


2



Word of thanks
First of all, I would like to thank all the people involved in this project. To Raúl and

Carlos, for their contributions and understanding. To Gonzalo de la Cruz, for his previ-

ous work, which has made the realisation of this project possible. To the clients/users

for their feedback.

Secondly, I would like to thank my friends and colleagues at the School of Com-

puter Engineering of Oviedo, for all these years of fellowship and mutual help. Spe-

cially I want to name Kike, Ángel, Edu, Garnacho, Íñigo, Cuesta, Migi and Fidalgo.

Finally, I would like to thank my parents for all the support they have given me

over the years, and my brother Neizan, who has contributed to this project with the

front and back cover.

3



Abstract
The main goal of this project is to analyse, formalise and solve the problem of assign-

ing classrooms to groups at the School of Computer Engineering of the University of

Oviedo. This is a challenging problem that arises every year in the School and is

currently solved manually.

The problem is formalised as an optimisation problem based on a series of meet-

ings with the school management. A greedy algorithm, guided by specific heuristics

developed in the project, and a genetic algorithm, which conducts a global search to

compute high quality solutions, are proposed to solve the problem.

In addition to providing a theoretical solution, the project builds a software proto-

type that implements the designed algorithms and on which experiments are carried

out to obtain its optimal configuration.

The tool proves to be very effective at solving the problem.

4



Index

0 Overview 11

1 Introduction 13
1.1 Situation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Project goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Theoretical aspects 17
2.1 Assignment problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Greedy algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Heuristics and metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Mixing it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Problem definition 42

4 Proposed solution 45
4.1 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.3 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.4 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Lazy Collision Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Classroom filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Lazy Filter Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.3 Repairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.1 Genome representation . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.3.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.3.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.3.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Index 5



4.5.3.4 Tournament . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Project planning and budget overview 63
5.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.4 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.5 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.7 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Budget summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Analysis 71
6.1 System definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Non-Functional requirements . . . . . . . . . . . . . . . . . . . . 74

6.3 Subsystem mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Preliminary class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5 Analysis of use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5.1 Perform the assignments . . . . . . . . . . . . . . . . . . . . . . . 78
6.5.2 Search for free classrooms . . . . . . . . . . . . . . . . . . . . . . 80
6.5.3 Automatically create input files . . . . . . . . . . . . . . . . . . . 82

6.6 Analysis of user interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Test plan specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 System design 87
7.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Class design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 File format design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 System implementation 97
8.1 License and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Programming languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Tools and programs used in development . . . . . . . . . . . . . . . . . 98

8.3.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.2 Vim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.3 LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.4 Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.5 PlantUML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Index 6



9 Test development 99
9.1 Perform the assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Search for free classrooms . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.3 Automatically create input files . . . . . . . . . . . . . . . . . . . . . . . . 102

10 Experimental results 103
10.0.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.0.2 Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.0.3 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.0.3.1 Fitness assesment . . . . . . . . . . . . . . . . . . . . . 105
10.0.3.2 Other metrics . . . . . . . . . . . . . . . . . . . . . . . . 106

10.0.4 (Genetic + Greedy) parameter assesment . . . . . . . . . . . . . 107
10.0.5 Greedy against (Genetic + Greedy) . . . . . . . . . . . . . . . . . 108
10.0.6 Further fitness functions . . . . . . . . . . . . . . . . . . . . . . . 110
10.0.7 Experimental findings . . . . . . . . . . . . . . . . . . . . . . . . . 110

11 System manuals 112
11.1 Installation manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.2 Execution manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.3 User manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.4 Programmer manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12 Budget 121
12.1 Internal budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.2 Client budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

13 Conclusions and future work 125
13.1 Final conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

14 Annexes 127
14.1 Definitions and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 127
14.2 Work Breakdown Structure (WBS) . . . . . . . . . . . . . . . . . . . . . . 129
14.3 Submission contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

14.3.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
14.3.2 Runnable utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
14.3.3 Experiment instances . . . . . . . . . . . . . . . . . . . . . . . . . 130
14.3.4 System and external files . . . . . . . . . . . . . . . . . . . . . . . 130

Index 7



List of Figures
5.1 WBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Gantt chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Gantt chart: Project Management . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Gantt chart: Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Gantt chart: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Gantt chart: Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Gantt chart: Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.8 Gantt chart: Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.9 Gantt chart: Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.10 Internal budget summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.11 Client budget summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Preliminary class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Sequence diagram: Perform the assignments . . . . . . . . . . . . . . . 79
6.4 Activity diagram: Perform the assignments . . . . . . . . . . . . . . . . . 79
6.5 Sequence diagram: Search for free classrooms . . . . . . . . . . . . . . 81
6.6 Activity diagram: Search for free classrooms . . . . . . . . . . . . . . . . 81
6.7 Sequence diagram: Automatically create input files . . . . . . . . . . . 83
6.8 Activity diagram: Automatically create input files . . . . . . . . . . . . . 83

7.1 Components diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Packages diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Class diagram: Alg package . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4 Class diagram: Alg package (Greedy algorithm) . . . . . . . . . . . . . . 91
7.5 Class diagram: Alg package (Genetic algorithm) . . . . . . . . . . . . . 92
7.6 Class diagram: Problem domain . . . . . . . . . . . . . . . . . . . . . . . 93
7.7 Class diagram: Other business classes . . . . . . . . . . . . . . . . . . . 94
7.8 Class diagram: Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.9 Class diagram: Program and CLI . . . . . . . . . . . . . . . . . . . . . . . 94

12.1 Freelancers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.2 Amortisation costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.3 Indirect costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4 WBS Budget costs: Project Management and Analysis . . . . . . . . . . 122
12.5 WBS Budget costs: Design and Development . . . . . . . . . . . . . . . 122
12.6 WBS Budget costs: Documentation, Experiments and Closure . . . . . 123
12.7 WBS Budget costs: Summary . . . . . . . . . . . . . . . . . . . . . . . . . 123
12.8 Internal budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
12.9 Weighting value calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.10Client budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

