system. It is key to test the scenarios previously detailed, both the expected correct user

interaction and the error-prone ones.

5.8.2 Integration testing

For integration testing, the system will be subdued to correct relations between subsystem

assertion. The authentication submodule should correctly grant access to a user, so the

application shows the correct options to the user.

Final Degree Project

62 Analysis | School of Computer Engineering - University of Oviedo

5.8.3 Usability testing

The system will be put in review to third-party users which will use the application both as an

non-administrator user and administrator. Their opinions on the system will be compilated with

some surveys.

5.8.4 Performance testing

There will be tests on prediction and training computation speed and memory usage.

5.8.5 Use cases testing

Use case 1: Change classification method

Test 1.1 Expected Result

The user changes the method
to any of the two possible
methods

The system will prepare the corresponding classifier

Test 1.2 Expected Result

The user changes the method
to a not contemplated
method

The system does not register the change and informs the user
of the error

Figure 64 Change classification method use case test

Use case 2: Detect inappropriate messages

Test 2.1 Expected Result

The user tries to classify a
blank message with no file
uploaded

The system informs the user of the error/The user interface
disables the Classify option

Test 2.2 Expected Result

The user tries to classify a
message that exceeds
maximum message length

The system informs the user of the error/The user interface
prevents the excess of characters typed by the user

Test 2.3 Expected Result

The user tries to upload a file
with wrong extension

The system catches the error and warns the user about it

Test 2.4 Expected Result

The user tries to upload with
unexpected data

The system catches the error and warns the user about it

Test 2.5 Expected Result

The user types a message and
tries to upload a file with
messages

The system discards the file submission and warns the
user/The user interface disables the Upload file option

Test 2.6 Expected Result

The user uploads a file and
tries to type a message

The system discards the input message and warns the
user/The user interface disables the area to type messages

Test 2.7 Expected Result

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 63

The user types a message
with no file uploaded and
classifies the message

The system sends the message to the classifier, which will
return the prediction that will be shown to the user
The Save results to file options becomes available
If the user is an administrator, the option Correct predictions
becomes available

Test 2.8 Expected Result

The user uploads a correct
file with valid data and with
no typed message

The system sends the messages (one per file line) to the
classifier, which will return the predictions that will be shown
to the user
The Save results to file options becomes available
If the user is an administrator, the option Correct predictions
becomes available

Figure 65 Detect inappropriate messages use case test

Use case 3: Save results to file

Test 3.1 Expected Result

The user tries to save results
to file with no classification
performed

The system informs the user of the error/The user interface
disables the Save results to file option

Test 3.2 Expected Result

The user saves results of a
performed classification to a
file

The system automatically creates a file and dumps the
information of the message or messages and its/their
classification on the file

Figure 66 Save results to a file use case test

Use case 4: Correct predictions

Test 4.1 Expected Result

The administrator tries to
correct a prediction with no
classification performed

The system informs the user of the error/The user interface
disables the Correct predictions option

Test 4.2 Expected Result

The administrator introduces
a correction with wrong
values or number of values

The system informs the user of the error/The user interfaces
only offers the possible values and the mandatory number of
values

Test 4.3 Expected Result

The administrator introduces
a correct prediction

The system fits the new data to the model and shows the
success of the operation to the administrator

Test 4.4 Expected Result

The administrator cancels the
operation of correcting the
predictions

The system returns to the previous state and no modification
is done

Test 4.5 Expected Result

A non-administrator user
tries to correct the prediction

The system checks beforehand if the user is an
administrator/The user interface hides this option

Figure 67 Correct predictions use case test

Use case 5: Log in as administrator

Test 5.1 Expected Result

Final Degree Project

64 Analysis | School of Computer Engineering - University of Oviedo

The administrator tries to
access the authenticate
option

The system reports the user that it is already authenticated
as administrator/The user interfaces disables the
Authenticate option

Test 5.2 Expected Result

The user selects the option
Log in as administrator

The system asks to the user for the username and password

Test 5.3 Expected Result

The user tries to introduce
blank username or password

The system communicates the error to the user/The system
disables the Submit option

Test 5.4 Expected Result

The user tries to introduce
too long username or
password

The system communicates the error to the user/The system
disables the Submit option

Test 5.5 Expected Result

The user tries to introduce
non-alphanumeric characters
for the username

The system communicates the error to the user/The system
prevents the user from typing non-alphanumeric characters

Test 5.6 Expected Result

The user introduces valid
username and password but
there is not match in the
database

The system communicates to the user that the username or
password does not exist

Test 5.7 Expected Result

The user introduces valid and
correct username and
password

The system grants administrator access to the user and
returns it to the main window

Test 5.8 Expected Result

The user cancels the Log in as
administrator operation

The system returns the user to the main window with no
administrator access

Figure 68 Log in as administrator use case test

Use case 6: Train models

Test 6.1 Expected Result

The non-administrator user
tries to train a model

The system informs the user about he has no access to that
operation/The user interface disables the Train models
option

Test 6.2 Expected Result

The administrator selects the
Train model option

The system asks the model to be trained and the file
containing the data

Test 6.3 Expected Result

The administrator tries to
upload an invalid file

The system shows the error to the user/The system disables
the Train option

Test 6.4 Expected Result

The administrator uploads a
file with blank data or wrong
prediction values

The system shows the error to the user

Test 6.5 Expected Result

Final Degree Project

School of Computer Engineering - University of Oviedo | Analysis 65

The administrator uploads a
file with wrong number of
pieces of data

The system shows the error to the user

Test 6.6 Expected Result

The administrator uploads a
valid file with valid data and
trains the model

The system will parse the data and pass it to the classifiers
that will fit it and consider it to following predictions

Test 6.7 Expected Result

The administrator cancels the
operation

The system returns the user to the main window

Figure 69 Train models use case test

Final Degree Project

66 System design | School of Computer Engineering - University of Oviedo

Chapter 6. System design

This chapter discusses topics from the design phase of this project, the system architecture,

shows several diagrams representing the system structure and behaviour, database and user

interface design and the technical specification of the test planning.

6.1 System architecture

This section covers the package distribution and component integration of the system.

6.1.1 Package diagram

The following diagram shows the packages identified in the system and their relations. The code

of colours is the following:

- Green: For the user interface and output files from saving the results to files. We may

see they have heavy interaction with the user.

- Pink: Domain package.

- Gray: Packages with raw data.

- Blue: Auxiliar packages. They contain operations shared by several packages.

- Red: Business logic and calculations are inside these packages.

Figure 70 Package diagram

6.1.1.1 Controller

This package will contain the logic of all the operations a user may do, acting like a controller

which will distribute responsibilities to other modules. The ClassificationModule is considered a

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 67

class as seen in the chapter 5.4, but it may be split up as more classes which would be more

cohesive.

6.1.1.2 Authentication

The authentication package will handle all the operations regarding the logging of a non-

administrator user. This package is the only one which will access to the database containing

users’ data.

6.1.1.3 Classifiers

This package contains the operations related to the models, like training, predicting, and fitting

new data. Note that although different systems, the two classifiers are encapsulated in the same

package.

6.1.1.4 Utils

An auxiliar operation package. It takes responsibility of tasks related to several packages like

managing files and low-level operations like pre-processing text data. It must not contain any

business logic regarding system requirements.

6.1.1.5 Config

Package containing configuration files which contain constants, output formatted messages, etc,

in addition to the logging configuration. This package is used by several other packages.

6.1.1.6 Database

It will contain the actual database which hold the users’ information.

6.1.1.7 Datasets

This package will contain the data used to train and test the models.

6.1.1.8 Domain

This package contains domain-related classes. For example, a Prediction class would be included

inside this package.

6.1.1.9 Output files

Used for grouping all the files that the user may generate from the option Save results to file

when performing a classification.

Final Degree Project

68 System design | School of Computer Engineering - University of Oviedo

6.1.1.10 User interface

It contains the classes of the user interface. This class should be as low-coupled as possible, given

that the user interface can be subject to a large quantity of changes or be replaced by, for

instance, a command-line interface.

6.1.2 Component diagram

The component diagram of this project is displayed now.

Figure 71 Component diagram

The code of colour is the same as the section above. We can see the connections between

components and which interfaces are needed for each component. Auxiliar components will

offer operations shared by the logic classes. The user interface will also take use of the Controller

component interface. The domain component will be used in the controller and classifier ones.

6.2 Class design

Now we will see the classes designed categorized in their respective packages.

6.2.1 Controller package

For this package only one class has been designed for this package.

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 69

Figure 72 Controller package class diagram

The ClassificationController class acts as a hub where are the operations of the user are

compilated and processed. This class assigns the operation to the corresponding modules. Note

that the Strategy pattern is applied regarding the classification method. This will be commented

in the Global class diagram subsection [36]. The attributes for this class are:

- classifier: An object of the class that contains the operations of the model, like

training, predicting, and fitting new data. It will change whenever the user uses the

option Change classification method.

- authModule: This object corresponds to the class that manages all the authentication

process.

- authenticated: Describes whether the user is an administrator or not.

- last_predictions: The last predictions performed in the system.

The methods of the class are:

- changeClassificationMethod(String): Changes the classifier based on the

model option passed as a String parameter.

- predict(Iterable<String>) → Iterable<Prediction>: Predicts a set of

messages and returns their predictions.

- predictMessagesInFile(String) → Iterable<Prediction>: Predicts

a set of messages. The String represents the path of the file introduces by the user.

- saveResultsToFile(): Creates a file in an output folder and saves the content of

the last_predictions attribute.

- authenticate(String, String): Calls AuthenticationModule to

perform the operation. The returned Boolean represents whether the user has been

authenticated or not.

- correctPredictions(int, Iterable<Prediction>). Receives the index

of the prediction and the list of new predictions to train model. Only available for

administrators.

- trainModel(String, String). Trains the model represented by the String

parameter. The String corresponds to the path of the new data to be fit.

- clearClassification(). Prepare the system to perform another classification.

Final Degree Project

70 System design | School of Computer Engineering - University of Oviedo

6.2.2 Authentication

Two classes pertain to this package.

Figure 73 Authentication package class diagram

The UserRepository class is responsible of doing the low-level database operations, like

creating and closing the connection and creating and executing the query. The attributes are:

- databasePath. Path for the connection to find the database.

- connection. A connection that will be created and closed in every query.

The methods are:

- getPasswordByUsername(String). The main operation of the class. It creates a

query that demands the password of the username given.

- createConnection()/_closeConnection(). Private methods.

The AuthenticationModule class contains one UserRepository attribute to perform

the operations described above. The method of this module receives the password from the

username provided and checks, with the proper hashing algorithm, if the introduced password

matches the hashed password of the database.

6.2.3 Classifiers

The Classifiers package consists of one interface and two classes implementing it.

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 71

Figure 74 Classifiers class diagram

The Model interface specifies a contract upon which the Controller package can agree. The

methods of this interface are:

- predict(String, int): The invoked method by the Controller package.

- fitNewData(Data): It fits the model with new data that will be considered for

following classifications. Both Iterable are for the messages and predictions.

- fitPrediction(Prediction): Receives a Prediction to be fit.

The classes implementing the interface do the same operations but may do it in different ways.

The attributes in both classes are intrinsic attributes to these models to perform the

classifications.

6.2.4 Utils

This package will contain several files used in a major part of the system to perform common

tasks:

- file_management.py: Used for file dumping, opening, closing and conversion to

specific data structures.

- nlp.py: For natural language processing tasks like removing links, Twitter usernames

and hashtags, lower-casing, etc.

- validation.py: Used for validation user inputs.

- stats.py: Computes statistics for a classifier given validation data.

6.2.5 Config

Contains the configuration for the system and the logging

- config.py: Declares constants, directories, queries, and output messages. It useful if

changes are required.

Final Degree Project

72 System design | School of Computer Engineering - University of Oviedo

- logconfig.py: The logging configuration used for the different levels of logging are

explicitly stated here.

- uiconfig.py: Contains messages for the user interface and the identifiers of the

window elements.

6.2.6 Domain

An interface with two implementing classes were considered for the domain package.

Figure 75 Domain class diagram

The prediction interface encapsulated all the information needed to be passed from the

Classifier component to the Interface one. The methods are:

- getPredictions(): These methods return the raw values of the prediction of the

corresponding classifier.

- getMessageForUI() → String: Method used for obtaining a formatted

message suitable to the user interface.

- getPredictionsForUI() → String: Method used for obtaining a formatted

output suitable to the user interface.

The classes implementing the interface will alter the getPredictions(), which will return

different types. The BinaryPrediction class will return a single int value for the

prediction whilst the MLPrediction class returns a Iterable<int>, each position

corresponding to an item. Likewise, it happens the same for the prediction attribute.

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 73

6.2.7 User interface

The user interface will consist of three main classes, representing each window.

Figure 76 User Interface class diagram

The MainWindow class will contain the Controller object that receives the user interaction

petitions, a String representing the submitted file and authentication check. The run() method

will make the display of the frame. In addition, it will include a AuthenticationWindow and

a TrainingWindow, used when the corresponding option is selected. These classes algo

contain their particular run() method. AuthenticationWindow has an

authenticated Boolean attribute to determine the authentication.

6.2.8 Global class diagram

Thus, the following global class diagram is resolved.

Figure 77 Full system class diagram

Final Degree Project

74 System design | School of Computer Engineering - University of Oviedo

The main functionality of the system is designed with a Strategy pattern [36]. The

ClassificationController acts as the context and the Model is the actual strategy,

that is implemented by two concrete strategies. The system attempts to achieve high cohesion

and low coupling in every class. If there is a decision of changing a particular model, or just

simply adding another one, it would only have to implement the Model interface and supply

the agreed methods, and maybe implement an additional Prediction class, depending on

the case.

6.3 Interaction diagrams

This section will show visually the flow of interaction in the use cases available, and a brief

explanation of each operation.

6.3.1 Detect inappropriate messages

The use case of detecting inappropriate messages is shown below in an interaction diagram.

Figure 78 Detect inappropriate messages use case interaction diagram

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 75

Both options of detecting inappropriate messages are described, and their possible

ramifications.

The user types a message and selects the Predict option. This event is captured in the window,

which will transfer the task to the controller. Then, the controller validates the input message

and, if it is not valid, will return to the window to display the issue to the user. If it is a valid

message, the message is forwarded to the corresponding classifier, which will be in charge of

creating the prediction object. This prediction is then returned to the window to be displayed

not before the controller adds it to the last_predictions attribute.

The input of several messages through a file also passes through the controller. It will validate

the file format and will convert it to a manageable data structure. Otherwise, it will return to

the window to inform the error. Then it validates the number of columns and if this operation

fails the error will be also displayed. If it does not, a prediction for each message will be

computed, as the ones described before.

6.3.2 Train model use case

The use case of training a model is shown below in an interaction diagram.

Figure 79 Train model use case interaction diagram

This is the process flow of training a classifier. The administrator selects the option Train model.

The event is passed to the controller which will check first the authentication. If the user

authenticated, an error is passed to the user interface. If it is, the validation follows to check the

file extension, which in the case it is incorrect, it will be reported to the user. Next, the file is

converted to a data structure and passed to the classifier to be fit. The classifier examines the

Final Degree Project

76 System design | School of Computer Engineering - University of Oviedo

validity of the data. This operation is done inside the classifier and not in the controller because

the classifier has the necessary information for approving the data. First, the number of columns

is checked. If the number is incorrect, the present error is forwarded to the user. If it is correct,

the classifier will verify and filter the message and prediction of each piece of data and inform

the user of the possible error. Then, the classifier transforms the data to its proper format and

performs the training. After this, the training is completed.

6.3.3 Correct predictions use case

The use case of correcting predictions is shown below in an interaction diagram.

Figure 80 Correct prediction use case interaction diagram

This use case uses a similar approach to the Train model use case process flow. When the

administrator selects this option in the interface, the captured event is processed by the

controller, which will be verify if the user is, indeed, and administrator. The program will return

to the user interface to inform the user if it is not. If it is, the next step is to check if a prediction

has been performed yet. It has not, the error will be prompted to the user and if it is, the program

examines if the input prediction is empty. If it is empty, an error is reported to the administrator.

Now the controller checks for the message given the index provided as parameter. If it does not

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 77

exist in the last_predictions attribute, it will raise an exception to inform the user. The

system will transform the prediction to a Prediction object to be passed to the model. The

model then transforms the prediction to a suitable data structure to manage, and this structure

is passed to the process of the previous use case.

6.3.4 Log in as administrator use case

The use case of authenticating is shown below in an interaction diagram.

Figure 81 Log in as administrator use case interaction diagram

The authentication process is a simple one. The user introduces the username and password

and selects the submit option. The window catches the event who will be forwarded to the

controller. The controller checks the validity of the user inputs, both username and password

and it will report an error to the user if this validation fails. This validation consists of assertions

of length blank credentials, too long credentials, and a non-alphanumeric username. Then, the

information is passed to the authentication module, whose repository will query the password

of the given username. If nothing is returned, the operation was unsuccessful, and the result is

shown to the user. If there exists a password for that username, the module will return the true

value for the comparison between the hash of the input password and the one retrieved.

6.3.5 Change classification method use case

Since this use case is much simpler than the described above, there is no need of an interaction

diagram. The steps are explained as follows:

- The user selects the option Change classification method and changes the value of it.

This event is captured by the window.

- It is then passed to the controller.

- If it is a wrong value, the system will warn the user and not alter the state.

Final Degree Project

78 System design | School of Computer Engineering - University of Oviedo

- If it is a good method value, the system will change the classification method to the

required one.

6.3.6 Save results to file use case

Likewise, this use case is not as complex as the first three use cases, so an explanation of the

process flow is explained now:

- The user selects the option Save results to file. The event is captured by the window.

- The event is passed to the controller.

- If a prediction did not exist in the first place, the system reports the issue to the user.

- If a prediction did exist, the system will use the file manager to create the output file

and dump the content of the prediction.

6.4 System persistence

The system makes use of two machine-learning models for the binary and the itemized

classification respectively. These models are stored inside files with extension .pkl, which stands

for Pickle, a common Python serialization module that allow to store serialized Python objects

[37].

When a prediction is corrected or when an administrator trains a model, the operation ends

with the dumping of the new model to these Pickle files.

For the authentication module, the administrators are already stored in a local database.

6.4.1 Database design

Now, the decision of the DBMS is reasoned. Also, the Entity-Relationship diagram is shown.

6.4.1.1 Used DBMS description

The Database Management System chosen is SQLite. It is optimal for our system, given the

simplicity of the database content. SQLite implements a small, fast, and self-contained database

engine [38].

6.4.1.2 DBMS system integration

The local database is managed through a class inside the Authentication package called

UserRepository. This class is responsible of creating the connection, making the necessary

queries, and closing the connection. Every query is self-contained, which means that it creates

and closes the connection within itself.

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 79

6.4.1.3 E-R Diagram

Given that only users are stored inside the database, there exists only one entity.

Figure 82 Database Entity-Relationship diagram

The id acts as the primary key, and username and password are the information stored. The

password is stored as BLOB, since a hash is stored for every tuple.

6.5 Interface design

These are the final prototypes of the user interface for every window. For the most part, they

are identical to the analysis design. However, a new confirmation window for administrator

operations has been added.

6.5.1 Main window

This would be the main window interface.

Figure 83 Final Main Window

The main window will look like this. There might be a few changes about buttons positioning,

and text font and colours.

Final Degree Project

80 System design | School of Computer Engineering - University of Oviedo

6.5.2 Authentication window

The authentication window looks like this.

Figure 84 Final Authentication Window

This is the final design for the Authentication window. Some features may change, for instance

the font, colour, and position of the text.

6.5.3 Training window

Figure 85 shows the Train model window.