14.1 WBS (Bigger scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Index 8



List of Tables
6.1 Use case description: Perform the assignments . . . . . . . . . . . . . . 78
6.2 Use case description: Search for free classrooms . . . . . . . . . . . . . 80
6.3 Use case description: Automatically create input files . . . . . . . . . . 82
6.4 Test suite for UC: Perform the assignments . . . . . . . . . . . . . . . . 85
6.5 Test suite for UC: Search for free classrooms . . . . . . . . . . . . . . . 86
6.6 Test suite for UC: Automatically create input files . . . . . . . . . . . . . 86

10.1 Greedy algorithm: Best fitness summary . . . . . . . . . . . . . . . . . . 106
10.2 Greedy algorithm: Unassigned groups for instance rr_20_21_s1 . . . . 106
10.3 Greedy algorithm: Unassigned groups for instance cr_21_22_s2 . . . . 106
10.4 Greedy algorithm: Preferences met for instance rr_20_21_s1 . . . . . . 107
10.5 Greedy algorithm: Preferences met for instance cr_21_22_s2 . . . . . . 107
10.6 (Genetic + Greedy): Parameter combinations results (Best fitness) . . 108
10.7 Greedy against (Genetic + Greedy): Best fitness summary . . . . . . . 109
10.8 Greedy against (Genetic + Greedy): Metrics for instance rr_20_21_s1 . 109
10.9 Greedy against (Genetic + Greedy): Metrics for instance cr_21_22_s2 . 109

Index 9



List of Algorithms
1 Generic Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Bootaku Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Bootaku Greedy Algorithm BestFreelancerFor . . . . . . . . . . . . . . . 23
4 Abstract Generational Algorithm . . . . . . . . . . . . . . . . . . . . . . . 26
5 The (µ, λ) Evolution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 The Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Random Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8 Fitness-Proportionate Selection . . . . . . . . . . . . . . . . . . . . . . . 32
9 Stochastic Universal Sampling Selection . . . . . . . . . . . . . . . . . . 33
10 Tournament Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11 One-Point Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12 Two-Point Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13 Uniform Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14 Order Crossover (OX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
15 Bit-Flip Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
16 Swap Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
17 ClassManager Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . 53
18 ClassManager Greedy Algorithm Preprocessing . . . . . . . . . . . . . . 54
19 ClassManager Greedy Algorithm Assignment Heuristic . . . . . . . . . 55
20 ClassManager Greedy Algorithm Repairing Process . . . . . . . . . . . 57
21 ClassManager Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . 58
22 ClassManager GA Next Generation . . . . . . . . . . . . . . . . . . . . . 59
23 ClassManager GA Tournament Selection . . . . . . . . . . . . . . . . . . 62

Index 10



0 Overview
This document presents all the important information regarding the Classroom man-

agement at the School of Computer Engineering using Artificial Intelligencemethods

end-of-degree thesis.

It is important to note that the structure of the contents for this document is done

following the criteria and recommendations of the template document for Degree’s

and Master’s Thesis of the School of Computing Engineering of Oviedo (version 1.4)

by José Manuel Redondo [Red]. However, some additional chapters were introduced

in order to capture the particularity of the work carried out, inspired by the work of

Gonzalo de la Cruz [dlC18].

This document is structured in the following chapters:

Introduction. Here we explain in a simple way the problem we want to solve, what

reasons are behind the development of the project and give a description of the

current situation of the School with regard to this and other similar problems.

We also provide a broad outline of the scope for the project and what objectives

need to be met for the project to succeed.

Theoretical aspects. This chapter delves into the theory supporting the developed

system. An example of an assignment problem is presented and solved using

a greedy algorithm. Then, an in-depth study of heuristics and metaheuristics

is carried out, covering a wide range of evolutionary computation algorithms.

Finally, an explanation is given on how to combine the greedy and genetic algo-

rithms to solve the example problem, which mirrors on a small scale the overall

work done for the project.

Problem definition. Here the formulation of the problem as an assignment prob-

lem is elaborated. We present the information we have of the problem and

simultaneously carry out a structural analysis of its components.

Proposed solution. This chapter lays down in detail the proposed solution to the

previously defined assignment problem. It is in this chapter where we define

the search space of the problem, basic concepts to understand the behaviour

of the algorithms and the techniques previously identified in the theoretical

aspects section that we use to solve the real problem.

Overview 11



Project planning and budget overview. This outlines the project planning and the

internal and client budgets. The Work Breakdown Structure (WBS) on a larger

scale can be found in the annexes and the fully detailed budget is given in its

own section at the end of the document.

Analysis. An analysis of the system, with the system requirements, draft diagrams,

use cases and the test plan specification.

System design. The technical details of the system analysed in the previous chap-

ter. Here we include the finalised diagrams, as well as the arquitecture of the

system and the in-depth test plan.

System implementation. Details of the development of the software. The pro-

gramming languages, standards and tools used to code the system, and all the

relevant information gathered in the process of creating the system.

Test development. A rundown of all the testing done for the system, with explana-

tions for every test and the obtained results.

Experimental results. The conclusions reached after experimenting with different

input data and the proposed configuration for the parameters of the genetic

algorithm.

System manuals. All system manuals are provided, with explanations and guided

steps in the required level of detail to help the target readers of each manual

to complete their work..

Conclusions and future work. I express here the findings that I have obtained

through the development of this project and also point out a series of project-

related topics that may be carried out in the future.

Budget. The full details for the elaboration of the internal and client budgets are

shown, with all the intermediate steps that we took to calculate them.