Figure 85 Final Training Window

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 81

6.5.4 Confirmation window

For the administrator operations of correcting a prediction and training a model, a new

confirmation dialog has been added. It summarizes the parameters of the operation and offers

the administrators the options of performing or cancelling the task. This operation will block all

operations due to the backend training, so it is important that it remains opened.

Figure 86 Confirmation window for correcting a prediction

Figure 87 Confirmation window for training a model

6.6 Test plan technical specification

In this subsection the test plan discussed in Test plan specification will be developed to be

implemented later in the implementation phase.

All the tests will be executed in a local machine with the following characteristics:

- OS: Windows 10 Education.

- Motherboard: AMD Ryzen A520M-A Prime AM4.

- SSD: Kingston SSD SATA3 V300 120GB.

- RAM: 16 GB DDR4.

- CPU: AMD Ryzen 5 3500X 3.59 GHz. Six cores.

Final Degree Project

82 System design | School of Computer Engineering - University of Oviedo

6.6.1 Unit testing

We will discuss the unit tests for every use case and scenario described in section 5.8.5.

6.6.1.1 Change classification method

Use case 1: Change classification method

Test 1.1 Expected Result

The user changes the method
to any of the two possible
methods

The controller stores the new in the classifier attribute

Test 1.2 Expected Result

The user changes the method
to a not contemplated
method

The user interface only offers Binary and Itemized method
through a combo box, which is read-only. Also, a default value
if asserted to prevent blank method
The controller itself validates that the value is correct

Figure 88 Change classification method unit test

6.6.1.2 Detect inappropriate messages

Use case 2: Detect inappropriate messages

Test 2.1 Expected Result

The user tries to classify a
blank message with no file
uploaded

The user interface disables the option Classify whenever a
message is not typed, and a file is not uploaded
The controller checks for each mechanism the emptiness of
the message. If it is empty an exception is thrown

Test 2.2 Expected Result

The user tries to classify a
message that exceeds
maximum message length
(500 characters)

The text area displayed allows only to write until 500
characters
The controller validates that the message is at most 500-
character long. If it is longer, an exception is thrown

Test 2.3 Expected Result

The user tries to upload a file
with wrong extension

The Submit messages file option allows only to upload .csv
files
The controller validates that the extension is correct. If it is
not, an exception is thrown

Test 2.4 Expected Result

The user tries to upload with
unexpected data

The controller validates the number of columns of the file,
which should contain only one
The controller validates for every row of the file that the
message is a valid character string, that it is not blank and that
it does not exceed maximum possible length
For any reason above not being fulfilled, an exception is
thrown for each message

Test 2.5 Expected Result

The user types a message and
tries to upload a file with
messages

The user interface disables the Submit messages file option
whenever any text is input inside the text area

Test 2.6 Expected Result

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 83

The user uploads a file and
tries to type a message

The user interface disabled the text area whenever a file is
uploaded

Test 2.7 Expected Result

The user types a message
with no file uploaded and
classifies the message

The controller computes the prediction
The user interface shows the prediction

Test 2.8 Expected Result

The user uploads a correct
file with valid data and with
no typed message

The controller predicts for each message a prediction as the
one described before

Figure 89 Detect inappropriate messages unit test

6.6.1.3 Save results to file

Use case 3: Save results to file

Test 3.1 Expected Result

The user tries to save results
to .csv file with no
classification performed

The user interface disables the Save results to .csv file option
until a classification is performed
The controller raises an exception

Test 3.2 Expected Result

The user saves results to .csv
of a performed classification
to a file

The controller creates a file inside the destination folder, and
inserts the last prediction, dumping the message and the
obtained prediction
For several predictions, each line of the output file will
contain the message and the obtained prediction

Test 3.3 Expected Result

The user tries to save results
to .txt file with no
classification performed

The user interface disables the Save results to .txt file option
until a classification is performed
The controller raises an exception

Test 3.4 Expected Result

The user saves results to .txt
of a performed classification
to a file

The controller creates a file inside the destination folder, and
inserts the last prediction, dumping the message and the
obtained prediction
For several predictions, each line of the output file will
contain the message and the obtained prediction

Figure 90 Save results to file unit test

6.6.1.4 Correct predictions

Use case 4: Correct predictions

Test 4.1 Expected Result

The administrator tries to
correct a prediction with no
classification performed

The user interface disables the option until a classification is
performed
The controller checks if the last_predictions attribute
is empty

Test 4.2 Expected Result

The administrator introduces
a correction with wrong
values or number of values

The user interface offers combo boxes that will only display
the possible values for a prediction. They also have a default
value, so the blank prediction is not allowed
The controller raises an exception

Final Degree Project

84 System design | School of Computer Engineering - University of Oviedo

Test 4.3 Expected Result

The administrator introduces
a correct prediction

The user interface shows a message to the user indicating the
success of the operation

Test 4.4 Expected Result

The administrator cancels the
operation of correcting the
predictions

The user interface hides the combo boxes for correcting a
prediction

Test 4.5 Expected Result

A non-administrator user
tries to correct the prediction

The user interface hides this option for non-administrator
users
The controller checks if the user is an administrator

Figure 91 Correct predictions unit test

6.6.1.5 Log in as administrator

Use case 5: Log in as administrator

Test 5.1 Expected Result

The administrator tries to
access the Log in as
administrator option

The user interface hides this option for administrators
The controller checks that the user is not already logged in

Test 5.2 Expected Result

The user selects the option
Log in as administrator

The Authentication Window is created and run

Test 5.3 Expected Result

The user tries to introduce
blank username or password

The user interface disables the Submit option until any text is
written inside the username and the password
The controller validates if any of the data is blank. If it is, the
controller raises an exception

Test 5.4 Expected Result

The user tries to introduce
too long username (20
characters) or password (30
characters)

The controller checks that the username and password do not
exceed the possible maximum length (20 and 30 characters
respectively). If any does, the controller throws an exception

Test 5.5 Expected Result

The user tries to introduce
non-alphanumeric characters
for the username

The controller checks that the username is only
alphanumeric. If it is not, the controller throws an exception

Test 5.6 Expected Result

The user introduces valid
username and password but
there is not match in the
database

The authentication module returns a negative result (false)

because the hashed password and the database password do
not match
The user interface displays a message for the user

Test 5.7 Expected Result

The user introduces valid and
correct username and
password

The authentication module returns a positive result (true)

The Authentication Window is closed
The attribute authenticated in the controller is set to
true

Test 5.8 Expected Result

The user cancels the
Authenticate operation

The Authentication Window is closed
The attribute authenticated remain as false

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 85

Figure 92 Log in as administrator unit test

6.6.1.6 Train models

Use case 6: Train models

Test 6.1 Expected Result

The non-administrator user
tries to train a model

The user interface hides this option for the non-administrator
user
The controller checks if the user is logged in

Test 6.2 Expected Result

The administrator selects the
Train model option

The Train Window is created and run

Test 6.3 Expected Result

The administrator tries to
upload an invalid file

The user interface only expects .csv files to be uploaded
The controller checks the extension of the file. If it is
incorrect, the controller raises an exception

Test 6.4 Expected Result

The administrator uploads a
file with blank data or wrong
prediction values

The classifier checks the validity of the data. If it is not valid,
an exception is thrown for each of the rows

Test 6.5 Expected Result

The administrator uploads a
file with wrong number of
pieces of data

The classifier checks the number of columns of the file. If it is
incorrect, an exception is thrown

Test 6.6 Expected Result

The administrator uploads a
valid file with valid data and
trains the model

The user interface displays the success of the operation

Test 6.7 Expected Result

The administrator cancels the
operation

The Train Window is closed

Figure 93 Train models unit test

6.6.2 Integration tests

These tests are covered inside the Unit testing section, that also verifies correct relation

between components.

6.6.3 Usability tests

The usability tests will cover the overall satisfaction of the client when it comes to using the

application. A third-party user has also been subdued to the system use.

6.6.3.1 User profile ranking

This survey measures the level of experience of a user. It is important than the distinct levels of

expertise are able to understand the system scope and what it can do.

Final Degree Project

86 System design | School of Computer Engineering - University of Oviedo

How often do you use a computer?

1. Everyday
2. Several times a week
3. Occasionally
4. Hardly ever
5. I have never used a computer

What is your main activity using a computer?

1. It is part of my job or occupation
2. Mainly for free time
3. Using office software
4. Reading news and/or emails
5. I use it for nearly everything

Have you ever used a similar software?

1. Yes, I have
2. No, although I have used software that perform similar tasks
3. No

What do you look forward the most in a program?

1. To be easy to use
2. To perform a lot of tasks
3. To be fast
4. To have a nice interface
5. To be transparent on the operations it performs

Figure 94 User profile ranking survey

6.6.3.2 Guided activities

This survey looks to reflect the advantages and disadvantages of our application, through the

main features of the system.

Writing a message and predicting it

Things I liked:

Things I would like to be improved:

Uploading a file with messages and predicting them

Things I liked:

Things I would like to be improved:

Obtaining a file with the computed predictions

Things I liked:

Things I would like to be improved:

Correcting the prediction of a computed classification (Administrators only)

Things I liked:

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 87

Things I would like to be improved:

Uploading a file to train a model (Administrators only)

Things I liked:

Things I would like to be improved:

Figure 95 Guided activities survey

6.6.3.3 Quick questions about the application

Ease of use Always Most of the time Occasionally Never

Do you know where you are inside
the application?

Is there any help when using the
application if any doubts arise?

Do you consider the application to
be easy to use?

Functionality Always Most of the time Occasionally Never

Does the prediction suit the
messages introduced?

Does the model reflect a better
prediction after correcting or
training the model?

Is the files’ data format intuitive
and suitable?

Does every task work as
expected?

If any task fails, do you find the
error messages descriptive
enough?

Is the response time of the
application adequate?

Interface quality

Graphic aspects
Very

adequate
Adequate

Little
adequate

Not
adequate

The font size and type is

Used colours are

Interface design Yes No Sometimes

Is the interface easy to use?

Is the windows design clear?

Do you think that the application is well-
structured?

Are messages describing thoroughly the
specific situation?

Observations

The user may detail some experience not covered in the survey

Figure 96 Quick questions about the application survey

Final Degree Project

88 System design | School of Computer Engineering - University of Oviedo

6.6.3.4 Tester survey

This survey is filled by the tester as a conclusion of the responses collected in all the previous

surveys. Last column shows decisions taken from the survey results.

Observed aspect Notes Possible solutions

The user handles
the task in a fast
way

Minor errors

Major errors

The predictions
are fitting to the
true ones

Files’ data format
is intuitive to the
user

Output files show
content clearly
and plainly

User interface is
suitable

Figure 97 Tester survey

6.6.4 Accessibility tests

Accessibility tests are rarer in desktop applications. All standards and guides are intended for

web applications. However, in section 9.3 a customized checklist cherrypicked from [39] will be

complimented.

6.6.5 Performance tests

These are the proposed performance tests to benchmark the system.

Test Workload Result

1.1 Initial training of
binary model

Binary dataset [40]

1.2 Initial training of
multilabel model

Multilabel dataset [41]

1.3 Predict messages
(binary)

10000

1.4 Predict messages
(multilabel)

10000

1.5 Predict messages
from file (binary)

10000

Final Degree Project

School of Computer Engineering - University of Oviedo | System design 89

1.6 Predict messages
from file (multilabel)

10000

1.7 Saving predictions
to file .csv

10000

1.8 Saving predictions
to file .txt

10000

Figure 98 Performance tests

Final Degree Project

90 System implementation | School of Computer Engineering - University of Oviedo

Chapter 7. System implementation

In this chapter the implementation of the system is discussed, along the technologies and tools

used, standards and guidelines followed, and problems found during the implementation.

7.1 Programming languages

This section is a list of the programming languages and libraries used in this project accompanied

by brief descriptions of each of them.

7.1.1 Python

Python has been used for the totality of the implementation of this project, more specifically

version 3.10 Python [42]. It is a high-level programming language widely spread in machine

learning applications. It is flexible in its programming paradigm, and it is easy to learn. One of

the advantages of Python is the large quantity of libraries that implement machine learning

modules, some of which were used in the development of the system and will be described in

the following subchapters.

In the last decade, usage of Python has grown exponentially. Some causes are that it is easy to

learn and read, the expanding and supportive community, has a large number of well-

documented libraries and it is suitable to be used in data science and analytics [43].

7.1.1.1 Scikit Learn

This Python library is commonly used within machine learning projects [32]. It is useful because

of its soft learning curve, its simple syntax and fast processing. It has been used in order to

implement both binary and itemized models.

Scikit Learn has the key advantage of being easy to understand to the unexperienced developer.

The library comes with a wide documentation and supportive community. This is the reason for

having taken Scikit Learn as the main modelling option in this project. However, its main

drawback is the lack of deep learning modules. The community tried to implement a deep

learning Scikit-Learn-approached module that integrated with Keras and PyTorch, but that

project was abandoned and has no support [44].

7.1.1.2 Pytorch

Pytorch is a widely used Python library that supports deep learning systems. It is more complex

than Scikit Learn, but offers the possibility of constructing artificial neural networks, which are

not possible in Scikit Learn.

Final Degree Project

School of Computer Engineering - University of Oviedo | System implementation 91

Along TensorFlow [34] and Keras [45], they are the most common deep learning implementation

libraries of the market. These libraries allow developing scalable deep learning systems since the

developer may construct a simple baseline model which will gradually expand into a more

complex and capable model.

7.1.1.3 Transformers

Transformers is a Python library specialized in Transformers deep learning models. It offers

several specialized Transformers models, and algo offers base models which may be fine-tuned

to a specific task. Several BERT models are available in this library.

Transformer deep learning models have altered the machine learning and deep learning fields.

They have more computing capability due to their ability to process the input as whole instead

of sequentially, and to keep the positional information of the inputs.

7.1.1.4 PySimpleGUI

This library is the one chosen for implementing the user interface. It encapsulates the

implementation of tkinter [46], Qt [47], Remi [48] and WxPython [49], which are common

Python libraries. This library is based on list nesting in order to display the desired layout.

7.2 Tools and programs used for the development

of the system

7.2.1 Visual Studio Code

Visual Studio Code is the IDE option to develop the application [50]. It is language-independent

and possesses a large quantity of plugins that make easier the development. Moreover, this IDE

integrates nicely with the GIT version control system.

Figure 99 Visual Studio Code Logo

Final Degree Project

92 System implementation | School of Computer Engineering - University of Oviedo

7.2.2 Git

Git is an open-source version control software developed by Linus Torvalds in 2005 [51]. It is the

most common version control system in software development, because its better performance

and capability in comparison to the other alternatives.

Figure 100 Git Logo

7.3 System creation

The first goal to be achieved inside the implementation of the system was to obtain two

functional models that classified messages as appropriate and inappropriate. To make a

difference between the two, the idea was to create a more “straight-forward” model that

classified the message as one of the mentioned categories, and a more specific model which

would detail why a message is inappropriate.

7.3.1 Binary model

The binary model was the easiest one in terms of implementation. When it came to selecting a

fitting dataset, the number of alternatives was massive, and so there were a lot of suitable

datasets for this system. However, this vastness of datasets became a drawback, which will be

discussed later in the Found issues subchapter. The dataset chosen has near 60000

classifications made from downloaded tweets [40].

Decided the dataset, the next task was to choose the most adequate library to implement the

classifier. The selection was Scikit Learn by recommendation of the tutor. Given its easy-to-use

approach a first model was quickly implemented.

Scikit Learn offers a great number of models to be trained. These are the models that were at

least proven to fit the binary model:

- LogisticRegression.

- Perceptron.

- SGDClassifier.

The data obtained from the dataset should be transformed in some way to better fit the

computer processing capabilities. Most of the machine learning models accept to different sets

of data: the features and the targets. Feature is any information that we provide the model

classify it, for instance the message. There could be other features calculated from the former,

Final Degree Project

School of Computer Engineering - University of Oviedo | System implementation 93

like length of the message, number of occurrences of certain words, etc. Targets are the

classification itself (if it is appropriate or not), and in this case we have only one.

Targets come in several formats depending on the dataset. There are datasets that define the

target with words like “appropriate” or “toxic”. In the case of our dataset, the target was already

established as a number (0 for appropriate, 1 for inappropriate). This is a good improvement,

since computers manage numbers faster than words.

Features normally go into a more thorough process. This transformation was an issue that will

be described in detailed in the Found issues section. The final decision of the features

transformation was to use a bag-of-words approach, which basically means to create a N x M

matrix, being N the number of samples of the dataset and M the number of total words

compilated of message. Inside each cell of the matrix, the number of occurrences of the m word

in the n message is stored [52].

There is also a step in which the dataset is split in a training subset and a validation subset. This

is done to prevent the model from overfitting, that means that the model precisely classifies the

provided data but is prone-to-error to unseen data, which is a symptom of a bad performance.

The next step after establishing the training process of the dataset was to perform natural

language processing tasks. A substantial amount of time was dedicated to this phase. This step

is important because we are trimming the amount of information that the computer has to

process. There is a lot of layers in a text which does not supply any semantic information, like

punctuation and stop words.

Contraire to general belief, the more that you refined this processing did not result in better

results. There is an optimal point on which certain NLP tasks would lead to the maximum

performance of the model.

Figure 101 Natural language processing graph

The natural language processing tasks performed include:

- Accents removal.

- Punctuation removal.

- Stop words removal.

- Hashtags, usernames, and hyperlinks processing.

- Undo contractions.

Final Degree Project

94 System implementation | School of Computer Engineering - University of Oviedo

- Regular expression fulfilment.

- Tokenization.

- Lemmatization and stemming.

Then, it became a process of refinement of the already established model, like changing

hyperparameters inside the LogisticRegression and SGD classifier, the ratio of training/validation

data, the transformation process, etc. Finally, the SGD classifier was the selection for the binary

model. The statistic backing this decision are commented in section 8.2.1.

7.3.2 Itemized model

This was the part which consumed most of the time of the system implementation, and it

brought most of the problems and delays of the project fulfilment.

The dataset research was not difficult. The Jigsaw Toxic Comment Classification Challenge

posted this competition in Kaggle in 2018 including this dataset. It contained a training set of

150000 entries and a validation set of 40000 [41]. There are some other datasets that are offered

in the web with itemized hate-speech-related classifications, but most of them were a sort of

modification from the Jigsaw one.

The main concern with the library selection was that the intended approach was to create an

artificial neural network that could perform this itemized classification. Since native Scikit Learn

does not handle deep learning, Pytorch was the option for implementing it. However, due to

issues, which are discussed below, related to the neural network poor performance and weak

computational capability, the neural network model was discarded, and the decision was to go

back to the Scikit Learn library.

The models used had to be more complex, given the more complexity of this system. This sort

of classification tasks, which are called multilabel classification tasks, are not the main goal of

Scikit Learn, which is more focused into different tasks like binary classification, regression, and

clustering. However, it offers a MultiOutputClassifier [53] that receives a classifier and computes

a multioutput (multilabel) classification. This was quite suitable for our system, since a binary

model based on a LogisticRegression classifier had been already implemented.

Feature transformation on this model follow the same pattern and problems than the binary

one. The solution was to use a slightly different approach to bag-of-words, which was use TF-

IDF, which stands for Term Frequency times Inverse Document Frequency [54]. This solution

changes occurrences to frequencies and penalizes words that appear too much in a lot of

documents, like connectors.

Finally, some hyperparameter refinement was performed to achieve better results. The final

decide model was the MultiOutputClassifier assembled with the SGD classifier. This decision is

reasoned in section 8.2.2.

Final Degree Project

School of Computer Engineering - University of Oviedo | System implementation 95

7.3.3 Application and interface

The ending part of the process was to create an application that could encapsulate the

prediction capability of both models. Some features were added to this application to offer more

utility, like saving the predictions to an output file, uploading a file with several messages, and

allowing an administrator to correct the models.