Annexes. The glossary of definitions and abbreviations and a small commentary on

the submitted files. In addition to this, you can find here additional information

on the project that was not necessary to elaborate on in the different chapters.

Overview 12



1 Introduction
The School of Computing Engineering of the University of Oviedo has more than

twenty classrooms, including theory classrooms and laboratory classrooms. Each

semester there are over three hundred groups, each with their type (theory, seminar

or laboratory), subject and schedule. The timetable of the groups varies on a weekly

basis, this means that not all groups have to attend classes all weeks, and some of

them do not even have repeating patterns.

This makes assigning classrooms to groups a complicated task, since there must

be no temporal collisions. When various other constraints enter the equation, such as

minimising the number of labs used by a subject or assigning classrooms to Spanish

groups that are different from English groups, things become much more complex.

All these assignments are done manually by one person. The number of enrolled

students can only be guessed when this process is done. This means that groups

can be created, modified or removed once the semester has already started, so more

assignments are usually made, checking once again all the restrictions. These new

assignments are difficult to manage as there is not much room for flexibility to change

those made before the semester. This is due to the fact that both students and

teachers already use the initial assignments as a reference.

This project provides the supervisor of this process with a tool to help them per-

form the assignments, reducing their workload. Not only does it generate assign-

ments for all the groups of the semester, but can use previous assignments, total or

partial, to calculate a subset of assignments (for example, the assignments for the

new groups created after the beginning of the semester). On top of that, the proto-

type developed in this thesis makes finding a set of free classrooms to hold events

easy and fast, using the assignments generated previously by the system itself.

1.1 Situation overview

At the beginning of each semester, the School opens a process in which the person

in charge takes the list of groups for the semester, their schedules and the list of

classrooms, and performs a manual computation of all the assignments.

Introduction 13



There are a number of other similar procedures, like the creation of the exam

timetable or the assignments of enrolled students to subject groups. However, some

are not manual, but automated by a system, like the previously mentioned procedure

of assigning students to groups [dlC18]. Seeing the potential of such tools, I was

given the task of automating the assignment of classrooms to subject groups by

similar means.

The procedure of assigning the classrooms is done after configuring the student

groups for the semester and knowing their schedules. Even though it is a manual

process, the supervisor does not start making the assignments from scratch. First,

they have the knowledge of previous years, and then they have a list of preferences

or premade assignments. For example, certain laboratories can only be assigned to

specific groups, like the ones from the Electronic Technology of Computers subject.

The system described in this document preserves these sources of information and

builds on top of them.

1.2 Purpose

This project aims to help the personnel of the School manage their classrooms. It

will address two main functionalities: the automation of the process of assigning

classrooms to all the groups of a given semester (starting from scratch or using a

previous set of partial assignments), and a tool that searches for gaps in a previous

set of assignments for single or multi-day events in one or more classes.

The implementation of this system is intended to assist in the work of the su-

pervisor for this process, and provide an efficient and flexible tool that expands the

possibilities of such work. To do so, the program executes two algorithms, a genetic

algorithm and a greedy algorithm (the genetic being guided by the greedy, more on

that later). For a more detailed view on these algorithms the reader might refer to

Chapter 2. Once the assignments have been calculated, the system will allow the

users to find classrooms to hold specific events in the middle of the semester.

Along with the system, the system manuals are submitted. These have the purpose

of explaining how to install, use, maintain and extend the system.

Introduction 14



1.3 Scope

The project needs to formally define the problem of assigning classrooms of the

School to all the groups of the semester, conduct a study on the problem and propose

a solution.

A development of a software prototype that solves the problem is planned, de-

signed, implemented and tested. This prototype will solve the two main function-

alities indicated in Section 1.2 and will consist of a command line application that

takes input data in plain text files and outputs the solution to plain text files. The

program is configured by different configuration files depending on the functionality

being executed. An experimental study on the results of the software system is car-

ried out, finding the most fitting default values for the configuration files. The project

also contains the system manuals of the application, which consist of the installation,

usage, user and programmer manuals.

Finally, the prototype also has a module for automating the creation of the input

files required for the main functionalities to work. It uses a format agreed with the

client and will parse files previously used by the School, making it easier to integrate

with other systems already in use.

1.4 Project goals

We can identify from the scope the following objectives. They need to be met in order

to close the project successfully:

1. Formally define the problem of assigning classrooms to the groups of the School.

2. Study the problem and the means to solve it.

3. Define the proposed solution.

4. Build a prototype that solves the problem using the algorithms described in the

proposed solution.

(a) It will receive plain text input files with the required data.

(b) It will output the solution to plain text files.

Introduction 15



(c) It will be able to make the assignments starting from scratch or from a

partial set of assignments.

(d) It will be able to search a set of free classrooms for a specific event in one

or more days.

(e) It will be able to automate the creation of the input plain text files for the

main functionalities.

5. Make a set of experiments to find the best default values for the configuration

files, and evaluate the performance of the proposed solution.

6. Write a set of manuals to cover the essentials of the system.

7. Validate the solution with the users.

Introduction 16



2 Theoretical aspects
This chapter provides all the necessary theoretical background for the project, in-

cluding a general description of assignment problems as well as an account of the

algorithms and methods used. As a running example, we will use the following simple

problem.

A digital magazine Bootaku works with three freelancers. Dante, Virgil and Beat-

rice. Together they write a section about book reviews. Gathering data from previous

sections, Bootaku wants to define and solve a problem of efficiently assign all reviews

to the three critics so that the section gets the highest profit. For the assignments,

Bootaku wants every book review to have one (and only one) associated freelancer.

If a freelancer ends up with no reviews, the assignments are still valid if and only if

the previous condition is met.

2.1 Assignment problem

The problem described before is an example of an assignment problem. It is the

simplest formulation of the assignment problem. It is polynomial-time solvable, while

other versions are NP-hard.