The key principles upon which the system was created was high-cohesive and low-coupled

classes, clear separation between interface, logic and persistence levels, and a strategy pattern

applied to the system. The strategy pattern allows a class to perform the same operation in

different ways, which is the case in our system. The main advantage is that for other model to

be added, it would only be needed to implement the Classifier interface with the necessary

methods and probably a Prediction class to pass it to the interface.

The interface was the last part of the system implementation. Although the first idea was to

create a simple interface with no sophisticated animations or transitions, the inexperience and

PySimpleGUI illegibility took large roles when it came to the interface implementation.

7.3.4 Last modifications

After results listed in section 9.2 of the usability tests done, some modifications were added to

the system to better suit users’ demands.

- An option that allows to save the results of a prediction in a user-friendly format into a

.txt file.

- Both .txt and .csv file save processes now allow the user to select the destination of the

file.

- An option of refreshing the current prediction. Since the only way to perform the same

prediction is to press the Clear All option and rewrite it, this option allows to skip these

steps. Also, it is useful after the correction of a prediction to see the alterations.

- Two options, both in the main window next to the Submit messages file option and in

the training window to offer some help on the files’ format. Also, a tooltip is shown with

an example of a file row for each of the models.

- Some of the text within the window has been augmented for better readability.

- Some elements have been relocated for better display.

7.3.5 Found issues

During the whole process of the implementation, several problems were encountered, which

will be analysed in the following subsections.

Final Degree Project

96 System implementation | School of Computer Engineering - University of Oviedo

7.3.5.1 Subjectivity of the term “inappropriate”

7.3.5.1.1 Description

This problem is carried throughout the entirety of this project. The term is defined as

«something which is not suitable for a particular situation». Then, the problem arises on this

situation. Something can be inappropriate in a situation but be appropriate for another one.

In text classification this term becomes even more misleading. Although it is true that there are

common boundaries upon which everyone would agree like racial or misogynistic slurs, these

boundaries become dimmer when the text has not clear harmful intentions.

For instance, consider an angry review of a film. Would the sentence «This film is s***» be an

inappropriate sentence? Some may argue that the final word would determine the classification.

However, the sentence could also say «This film is trash», and in that case the word «trash» is

not considered a bad word in English, but the critique is the same. Moreover, the sentence could

be «This film is so bad that everyone who worked doing it should be fired». In this case, the

sentence does not contain a single word which could be individually understood as

inappropriate. The whole semantic confers offensiveness to the sentence, and in this case, it

could be said that is even more offensive than the first two sentences. There could be major

agreement in the first example, but the last one is not so obvious.

This unprecise term leads to a whole range of available datasets on the Internet. Some keywords

used for searching them were «hate speech», «offensive comments», «toxic comments», etc.

For the most part, these datasets are put to test to several individuals that classify them as

offensive/inoffensive or toxic/non-toxic to later do an arithmetic mean. And this is again the

issue, that the different opinions lead to different results.

For the itemized model it becomes even more exacerbated, due to several targets being

discussed instead of only one. This will generate other issue that is commented below.

7.3.5.1.2 Proposed solution

The unescapable nature of the term leads to state a formal definition in the context of this

project. «Inappropriate» is a property socially conferred to whichever message that exhibits

elements of toxicity, obscenity, threat, insult, and/or hate speech within its meaning. In essence,

a message is inappropriate if most of the people can classify it in at least one of these categories.

Both datasets attach to this definition. For the binary dataset, all messages were analysed by

several people classifying it as toxic or non-toxic. The itemized dataset is classified in terms of

toxicity, severe toxicity, obscenity, threat, insult, and identity hate.

Final Degree Project

School of Computer Engineering - University of Oviedo | System implementation 97

7.3.5.2 Multilabel unbalanced dataset

7.3.5.2.1 Description

The Jigsaw Challenge dataset is the most used dataset in toxic comment classification tasks. One

of its main characteristics is that data is not balanced at all. Around 89% of the comments are

classified as not harmful, which is having all targets to 0. From the 11% remaining, the most

common label is the “toxic” one and the rarest is the “threat” label. This issue is known as

dataset unbalance.

Let’s see an example to demonstrate why this is an issue. Imagine a model that classifies an

image as a dog or as a cat. We want to provide the model with similar number of samples of

both classes so it can “nourish” equally from them. If we had a training dataset that had 90% of

dog samples and 10% of cat samples, and trained it, the classifier would correctly identify most

of the dogs, but for an unseen image of a cat, it would probably classify it as a dog too, so this

model performs poorly.

There are mechanisms to overcome this problem, like oversampling, which consist of creating

new artificial data mixing features, in this case sentences, between them and generating more

samples. However, a user in the Kaggle competition pointed out that this unbalance is necessary

for the model because the unbalance provides information to the model about the frequency of

toxic comments. For instance, you want the model to know that threat messages are less

common than toxic ones, and so be more confident when predicting it [55].

7.3.5.2.2 Proposed solution

The only solution was to handle this unbalanced dataset as an unavoidable issue.

7.3.5.3 Lack of computational power

7.3.5.3.1 Description

The implementation of the system was developed in two different computers:

- A desktop PC with Windows 10, 16GB of DDR4 RAM, a Kingston V300 SSD of 120GB, an

AMD Ryzen 5 3500X CPU and a NVIDIA GeForce GTX 760 graphic card.

- A laptop with Windows 10, 8GB of DDR4 RAM, an Intel i5-6300HQ CPU and a NVIDIA

GeForce GTX 950M graphic card.

These computers are well-functional, and they are 8 and 5 years old respectively. For the 99%

of tasks, they work perfectly fine. However, machine learning and deep learning are resource-

demanding processes that require great computational capability.

The training phase of a machine learning model is usually done with a graphic card, given it is

fast when working with matrices. To prepare the graphic card for this tasks, CUDA (Compute

Unified Device Architecture) is mandatory [56]. The GPU of the first computer is not supported

Final Degree Project

98 System implementation | School of Computer Engineering - University of Oviedo

by CUDA, and so it is not able to perform training operations. The laptop GPU is indeed

supported by CUDA, but it is not a powerful graphic card.

Artificial neural networks are even more resource-demanding since they must perform back

propagation algorithms. The options are to train it in the desktop’s CPU or to do it in the laptop’s

GPU. The CPU takes around last 30 times longer than the laptop’s GPU, and so it is not feasible

to do it. In the laptop, times were more reasonable (20 hours per iteration), but the performance

was not great. This issue is commented below.

7.3.5.3.2 Proposed solution

Since neural networks require great resources, the alternative was not to use a neural network,

but a simpler model implemented in Scikit-Learn.

7.3.5.4 Neural networks do not perform well

7.3.5.4.1 Description

Several neural networks configurations written in Pytorch were attempted. These neural

networks did not achieve any substantial performance, being for some cases extremely poor

and achieving accuracy, precision and recall of 0.

Speaking in technical terms, the activation function for the output of the neural network was a

sigmoid function with a 0.5 threshold. The observations made established that any message,

regardless of its content, would have a sigmoid activation of less than 0.1, so every prediction

would be a 0 (a positive prediction). If the threshold was shifted to be lower to, for instance, 0.1,

it would make a “rebound effect” and classify most of the messages with a negative prediction

for every target.

Neural networks poor performance is cause of several factors. The first one is shallow knowledge

about neural networks. To be able to construct a working artificial neural network, it is key to

understand activation functions, embeddings, attention layers or even self-contained structures

that could be a layer in our neural networks, like GRU or LSTM models [57], [58]. The second

factor is the one described above, which is the demanding computational power to train a neural

network. They require large amounts of iterations adjust to the suggested task. The third one is

having a small period of time available to run the training.

Nevertheless, a final neural network structure was attempted. This neural network was found

in a GitHub repository of the user “jonad” [59].

The results of using this structure were relatively good. Despite of this sudden improvement, it

did not perform remarkably better than the MultiOutputClassifier with LogisticRegression of

Scikit Learn, so the final choice was to stick to the later, given it is way faster to train and predict.

7.3.5.4.2 Proposed solution

As commented before, the solution was to get rid of the neural network idea and make a Scikit

Learn multioutput model.

Final Degree Project

School of Computer Engineering - University of Oviedo | System implementation 99

7.3.5.5 BERT model does not perform well

7.3.5.5.1 Description

This may be seen a subset of the problem above. A BERT model was used for some neural

networks’ structures and did not perform well. The possible causes were commented previously.

7.3.5.5.2 Proposed solution

The alternative was not to use the BERT model, but a simpler model implemented in Scikit-Learn.

7.3.5.6 Data transformation

7.3.5.6.1 Description

As we have commented in the Binary model section, the transformation picked was bag-of-

words and the TF-IDF approach. These methods are resource-cheap and fast, but they have a

huge disadvantage. The matrix computed for both methods measure the occurrence or

frequency of the words in the samples but lose all meaning. The last example shown in the

description of the Subjectivity of the term “inappropriate” issue spoke about how there are

sentences that are offensive without using bad vocabulary, so there is a loss of semantic with

those approaches.

A common alternative for transforming text is word embeddings. A word embedding is

essentially a vector that represents the word. If we saw a visual representation of these vectors,

assuming they are three-dimensional, we could see that similar words like “king” and “queen”

are close in the space, but words like “videogame” are farther. Word embeddings come from

pretrained machine learning models that have generated them. Hundreds of thousands of

words are represented by vectors of dimension hundred, two hundred or even more

dimensions. Popular word embeddings are word2vec [60], glove [61] and fasttext [62]. They

keep the meaning of the words, but they more resource-intensive and last longer to compute

for the specific task they are used in.

Word embeddings were tried in both Scikit Learn and Pytorch implementations. Scikit Learn did

compute decent results, but the ones with bag-of-words or TF-IDF were better, and Pytorch

neural networks suffered from the problem of performance described Neural networks do not

perform well.

7.3.5.6.2 Proposed solution

The data transformation phase remained in the bag-of-words and TF-IDF methods.

Final Degree Project

100 System implementation | School of Computer Engineering - University of Oviedo

7.3.5.7 Best metric for measuring overall performance

7.3.5.7.1 Description

When evaluating a machine learning model, it is common to rely on accuracy as the best

indicative of overall performance. Despite the fact it is a good metric, depending on and

improving exclusively this metrics disregarding all the other ones is counterproductive. High

accuracy is not always a sign of a good model.

To understand the issue, we will see how metrics are calculated for a binary classification. A

confusion matrix summarizes the results of a classification of a set of messages.

Figure 102 Confusion matrix

In each cell a specific value is stored:

- TP: True Positives, are the number of samples predicted as positive that are actually

positive.

- FP: False Positives, are the number of samples predicted as positive that are actually

negative.

- FN: False Negatives, are the number of samples predicted as negative that are actually

positive.

- TN: True Negatives, are the number of samples predicted as negative that are actually

negative.

We will see an example explaining this matter. Picture the model mentioned before that can

classify images as being a cat or being a dog. We now consider that a new set of unseen data is

presented to the model. This data contains 9 images of a dog and 1 of a cat. This model performs

badly and recognizes every image as a dog. This is the resulting confusion matrix:

Final Degree Project

School of Computer Engineering - University of Oviedo | System implementation 101

Figure 103 Dog/cat confusion matrix

The accuracy is calculated as
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, so it would be an accuracy of 90%. We could say that

the model is good because it achieves an accuracy of 90% for unseen data, but we can see that

the real issue is that this specific set of data contained mostly dogs, and so the high value of the

metric.

In addition to this, accuracy is not suitable for multilabel classification. Our itemized model

classifies a message into six non-exclusive binary targets. Now, imagine a classification of a

message outputs that it is toxic, obscene, and insulting. We could represent it in a vector as

[1,0,1,0,1,0]. When we see the true value of prediction of the message we get [1,1,1,0,1,0], that

is toxic, severe toxic, obscene, and insulting. The accuracy metrics would consider this prediction

as wrong, but we can see that it is only partially wrong, given that it was well classified except

for the severe toxic target.

Then, it is mandatory to focus on other metrics to measure the performance of a model.

7.3.5.7.2 Proposed solution

For the binary model, accuracy is evaluated along other metrics were considered like Precision,

Recall and F1 score [63]. For the multilabel model accuracy is not as valuable, so the focus is

shifted towards metrics like F1 score, Precision, Recalls and Hamming Loss [64].

7.3.6 Detailed class description

Inside attached file, we can see a doc/ folder, and a pydoc/ subfolder which contains the

documentation generated with Pydoc [65]. We should open the src.html file to be able to

browse through all the files.

Final Degree Project

102 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

Chapter 8. Evaluation of alternatives

This chapter exposes some solutions and statistics found on the web about toxic comment

classification. Later, the different alternatives tried on both models are discussed along the

metrics to evaluate them.

8.1 State of art solutions and statistics

These solutions were found mostly the research phase, and some of them throughout the whole

process of fulfilling of this project. We will divide them into the binary models and the

multilabel/itemized ones.

8.1.1 Binary models

A table showing the different solutions for binary models is presented. Bold values are the

highest among the corresponding metric. The next list shows the paper names:

1. Detecting toxic behaviour in social media and online news [66].

2. Toxicity Detection on Bengali Social Media Comments using Supervised Models [3].

3. MC-BERT4HATE: Hate Speech Detection using Multi-channel BERT for Different Languages

and Translations [5].

4. Deep Learning for Hate Speech Detection in social media [67].

5. Overview of MEX-A3T at IberLEF 2019: Authorship and aggressiveness analysis in Mexican

Spanish tweets [4].

6. Kaggle’s user doing the classification of Toxic tweets [68].

Paper Model Precision Accuracy Recall AUC F1 Macro F1

1

GRU +
Attention

0.86 0.84 0.53 0.66

GRU +
Capsule

0.73 0.84 0.73 0.73

MultiCNN 0.86 0.83 0.49 0.63

BERT 0.85 0.87 0.66 0.74

BERT-P 0.85 0.85 0.6 0.71

Ensemble
BERT

0.84 0.87 0.66 0.74

2

Naive Bayes 0.818

SVM 0.8473

Logistic
Regression

 0.8522

LSTM 0.9413

CNN 0.953

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 103

3

MC-BERT
fine-tuning

(HatEval)

 0.769 0.77

English BERT
fine-tuning
(HatEval)

 0.752 0.75

Chinese BERT
fine-tuning
(HatEval)

 0.7 0.69

Multilingual
BERT fine-

tuning
(HatEval)

 0.755 0.75

MC-BERT
fine-tuning
(GemEval)

 0.801 0.76

English BERT
fine-tuning
(GemEval)

 0.798 0.77

Chinese BERT
fine-tuning
(GemEval)

 0.76

Multilingual
BERT fine-

tuning
(GemEval)

 0.779 0.74

MC-BERT
fine-tuning
(HaSpeeDe)

 0.8 0.78

English BERT
fine-tuning
(HaSpeeDe)

 0.798 0.77

Chinese BERT
fine-tuning
(HaSpeeDe)

 0.799 0.78

Multilingual
BERT fine-

tuning
(HaSpeeDe)

 0.822 0.8

4 CNN + LSTM 0.925

5

CNN + LSTM,
Multilayer
perceptron

(PRLHT)

 0.7 0.63

SVM 0.68 0.59

Naive Bayes 0.69 0.61

SVM 0.71 0.63

Final Degree Project

104 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

SVM +
Multilayer
perceptron

 0.73 0.65

CNN; LSTM;
GRU VRAIN

 0.61 0.51

6 BiGRU 0.925 0.925 0.93

Figure 104 Statistics from state-of-art binary models

A general issue with machine learning solutions on the Internet is that the most popular metric

for evaluating the models is the accuracy. Having a good accuracy, although is not a bad

performance, is not guaranteed of a good one either as isolated evaluation. This concern is

discussed in the Best metric for measuring overall performance subsection.

We can observe the different values that several proposed models of the accuracy. Some studies

also provide the recall and F1-score metrics. An interesting aftermath can be inferred: deep

learning methods, which are more resource-expensive, do not imply better results than the

machine learning methods. We can see that for paper 1 a CNN [69] with an attention layer is

proposed and an accuracy of 84% is achieved. In paper 2, a Logistic Regression model reaches

an 85.22% of accuracy. Bear in mind once again that accuracy does not tell the whole story. As

we can see, the CNN of paper 1 has also a good precision (86%), and it could be possible that

the Logistic Regression model had a poor precision value. We cannot establish a formal

comparison with lack of information. We can only partially evaluate the models on common

metrics.

One interesting case is paper ¡Error! No se encuentra el origen de la referencia., which uses a

bidirectional gated recurrent unit deep learning model [70] to perform the classification of the

same dataset used in our binary model [40]. It has also the best performing recall F1-score of

the solutions.

However, the proposed model in this project firmly exceeds those values. We will see the

specific values in the Binary models section.

8.1.2 Multilabel models

These are the multilabel models studied. Bold values are the highest among the corresponding

metric. The next list shows the paper names:

1. Jigsaw Challenge 2nd place [71].

2. Jigsaw Challenge 3rd place [72].

3. Jigsaw Challenge 5th place [73].

4. Application of Recurrent Neural Networks in Toxic Comment Classification [74].

Paper Method Precision Accuracy Recall AUC

F1
Macro F1

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 105

1 RNN +
DPCNN +

GBM

0.98822

2 BiLSTM +
BiGRU

0.9872

3 Two level
BiGRU

0.9865

4 Baseline 0.48 -
0.8672

0.08 -

0.7783
0.9797

GRU 0 - 0.8277

0 - 0.8079 0.9782

Figure 105 Statistics from state-of-art multilabel models

Note that all models were trained with the Jigsaw challenge dataset [41]. The first three models

were taken from the Jigsaw competition itself. The competition awarded the ranking position in

terms of accuracy, so it is the only metric available for those models. Their accuracy is quite high,

given that their models are quite complex. Most of the high ranks were populated by teams with

expert knowledge of deep learning that dedicated large amounts of time and resources in this

competition. They apply advanced mechanisms like TTA [75], dense word embeddings and

model assembling. A common characteristic of these models is that the text preprocessing phase

was not devoted a lot of time. The main concern for the teams was to create the right neural

network structure and try several word embeddings that better fit their specific model.

There is also a fourth solution that was not taken from the Kaggle competition. This solution

proposed two models: a baseline model implemented in Keras [45] and a gated recurrent unit

[57]. An interesting feature of this paper is that it did not present an accuracy measure. For the

metric values presented the vary drastically depending on the target measured. This is probably

due to the dataset unbalance, which is discussed in the Multilabel unbalanced dataset issue

description. Nevertheless, the value for the AUC [76] is considerably big.

Our multilabel model does not reach those high values. Class imbalance played a major role in

this issue, as it is commented in the Multilabel unbalanced dataset issue description. We will see

the specific values of our statistic in the 8.2.2 section.

8.2 Attempted alternatives

In this section, the different alternatives attempted during the implementation of both binary

and multilabel systems is commented along some statistics to explain the decision of choosing

the final models.

8.2.1 Binary models

All tried binary models were implemented in Scikit Learn, since one of the first classifiers

implemented performed well, so the decision was to perform alterations to different Scikit Learn

models, in the data transformation and the text preprocessing part.

Final Degree Project

106 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

This table shows different alternatives attempted. Bold values are the best in each metric. A

legend is presented explaining the table content.

These are the header abbreviations:

- DT. Data transformation method.

- NLP. Natural language processing tasks.

- ACC. Accuracy metric.

- PREC. Precision metric.

- F1. F1 score metric.

These are the different models:

- 1. Logistic Regression LBFGS Solver [77] L2 Regularization [24].

- 2. Logistic Regression Liblinear Solver L2 Regularization.

- 3. Logistic Regression SAG Solver L2 Regularization.

- 4. Logistic Regression SAGA Solver L2 Regularization.

- 5. Perceptron [78] L2 Regularization.

- 6. Perceptron L1 Regularization.

- 7. Stochastic Gradient Descent [25], [79] Hinge loss function [26].