The Bootaku problem can be generalised with the following elements:

A set of n freelancers F = {F1, F2, ..., Fn}

A set of m book reviews R = {R1, R2, ..., Rm}

An assignment matrix A of n×m assignments afr such that afr = 0 when freelancer

f is not assigned to book review r and afr = 1 when freelancer f is assigned

to book review r.

A profit matrix P of n × m profits pfr which indicate the profit obtained when as-

signing freelancer f to book review r such that pfr ≥ 0.

A valid solution is defined as a matrix of assignments where all the book reviews

have a freelancer assigned to them and no book review has more than one

associated freelancer.

Theoretical Aspects 17



The profit for all the assignments will then be:∑n
f=1

∑m
r=1 afrpfr (2.1)

The optimal solution consists of a set of assignments such that the sum of all the

profits for the current assignments is maximised.

For example, imagine that for the next month’s section, we have the following

data. The information is represented by means of two sets: F for the freelancers and

R for the reviews.

F = {Dante, V irgil, Beatrice} (2.2)

R = {Divina Commedia, El Quijote, V oyage au bout de la nuit, Todo modo} (2.3)

Then, our assignments and profits will be represented by the A and P matrices.

A =


DC EQ VN TM

Dante a11 a12 a13 a14

V irgil a21 a22 a23 a24

Beatrice a31 a32 a33 a34

 (2.4)

P =


DC EQ VN TM

Dante p11 p12 p13 p14

V irgil p21 p22 p23 p24

Beatrice p31 p32 p33 p34

 (2.5)

Where each row represents a freelancer and each column represents a book re-

view. So freelancer 1 is Dante, 2 is Virgil and 3 is Beatrice. The same goes for the

book reviews. Book review 1 is Divina Commedia, 2 is El Quijote, 3 is Voyage Au Bout

De La Nuit and 4 is Todo Modo.

Now, we are going to study valid and non-valid solutions. As we explained before,

Theoretical Aspects 18



a solution is valid if every book review has a freelancer assigned to it, and no more

than one.

We will analyse four sets of values for the A matrix:

A1 =

1 0 0 0

0 0 1 0

0 1 0 1

 (2.6)

A2 =

0 0 0 0

1 0 1 0

0 1 0 1

 (2.7)

A3 =

0 0 1 0

0 0 0 1

1 0 0 0

 (2.8)

A4 =

0 1 1 0

0 0 0 1

1 1 0 0

 (2.9)

From these matrices, we can deduce that A1 and A2 are valid solutions, because

they have one freelancer for each book review. We are not concerned with a freelancer

having no book reviews assigned. However, a book review without an associated

freelancer represents a non-valid solution. That is precisely the case for A3, the book

review for El Quijote has not an assigned freelancer. In the case of A4, the fact that

El Quijote has two freelancers assigned makes it a non-valid solution.

Now, we will give values to the P matrix in order to discuss possible optimal

solutions. We will compare them with the assignment matrices A1 and A2

Theoretical Aspects 19



P1 =

9 1 5 4

2 8 14 2

7 11 10 6

 (2.10)

P2 =

 9 1 5 4

13 8 14 2

7 11 10 6

 (2.11)

P1 and A1:

Profit =
∑n

f=1

∑m
r=1 afrpfr = 9 + 11 + 14 + 6 = 40 (2.12)

P1 and A2:

Profit =
∑n

f=1

∑m
r=1 afrpfr = 2 + 11 + 14 + 6 = 33 (2.13)

We can observe that for P1, the assignments defined in A1 are better than those

in A2, because they result in a better profit. Another important remark about A1 is

that it is the optimal solution to the problem, because it assigns the book reviews

to the freelancers with the best profit value for their assigned books. Now P2 will be

evaluated.

P2 and A1:

Profit =
∑n

f=1

∑m
r=1 afrpfr = 9 + 11 + 14 + 6 = 40 (2.14)

P2 and A2:

Profit =
∑n

f=1

∑m
r=1 afrpfr = 13 + 11 + 14 + 6 = 44 (2.15)

In the case of the profits values of P2, the situation is reversed. A2 is now the

Theoretical Aspects 20



optimal solution and therefore better than A1.

The important thing to notice here is that the values for the P matrix right now

may appear as having no meaning whatsoever. But we need to think of P as the

results obtained from a profit funtion. Then, we can interpret P1 as values of profit

in a context where Virgil has just expressed an opinion on social media about the

Divina Commedia and caused a massive controversy. We can then say that P1 is a

function which gives more importance to public relations and so the profit p21 is very

low, whereas P2 gives more importance to views and so the profit p21 is higher. Of

course, in a real problem you know what the function is calculating, but this shows

how we can add meaning to a set of symbols in order to understand the data more

efficiently.

With this, we have discussed an assignment problem, looked at its main com-

ponents and analysed its non-valid, valid and optimal solutions. Some final remarks

about the relation between a general assignment problem and the Bootaku problem

follow. The actors that perform the jobs, in this case the freelancers that write the re-

views, are called the agents. The tasks to be performed are, in the Bootaku problem,

the book reviews. Nevertheless, the agents in an assignment problem do not need to

be persons (or even things that carry out actions), they can be machines, warehouses,

or classrooms. The same can be said for the tasks.

2.2 Greedy algorithms

One way of solving the Bootaku problem described earlier can be found in greedy

algorithms. A greedy algorithm [GV98] will try to find a subset of candidates that meet

the problem constraints and that form the optimal solution. To do so, the algoritm

is run iteratively. In each iteration, it will select the best candidate for that precise

moment, neglecting future consequences (that is why they are called greedy)1. Before

adding a candidate to the solution, the algorithm will determine if it is promising.