- 8. Stochastic Gradient Descent Modifier Huber loss function.

- 9. Stochastic Gradient Descent Perceptron loss function.

- 10. Stochastic Gradient Descent Huber loss function.

The different datasets:

- -1-. Labelled Data [80].

- -2-. Final Balanced Dataset [40].

- -3-. List of bad words [81].

The NLP tasks used:

- TOK. Tokenization [82].

- SR. Stop words Removal.

- PR. Punctuation Removal.

- ULUR. Username, Link and Unicode symbols Removal.

- STEM. Stemming [83].

- CE. Contractions’ expansion.

- LOW. Text to lowercase.

The different data transformation methods:

- (1). Bag of words [54], n_gram_range = {1,2} [84].

- (2). Bag of words, n_gram_range = {1,1}.

- (3). Bag of words, n_gram_range = {1,3}.

- (4). TF-IDF [54], n_gram_range = {1,2}.

- (5). TF-IDF, n_gram_range = {1,1}.

- (6). TF-IDF, n_gram_range = {1,3}.

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 107

- (7). Bag of words, n_gram_range = {1,2} Binary1 Strip Accents

Finally, the colours represent different stages of the trial of these alternatives:

- Blue. The first models tried when implementing the binary model.

- Green. Combination of the dataset with some external lexicon.

- Red. Execution of almost every possible combination of dataset, data transformation

method and NLP tasks. See ¡Error! No se encuentra el origen de la referencia..

- Yellow. Best data transformation method and combination of NLP tasks.

Mode
l

Dataset NLP DT ACC PREC REC F1 Time

1 -1-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.80944 0.75054 0.80944 0.80884 0.76s

1 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.95013 0.92024 0.95013 0.94988 15.91s

2 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.95022 0.92043 0.95022 0.94997 12.98s

3 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.95013 0.92039 0.95013 0.94988 25.15s

4 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.94995 0.92015 0.94995 0.9497 34.24s

3 -2-
TOK + SR +
PR + ULUR

+ STEM
(2) 0.94889 0.91749 0.94889 0.94866 16.19s

3 -2-
TOK + SR +
PR + ULUR

+ STEM
(3) 0.94889 0.91885 0.94889 0.94862 39.62s

3 -2-
TOK + SR +
PR + ULUR

+ STEM
(4) 0.93902 0.89902 0.93902 0.93877 12.92s

3 -2-
TOK + SR +
PR + ULUR

+ STEM
(5) 0.94026 0.90587 0.94026 0.93986 11.64s

3 -2-
TOK + SR +
PR + ULUR

+ STEM
(6) 0.93488 0.88867 0.93488 0.93472 14.07s

1 The binary parameter means that the bag of words does only track if the words appear in each
document, disregarding the number of occurrences

Final Degree Project

108 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

5 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.90007 0.93634 0.90007 0.8994 12.5s

6 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.92898 0.87815 0.92898 0.92882 12.83s

7 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.95163 0.92094 0.95163 0.95143 12.73s

8 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.95189 0.92027 0.95189 0.95172 12.7s

9 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.94264 0.90494 0.94264 0.94241 12.52s

10 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.9259 0.88866 0.9259 0.92501 12.8s

3 -2- -3-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.94995 0.91962 0.94995 0.94971 28.2s

8 -2- -3-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.94484 0.90402 0.94484 0.94476 14.44s

3 -2-
TOK +
STEM

(1) 0.94713 0.91568 0.94713 0.94685 80s

3 -2-

TOK + SR +
CE + PR +
ULUR +
STEM

(1) 0.94704 0.91526 0.94704 0.94677 81.19s

3 -2-
TOK + SR +
PR + ULUR

+ STEM
(1) 0.9466 0.91458 0.9466 0.94632 81.4s

3 -2-

TOK +
LOW + SR

+ PR +
ULUR +
STEM

(7) 0.95321 0.9241 0.95321 0.95302 63.45s

8 -2-

TOK +
LOW + SR

+ PR +
ULUR +
STEM

(7) 0.95365 0.92291 0.95365 0.95351 62.6s

Figure 106 Binary model alternatives

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 109

The first dataset ever tried on the implementation of the binary model was the dataset used in

[1]. Although it is intended to be for multiclass classification [85] with three classes, it was

transformed to a binary dataset, converting hate speech and offensive language classes to the

same class. Also, the first model was a logistic regression with the default solver. This model

performed well and was executed instantaneously.

Then, a new balanced dataset [40] was found in Kaggle. This dataset compilated some

unbalanced datasets that the author had found throughout his work. As the results were better

in every aspect but the time, the first dataset was no longer tested.

After finding this dataset, other logistic regression solvers were attempted, and the best one

was the Stochastic Gradient Descent (SAG) solver, which as Scikit Learn shows, is optimal for big

sets of data [86]. Regularization was kept to L2 since it’s the most aggressive to prevent

overfitting. This classifier was tried with different bag of words and TF-IDF combination, being

the bag of words with a ngram range of {1,2} the most suitable one.

Other models were tried like the Perceptron and the Stochastic Gradient Descent classifiers. The

Stochastic Gradient Descent with the ‘modified huber’ loss function performed better than any

previous model.

Moreover, a test was performed on third-party lexicons to be added as an additional

classification feature.

After several trials, an optimal preprocessing and data transformation method was established.

In this case, the Stochastic Gradient Descent still performed the best.

The red rows of the table show the best three models obtained in the execution of a file

attempting several combinations. This process is described ¡Error! Marcador no definido.¡Error!

No se encuentra el origen de la referencia..

8.2.1.1 Binary model combinations

In a point of the development process of the binary model, a script that executed eighty possible

combinations of dataset, preprocessing, and data transformation method. The output of this

script is in the file alltests.log file attached inside the directory doc/logs/.

For the datasets, both [40] and [41] were utilized. Although the latter is a multilabel dataset it

was converted to a binary one, by making comments with no toxicity, obscenity, threat, insult,

or identity hate the appropriate ones, so the rest are inappropriate.

For the NLP tasks ten different possibilities were offered, and the data transformation methods

possibilities were bag-of-words, doc2vec [87], fasttext [62] and glove [61].

As the file contains some abbreviations, they are described here:

- FBD. Final Balanced Dataset [40].

- jigsaw. Jigsaw Dataset.

- clean_text1. TOK + SR + PR + ULUR + STEM.

Final Degree Project

110 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

- clean_text2. Every option was modifiable:

o no lower: Text is not converted to lowercase.

o ws: White spaces are kept.

o no numbers: Numbers are kept.

o no abrev exp: Contractions are not expanded.

o no tw processing: Twitter-related information is kept. Hashtags are not

separated into words.

o sw: Stopwords are kept.

o no token: Tokenization is not performed.

- bow. Bag of words

- d2v. doc2vec

As to show the statistics would be overwhelming, some conclusive charts are presented.

First, Figure 107 shows the different combination grouped by their data transformation method.

We can see that bag of words is the most consistent method in all the combinations. Word

embeddings tend to perform better on the [41] dataset.

Figure 107 Accuracy grouped by data transformation methods

Next, the results grouped by preprocessing possible combinations is shown in Figure 108. We

can see that they hardly change the overall result of the dataset accuracy. A conclusion of this

graph could be that NLP tasks had little impact on the accuracy of the models.

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 111

Figure 108 Accuracy grouped byu preprocessing methods

Finally, the results were clustered by the used dataset. At first glance, the Jigsaw binarized

datasets models tend to perform more consistently in Figure 109.

However, if we focus on another metric like precision in Figure 110, the opposite happens.

Figure 109 Accuracy grouped by dataset

Final Degree Project

112 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

Figure 110 Precision grouped by dataset

8.2.2 Multilabel models

The alternatives of multilabel models were implemented in both Scikit Learn [32] and PyTorch

[33]. Figure 111 shows these alternatives. Bold values highlight the highest values on the

corresponding metric. A legend is presented in order to understand the information inside:

Header abbreviations:

- DT. Data transformation method selected.

- ACC. Accuracy metric [63].

- PREC. Precision metric.

- REC. Recall metric.

- F1. F1 Score metric.

- HL. Hamming loss metric [64].

- JS. Jaccard score metric [88].

These are the different models used:

- 1. BinaryRelevance [10] + Logistic Regression [6] SAG Solver [77] L2 Regularization [24].

- 2. ClassifierChain + Logistic Regression SAG Solver L2 Regularization.

- 3. Label Powerset + Logistic Regression SAG Solver L2 Regularization.

- 4. OneVSRest [9] + Logistic Regression SAG Solver L2 Regularization.

- 5. OneVSRest + Stochastic Gradient Descent [25], [26] Modified Huber Loss Function

[26].

- 6. BERT [30], [60] + Dropout [89] of 0.3 + Linear Layer [90].

- 7. Embedding [60] + Dropout of 0.3 + Linear Layer.

- 8. Bidirectional LSTM [58] + Attention Layer [91].

- 9. Multioutput [53] + Logistic Regression SAG Solver L2 Regularization.

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 113

- 10. Multioutput + Stochastic Gradient Descent Modified Huber Loss Function.

The dataset used is [41], which is discussed in section 7.3.2.

The text preprocessing was the same in every model: Tokenization [82] + Text to lowercase +

Hashtag split into several words + Stop words removal + Punctuation removal +

Username/Links/Unicode symbols removal + Stemming [83].

The data transformation methods:

- (1). Bag of words [52] n gram range (1,2) min_df = 102.

- (2). Bag of words n gram range (1,2) Binary.

- (3). TF-IDF [54] n gram range (1,2) Binary.

- (4). BERT Tokenizer [92].

- (5). Glove [61] Word Embedding (50-dimensional vectors).

- (6). Glove Word Embedding (200-dimensional vectors).

- (7). TF-IDF n gram range (1,1) min_df = 25.

Finally, the colour code is the following:

- Blue. Scikit Learn transformation methods. It has been achieved with a non-native Scikit

Learn library called “skmultilearn” [93].

- Green. One VS Rest (OvR) wrapper for binary models.

- Red. PyTorch artificial neural networks.

- Yellow. Scikit Learn Multioutput wrapper for binary models.

Model DT ACC PREC REC F1 HL JS Time

1 (1) 0.87968 0.40399 0.62574 0.60792 0.02978 0.44181 2097s

2 (1) 0.89567 0.37485 0.58732 0.57076 0.03112 0.41078 2410s

3 (1) 0.89088 0.34861 0.50628 0.55037 0.03053 0.38582 4319s

2 This parameter indicates the number of minimum of documents where each word should appear to be
taken into account

Final Degree Project

114 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

4 (2) 0,97284 0,31851 0,97284 0,97435 0.03117 0.95356 2179s

4 (3) 0.97393 0.28018 0.97393 0.97305 0.02606 0.95448 436s

5 (2) 0.96955 0.27 0.96955 0.97003 0.03046 0.94927 374s

5 (3) 0.97473 0.26006 0.97473 0.97298 0.02528 0.95489 426s

6 (4) 0 0 0 0 N/M N/M 80h

7 (5) 0 0 0 0 N/M N/M 80h

8 (6) 0.91145 0.5 0.28 0.34167 N/M N/M 80h

9 (7) 0.89454 0.4506 0.63174 0.64417 0.02556 0.48109 265s

10 (7) 0.89757 0.44586 0.61373 0.63564 0.02516 0.47445 258s

Figure 111 Multilabel model alternatives

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 115

We will take a glance at the overall comparison between binary and multilabel systems. The

time execution is higher in the multilabel models. This is due to the dataset being larger and

denser, since the model must track six different targets instead of one in the case of binary

models. The measures are consistently lower. Nevertheless, we have to be careful about making

bold statements about these models being considerably worse than the binary models. Bear in

mind that some metrics in multilabel classification may be misleading. This issue is commented

in section 7.3.5.7.

The first approach was to explore the limits of Scikit Learn regarding multilabel classification.

The library called “skmultilearn” was found during implementation. This library offers the

possibility of transforming multilabel problems into binary problems, which are suitable to Scikit

Learn. Binary relevance, classifier chain and label powerset are concepts explained in the

theoretical aspect sections 2.3.1.6.1, 2.3.1.6.2, and 2.3.1.6.3. These methods perform similarly,

but we can observe that the label powerset method lasts much longer, given that it computes

every possible combination of targets.

Then, the One vs Rest approach was attempted for the multilabel model. The value for these

metrics is the average of all the values of the corresponding metric for each label. Figure 112,

Figure 113, Figure 114, and Figure 115 show the specific labels’ metric values of each OvR model.

Figure 112 Labels' metric values for model 4 with Bag of words

Final Degree Project

116 Evaluation of alternatives | School of Computer Engineering - University of Oviedo

Figure 113 Labels' metric values for model 4 with TF-IDF

Figure 114 Labels' metric values for model 5 with Bag of words

Figure 115 Labels' metric values for model 5 with TF-IDF

We can see that these models performed considerably better than the rest of models. However,

their precision values are the lowest (outside the neural networks ones). The value of the

Final Degree Project

School of Computer Engineering - University of Oviedo | Evaluation of alternatives 117

precision metric is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑃
, so the main concern of this metric is to penalize wrong

predictions. Thus, these models tend to predict most of the messages as appropriate. This is

probably due to the dataset imbalance, which is commented in section 7.3.5.2.

As one of the main objectives was to create a multilabel mode, the first thought was to

implement an artificial neural network. This was done through PyTorch. Only three neural

networks were able to complete their training. Each of them has been trained over four 20-hour

epochs (iterations). The first two neural networks have not accomplished any metric value

higher than 0. This is due to several factors that are discussed in section 7.3.5.4. For the final

neural network, a model tried found in [59] was implemented. This is the only deep learning

model to perform greatly on the dataset. However, it lacks great values on recall and F1 score

metrics.

Finally, both best performing binary models were put to test inside a Mulitoutput wrapper that

Scikit Learn offers. For the data transformation, a GridSearchCV [94] was performed. This

algorithm looks for the best performing parameters inside the data transformation method, in

this case TF-IDF, for a given metric. These last models are the ones who perform the most

consistently throughout all metrics. These metrics are similar to the first three models’, but they

perform the training ten times faster than the binary relevance and classifier chain and twenty

times faster than the label powerset.

The final model was 10, given that it performed as the most consistent model. Deciding between

9 and 10 was harder, because the statistical differences are small. However, the SGD classifier

provides a partial_fit method that allows to retrain the model without losing previous

coefficients [26]. The logistic regression does not offer this possibility, so every prediction

correction or retraining would have to be done appending it to the original dataset and passing

it to the classifier, so response time is the key factor.

Final Degree Project

118 Testing development | School of Computer Engineering - University of Oviedo

Chapter 9. Testing development

The results of the different test are shown in this chapter.

9.1 Unit tests

These are the results of all the test cases listed in section 6.6.1.

Use case 1: Change classification method

Test 1.1 Expected Result Passed

The user changes the
method to any of the
two possible
methods

The controller stores the new in the
classifier attribute

True

Test 1.2 Expected Result Passed

The user changes the
method to a not
contemplated
method

The controller itself validates that the
value is correct

True

Figure 116 Change classification method unit test result

Use case 2: Detect inappropriate messages

Test 2.1 Expected Result Passed

The user tries to
classify a blank
message with no file
uploaded

The controller checks for each
mechanism the emptiness of the
message. If it is empty an exception
is thrown

True

Test 2.2 Expected Result Passed

The user tries to
classify a message
that exceeds
maximum message
length (500
characters)

The controller validates that the
message is at most 500-character
long. If it is longer, an exception is
thrown

True

Test 2.3 Expected Result Passed

The user tries to
upload a file with
wrong extension

The controller validates that the
extension is correct. If it is not, an
exception is thrown

True

Test 2.4 Expected Result Passed

The user tries to
upload with
unexpected data

The controller validates the number
of columns of the file, which should
contain only one
The controller validates for every
row of the file that the message is a
valid character string, that it is not
blank and that it does not exceed
maximum possible length

True

Final Degree Project

School of Computer Engineering - University of Oviedo | Testing development 119

For any reason above not being
fulfilled, an exception is thrown for
each message

Test 2.5 Expected Result Passed

The user types a
message with no file
uploaded and
classifies the
message

The controller computes the
prediction
The user interface shows the
prediction

True

Test 2.6 Expected Result Passed

The user uploads a
correct file with valid
data and with no
typed message

The controller predicts for each
message a prediction as the one
described before

True

Figure 117 Detect inappropriate messages unit test result

Use case 3: Save results to file

Test 3.1 Expected Result Passed

The user tries to save
results to file with no
classification
performed

The controller raises an exception True

Test 3.2 Expected Result Passed

The user saves
results of a
performed
classification to a file

The controller creates a file inside
the output folder, and inserts the
last prediction, dumping the
message and the obtained
prediction
For several predictions, each line of
the output file will contain the
message and the obtained
prediction

True

Test 3.3 Expected Result

The user tries to save
results to .txt file
with no classification
performed

The controller raises an exception True

Test 3.4 Expected Result

The user saves
results to .txt of a
performed
classification to a file

The controller creates a file inside
the destination folder, and inserts
the last prediction, dumping the
message and the obtained
prediction
For several predictions, each line of
the output file will contain the
message and the obtained
prediction

True

Figure 118Save results to file unit test result

Use case 4: Correct predictions

Final Degree Project

120 Testing development | School of Computer Engineering - University of Oviedo

Test 4.1 Expected Result Passed

The administrator
tries to correct a
prediction with no
classification
performed

The controller checks if the
last_predictions attribute is
empty

True

Test 4.2 Expected Result Passed

The administrator
introduces a
correction with
wrong values or
number of values

The controller raises an exception True

Test 4.3 Expected Result Passed

The administrator
introduces a correct
prediction

There are no errors in the return value True

Test 4.4 Expected Result Passed

A non-administrator
user tries to correct
the prediction

The controller checks if the user is
logged in

True

Figure 119 Correct predictions unit test result

Use case 5: Log in as administrator

Test 5.1 Expected Result Passed

The administrator
tries to access the
Log in as
administrator option

The controller checks that the user is
not already logged in

True

Test 5.2 Expected Result Passed

The user tries to
introduce blank
username or
password

The controller validates if any of the
data is blank. If it is, the controller
raises an exception

True

Test 5.3 Expected Result Passed

The user tries to
introduce too long
username (20
characters) or
password (30
characters)

The controller checks that the
username and password do not
exceed the possible maximum length
(20 and 30 characters respectively). If
any does, the controller throws an
exception

True

Test 5.4 Expected Result Passed

The user tries to
introduce non-
alphanumeric
characters for the
username

The controller checks that the
username is only alphanumeric. If it is
not, the controller throws an
exception

True

Test 5.5 Expected Result Passed

The user introduces
valid username and
password but there

The authentication module returns a
negative result (false) because the

True

Final Degree Project

School of Computer Engineering - University of Oviedo | Testing development 121

is not match in the
database

hashed password and the database
password do not match

Test 5.6 Expected Result

The user introduces
valid and correct
username and
password

The authentication module returns a
positive result (true)
The attribute authenticated in
the controller is set to true

Figure 120 Log in as administrator unit test result

Use case 6: Train models

Test 6.1 Expected Result Passed

The non-
administrator user
tries to train a model

The controller checks if the user is
logged in

True

Test 6.2 Expected Result Passed

The administrator
tries to upload an
invalid file

The controller checks the extension
of the file. If it is incorrect, the
controller raises an exception

True

Test 6.3 Expected Result Passed

The administrator
uploads a file with
blank data or wrong
prediction values

The classifier checks the validity of
the data. If it is not valid, an
exception is thrown for each of the
rows

True

Test 6.4 Expected Result Passed

The administrator
uploads a file with
wrong number of
pieces of data

The classifier checks the number of
columns of the file. If it is incorrect,
an exception is thrown

True

Test 6.5 Expected Result Passed

The administrator
uploads a valid file
with valid data and
trains the model

There are no errors in the return
value

True

Figure 121 Train models unit test result

9.2 Usability tests

Now, the results of the surveys completed by the testing user will be shown. Bold options

represent the user answer. The tests have been complimented by three people with different

computer experience.