If the answer is yes, then the candidate is added to the solution. Otherwise, the

candidate is no longer evaluated. Each time a candidate is added to the solution, the

1For example, let’s say I’m walking down the street and I get thirsty. On my mental list of candidate
drinks, water has a value of 5 points, lemonade 3 and tea 1. The first vending machine I come across
on the street only sells lemonade and tea, so I buy lemonade. However, on the next street I find
another vending machine that sells water, but as I am no longer thirsty I don’t buy any more drinks.
That is, I found a valid solution but not the optimal solution.

Theoretical Aspects 21



greedy algorithm checks whether the current solution is valid or not.

With this in mind, here follows the pseudocode of a generic Greedy Algorithm.

Algorithm 1 Generic Greedy Algorithm

1: procedure GreedyAlgorithm(candidates)

2: x← ϵ

3: solution← {}
4: found← false

5: while !isEmpty(candidates) and !found do

6: x← selectCandidate(candidates)

7: if isPromising(x, candidates) then

8: addToSolution(x, solution)

9: if isSolution(solution) then

10: found← true

11: end if

12: end if

13: end while

14: return solution

15: end procedure

As we can see, the generic greedy algorithm has a very simple and elegant defini-

tion. However, even though greedy algorithms are easy to implement and can obtain

efficient solutions, they are not perfect. Their main flaw relies on their selection func-

tion. It is difficult to design a function that can simultaneously find a good local result

and translate it into a good global result. That is, the best candidate in some iteration

may not be part of the optimal solution.

Next, we will solve the Bootaku problem using a greedy algorithm. The greedy

algorithm that we are going to use is inspired by the one defined in [GV98] for solving

the Assignment of tasks problem.

Theoretical Aspects 22



Algorithm 2 Bootaku Greedy Algorithm

1: procedure GreedyBootaku(profits, assignments)

2: best← ϵ

3: for each freelancer Fi ∈ F do

4: for each review Rj ∈ R do

5: assignments[Fi, Rj] = false ▷ We initialise the assignments matrix

(to false or cero, it does not matter).

6: end for

7: end for

8: for each review Rj ∈ R do

9: best← bestFreelancerFor(profits, assignments, Rj)

10: assignments[best, Rj] = true ▷ Again, it can be true or one, depending

on the implementation.

11: end for

12: return assignments

13: end procedure

Algorithm 3 Bootaku Greedy Algorithm BestFreelancerFor

1: procedure BestFreelancerFor(profits, assignments, review)

2: best← ϵ

3: min← maximum integer value

4: for each freelancer Fi ∈ F do

5: if profits[Fi, review] < min then

6: min← profits[Fi, review]

7: best← Fi

8: end if

9: end for

10: return best

11: end procedure

Those are the two procedures needed in order to solve the Bootaku problem. In

the Assignments of tasks problem described in the book, the authors define an extra

function that checks if the worker is already assigned to another task. However, be-

cause our problem is not balanced (we have a different number of tasks and agents),

it means that we can have a freelancer writing more than one book review, so that

extra function is not required.

Theoretical Aspects 23



The Bootaku problem is really simple to solve because of its lack of constraints.

This is done deliberately to focus more on the basic components of assignment prob-

lems and not to spend time on explaining difficult restrictions. However, most prob-

lems, including the real problem this document defines (to assign classrooms to the

groups of the School), may have a lot of constraints.

One way to complicate the Bootaku problem would be to assign completion times

to each review. We would have a n × m matrix T with the completion times for all

freelancers and reviews.

T =


DC EQ VN TM

Dante t11 t12 t13 t14

V irgil t21 t22 t23 t24

Beatrice t31 t32 t33 t34

 (2.16)

Then we could have a maximum time per freelancer. This would force the greedy

algorithm to perform a check before assigning a review to a freelancer. If the time it

takes to write the review surpases the maximum time available for that freelancer, the

assignment cannot be made. With these additional constraints the Bootaku problem

becomes an example of the so-called Generalised Assignment Problem, which is

NP-hard.

Let’s say that Beatrice has been assigned to the book review for El Quijote, so

she has already spent a total time of t32 ≤ maxTime. In a future iteration the greedy

algorithm evaluates Beatrice for reviewing Todo Modo. Even if she has the greatest

profit for Todo modo, it is still not enough. The greedy algorithm first has to check

in the BestFreelancerFor procedure if t32 + t34 ≤ maxTime and, if the condition is

true, then the assignment is performed.

We can notice in the Beatrice example the main limitation of greedy algorithms.

She was assigned to El Quijote for a profit p32 and then evaluated again for Todo

modo with a profit p34. Imagine that she does not have enough time left to be able

to review the second book and that p34 is way bigger than p32. This is where assign-

ing the best local result a32 would end up ruling out the possibility of assigning the

best global result a34. Later in this chapter we will see a possible way of fixing this

problem with the help of genetic algorithms, but before that we will conduct a study

Theoretical Aspects 24



on metaheuristics.

2.3 Heuristics and metaheuristics

Solving a search problem involves a state space, represented by a tree or graph

(depending on the situation) in which each node, called a state, represents an inter-

mediate situation in the construction of the solution.

Search strategies in a search problem can be informed or uninformed. Informed

strategies use knowledge specific to a given problem but that is outside of its defi-

nition, making this type of strategies more efficient than uninformed strategies. The

main way of applying our knowledge of a given problem into the search algorithm de-

signed to solve said problem is by means of heuristic functions. An heuristic function

h(n) [RN10] represents an estimation of the minimum cost of getting to the objective

state from the state given by node n. To expand a node, the algorithm also makes

use of an evaluation function. An evaluation function f(n) analyses the non-expanded

nodes and selects the one with the lowest cost. In the case of greedy algorithms, the

evaluation function of a node n is equivalent to the heuristic function of the same

node. So we have that f(n) = h(n).

Now that we have explained what heuristic functions are, one question remains.