9.2.1 User profile ranking

Each of the users has completed this survey.

Name: Jorge Antonio

How often do you use a computer?

Final Degree Project

122 Testing development | School of Computer Engineering - University of Oviedo

1. Everyday
2. Several times a week
3. Occasionally
4. Hardly ever
5. I have never used a computer

What is your main activity using a computer?

1. It is part of my job or occupation
2. Mainly for free time
3. Using office software
4. Reading news and/or emails
5. I use it for nearly everything

Have you ever used a similar software?

1. Yes, I have
2. No, although I have used software that perform similar tasks
3. No

What do you look forward the most in a program?

1. To be easy to use
2. To perform a lot of tasks
3. To be fast
4. To have a nice interface
5. To be transparent on the operations it performs

Figure 122 User profile ranking survey completed by Jorge Antonio

Name: Marta

How often do you use a computer?

1. Everyday
2. Several times a week
3. Occasionally
4. Hardly ever
5. I have never used a computer

What is your main activity using a computer?

1. It is part of my job or occupation
2. Mainly for free time
3. Using office software
4. Reading news and/or emails
5. I use it for nearly everything

Have you ever used a similar software?

1. Yes, I have
2. No, although I have used software that perform similar tasks

Final Degree Project

School of Computer Engineering - University of Oviedo | Testing development 123

3. No

What do you look forward the most in a program?

1. To be easy to use
2. To perform a lot of tasks
3. To be fast
4. To have a nice interface
5. To be transparent on the operations it performs

Figure 123 User profile ranking survey completed by Marta

Name: Jose Ignacio

How often do you use a computer?

1. Everyday
2. Several times a week
3. Occasionally
4. Hardly ever
5. I have never used a computer

What is your main activity using a computer?

1. It is part of my job or occupation
2. Mainly for free time
3. Using office software
4. Reading news and/or emails
5. I use it for nearly everything

Have you ever used a similar software?

1. Yes, I have
2. No, although I have used software that perform similar tasks
3. No

What do you look forward the most in a program?

1. To be easy to use
2. To perform a lot of tasks
3. To be fast
4. To have a nice interface
5. To be transparent on the operations it performs

Figure 124 User profile ranking survey completed by Jose Ignacio

9.2.2 Guided activities

Every user has complimented this questionnaire.

Name: Jorge Antonio

Writing a message and predicting it

Final Degree Project

124 Testing development | School of Computer Engineering - University of Oviedo

Things I liked:
 The option to itemize a prediction into several categories
Things I would like to be improved:
 Model names in the user interface could be clearer

Uploading a file with messages and predicting them

Things I liked:
 -
Things I would like to be improved:
 I don’t like using double quotes to write the messages

Obtaining a file with the computed predictions

Things I liked:
 -
Things I would like to be improved:
 -

Correcting the prediction of a computed classification (Administrators only)

Things I liked:
 -
Things I would like to be improved:
 Progress bar so I know I have to wait

Uploading a file to train a model (Administrators only)

Things I liked:
 -
Things I would like to be improved:
 Help button to know the file format

Figure 125 Guided activities survey completed by Jorge Antonio

Name: Marta

Writing a message and predicting it

Things I liked:
 Easy to know how to use it
Things I would like to be improved:
 To be able to edit the message after classifying it

Uploading a file with messages and predicting them

Things I liked:
 Also, easy to use
Things I would like to be improved:
 It would be nice if the program accepted other more human-friendly extensions like .txt

Obtaining a file with the computed predictions

Things I liked:
 -
Things I would like to be improved:
 The task would be better if it let you select the path

Correcting the prediction of a computed classification (Administrators only)

Things I liked:
 -
Things I would like to be improved:
 The Correct prediction text should be bigger

Uploading a file to train a model (Administrators only)

Things I liked:

Final Degree Project

School of Computer Engineering - University of Oviedo | Testing development 125

 -
Things I would like to be improved:
 As uploading a message, it would be better if it let you submit other extensions

Figure 126 Guided activities survey completed by Marta

Name: Jose Ignacio

Writing a message and predicting it

Things I liked:
 Easy to use
Things I would like to be improved:
 -

Uploading a file with messages and predicting them

Things I liked:
 -
Things I would like to be improved:
 The message about file submission should be clearer

Obtaining a file with the computed predictions

Things I liked:
 -
Things I would like to be improved:
 -

Correcting the prediction of a computed classification (Administrators only)

Things I liked:
 The confirmation window where I can see the overall operation
Things I would like to be improved:
 -

Uploading a file to train a model (Administrators only)

Things I liked:
 The confirmation window where I can see the overall operation
Things I would like to be improved:
 I would want to be provided an example inside the program on how each row should be

Figure 127 Guided activities survey completed by Jose Ignacio

9.2.3 Quick questions about the application

All users have done the following survey.

Name: Jorge Antonio

Ease of use Always Most of the time Occasionally Never

Do you know where you are inside
the application?

 X

Is there any help when using the
application if any doubts arise?

 X

Do you consider the application to
be easy to use?

 X

Functionality Always Most of the time Occasionally Never

Does the prediction suit the
messages introduced?

 X

Final Degree Project

126 Testing development | School of Computer Engineering - University of Oviedo

Does the model reflect a better
prediction after correcting or
training the model?

 X

Is the files’ data format intuitive
and suitable?

 X

Does every task work as
expected?

X

If any task fails, do you find the
error messages descriptive
enough?

 X

Is the response time of the
application adequate?

 X

Interface quality

Graphic aspects
Very

adequate
Adequate

Little
adequate

Not
adequate

The font size and type is X

Used colours are X

Interface design Yes No Sometimes

Is the interface easy to use? X

Is the windows design clear? X

Do you think that the application is well-
structured?

X

Are messages describing thoroughly the
specific situation?

X

Observations

The user interface and colours are a little bit cold and could be improved

Figure 128 Quick question about the application survey completed by Jorge Antonio

Name: Marta

Ease of use Always Most of the time Occasionally Never

Do you know where you are inside
the application?

 X

Is there any help when using the
application if any doubts arise?

 X

Do you consider the application to
be easy to use?

X

Functionality Always Most of the time Occasionally Never

Does the prediction suit the
messages introduced?

 X

Does the model reflect a better
prediction after correcting or
training the model?

X

Is the files’ data format intuitive
and suitable?

 X

Does every task work as
expected?

X

If any task fails, do you find the
error messages descriptive
enough?

 X

Final Degree Project

School of Computer Engineering - University of Oviedo | Testing development 127

Is the response time of the
application adequate?

 X

Interface quality

Graphic aspects
Very

adequate
Adequate

Little
adequate

Not
adequate

The font size and type is X

Used colours are X

Interface design Yes No Sometimes

Is the interface easy to use? X

Is the windows design clear? X

Do you think that the application is well-
structured?

X

Are messages describing thoroughly the
specific situation?

X

Observations

I have understood how the application works with no previous knowledge on artificial
intelligence and I’d probably use it in some of my projects.

Figure 129 Quick question about the application survey completed by Marta

Name: Jose Ignacio

Ease of use Always Most of the time Occasionally Never

Do you know where you are inside
the application?

 X

Is there any help when using the
application if any doubts arise?

 x

Do you consider the application to
be easy to use?

X

Functionality Always Most of the time Occasionally Never

Does the prediction suit the
messages introduced?

 X

Does the model reflect a better
prediction after correcting or
training the model?

 X

Is the files’ data format intuitive
and suitable?

 X

Does every task work as
expected?

X

If any task fails, do you find the
error messages descriptive
enough?

X

Is the response time of the
application adequate?

 X

Interface quality

Graphic aspects
Very

adequate
Adequate

Little
adequate

Not
adequate

The font size and type is X

Used colours are X

Interface design Yes No Sometimes

Is the interface easy to use? X

Is the windows design clear? X

Final Degree Project

128 Testing development | School of Computer Engineering - University of Oviedo

Do you think that the application is well-
structured?

X

Are messages describing thoroughly the
specific situation?

X

Observations

-

Figure 130 Quick question about the application survey completed by Jose Ignacio

9.2.4 Tester survey

The developer responsible of creating and distributing the test has completed the next summary

of the testing phase.

Observed aspect Notes Possible solutions

The user handles
the task in a fast
way

All users have asserted that the
application performs tasks quickly

Minor errors In 9.2.2, an error that allowed
pressing the Classify option several
times for the same message was
found

The Classify option is now only
available once after writing or
uploading a file

Major errors N/D

The predictions
are fitting to the
true ones

Users that performed predictions
in 9.2.2 had shown that the
predictions are acceptable, but
could be better

A deep learning model could
generate better results, but the
problems listed in 7.3.5 have made
a deep learning model unreachable.
So, the current models are kept

Files’ data format
is intuitive to the
user

Users agree that data’s format is
proper. However, some complains
suggested to also accept .txt files

As the most agreed format for
machine learning datasets is .csv
files containing rows of data, this
has not been changed

Output files show
content clearly
and plainly

Users demanded more extension
like .txt

The application now offers a .txt
saving option

User interface is
suitable

Users have accepted the user
interface style. However, there
were some complains about font
size and style

The interface has been altered to
satisfy these complains

The window should be possible to
be maximized

This is a constraint given by the user
interface library, so it has not been
changed

When doing the training, an
example should be shown in the
interface

A message is shown now explaining
an example of how a file row should
be written

Some users have demanded an
option to refresh the prediction
without writing or submitting the
message again

A functionality has been added in
the logic that allows to make the
last predictions performed

Final Degree Project

School of Computer Engineering - University of Oviedo | Testing development 129

Users had asked for any kind of
help within the application for
format of the message and
training files

Two options have been added to
the final design of the user interface
which display the format of these
files

Table 1 Completed tester survey

9.3 Accessibility tests

Given that the developed system is a desktop application and in order to prove the accessibility

of the application, a new customized checklist acquired from alterations of the WCAG 1.0

standards is complimented [39]. For the contrast ratio, we can take a look at [95].

Checklist points Achieved Not achieved

Sensory characteristics (A) [96]

Do not identify content based on its colour, size,
shape, position, sound, or other sensory
characteristics

X

Do no convey information solely through icons or
symbols

X

Use of colour (A) [97]

Required fields and fields with errors must include
some non-color way to identify them

X

Contrast (Minimum (AA) [98]

Text (including images of text) have a contrast ratio of
at least 4.5:1. For text and images of that is at least
24px and normal weight or 19px and bold, use a
contrast ratio that is at least 3:1.

X

Text spacing (AA) [99]

Avoid using pixels for defining the height and spacing
of text boxes

X

Keyboard (A) [100]

All functionalities should be available to a keyboard
without requiring specific timing of keystrokes, unless
the functionality cannot be provided by a keyboard
alone

X

No keyboard trap (A) [101]

Ensure keyboard focus is never trapped on an
element without an obvious way to move focus out of
the element. Make sure the user can move focus to
and from all focusable elements using a keyboard only

 X

Timing adjustable (A) [102]

Do not require time limits to complete tasks unless
absolutely necessary. If a time limit is necessary, the
time limit should be at least 20 hours, or it can be
extended, adjusted, or disabled.

X

Final Degree Project

130 Testing development | School of Computer Engineering - University of Oviedo

Pause, Stop, Hide (A) [103]

Items on the page should not automatically move,
blink, scroll, or update, including carousels. If content
does automatically move, blink, scroll, or update,
provide a way to pause, stop, or hide the moving,
blinking, scrolling, or updating.

X

Focus Visible (A) [104]

Provide keyboard focus styles that are highly visible,
and make sure that a visible element has focus at all
times when using a keyboard. Do not rely on browser
default focus styles.

X

Pointer Cancellation (A) [105]

Avoid triggering functionality on down-events, such
as onmousedown. Use events such as onclick instead.

X

Label in Name (A) [106]

The accessible name for a UI element must contain
any visual label for the element. Accessible names for
UI elements should match visual labels as closely as
possible.

X

On Input (A) [107]

When a user inputs information or interacts with a
control, the window should not cause a change in
page content, spawn a new browser window, submit
a form, case further change in focus, or cause any
other change that disorients the user. If an input
causes such a change, the user must be informed
ahead of time.

X

Error Identification (AA) [108]

Make errors easy to discover, identity, and correct
X

Labels or Instructions (A) [109]

Use semantic, descriptive labels for inputs. Visually
position labels in a consistent way that makes
associating labels with form controls easy

X

Provide text instructions at the beginning of a form or
set of fields that describes the necessary input.

X

Error Suggestion (AA) [110]

If an input error is detected and if suggestions for
correction are known, provide suggestions for fixing
the submission.

X

Figure 131 Customized accessibility checklist

9.4 Performance tests

Final Degree Project

School of Computer Engineering - University of Oviedo | Testing development 131

These are the results of the fulfilled performance tests listed in section 6.6.5.

Test Workload Result

1.1 Initial training of
binary model

Binary dataset [40]
RAM Usage: 274.3 MiB
Time elapsed: 66.96s

1.2 Initial training of
multilabel model

Multilabel dataset [41]
RAM Usage: 503. 1 MiB
Time elapsed: 269.29s

1.3 Predict messages
(binary)

10000
RAM Usage: 239.32 MiB
Time elapsed: 20.07s

1.4 Predict messages
(multilabel)

10000
RAM Usage: 219.24 MiB
Time elapsed: 81.2s

1.5 Predict messages
from file (binary)

10000
RAM Usage: 239.2 MiB
Time elapsed: 16.45s

1.6 Predict messages
from file (multilabel)

10000
RAM Usage: 220.23 MiB
Time elapsed: 21.36s

1.7 Saving predictions to
file .csv

10000
RAM Usage: 238.99 MiB
Time elapsed: 0.2s

1.8 Saving predictions to
file .txt

10000
RAM Usage: 239.02 MiB
Time elapsed: 0.22s

Figure 132 Performance tests results

Final Degree Project

132 | School of Computer Engineering - University of Oviedo

Chapter 10. System manuals

These chapter presents the different manuals available about the system, for non-administrator

users, administrators, and programmers.

10.1 Installation manuals

The system is attached as a compressed file inside the delivered content. First, we should unzip

this file any directory. It will create the folder hate-speech-detection which contains all

the needed files to run the system.

Before running anything, we need the 3.10.2 Python version in order to execute the program. It

can be downloaded in [42]. It is important that we select the Add Python 3.10 to PATH

so we can execute the command outside the installation directory.

Then, we can open a command-line prompt inside the hate-speech-detection folder, by

writing cmd in the file explorer and press Enter.

Figure 133 Installation manual Open CMD

In order to encapsulate all the following installations, we create a virtual environment to contain

the modules. If Python has been well configured, the command to run would be:

python -m venv .venv

This creates a folder named .venv inside the project directory that contains some Python

related files. We have to execute a file inside this new folder with the following command:

.venv\Scripts\activate

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 133

Now we should have a (.venv) before the current directory.

Figure 134 Installation manual Virtual environment activation

Now we will install all the needed modules for the program to be run.. These modules are listed

in the requirements.txt file provided in the attached content ready to be passed as an

argument for a suitable command. The command to be run is:

pip install -r requirements.txt

10.2 Execution manuals

After all the installation steps in 10.1, we can run the program. The executing file is main.py,

which is inside the src/ folder. If we are in the project root folder the command to execute the

program is

python .\src\main.py

This should make a window appear after a few seconds and we can now interact with the

application. For the subsequent executions of the system, we should modify the init.json

file and set the download option inside the nltk option to false. This step is not mandatory,

but it is recommended for efficiency reasons.

Figure 135 Execution manual init.json

10.3 User manual

Final Degree Project

134 System manuals | School of Computer Engineering - University of Oviedo

This manual will in detail describe the steps to execute the possible tasks that the program

offers. These tasks are the ones listed:

- Choose a classification method (Binary method or itemized method).

- Predict a message.

- Predict messages in a file.

- Save results to the file.

- Log in as administrator (Non-administrator users only).

- Correct predictions of a performed classification (Administrators only).

- Train any of the models with new data (Administrators only).

All the tasks but the last two are doable for every user and will be described in 10.3.1. Then, the

Administrator manual will be presented explaining the two last operations.

10.3.1 Non-administrator user manual

In this manual, the tasks of changing the classification method, predicting messages, and saving

the predictions to a file are detailed.

10.3.1.1 Start of the application

In case we have run the program for the first time in our local machine with the -t option, it

will take around 7-10 minutes for the models to be created and stored. After that, the interface

presented will look like this:

Figure 136 Start of application

The first text area allows the user to type in any message. There are also options to change the

method for classifying the messages, a button to submit a file with messages, a button to start

over another classification and an option to log as an administrator. The text area below will

show the prediction results.

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 135

10.3.1.2 Predicting a message

To perform a classification of a single message, the user can type in any text in the first text area.

Figure 137 Step 1 to predict a message

After writing the message, press the Classify button. This will show in the second text area the

number of the message (the user may see that his message has a number attached to the left)

and the message corresponding prediction. It may show a No prediction text if the message

exceeds the number of maximum characters, which is 500.

Figure 138 Final step to predict a message

After that, the user may save the result to a file. To perform another classification, press the

button Clear All to return to the Start of application. The user can press the refresh button to

perform the same operation again.

Final Degree Project

136 System manuals | School of Computer Engineering - University of Oviedo

10.3.1.3 Predict messages in a file

Press the button Submit messages file in order to select a file containing the messages. A file

explorer will be open.

Figure 139 Step 1 to predict messages in a file

The user chooses then the desired file. The file explorer will be closed, and the system will display

a message confirming the submission. If the user wants to change the file, it may press the

button Clear All and repeat the process.

Figure 140 Step 2 to predict messages in a file

Now the user may see the file submission confirmation. The system will enable the Classify

option. Press the option and the results will be presented.

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 137

Figure 141 Final step to predict messages in a file

The system will display in the Prediction area each prediction of every message. If the file

contained wrong text values, the system would automatically inform the user and predict the

rest of valid messages. To perform another classification, press the Clear All option to return to

the Start of application.

10.3.1.3.1 File format

The file format is explained in the option with the ⓘ icon.

The system will accept a concrete format for the messages submission file. If it does not fulfil

these requirements, the file is discarded.

- The file must have a .csv extension.

- The file must contain a message per row.

- The file must enclose each message between double quotes (“”).

10.3.1.4 Change the classification method

The system currently offers two models to classify a message, a binary model classifier and an

itemized classifier. The former classifies the message as appropriate or not. The later provides

more detail, predicting toxicity, obscenity, threat, insult, and identity hate values. Press the

down arrow in the option Select classification method. It will display both options.

Final Degree Project

138 System manuals | School of Computer Engineering - University of Oviedo

Figure 142 Change the method for classification

This next figure shows an example of a prediction performed with the itemized method.

Figure 143 Example of predicting with the itemized method

10.3.1.5 Save predictions to file

The user can save the performed predictions in both .csv and .txt formats. In order to be able to

make this operation, the user must have performed a classification as indicated in Figure 138,

Figure 141, or Figure 143. The Save results to file options will be available. After pressing any of

them, a file explorer will appear to select the destination of the file.

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 139

Figure 144 File explorer for saving results to a file

We will be shown a message detailing the name of the file.

Figure 145 Example of saving prediction to file

If we open this file (named with the current timestamp), we will see the information of the

prediction. The .csv file has a format suitable for being input into a dataset. The output shows

numbers to represent the prediction. The reason behind this decision is that most of the

machine learning models accept number as input to perform classifications. This file would be a

perfect input for any machine learning model that manages the same sort of task.

Final Degree Project

140 System manuals | School of Computer Engineering - University of Oviedo

Figure 146 Example of saved prediction .csv file

The .txt file shows a more human-friendly message.

Figure 147 Example of saved prediction .txt file

10.3.1.6 Log as administrator

The last available option for a user which is not logged as an administrator is to log in to reach

the rest of the possible operations. Press the Log as administrator button to access to the log-in

dialog.

Figure 148 Authentication dialog

The user must introduce a valid username and password to log as an administrator. If any error

occurs, the dialog will show the issue to the user. If the authentication is correct, the user will

return to the main window as an administrator.

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 141

Figure 149 Main window after logging as administrator

The user has the option now of training the models and correcting any prediction performed

beforehand.

10.3.2 Administrator manual

After logging in as administrator, the user has the option to alter the models’ functionality via

training them or correcting predictions of performed classifications.

For logging in as administrator we can use username «admin1» and password «admin1».

10.3.2.1 Correcting a prediction

The administrator must have performed a classification as indicated in Figure 138, Figure 141,

or Figure 143. An option to choose the number of a message should appear on the right part of

the main window.

Figure 150 Prediction performed as administrator

Final Degree Project

142 System manuals | School of Computer Engineering - University of Oviedo

If we display the option Nº of the message, we will see a list of numbers corresponding to the

number of valid predicted messages. The user may select one to alter the prediction.

Figure 151 Chosen message to correct prediction

Choose from each option of the prediction the desired value and press Submit. If the operation

wants to be cancelled, the user may select the Cancel option.

If the user submits the new prediction values, a new confirmation dialog will be displayed for

the process of the operation. It will contain information regarding the correction of the

prediction and options for performing or cancelling it. Press Confirm to proceed to the

correction.

Figure 152 Confirmation window for correction of a prediction

The result is shown after confirming the operation after a few seconds.

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 143

Figure 153 Message after correcting the prediction

10.3.2.2 Training model with new data

As to training any of the models, the user may select the Train model option, which will display

a new dialog.

Figure 154 Train model window

In this dialog, select the model wanted to be trained and upload the file containing the new data.

If the user wants, he can abort the operation with the Cancel button. Some help is given with a

message explaining how the file must display its rows. When the Submit button is pressed, a

new confirmation dialog will appear. It will show an operation summary and options to confirm

and cancel the task.

Final Degree Project

144 System manuals | School of Computer Engineering - University of Oviedo

Figure 155 Confirmation window for training a model

After confirming the operation, the window may look as Figure 156, depending on the quantity

of input data. Do not close the new dialog since the system is performing the training task.

Figure 156 Confirmation window during training

After the operation ends, the dialog will show the success of the operation. If any row of the file

contained incorrect or invalid data, the system automatically discards that piece of data, and

informs the user after the operations finalizes.

Figure 157 Finalized training with invalid messages

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 145

Figure 158 Finalized successful training

10.3.2.2.1 File format

This list is available on the option with the ⓘ icon. To perform this task, the file containing the

unseen data must accomplish specific features.

- The file must have .csv extension.

- The file must contain only the message and the prediction values.

- The message must be enclosed between double quotes (“”).

- The file must contain columns separated by commas. The number of columns depends

on the model to be trained.

o The binary model receives one column for the message and another column for

the value of the prediction. This value must be 0 or 1.

o The itemized model receives one column for the message and another six for

the targets. The target values must be 0 or 1.

- The format for each row must be the following:

o For the binary model: <prediction_value>,”<message>”. For

instance: 0,”he was a boy”.

o For the itemized model: “<message>”,<1>,<2>,<3>,<4>,<5>,<6>:

▪ 1: Toxic value.

▪ 2: Severe toxic value.

▪ 3: Obscene value.

▪ 4: Threat value.

▪ 5: Insult value.

▪ 6: Identity hate value.

o For instance: “this is a message”,0,0,0,0,0,0.

10.4 Programmer manual

This subsection will suggest the methodology relative to the maintainability of the system, and

how some of the changes should be made.

Final Degree Project

146 System manuals | School of Computer Engineering - University of Oviedo

10.4.1 Add a new classifier

The developer in charge of creating a new classifier for the system must implement the interface

Classifier, and have the following methods:

- getModelOpt() → String: For identifying the model in the user interface.

- predict(String, int) → Prediction: Receives the message and the number

of message and returns the values of the prediction inside a Prediction object.

- fitNewData(Data) → List<String>: Receives the data and makes the

necessary changes to the model to fit this new data. The list returned is the list of

possible errors.

- fitPrediction(Prediction) → List<String>: It receives a Prediction

object to be fitted and returns the list of possible errors.

- toPrediction(String, int, List<int>) → Prediction: Converts the

input parameters into a Prediction object.

In most of the cases it would be mandatory to implement another Prediction class. If the

model shares the same name and number of labels, the already Prediction classes may be

used. To implement a Prediction class the following methods are required:

- getMessageForUI() → String: returns a user-friendly String representation of

the message of the prediction.

- getPredictionForUI() → String: returns a user-friendly String representation

of the prediction.

- getPredictionForTxt() → String: returns a String formatted to be the

output of the prediction in the .txt file.

- getHeaderForOutputFile() → List<String>: For the output file when

saving the results, returns the header first line of the new file.

- constructPredictionForOutputFile() → List<Object>: For the output

file when saving the results, returns the row representing the prediction.

After implementing a Classifier and Prediction class, the user only has to alter the

_model_opt_to_model(model_opt) and _refresh_model() to consider the new

model.

To modify the interface the developer would have to do some changes in the

handle_n_msg_combo_event(window, values) and

handle_submit_correct_pred_event(window, values) methods, and display

the new model option in the Select classification method combo box.

10.4.2 Change the interface

The developer may be responsible of integrating the system to a new user interface. In this case,

this new interface should blend with the controller, who acts as an interface between the user

interface and the rest of the application. These interface methods are:

Final Degree Project

School of Computer Engineering - University of Oviedo | System manuals 147

- predict(List<String>) → List<Prediction>, List<String>: This

method receives the list of messages to be predicted and returns the list of predictions

and a list of errors.

- predictMessagesInFile(String) → List<Prediction>,

List<String>: Receives the path to the messages file and returns the list of

predictions and a list of errors.

- redoLastPrediction() → List<Prediction>, List<String>:

Performs once again the predictions stored in last_predictions. It will not

compute previous invalid predictions.

- changeClassificationMethod(String) → List<String>: Receives the

model option represented as String and changes the method. Returns a list of errors.

- authenticate(String, String) → List<String>: Receives the input

username and password and returns a list of errors.

- correctPredictions(int, List<int>) → List<String>: Receives the

number of the message and the new values of the prediction as a list. Returns a list with

errors.

- trainModels(String, String) → List<String>: Receives the model

option represented as a String and the path to the file with the new data. Returns a

list of errors.

- saveResultsToCsv(String path) → List<String>: Saves into a .csv file

the last performed predictions. The parameter represents the destination. A list of

errors is returned.

- saveResultsToTxt(String path) → List<String>: Saves into a .txt file

the last performed predictions with a user-friendly format. The parameter represents

the destination. A list of errors is returned.

- clearClassification(): Empties the attribute containing the last predictions.

Final Degree Project

148 Conclusions and future work | School of Computer Engineering - University of
Oviedo

Chapter 11. Conclusions and future

work

This chapter summarizes the overall perception of the fulfilled project and details some possible

improvements.

11.1 Conclusions

The result of this project is a system based on artificial intelligence and machine learning with

the principles of extensibility and maintainability, in a management and planification

framework, throughout research and analysis of the state-of-art solutions and proposed

alternatives. All the knowledge acquired throughout the degree was put into test in the making

of this project.

When comparing our system to the commented articles and papers, we can establish some

afterthoughts. For instance, our binary model performs better than the logistic regression model

in [1] at first glance. Also, it works even or better than the convolutional network proposed in

[3] or the models proposed by the several teams in [4]. For the multilabel model, we could

compare it with [74], and we can see that the paper proposed better performing models. This is

due to the better capability of the GRU [57] neural network proposed. However, the system

offers the possibility of using with a user interface both binary and multilabel models and of

retraining or correcting predictions performed by them. Overall, I think I had offered a solid

scalable system that may be the baseline for future work.

I have found the fulfilment of this project laborious. All the parts through which an application

passes were completely developed by me, from outlining which features would be interesting

to a program of this nature to the analysis, design, implementation, and testing of them. The

system was created from little previous artificial intelligence knowledge. Also, the number of

issues obstructing the progress of the project were numerous, and some of them inexorable.

I have learnt to clearly differentiate between machine and deep learning. I have understood how

difficult the task of training a model is, and in the case of this specific text classification task, how

many variables are involved when making a good text processing algorithm. For the first time in

my software career, I have been limited to the capability of the machines I have within my reach,

due to deep learning models being high resource-demanding. I have gained experience on

evaluating when a model is performing properly or poorly. Last, I have learnt the different

methods for transforming data into structures that are suitable for the machine.

The completion of this project makes me have mixed-up feelings. On one hand I have being quite

erratic when it came to working on this project. The first months were tedious and low-

motivating, since researching and looking up information is not quite appealing to me. The “raw”

programming part is the one I look up to. Provided a problem find the optimal solution in terms

of execution time, readability, extensibility, maintainability, etc, and through trial-and-error

Final Degree Project

School of Computer Engineering - University of Oviedo | Conclusions and future
work

149

process reach that solution. On the other hand, I have a sense of fulfilment, and some relief,

that I did have completed this project without leaving big concerns aside. I have done most of

the things I wanted to do.

Overall, I have gained experienced on the fields I have worked on that I am sure will be of utility

in my professional career.

Final Degree Project

150 Conclusions and future work | School of Computer Engineering - University of
Oviedo

11.2 Extensions

Some possible improvements of the system are listed now:

- A complex deep learning model to detect hard ambiguous messages. An artificial neural

network trained in several epochs would eventually know how to classify these

ambiguous messages with more precision.

- A nicer user interface with a fashionable style and clearer mechanisms like a loading

animation when performing administrator operations. A user interface with stylish

elements may be more appealing and so the system would have a bigger reach.

- A deployment of the system in the web, so any user worldwide can access it using only

the browser. Web applications are consistently growing in contrast to the extinction of

desktop applications, since they are more accessible, they do not have to be

downloaded to be used and the tools to implement web interfaces integrate well with

web programming languages.

- A multilingual model, to detect messages from a provided language. Given we had

enough training datasets, we could eventually predict a message selecting its language.

This feature in addition to the web page extension would have a global outreach.

- Research how a regression model would perform this task. Regression models offer the

possibility of obtaining a continuous value instead of a discrete one. This would,

theoretically, mean more accurate predictions, given that the obtained result would

have more precision differentiating it from other results.

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and final
budgets

151

Chapter 12. Project planning and final

budgets

Project planning and budget on the final phase of its fulfilment are described in this chapter.

12.1 Final planning

The final planning of the project fulfilment is presented in this chapter. The final duration of this

project was 8 months, from November 22nd, 2021, to Monday, 11th 2022.

ID Task Name Start Finish Resource Names

1 Project Mon 22/11/21 Mon 11/07/22

2 Research Mon 22/11/21 Thu 03/02/22

3 Related papers Mon 22/11/21 Fri 07/01/22 Team Leader

4 Implementation alternatives Mon 10/01/22 Fri 21/01/22 Team Leader

5 Implementation tools Mon 24/01/22 Thu 03/02/22 Team Leader

6 Development Fri 04/02/22 Tue 05/07/22

7 System 1 Alternative Fri 04/02/22 Fri 29/04/22

8 Analysis Fri 04/02/22 Wed 09/02/22

9 System definition Fri 04/02/22 Mon 07/02/22 Analyst

10 Elicitation Tue 08/02/22 Wed 09/02/22 Analyst

11 Design Thu 10/02/22 Thu 17/02/22

12 Architecture design Thu 10/02/22 Mon 14/02/22 Software Engineer

13 Diagrams and models design Tue 15/02/22 Thu 17/02/22 Software Engineer

14 Development Fri 18/02/22 Mon 25/04/22

15 Implementation Fri 18/02/22 Mon 25/04/22

16 NLP Fri 18/02/22 Thu 03/03/22 Senior Programmer

17 Machine learning Fri 04/03/22 Mon 25/04/22 Senior Programmer

18 Testing Tue 26/04/22 Fri 29/04/22

19 Unit testing Tue 26/04/22 Wed 27/04/22 Tester

20 Acceptance testing Thu 28/04/22 Fri 29/04/22 Tester

21 System 2 Alternative Fri 04/02/22 Fri 03/06/22

22 Analysis Fri 04/02/22 Wed 09/02/22

23 System definition Fri 04/02/22 Mon 07/02/22 Analyst

24 Elicitation Tue 08/02/22 Wed 09/02/22 Analyst

25 Design Thu 10/02/22 Thu 17/02/22

26 Architecture design Thu 10/02/22 Mon 14/02/22 Software Engineer

27 Diagrams and models design Tue 15/02/22 Thu 17/02/22 Software Engineer

28 Development Fri 04/03/22 Mon 30/05/22

29 Implementation Fri 04/03/22 Mon 30/05/22

30 Machine learning Fri 04/03/22 Mon 30/05/22 Senior Programmer

31 Testing Tue 31/05/22 Fri 03/06/22

32 Unit testing Tue 31/05/22 Wed 01/06/22 Tester

33 Acceptance testing Thu 02/06/22 Fri 03/06/22 Tester

34 Systems integration Mon 06/06/22 Thu 23/06/22

35 Authentication Fri 24/06/22 Fri 24/06/22 Senior Programmer

36 Interface Mon 27/06/22 Tue 05/07/22 Senior Programmer

37 Documentation Thu 25/11/21 Mon 11/07/22

38 Planning and budget Fri 04/02/22 Mon 07/02/22 Team Leader

39 Report and introduction Tue 08/02/22 Tue 08/02/22 Team Leader

40 Theoretical aspects Tue 08/02/22 Wed 09/02/22 Team Leader

41 Analysis Thu 10/02/22 Tue 15/02/22 Analyst

42 Design Fri 18/02/22 Wed 23/02/22 Software Engineer

Final Degree Project

152 Project planning and final budgets | School of Computer Engineering - University of
Oviedo

43 Implementation Wed 06/07/22 Fri 08/07/22 Software Engineer

44 Testing Mon 06/06/22 Thu 09/06/22 Tester

45 Annexes Mon 11/07/22 Mon 11/07/22 Software Engineer

46 Conclusions Mon 11/07/22 Mon 11/07/22 Team Leader

47 Follow-up meetings Thu 25/11/21 Tue 05/07/22

48 Follow-up meetings 1 Thu 25/11/21 Thu 25/11/21 Project Leader; Team Leader

49 Follow-up meetings 2 Thu 09/12/21 Thu 09/12/21 Project Leader; Team Leader

50 Follow-up meetings 3 Thu 23/12/21 Thu 23/12/21 Project Leader; Team Leader

51 Follow-up meetings 4 Thu 03/02/22 Thu 03/02/22 Project Leader; Team Leader

52 Follow-up meetings 5 Thu 17/02/22 Thu 17/02/22 Project Leader; Team Leader

53 Follow-up meetings 6 Thu 03/03/22 Thu 03/03/22 Project Leader; Team Leader

54 Follow-up meetings 7 Thu 17/03/22 Thu 17/03/22 Project Leader; Team Leader

55 Follow-up meetings 8 Thu 31/03/22 Thu 31/03/22 Project Leader; Team Leader

56 Follow-up meetings 9 Thu 28/04/22 Thu 28/04/22 Project Leader; Team Leader

57 Follow-up meetings 10 Thu 12/05/22 Thu 12/05/22 Project Leader; Team Leader

58 Follow-up meetings 11 Thu 26/05/22 Thu 26/05/22 Project Leader; Team Leader

59 Follow-up meetings 12 Thu 09/06/22 Thu 09/06/22 Project Leader; Team Leader

60 Follow-up meetings 13 Thu 23/06/22 Thu 23/06/22 Project Leader; Team Leader

61 Follow-up meetings 14 Tue 05/07/22 Tue 05/07/22 Project Leader; Team Leader

Figure 159 Final Work Breakdown Structure

The tasks of Training and Validation from both systems have been joined with the Machine

Learning tasks, since they were done almost at the same time. A new task named System

integration was added to this planning. This task represents the application itself described in

the Analysis and System design sections.

12.2 Final budget

Now the final costs budget is presented.

12.2.1 Costs budget

The costs budget has changed accordingly to the new planning alterations.

I1 I2 I3 Description Quantity Units

01 Research

 001 Related papers

 01 Team Leader 280 hours

 002 Implementation alternatives

 01 Team Leader 80 hours

 003 Implementation tools

 01 Team Leader 72 hours

02 Following up

 001 Follow-up meetings

 01 Project Leader 7 hours

 02 Team Leader 7 hours

Figure 160 Final Costs Budget Research and following Item 1

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and final
budgets

153

I1 I2 I3 Price Subtotal (3) Subtotal (2) Total

01 16,416.00 €

 001 10,640.00 €

 01 38.00 € 10,640.00 €

 002 3,040.00 €

 01 38.00 € 3,040.00 €

 003 2,736.00 €

 01 38.00 € 2,736.00 €

02 714.00 €

 001 714.00 €

 01 64.00 € 448.00 €

 02 38.00 € 266.00 €

 TOTAL 17,130.00 €

Figure 161 Final Costs Budget Research and following Item 2

I1 I2 I3 I4 Description Quantity Units

01 System 1 Alternative

 001 Analysis

 0001 System definition

 01 Analyst 16 hours

 0002 Elicitation

 01 Analyst 16 hours

 002 Design

 0001 Architecture design

 01 Software Engineer 24 hours

 0002 Diagrams and models design

 01 Software Engineer 24 hours

 003 Development

 0001 Implementation

 01 Senior Programmer 376 hours

 004 Testing

 0001 Unit testing

 01 Tester 16 hours

 0002 Acceptance testing

 01 Tester 16 hours

02 System 2 Alternative

 001 Analysis

 0001 System definition

 01 Analyst 16 hours

Final Degree Project

154 Project planning and final budgets | School of Computer Engineering - University of
Oviedo

 0002 Elicitation

 01 Analyst 16 hours

 002 Design

 0001 Architecture design

 01 Software Engineer 24 hours

 0002 Diagrams and models design

 01 Software Engineer 24 hours

 003 Development

 0001 Implementation

 01 Senior Programmer 496 hours

 004 Testing

 0001 Unit testing

 01 Tester 16 hours

 0002 Acceptance testing

 01 Tester 16 hours

03 System integration

 01 Senior Programmer 112 hours

04 Authentication

 01 Senior Programmer 8 hours

05 Interface

 01 Senior Programmer 56 hours

Figure 162 Final Costs Budget Development Item 1

I1 I2 I3 I4 Price Subtotal (4) Subtotal (3) Subtotal (2) Total

01 11,168.00 €

 001 848.00 €

 0001 424.00 €

 01 26.50 € 424.00 €

 0002 424.00 €

 01 26.50 € 424.00 €

 002 1,344.00 €

 0001 672.00 €

 01 28.00 € 672.00 €

 0002 672.00 €

 01 28.00 € 672.00 €

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and final
budgets

155

 003 8,272.00 €

 0001 8,272.00 €

 01 22.00 € 8,272.00 €

 004 704.00 €

 0001 352.00 €

 01 22.00 € 352.00 €

 0002 352.00 €

 01 22.00 € 352.00 €

02 13,808.00 €

 001 848.00 €

 0001 424.00 €

 01 26.50 € 424.00 €

 0002 424.00 €

 01 26.50 € 424.00 €

 002 1,344.00 €

 0001 672.00 €

 01 28.00 € 672.00 €

 0002 672.00 €

 01 28.00 € 672.00 €

 003 10,912.00 €

 0001 10,912.00 €

 01 22.00 € 10,912.00 €

 004 704.00 €

 0001 352.00 €

 01 22.00 € 352.00 €

 0002 352.00 €

 01 22.00 € 352.00 €

03 2,464.00 €

 01 22.00 € 2,464.00 €

04 176.00 €

 01 22.00 € 176.00 €

05 1,232.00 €

 01 22.00 € 1,232.00 €

 TOTAL 26,384.00 €

Figure 163 Final Costs Budget Development Item 2

Final Degree Project

156 Project planning and final budgets | School of Computer Engineering - University of
Oviedo

I1 I2 Description Quantity Units

01 Report and introduction

 Team Leader 8 hours

02 Theoretical aspects

 01 Team Leader 16 hours

03 Planning and budget

 01 Team Leader 16 hours

04 Analysis

 01 Analyst 32 hours

05 Design

 01 Software Engineer 32 hours

06 Implementation

 01 Software Engineer 24 hours

07 Testing

 01 Tester 32 hours

08 Conclusions

 Project Leader 8 hours

09 Annexes

 01 Team Leader 8 hours

Figure 164 Final Costs Budget Documentation Item 1

I1 I2 Price Subtotal (2) Total

01 304.00 €

 38.00 € 304.00 €

02 608.00 €

 01 38.00 € 608.00 €

03 608.00 €

 01 38.00 € 608.00 €

04 848.00 €

 01 26.50 € 848.00 €

05 896.00 €

 01 28.00 € 896.00 €

06 672.00 €

 01 28.00 € 672.00 €

07 704.00 €

 01 22.00 € 704.00 €

08 512.00 €

 64.00 € 512.00 €

09 304.00 €

 01 38.00 € 304.00 €

Final Degree Project

School of Computer Engineering - University of Oviedo | Project planning and final
budgets

157

 TOTAL 5,152.00 €

Figure 165 Final Costs Budget Documentation Item 2

This is the final costs budget summary.