What are metaheuristics? Analysing the word, one could think that the meta prefix

implies that metaheuristics are heuristics about heuristics, in the same way metadata

is data about data. However, as Luke [Luk13] points out, this is not the case at all. He

defines metaheuristics as:

... a rather unfortunate term often used to describe a major subfield, in-

deed the primary subfield, of stochastic optimization. Stochastic opti-

mization is the general class of algorithms and techniques which employ

some degree of randomness to find optimal (or as optimal as possible)

solutions to hard problems. Metaheuristics are the most general of these

kinds of algorithms, and are applied to a very wide range of problems.

There are many methods of designing algorithms based onmetaheuristics. In this

project we will focus on Evolutionary Computation method, a subtype of Population-

based methods.

Theoretical Aspects 25



2.3.1 Evolutionary Computation

Evolutionary Computation (EC) [Luk13] takes inspiration from population biology, ge-

netics and evolution 2. We are interested in the types of algorithms designed using

this method, known as Evolutionary Algorithms (EAs). An EA may be (usually) either a

generational algorithm or a steady-state algorithm. A generational algorithm creates

a new population of individuals, based on the previous one, in each iteration. More-

over, a steady-state algorithm changes a subset of individuals in each iteration, but

not the entire population. Two common EAs are Genetic Algorithms and Evolution

Strategies, and there are generational and steady-state versions of the two.

Below is the pseudocode for an abstract generational algorithm.

Algorithm 4 Abstract Generational Algorithm

1: procedure AbstractGenerationalAlgorithm(maxTime)

2: P ← create the initial population

3: best← ϵ

4: currentT ime← get current time

5: while !idealSolution(P ) and currentT ime ≤ maxTime do

6: evaluate(P ) ▷ Calculate the fitness of all individuals.

7: for each individual Pi ∈ P do

8: if best = ϵ or Fitness(Pi) > Fitness(best) then

9: best← Pi

10: end if

11: end for

12: P ← newGeneration(P, breed(P ))

13: currentT ime← update time

14: end while

15: return best

16: end procedure

The initial population in this kind of algorithms is usually created by adding ran-

dom individuals to a set until the maximum population size is reached. Some good

practices for this process follow. The most important thing is not to generate re-

2Because this method uses vocabulary from these fields of biology, we have followed Luke’s ap-
proach and defined these terms one by one. A list of definitions of the most commonly used terms in
EC has been created in the annex of definitions and abbreviations.

Theoretical Aspects 26



peated individuals. This can be done with a dictionary in which we store the indi-

viduals as keys. For every new randomly generated individual we check if it is not

already contained in said dictionary before adding it to the population set. Finally, it

is possible to include individuals designed by hand into the initial population (this is

called seeding the population). However, the use of EAs already implies that finding

a good heuristic for the problem is not trivial. So even if we think that the individuals

we design may be going in the right direction, it is very likely that they will end up

producing poor results. The reason for this is that these individuals may introduce

bias in the search, limiting its exploration capabilities.

The main difference between generational EAs relies on how they create the new

generation. This process is done by means of different operations such as selection,

crossover and mutation. Also, some EAs simply discard all the parents in the new

generation and others include them again if they have an acceptable fitness. We will

take a look at two specific EAs in the following sections, Evolution Strategies and

Genetic Algorithms.

2.3.2 Evolution Strategies

Evolution Strategies (ES) [Luk13] are a type of Evolutionary Algorithms. They make

use of a selection operator called Truncation Selection. This operator consists of

selecting individuals from the highest to the lowest fitness value until a predeter-

mined number of selected candidates is reached. For creating the new generation,

ES simply use the mutation operator, without combining it with a crossover operator.

The only ES covered in this section is the (µ, λ) algorithm. We have chosen it

because it is one of the simplest ES and therefore easier to understand. The design

of (µ, λ) is essentially one version of the Abstract Generational Algorithm that details

the way in which the new generation is built. This new generation is constructed by

using both µ and λ parameters.

In this algorithm, we have an initial population with a number of λ individuals

which are randomly generated. Then, we evaluate the fitness of all individuals, as

we did in the Abstract Generational Algorithm, and we calculate the best individual

in the generation. The next step is to create the new generation. To do so, (µ, λ)

performs the Truncation Selection on the parents, selecting the µ number of parents

with greatest fitness, and for each parent a number of λ/µ children are generated. A

Theoretical Aspects 27



mutation operation is performed to create the offspring from a copy of their parents.

This whole process is done until we arrive at a solution with good enough quality or

the maximum time runs out. The pseudocode of the (µ, λ) algorithm is shown as

follows.

Algorithm 5 The (µ, λ) Evolution Strategy

1: procedure MuLambdaES(µ, λ, maxTime)

2: best← ϵ

3: currentT ime← get current time

4: P ← {}
5: for λ times do

6: P ← P ∪ {new random individual}
7: end for

8: while !idealSolution(P ) and currentT ime ≤ maxTime do

9: evaluate(P ) ▷ Calculate the fitness of all individuals.

10: for each individual Pi ∈ P do

11: if best = ϵ or Fitness(Pi) > Fitness(best) then

12: best← Pi

13: end if

14: end for

15: Q← µ individuals with the highest to lowest fitness

16: P ← {}
17: for each individual Qj ∈ Q do

18: for λ/µ times do

19: P ← P ∪ {mutation(copy(Qj))}
20: end for

21: end for

22: currentT ime← update time

23: end while

24: return best

25: end procedure

Knowing how to give values to the parameters λ, µ and the mutation probability is

very important in this algorithm. In the case of λ, as it approaches∞ the algorithm

starts behaving as a random search algorithm, so it is best if it does not have an ex-

cessively high value. For µ, if we give it a very low value, the algorithm becomes very

Theoretical Aspects 28



selective and focuses only on a specific type of individual with a high fitness value.

This may result in premature convergence of the algorithm and thus end the execu-

tion with a locally optimal rather than a globally optimal solution. Lastly, because the

mutation operation determines the similarity between parents and offsprings, if the

mutation probability is very high, the new population would be very different from the

previous one. Therefore, it would make children resemble random individuals.

To conclude the section, simply note that there is another algorithm, very similar

to this one, called (µ + λ). The only difference between (µ + λ) and (µ, λ) is that

while (µ, λ) discards the parents when creating the new generation, (µ+ λ) makes a

union between parents and children. This makes each new generation of the (µ+ λ)

algorithm having a size of µ+ λ, where µ is the number of parents and λ the number

of new offspring. Because very fit parents can survive for several generations, (µ+λ)

behaves like a (µ, λ) with a very low µ number, and it can terminate with a premature

convergence.

2.3.3 Genetic algorithms

Genetic Algorithms (GAs) [Luk13] are a type of Evolutionary Algorithms with a strong

similarity towards the (µ, λ) Evolution Stategy. What separates the two algorithms

the most is the selection operation and the way a new generation is created. In (µ, λ),

candidates were chosen by Truncated Selection. Once the candidates are selected,

the next generation is populated by mutations of the parental copies. However, in a

GA, a pair of parents is selected and their offspring are immediately created, adding

them to the new generation. This process of simultaneous selection and reproduction

occurs until the population reaches the maximum number of individuals set. Further

discussion of the GA will follow, once we have seen its pseudocode.

Theoretical Aspects 29



Algorithm 6 The Genetic Algorithm (GA)

1: procedure GeneticAlgorithm(popsize, maxTime)

2: best← ϵ

3: currentT ime← get current time

4: P ← {}
5: for popsize times do

6: P ← P ∪ {new random individual}
7: end for

8: while !idealSolution(P ) and currentT ime ≤ maxTime do

9: evaluate(P ) ▷ Calculate the fitness of all individuals.

10: for each individual Pi ∈ P do

11: if best = ϵ or Fitness(Pi) > Fitness(best) then

12: best← Pi

13: end if

14: end for

15: Q← {} ▷ Here the GA begins to differ from (µ, λ).

16: for popsize/2 times do

17: Parent Pa ← selectWithReplacement(P )

18: Parent Pb ← selectWithReplacement(P )

19: Children Ca, Cb ← crossover(copy(Pa), copy(Pb))

20: Q← Q ∪ {mutate(Ca),mutate(Cb)}
21: end for

22: P ← Q

23: currentT ime← update time

24: end while

25: return best

26: end procedure

As we said before, the GA is differentiated from the (µ, λ) ES by means of its se-

lection, crossover and mutation operators. We will now elaborate on these operators,

defining them and explaining some of their implementations.

2.3.3.1 Selection

We begin with the selection operator. Even if the selection variant in the GA is differ-

ent from the one in (µ, λ), the concept of selection is equivalent in both algorithms.

Theoretical Aspects 30



In other words, both use the operation of selection to obtain the parents who will pro-

duce the children of the future generation. There can be multiple ways to implement

the selection operator, including Random Selection, Fitness-Proportionate Selection,

Stochastic Universal Sampling, Tournament Selection and a variant of the GA which

includes elitism.

The Random Selection variant, as its name implies, picks two random parents, re-

moving them from the population. After generating the offspring, another pair of par-

ents is selected and so on, until the new population is complete. In the GA designed

to solve the problem of classroom management, we used this variant combined with

a tournament between the randomly selected pair of parents and their two generated

children to select the best two individuals out of the four (in terms of fitness).

Algorithm 7 Random Selection

1: procedure RandomSelection(P)

2: selected← random individual from population P

3: remove(selected, P ) ▷ The individual is removed from the population.

4: return selected

5: end procedure

Next, we will address the topic of Fitness-Proportionate Selection, also known

as Roulette Selection. In this variant, all individuals are dimensioned according to

their fitness. If we think of this process as a lottery, the greater the fitness of an

individual, the more likely the individual is to win the lottery prize. In this case that

prize is to be selected to be a parent. This means that a random number n such

that 0 ≤ n ≤ the total sum of all fitness values will fall in the range of one of the

individuals, thus selecting such an individual.

Theoretical Aspects 31



Algorithm 8 Fitness-Proportionate Selection

1: procedure GenerationPreparations(P) ▷ Executed only one time at the start of

each generation.

2: global p⃗← ⟨p1, p2, ..., pl⟩ ▷ Vector which copies all individuals in P.

3: global f⃗ ← ⟨f1, f2, ..., pl⟩ ▷ Vector with the fitness values of all the individuals

in p⃗, keeping the order.

4: if f⃗ contains only zeros then

5: Substitute all items of f⃗ with ones

6: end if

7: for i from 2 to l do ▷ Convert f⃗ into a cumulative distribution.

8: fi ← fi + fi−1

9: end for

10: end procedure

11: procedure FitnessProportionateSelection(P)

12: n← random number from 0 to fi inclusive

13: selected← p1

14: for i from 2 to l do

15: if fi−1 < n ≤ fi then

16: selected← pi

17: end if

18: end for

19: return selected

20: end procedure

We can observe that this operator uses two procedures. The first one is an auxil-

iary procedure named GenerationPreparations, which defines the global vector vari-

ables p⃗ and f⃗ representing the individuals of the population and their fitness values.

The second and main one is the actual selection. In this main procedure we ob-

tain a random number and extract the individual whose range of values contains that

chosen random number.

A derivative of the Fitness-Proportionate Selection operator mentioned at the

beginning of the section is called Stochastic Universal Sampling (SUS). SUS has

two very similar procedures to the ones shown before, one executed one time each

generation (normally), which defines some global variables and a main procedure

which performs the selection. The main difference comes in how the selection is

Theoretical Aspects 32



performed. Let s be the sum of all fitness values and l be the population size. A

random number generated between 0 and s/l will select the individual in that range.