Item Item name Total

01 Research and following up 17,130.00 €

02 Development 26,384.00 €

03 Documentation 5,152.00 €

Total Cost 48,666.00 €

Figure 166 Final Costs Budget summary

Final Degree Project

158 Bibliographic references | School of Computer Engineering - University of Oviedo

Chapter 13. Bibliographic references

[1] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated Hate Speech Detection

and the Problem of Offensive Language,” Mar. 2017. Accessed: Jul. 03, 2022. [Online].

Available: https://arxiv.org/pdf/1703.04009.pdf

[2] E. Spertus, “Smokey- Automatic Recognition of Hostile Messages,” 1997. Accessed: Jul.

03, 2022. [Online]. Available: https://www.aaai.org/Papers/IAAI/1997/IAAI97-209.pdf

[3] N. Banik and H. H. Rahman, “Toxicity Detection on Bengali Social Media Comments using

Supervised Models,” Nov. 2019. Accessed: Jul. 03, 2022. [Online]. Available:

https://www.researchgate.net/publication/337317824_Toxicity_Detection_on_Bengali

_Social_Media_Comments_using_Supervised_Models

[4] M. Ezra Aragon, M. A. Alvarez Carmona, M. Montes, and H. Jair Escalante, “Overview of

MEX-A3T at IberLEF 2019: Authorship and aggressiveness analysis in Mexican Spanish

tweets,” Aug. 2019. Accessed: Jul. 03, 2022. [Online]. Available:

https://www.researchgate.net/publication/334973555_Overview_of_MEX-

A3T_at_IberLEF_2019_Authorship_and_aggressiveness_analysis_in_Mexican_Spanish_

tweets

[5] H. Sohn and H. Lee, “MC-BERT4HATE: Hate speech detection using multi-channel bert for

different languages and translations,” IEEE Computer Society, Nov. 2019. doi:

10.1109/ICDMW.2019.00084.

[6] IBM, “What is Logistic regression? | IBM.” https://www.ibm.com/topics/logistic-

regression (accessed Jul. 04, 2022).

[7] D. Krishna, “A Look at the Maths Behind Linear Classification | by Dhruva Krishna |

Towards Data Science,” Dec. 23, 2020. https://towardsdatascience.com/a-look-at-the-

maths-behind-linear-classification-166e99a9e5fb (accessed Jul. 04, 2022).

[8] IBM, “What are Neural Networks? | IBM.” https://www.ibm.com/cloud/learn/neural-

networks (accessed Jul. 04, 2022).

[9] J. Brownlee, “One-vs-Rest and One-vs-One for Multi-Class Classification,” Apr. 27, 2020.

https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-

classification/ (accessed Jul. 07, 2022).

[10] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier Chains for Multi-label

Classification.”

[11] JCharisTech, “Multi-Label Text Classification with Scikit-MultiLearn in Python | YouTube,”

Sep. 15, 2020. https://www.youtube.com/watch?v=YyOuDi-zSiI&t=283s (accessed Jul.

10, 2022).

Final Degree Project

School of Computer Engineering - University of Oviedo | Bibliographic references 159

[12] J. McCarthy, “What is Artificial Intelligence?,” Nov. 2004. Accessed: Jul. 03, 2022.

[Online]. Available:

https://borghese.di.unimi.it/Teaching/AdvancedIntelligentSystems/Old/IntelligentSyste

ms_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarth

y_whatisai.pdf

[13] A. Turing, “Computing Machinery and Intelligence,” 1950. Accessed: Jul. 03, 2022.

[Online]. Available: https://www.csee.umbc.edu/courses/471/papers/turing.pdf

[14] R. Anyoha, “The History of Artificial Intelligence - Science in the News,” Aug. 28, 2017.

https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/ (accessed Jul. 03,

2022).

[15] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” Jul. 1959.

[16] P. Abbeel, “Step by Step- Alpha Beta Pruning - YouTube,” Feb. 09, 2013.

https://www.youtube.com/watch?v=xBXHtz4Gbdo (accessed Jul. 03, 2022).

[17] P. Vadapalli, “Min Max Algorithm in AI: Components, Properties, Advantages &

Limitations | upGrad blog,” Dec. 22, 2020. https://www.upgrad.com/blog/min-max-

algorithm-in-ai/ (accessed Jul. 03, 2022).

[18] K. D. Foote, “A Brief History of Machine Learning - DATAVERSITY,” Dec. 03, 2021.

https://www.dataversity.net/a-brief-history-of-machine-learning/ (accessed Jul. 03,

2022).

[19] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity

- SpringerLink,” Dec. 1943. Accessed: Jul. 03, 2022. [Online]. Available:

https://link.springer.com/article/10.1007/BF02478259

[20] IBM, “About Linear Regression | IBM.” https://www.ibm.com/topics/linear-regression

(accessed Jul. 04, 2022).

[21] J. Brownlee, “Linear Regression for Machine Learning,” Aug. 15, 2020.

https://machinelearningmastery.com/linear-regression-for-machine-learning/

(accessed Jul. 04, 2022).

[22] C. (Dotcsv) Santana Vega, “Regresión Lineal y Mínimos Cuadrados Ordinarios | YouTube,”

Dec. 16, 2017. https://www.youtube.com/watch?v=k964_uNn3l0 (accessed Jul. 04,

2022).

[23] S. Sekhar, “Math Behind Logistic Regression Algorithm,” Aug. 20, 2019.

https://medium.com/analytics-vidhya/logistic-regression-b35d2801a29c (accessed Jul.

04, 2022).

[24] P. Gupta, “Regularization in Machine Learning | Towards Data Science,” Nov. 15, 2017.

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a

(accessed Jul. 05, 2022).

Final Degree Project

160 Bibliographic references | School of Computer Engineering - University of Oviedo

[25] A. v Srinivasan, “Stochastic Gradient Descent — Clearly Explained !! | Towards Data

Science,” Sep. 07, 2019. https://towardsdatascience.com/stochastic-gradient-descent-

clearly-explained-53d239905d31 (accessed Jul. 05, 2022).

[26] Scikit Learn, “Stochastic Gradient Descent — scikit-learn.” https://scikit-

learn.org/stable/modules/sgd.html (accessed Jul. 05, 2022).

[27] GeekForGeeks, “Stochastic Gradient Descent (SGD) | GeeksforGeeks,” Jun. 13, 2022.

https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/ (accessed Jul. 08,

2022).

[28] C. Santana Vega, “¿Qué es una Red Neuronal? Parte 1 : La Neurona | YouTube,” Mar. 19,

2018. https://www.youtube.com/watch?v=MRIv2IwFTPg (accessed Jul. 04, 2022).

[29] B. Muller, “BERT 101 - State Of The Art NLP Model Explained,” Mar. 02, 2022.

https://huggingface.co/blog/bert-101 (accessed Jul. 04, 2022).

[30] R. Horev, “BERT Explained: State of the art language model for NLP | Towards Data

Science,” Nov. 10, 2018. https://towardsdatascience.com/bert-explained-state-of-the-

art-language-model-for-nlp-f8b21a9b6270 (accessed Jul. 04, 2022).

[31] B. Veners, “The Making of Python,” Jan. 13, 2003. https://www.artima.com/articles/the-

making-of-python (accessed Jul. 04, 2022).

[32] “scikit-learn: machine learning in Python.” https://scikit-learn.org/stable/ (accessed Jul.

04, 2022).

[33] “PyTorch.” https://pytorch.org/ (accessed Jul. 04, 2022).

[34] “TensorFlow.” https://www.tensorflow.org/?hl=es-419 (accessed Jul. 04, 2022).

[35] “JAX documentation.” https://jax.readthedocs.io/en/latest/notebooks/quickstart.html

(accessed Jul. 04, 2022).

[36] Refactoring.Guru, “Strategy pattern.” https://refactoring.guru/es/design-

patterns/strategy (accessed Jul. 03, 2022).

[37] “pickle — Python object serialization.” https://docs.python.org/3/library/pickle.html

(accessed Jul. 10, 2022).

[38] SQLite, “SQLite Home Page.” https://www.sqlite.org/index.html (accessed Jul. 03, 2022).

[39] Yale University, “WCAG 2 A and AA Checklist | Usability & Web Accessibility.”

https://usability.yale.edu/web-accessibility/articles/wcag2-checklist (accessed Jul. 05,

2022).

[40] A. U. Iyer, “Toxic Tweets Dataset | Kaggle.”

https://www.kaggle.com/datasets/ashwiniyer176/toxic-tweets-dataset (accessed Jul.

03, 2022).

Final Degree Project

School of Computer Engineering - University of Oviedo | Bibliographic references 161

[41] L. Dixon, J. Sorensen, and nithum, “Toxic Comment Classification Challenge | Kaggle,”

2018. https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-

challenge/data (accessed Jul. 03, 2022).

[42] “Python Release Python 3.10.2 | Python.org.”

https://www.python.org/downloads/release/python-3102/ (accessed Jul. 10, 2022).

[43] “Why is Python So Popular? | Pulumi.” https://www.pulumi.com/why-is-python-so-

popular/ (accessed Jul. 05, 2022).

[44] aigamedev, “scikit-neuralnetwork,” 2016. https://github.com/aigamedev/scikit-

neuralnetwork (accessed Jul. 05, 2022).

[45] “Keras: the Python deep learning API.” https://keras.io/ (accessed Jul. 05, 2022).

[46] “tkinter.” https://docs.python.org/es/3/library/tkinter.html (accessed Jul. 03, 2022).

[47] “Qt for Python.” https://doc.qt.io/qtforpython/ (accessed Jul. 03, 2022).

[48] “Python REMote Interface library. Platform independent. In about 100 Kbytes, perfect

for your diet.” https://github.com/rawpython/remi (accessed Jul. 03, 2022).

[49] “Welcome to wxPython! | wxPython.” https://www.wxpython.org/ (accessed Jul. 03,

2022).

[50] Microsoft, “Visual Studio Code - Code Editing.” https://code.visualstudio.com/ (accessed

Jul. 05, 2022).

[51] “Git.” https://git-scm.com/ (accessed Jul. 05, 2022).

[52] J. Brownlee, “A Gentle Introduction to the Bag-of-Words Model,” 2017.

https://machinelearningmastery.com/gentle-introduction-bag-words-model/ (accessed

Jul. 03, 2022).

[53] Scikit Learn, “sklearn.multioutput.MultiOutputClassifier | scikit-learn.” https://scikit-

learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputClassifier.html

(accessed Jul. 06, 2022).

[54] L. Ramadhan, “TF-IDF Simplified | Towards Data Science,” 2021.

https://towardsdatascience.com/tf-idf-simplified-aba19d5f5530 (accessed Jul. 03,

2022).

[55] anokas, “Discussion: Keras sample weight for imbalance multilabel datasets | Toxic

Comment Classification Challenge | Kaggle,” 2017. https://www.kaggle.com/c/jigsaw-

toxic-comment-classification-challenge/discussion/46673 (accessed Jul. 03, 2022).

[56] NVIDIA, “CUDA Zone - Library of Resources | NVIDIA Developer.”

https://developer.nvidia.com/cuda-zone (accessed Jul. 03, 2022).

Final Degree Project

162 Bibliographic references | School of Computer Engineering - University of Oviedo

[57] S. Kostadinov, “Understanding GRU Networks | Towards Data Science,” 2017.

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be (accessed

Jul. 03, 2022).

[58] R. Dolphin, “LSTM Networks | A Detailed Explanation | Towards Data Science,” 2020.

https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9

(accessed Jul. 03, 2022).

[59] jonad, “jonad/Toxicity_comments,” 2020.

https://github.com/jonad/Toxicity_comments (accessed Jul. 03, 2022).

[60] D. Karani, “Introduction to Word Embedding and Word2Vec | Towards Data Science,”

Sep. 01, 2018. https://towardsdatascience.com/introduction-to-word-embedding-and-

word2vec-652d0c2060fa (accessed Jul. 03, 2022).

[61] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for Word

Representation.” https://nlp.stanford.edu/projects/glove/ (accessed Jul. 03, 2022).

[62] Facebook AI Reseach, “fastText.” https://fasttext.cc/ (accessed Jul. 03, 2022).

[63] J. Martinez Heras, “Precision, Recall, F1, Accuracy en clasificación - IArtificial.net,” Oct.

09, 2020. https://www.iartificial.net/precision-recall-f1-accuracy-en-clasificacion/

(accessed Jul. 03, 2022).

[64] tutorialspoint, “What is Hamming Distance?” https://www.tutorialspoint.com/what-is-

hamming-distance (accessed Jul. 03, 2022).

[65] “pydoc — Generador de documentación y Sistema de ayuda en línea — documentación

de Python - 3.10.5.” https://docs.python.org/es/3/library/pydoc.html (accessed Jul. 09,

2022).

[66] A. Paraschiv, “Detecting Toxic Behavior in Social Media and Online News,” Jun. 2020.

Accessed: Jul. 04, 2022. [Online]. Available:

https://www.researchgate.net/publication/353481771_Detecting_Toxic_Behavior_in_S

ocial_Media_and_Online_News

[67] A. Kumar, V. Tyagi, and S. Das, “Deep Learning for Hate Speech Detection in social

media,” Institute of Electrical and Electronics Engineers Inc., Sep. 2021. doi:

10.1109/GUCON50781.2021.9573687.

[68] A. Wisnugraha, “Classification of Toxic Tweets | Kaggle,” 2021.

https://www.kaggle.com/code/adityawisnugrahas/classification-of-toxic-tweets-bigru-

92-84 (accessed Jul. 04, 2022).

[69] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks | Towards Data

Science,” Dec. 15, 2018. https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed Jul. 05, 2022).

Final Degree Project

School of Computer Engineering - University of Oviedo | Bibliographic references 163

[70] L. Shi, K. Du, C. Zhang, H. Ma, and W. Yan, “Lung Sound Recognition Algorithm Based on

VGGish-BiGRU,” IEEE Access, vol. 7, pp. 139438–139449, 2019, doi:

10.1109/ACCESS.2019.2943492.

[71] neongen, “2nd place solution overview | Toxic Comment Classification Challenge |

Kaggle,” 2018. https://www.kaggle.com/c/jigsaw-toxic-comment-classification-

challenge/discussion/52630 (accessed Jul. 05, 2022).

[72] A. Burmistrov, “About my 0.9872 single model | Toxic Comment Classification Challenge

| Kaggle,” 2018. https://www.kaggle.com/c/jigsaw-toxic-comment-classification-

challenge/discussion/52644 (accessed Jul. 05, 2022).

[73] Μ. Μ. KazAnova, “5th place Brief Solution | Toxic Comment Classification Challenge |

Kaggle,” 2018. https://www.kaggle.com/c/jigsaw-toxic-comment-classification-

challenge/discussion/52612 (accessed Jul. 05, 2022).

[74] S. Li, “Application of Recurrent Neural Networks In Toxic Comment Classification,” 2018.

Accessed: Jul. 04, 2022. [Online]. Available: https://escholarship.org/uc/item/5f87h061

[75] N. Hubens, “Test Time Augmentation (TTA) and how to perform it with Keras | Towards

Data Science,” Feb. 11, 2019. https://towardsdatascience.com/test-time-augmentation-

tta-and-how-to-perform-it-with-keras-4ac19b67fb4d (accessed Jul. 05, 2022).

[76] S. Narkhede, “Understanding AUC - ROC Curve | Towards Data Science,” Jun. 26, 2018.

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5 (accessed

Jul. 05, 2022).

[77] Clement and Yahya, “Logistic regression python solvers’ definitions - Stack Overflow,”

2021. https://stackoverflow.com/questions/38640109/logistic-regression-python-

solvers-definitions (accessed Jul. 05, 2022).

[78] S. Sharma, “What the Hell is Perceptron?. The Fundamentals of Neural Networks |

Towards Data Science,” Sep. 09, 2017. https://towardsdatascience.com/what-the-hell-

is-perceptron-626217814f53 (accessed Jul. 05, 2022).

[79] Santana Vega C, “¿Qué es el Descenso del Gradiente? Algoritmo de Inteligencia Artificial

| YouTube,” Feb. 04, 2018. https://www.youtube.com/watch?v=A6FiCDoz8_4 (accessed

Jul. 05, 2022).

[80] eldrich, “Hate speech offensive tweets by Davidson et al | Kaggle,” 2020.

https://www.kaggle.com/datasets/eldrich/hate-speech-offensive-tweets-by-davidson-

et-al (accessed Jul. 05, 2022).

[81] nicapotato, “Bad Bad Words | Kaggle,” 2018.

https://www.kaggle.com/datasets/nicapotato/bad-bad-words (accessed Jul. 05, 2022).

[82] A. Pai, “What is Tokenization | Tokenization In NLP,” May 26, 2020.

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ (accessed

Jul. 05, 2022).

Final Degree Project

164 Bibliographic references | School of Computer Engineering - University of Oviedo

[83] P. Sharma, “An Introduction to Stemming in Natural Language Processing,” Nov. 25,

2021. https://www.analyticsvidhya.com/blog/2021/11/an-introduction-to-stemming-

in-natural-language-processing/ (accessed Jul. 05, 2022).

[84] S. Srinidhi, “Understanding Word N-grams and N-gram Probability in Natural Language

Processing | Towards Data Science,” Nov. 27, 2019.

https://towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-

in-natural-language-processing-9d9eef0fa058 (accessed Jul. 05, 2022).

[85] J. Nabi, “Machine Learning — Multiclass Classification with Imbalanced Dataset |

Towards Data Science,” Dec. 22, 2018. https://towardsdatascience.com/machine-

learning-multiclass-classification-with-imbalanced-data-set-29f6a177c1a (accessed Jul.

06, 2022).

[86] Scikit Learn, “sklearn.linear_model.LogisticRegression | scikit-learn.” https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

(accessed Jul. 05, 2022).

[87] G. Shperber, “A gentle introduction to Doc2Vec. TL;DR | Medium,” Jul. 26, 2017.

https://medium.com/wisio/a-gentle-introduction-to-doc2vec-db3e8c0cce5e (accessed

Jul. 05, 2022).

[88] Zach, “A Simple Explanation of the Jaccard Similarity Index | Statology,” Dec. 23, 2020.

https://www.statology.org/jaccard-similarity/ (accessed Jul. 07, 2022).

[89] J. Brownlee, “A Gentle Introduction to Dropout for Regularizing Deep Neural Networks,”

Dec. 03, 2018. https://machinelearningmastery.com/dropout-for-regularizing-deep-

neural-networks/ (accessed Jul. 07, 2022).

[90] “PyTorch Linear Layer (Fully Connected Layer) Explained,” Feb. 02, 2022.

https://androidkt.com/pytorch-linear-layer-fully-connected-layer-explained/ (accessed

Jul. 07, 2022).

[91] “13.12. Chapter Summary | Attention Layers.” https://dmol.pub/dl/attention.html

(accessed Jul. 07, 2022).

[92] HuggngFace, “Tokenizer.”

https://huggingface.co/docs/transformers/main_classes/tokenizer (accessed Jul. 07,

2022).

[93] “scikit-multilearn: Multi-Label Classification in Python — Multi-Label Classification for

Python.” http://scikit.ml/ (accessed Jul. 08, 2022).

[94] Scikit Learn, “sklearn.model_selection.GridSearchCV — scikit-learn.” https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

(accessed Jul. 07, 2022).

[95] “Contrast Ratio: Easily calculate color contrast ratios. Passing WCAG was never this

easy!” https://contrast-ratio.com/#white-on-%2364778D (accessed Jul. 08, 2022).

Final Degree Project

School of Computer Engineering - University of Oviedo | Bibliographic references 165

[96] W3C, “Understanding Success Criterion 1.3.3: Sensory Characteristics.”

https://www.w3.org/WAI/WCAG21/Understanding/sensory-characteristics (accessed

Jul. 05, 2022).

[97] W3C, “Understanding Success Criterion 1.4.1: Use of Color.”

https://www.w3.org/WAI/WCAG21/Understanding/use-of-color (accessed Jul. 05,

2022).

[98] W3C, “Understanding Success Criterion 1.4.3: Contrast (Minimum).”

https://www.w3.org/WAI/WCAG21/Understanding/contrast-minimum (accessed Jul.

08, 2022).

[99] W3C, “Understanding Success Criterion 1.4.12: Text Spacing.”

https://www.w3.org/WAI/WCAG21/Understanding/text-spacing (accessed Jul. 05,

2022).

[100] W3C, “Understanding Success Criterion 2.1.1: Keyboard.”

https://www.w3.org/WAI/WCAG21/Understanding/keyboard (accessed Jul. 05, 2022).

[101] W3C, “Understanding Success Criterion 2.1.2: No Keyboard Trap.”

https://www.w3.org/WAI/WCAG21/Understanding/no-keyboard-trap (accessed Jul. 05,

2022).

[102] W3C, “Understanding Success Criterion 2.2.1: Timing Adjustable.”

https://www.w3.org/WAI/WCAG21/Understanding/timing-adjustable (accessed Jul. 05,

2022).

[103] W3C, “Understanding Success Criterion 2.2.2: Pause, Stop, Hide.”

https://www.w3.org/WAI/WCAG21/Understanding/pause-stop-hide (accessed Jul. 05,

2022).

[104] W3C, “Understanding Success Criterion 2.4.7: Focus Visible.”

https://www.w3.org/WAI/WCAG21/Understanding/focus-visible (accessed Jul. 05,

2022).

[105] W3C, “Understanding Success Criterion 2.5.2: Pointer Cancellation.”

https://www.w3.org/WAI/WCAG21/Understanding/pointer-cancellation (accessed Jul.

05, 2022).

[106] W3C, “Understanding Success Criterion 2.5.3: Label in Name.”

https://www.w3.org/WAI/WCAG21/Understanding/label-in-name (accessed Jul. 05,

2022).

[107] W3C, “Understanding Success Criterion 3.2.2: On Input.”

https://www.w3.org/WAI/WCAG21/Understanding/on-input (accessed Jul. 05, 2022).

[108] W3C, “Understanding Success Criterion 3.3.1: Error Identification.”

https://www.w3.org/WAI/WCAG21/Understanding/error-identification (accessed Jul.

05, 2022).

Final Degree Project

166 Bibliographic references | School of Computer Engineering - University of Oviedo

[109] W3C, “Understanding Success Criterion 3.3.2: Labels or Instructions.”

https://www.w3.org/WAI/WCAG21/Understanding/labels-or-instructions (accessed Jul.

05, 2022).

[110] W3C, “Understanding Success Criterion 3.3.3: Error Suggestion.”

https://www.w3.org/WAI/WCAG21/Understanding/error-suggestion (accessed Jul. 05,

2022).

Final Degree Project

School of Computer Engineering - University of Oviedo | Annexes 167

Chapter 14. Annexes

14.1 Glossary

- Administrator. An authenticated user. An administrator can perform tasks like training

a model with unseen data and correcting a prediction performed by any classifier.

- Appropriate. Property of a message which is not inappropriate. See Inappropriate.

- Accuracy. Metric used for evaluating a model. It is calculated as
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
.

- Artificial intelligence. Ability of a machine to mimic the behaviour of the human mind

on problem-solving and decision-making [12].

- Authenticate. Log in as an administrator.

- Authentication. The process of logging in as administrator.

- BERT model. Deep learning model developed by Google used in natural language

processing tasks and prepared to be fine-tuned to a specific problem.

- Binary model. Model that receives an input and produces an output that may have two

possible values.

- Classification (machine learning). Field inside machine learning in which a model tries

to predict a discrete value from a set of unseen data.

- Classification (prediction). See prediction.

- Classifier. Algorithm that manages classification tasks. See Classification (machine

learning).

- Confusion matrix. Metric used for evaluating a model performance. It consists of a data

structure that stores the instances of correct and incorrect predictions with respect to

the true ones.

- Deep learning. Field inside machine learning where systems developed try to imitate

the structure of the human brain. Its foundation lies in the neural networks of the brain.

- False negative/FN. The number of instances that were predicted as negative but were

positive.

- False positive/FP. The number of instances that were predicted as positive but were

negative.

- Feature (classifier). Set of data provided to a classifier to be predicted.

- F1 Score. Metrics used for evaluating a model. It is calculated as 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
.

- Inappropriate. Property socially conferred to whichever message that exhibits elements

of toxicity, obscenity, threat, insult and/or hate speech within its meaning.

- Itemized model. Model that receives an input and produces a fixed number of outputs

that may have two possible values.

- Jigsaw competition. Competition held in Kaggle in 2018 regarding toxic comment

classification.

- Label. Independent variable that will have the value of a prediction.

- Linear regression. Mathematical model which allows to predict a dependent value with

a set of independent ones.

Final Degree Project

168 Annexes | School of Computer Engineering - University of Oviedo

- Logistic regression. Statistical model which allows to predict a categorical value given

an input.

- Machine learning. Field inside artificial intelligence that gathers the methods and

techniques for imitating human learning behaviour.

- Model. See Classifier.

- Multilabel model. See Itemized model.

- Neural network. Deep learning model which represents an abstraction of the human

brain structure from the real world having the neuron as its atomic unit.

- NLP. Natural Language Processing. It involves all the algorithms to manipulate and

analyse the human language-related interactions with a machine.

- Overfitting. Characteristic present in models that correctly classify training data but are

prone-to-error with unseen data.

- Precision. Metric used for evaluating a model. It is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑃
.

- Prediction. The result of a model which has been provided a set of features.

- Python. High-level programming language widely used in machine and deep learning

applications.

- PyTorch. Python library that offers deep learning modules to implement neural

networks.

- Recall. Metric used for evaluating a model. It is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑁
.

- Scikit Learn. Python library that offers machine learning functionality to implement

models to be fine-tuned.

- Strategy pattern. Design pattern widely used in software engineering that allows a

context class to perform the same operation with different algorithms.

- Target. See Label.

- Transformers. Python library offered by the HuggingFace company to implement state-

of-art machine learning and deep learning programs.

- TN/True negatives. The number of correctly predicted negative instances.

- TP/True Positive. The number of correctly predicted positive instances.

14.2 Delivered content in attached file

This section lists all the content attached to this document.

14.2.1 Contents

Figure 167 shows the content of the attached file.

File/Folder Content

hate-speech-detection.zip This compressed file contains the source
code of the project. It also contains a

Final Degree Project

School of Computer Engineering - University of Oviedo | Annexes 169

README.txt explaining all the steps to start
the application, a requirements file and a
JSON file with initialization configuration.

doc/ This folder will contain all the documentation
regarding this project. There are two
subfolders inside it.

doc/project/ Contains the Microsoft Project file where all
the planning has been set and the Microsoft
Excel file with initial and final budgets.

doc/pydoc/ Contains the generated documentation of
the source code.

doc/logs/ This folder contains logs from executed
scripts during implementation.

Adrian-Perez-Manso-hate-speech-
detection.pdf

The current document.

file examples/ This folder contains examples for all the use
cases where the user may submit a file into
the system.

README.txt Installation and execution steps

Figure 167 Contents of the attached file

If we unzip the compressed file, we will have the following directory:

File/Folder Content

database/ Folder that contains the database of users.

datasets/ Folder that contains the different datasets for
the binary and multilabel models.

help/ Folder that contains some guidance about
the files’ format that may be submitted to the
system.

models/ Folder that contains the serialized objects
needed for the two models.

src/ Folder that contains the source code.
Contains the main.py file.

testfiles/ Folder with example files for testing.

init.json File with execution configuration. Explained
in 10.2.

requirements.txt File with the needed modules to be installed.
Explained in 10.1.

Figure 168 Contents of the compressed file

14.2.2 Executable code and installation

We can execute the program by running Python with the main.py file inside the src/ folder.

If any detail is necessary, follow steps in sections 10.1 and 10.2.

14.3 Source code

Final Degree Project

170 Annexes | School of Computer Engineering - University of Oviedo

The source code of the application is inside the hate-speech-detection.zip

compressed file inside the attached content.

14.4 Meeting minutes

All the meetings with the tutor are shown in Figure 169.

Meeting Date Mean Content

Meeting 1 November 11th, 2021 Microsoft Teams First immediate goals

Meeting 2 November 25th, 2021 Microsoft Teams Updates on research,
planning and budget

Meeting 3 December 9th, 2021 Microsoft Teams Updates on research,
planning and budget

Meeting 4 December 23rd, 2021 Microsoft Teams Updates on research,
planning and budget

Meeting 5 February 3rd, 2022 Microsoft Teams Updates on research,
planning and budget

Meeting 6 February 17th, 2022 Microsoft Teams First system
implementations

Meeting 7 March 3rd, 2022 Microsoft Teams Update on system
implementation and found
problems

Meeting 8 March 17th, 2022 Microsoft Teams Update on system
implementation and found
problems

Meeting 9 March 31st, 2022 Microsoft Teams Update on system
implementation and found
problems

Meeting 10 April 28th, 2022 Microsoft Teams Update on system
implementation and found
problems

Meeting 11 May 12th, 2022 Microsoft Teams Update on system
implementation and found
problems

Meeting 12 May 26th, 2022 Microsoft Teams Update on system
implementation and found
problems

Meeting 13 June 9th, 2022 Microsoft Teams Update on system
implementation and found
problems

Meeting 14 June 23rd, 2022 Microsoft Teams Document revision and
problems found

Meeting 15 July 5th, 2022 Microsoft Teams Document and application
revision

Figure 169 Meeting minutes

	Chapter 1. Project Report
	1.1 Motivation Summary, Objectives and Project Scope
	1.2 Summary of all Aspects

	Chapter 2. Introduction
	2.1 Justification of the Project
	2.2 Objectives of the Project
	2.3 Study of Current Situation
	2.3.1 Alternatives evaluation
	2.3.1.1 Rule -based system (unfeasible)
	2.3.1.2 Logistic regression
	2.3.1.3 Other binary models
	2.3.1.4 Neural networks
	2.3.1.5 One vs Rest approach
	2.3.1.6 Multilabel task transformations
	2.3.1.6.1 Binary relevance
	2.3.1.6.2 Classifier chain
	2.3.1.6.3 Label powerset

	Chapter 3. Theoretical Aspects
	3.1 Artificial intelligence (AI)
	3.2 Machine learning (ML)
	3.3 Deep learning (DL)
	3.4 Linear regression
	3.5 Logistic regression
	3.6 Stochastic Gradient Descent
	3.7 Neural network
	3.8 Bidirectional Encoder Representations from Transformers (BERT)
	3.9 Python
	3.10 Scikit Learn
	3.11 Pytorch
	3.12 Transformers

	Chapter 4. Project planning and initial budgets
	4.1 Initial planning
	4.2 Initial budget
	4.2.1 Company definition
	4.2.2 Costs budget
	4.2.3 Client budget

	Chapter 5. Analysis
	5.1 System definition
	5.1.1 System scope specification

	5.2 System requirements
	5.2.1 Elicitation
	5.2.1.1 Functional requirements
	5.2.1.2 Non-functional requirements

	5.2.2 System Actors Identification
	5.2.2.1 Non-administrator user
	5.2.2.2 Logged-in user (administrator)

	5.2.3 Use cases specification

	5.3 Subsystems identification in analysis phase
	5.3.1 Subsystems description
	5.3.2 Interfaces between systems description

	5.4 Initial class diagram in analysis phase
	5.4.1 Class diagram
	5.4.2 Classes description
	5.4.2.1 Classification Subsystem
	5.4.2.2 Authentication subsystem
	5.4.2.3 Binary Classifier

	5.5 Use cases analysis and scenarios
	5.5.1 Change classification method
	5.5.2 Detect inappropriate messages
	5.5.3 Save results to a file
	5.5.4 Correct predictions
	5.5.5 Log in as administrator
	5.5.6 Train models

	5.6 Scenarios – Use cases relation
	5.7 User interface analysis
	5.7.1 Interface description
	5.7.1.1 Main window
	5.7.1.1.1 Start of application
	5.7.1.1.2 Message typed in area, classification not yet performed, non-administrator user
	5.7.1.1.3 Messages uploaded by file, classification not yet performed, non-administrator user
	5.7.1.1.4 Classification performed, non-administrator user
	5.7.1.1.5 Start as administrator
	5.7.1.1.6 Message typed in area, classification not yet performed, administrator
	5.7.1.1.7 Messages uploaded by file classification not yet performed, administrator
	5.7.1.1.8 Classification performed, administrator

	5.7.1.2 Authentication window
	5.7.1.3 Train model window

	5.7.2 Interface behaviour description
	5.7.2.1 Main window
	5.7.2.2 Authentication window
	5.7.2.3 Train models window

	5.7.3 Navigability diagram

	5.8 Test plan specification
	5.8.1 Unitary testing
	5.8.2 Integration testing
	5.8.3 Usability testing
	5.8.4 Performance testing
	5.8.5 Use cases testing

	Chapter 6. System design
	6.1 System architecture
	6.1.1 Package diagram
	6.1.1.1 Controller
	6.1.1.2 Authentication
	6.1.1.3 Classifiers
	6.1.1.4 Utils
	6.1.1.5 Config
	6.1.1.6 Database
	6.1.1.7 Datasets
	6.1.1.8 Domain
	6.1.1.9 Output files
	6.1.1.10 User interface

	6.1.2 Component diagram

	6.2 Class design
	6.2.1 Controller package
	6.2.2 Authentication
	6.2.3 Classifiers
	6.2.4 Utils
	6.2.5 Config
	6.2.6 Domain
	6.2.7 User interface
	6.2.8 Global class diagram

	6.3 Interaction diagrams
	6.3.1 Detect inappropriate messages
	6.3.2 Train model use case
	6.3.3 Correct predictions use case
	6.3.4 Log in as administrator use case
	6.3.5 Change classification method use case
	6.3.6 Save results to file use case

	6.4 System persistence
	6.4.1 Database design
	6.4.1.1 Used DBMS description
	6.4.1.2 DBMS system integration
	6.4.1.3 E-R Diagram

	6.5 Interface design
	6.5.1 Main window
	6.5.2 Authentication window
	6.5.3 Training window
	6.5.4 Confirmation window

	6.6 Test plan technical specification
	6.6.1 Unit testing
	6.6.1.1 Change classification method
	6.6.1.2 Detect inappropriate messages
	6.6.1.3 Save results to file
	6.6.1.4 Correct predictions
	6.6.1.5 Log in as administrator
	6.6.1.6 Train models

	6.6.2 Integration tests
	6.6.3 Usability tests
	6.6.3.1 User profile ranking
	6.6.3.2 Guided activities
	6.6.3.3 Quick questions about the application
	6.6.3.4 Tester survey

	6.6.4 Accessibility tests
	6.6.5 Performance tests

	Chapter 7. System implementation
	7.1 Programming languages
	7.1.1 Python
	7.1.1.1 Scikit Learn
	7.1.1.2 Pytorch
	7.1.1.3 Transformers
	7.1.1.4 PySimpleGUI

	7.2 Tools and programs used for the development of the system
	7.2.1 Visual Studio Code
	7.2.2 Git

	7.3 System creation
	7.3.1 Binary model
	7.3.2 Itemized model
	7.3.3 Application and interface
	7.3.4 Last modifications
	7.3.5 Found issues
	7.3.5.1 Subjectivity of the term “inappropriate”
	7.3.5.1.1 Description
	7.3.5.1.2 Proposed solution

	7.3.5.2 Multilabel unbalanced dataset
	7.3.5.2.1 Description
	7.3.5.2.2 Proposed solution

	7.3.5.3 Lack of computational power
	7.3.5.3.1 Description
	7.3.5.3.2 Proposed solution

	7.3.5.4 Neural networks do not perform well
	7.3.5.4.1 Description
	7.3.5.4.2 Proposed solution

	7.3.5.5 BERT model does not perform well
	7.3.5.5.1 Description
	7.3.5.5.2 Proposed solution

	7.3.5.6 Data transformation
	7.3.5.6.1 Description
	7.3.5.6.2 Proposed solution

	7.3.5.7 Best metric for measuring overall performance
	7.3.5.7.1 Description
	7.3.5.7.2 Proposed solution

	7.3.6 Detailed class description

	Chapter 8. Evaluation of alternatives
	8.1 State of art solutions and statistics
	8.1.1 Binary models
	8.1.2 Multilabel models

	8.2 Attempted alternatives
	8.2.1 Binary models
	8.2.1.1 Binary model combinations

	8.2.2 Multilabel models

	Chapter 9. Testing development
	9.1 Unit tests
	9.2 Usability tests
	9.2.1 User profile ranking
	9.2.2 Guided activities
	9.2.3 Quick questions about the application
	9.2.4 Tester survey

	9.3 Accessibility tests
	9.4 Performance tests

	Chapter 1.
	Chapter 10. System manuals
	10.1 Installation manuals
	10.2 Execution manuals
	10.3 User manual
	10.3.1 Non-administrator user manual
	10.3.1.1 Start of the application
	10.3.1.2 Predicting a message
	10.3.1.3 Predict messages in a file
	10.3.1.3.1 File format

	10.3.1.4 Change the classification method
	10.3.1.5 Save predictions to file
	10.3.1.6 Log as administrator

	10.3.2 Administrator manual
	10.3.2.1 Correcting a prediction
	10.3.2.2 Training model with new data
	10.3.2.2.1 File format

	10.4 Programmer manual
	10.4.1 Add a new classifier
	10.4.2 Change the interface

	Chapter 11. Conclusions and future work
	11.1 Conclusions
	11.2 Extensions

	Chapter 12. Project planning and final budgets
	12.1 Final planning
	12.2 Final budget
	12.2.1 Costs budget

	Chapter 13. Bibliographic references
	Chapter 14. Annexes
	14.1 Glossary
	14.2 Delivered content in attached file
	14.2.1 Contents
	14.2.2 Executable code and installation

	14.3 Source code
	14.4 Meeting minutes