For every remaining selection the position value, which started in the random number,

is increased by s/l and a new selection is carried out (up to a maximum of l times).

Algorithm 9 Stochastic Universal Sampling Selection

1: procedure GenerationPreparations(P) ▷ Executed only one time at the start of

each generation.

2: global p⃗← ⟨p1, p2, ..., pl⟩ ▷ Vector which copies all individuals in P.

3: p⃗← shuffle(p⃗)

4: global f⃗ ← ⟨f1, f2, ..., pl⟩ ▷ Vector with the fitness values of all the individuals

in p⃗, keeping the order.

5: global index← 0

6: if f⃗ contains only zeros then

7: Substitute all items of f⃗ with ones

8: end if

9: for i from 2 to l do ▷ Convert f⃗ into a cumulative distribution.

10: fi ← fi + fi−1

11: end for

12: global value← random number from 0 to fl/l inclusive

13: end procedure

14: procedure SUS(P)

15: while findex < value do

16: index← index+ 1

17: end while

18: value← value+ fl/l

19: return Pindex

20: end procedure

The main advantage of Stochastic Universal Sampling over Fitness-Proportionate

selection lies in the fact that while an individual with a high fitness (higher than s/l)

might never be chosen in a Fitness-Proportionate selection, in the Stochastic Uni-

versal Sampling variant its selection is guaranteed.

The last variant we will explain is the Tournament Selection. In contrast with these

past two variants, the Tournament Selection is a very straightforward algorithm. In

it, a t number of candidates are selected and the fittest is returned, like a sports

Theoretical Aspects 33



competition. Every time a ti candidate is selected, it is removed from the population.

The pseudocode for this variant is shown below.

Algorithm 10 Tournament Selection

1: procedure TournamentSelection(P, t)

2: best← random individual from population P

3: remove(best, P )

4: for i from 2 to t do

5: next← random individual from population P

6: remove(next, P )

7: if fitness(next) > fitness(best) then

8: best← next

9: end if

10: end for

11: return best

12: end procedure

This variant is both simple and flexible. Its flexibily comes from the variable size

of candidates for the tournaments. Some considerations for the value of t follow. If t

is very low, the operator behaves like a random search. However, if t is very high, the

individual with the greatest fitness value will have a much higher likelihood of showing

up and getting picked every time. As we stated when talking about Random Selection,

a combination of both Random and Tournament selections were implemented in the

final design of the GA used in the prototype.

To conclude, we will explain the concept of elitism in the AG. Elitism simply takes a

predetermined number of individuals from the previous generation sorted by fitness

and includes them directly in the next one before spawning offspring. This decreases

the number of offspring created to maintain the fixed population number. A GA

with elitism is therefore similar to the (µ + λ) ES and can terminate with premature

convergence if not set up correctly.

2.3.3.2 Crossover

The crossover operator mixes the genomes of a pair of parents to produce new chil-

dren. We saw how in (µ, λ) the offsprings of the µ selected parents were created by

mutating copies of their parents, without ever using the crossover operator. This is

Theoretical Aspects 34



not the case for the GA. In this algorithm the mutation occurs after the genome of

a child is created from the mixture of the genome of its parents. There are several

variants of this operator. The following alternatives are briefly outlined in this section:

One-Point Crossover, Two-Point Crossover, Uniform Crossover and Order Crossover.

The One-Point and Two-Point crossover work in a similar fashion. They choose

random numbers and swap sections of the genomes of the parents to create the

genomes of their offspring. We will give an example before showing the pseudocode

of both variants.

We have the following chromosomes, representing the parents.

Pa = {1, 5, 3, 6, 2, 7, 4} (2.17)

Pb = {2, 5, 7, 3, 4, 6, 1} (2.18)

One-Point crossover picks a value at random from 0 to 6 and the outcome is 4. The

position at 4− 1 (the number selected marks the end of the section and is excluded

from it) is the point in which the crossover between parents is produced. The operator

then generates these two children.

Ca = {1, 5, 3, 6, 4, 6, 1} (2.19)

Cb = {2, 5, 7, 3, 2, 7, 4} (2.20)

In the case of Two-Point crossover, two values are randomly selected, once again

from 0 to 6. These values indicate the ends of the section that both parents will

exchange, the first being the initial position included in the section and the second

being the final position excluded from the section. The selected numbers are 2 and

4, which leads to the generation of the following offspring.

Theoretical Aspects 35



Ca = {1, 5, 7, 3, 2, 7, 4} (2.21)

Cb = {2, 5, 3, 6, 4, 6, 1} (2.22)

The pseudocode for these two variants is presented below.

Algorithm 11 One-Point Crossover

1: procedure OnePoint(Pa, Pb, popsize)

2: x← random integer from 0 to popsize− 1

3: Ca ← copy(Pa)

4: Cb ← copy(Pb)

5: if x ̸= 0 then

6: for i from 0 to x− 1 do

7: Swap values of Cai and Cbi

8: end for

9: end if

10: return Ca and Cb

11: end procedure

Algorithm 12 Two-Point Crossover

1: procedure TwoPoint(Pa, Pb, popsize)

2: x← random integer from 0 to popsize− 1

3: y ← random integer from 0 to popsize− 1

4: Ca ← copy(Pa)

5: Cb ← copy(Pb)

6: if x > y then

7: Swap x and y

8: end if

9: if x ̸= y then

10: for i from x to y − 1 do

11: Swap values of Cai and Cbi

12: end for

13: end if

14: return Ca and Cb

15: end procedure

Theoretical Aspects 36



The main problem with both algorithms is that it is common to break the linkage

(or epistasis) between the elements in the chromosome [Luk13]. Imagine that a pair

of elements of an individual produces a high fitness with certain element values.

This pair is considerably separated on the chromosome, so it is most likely that it

will be split when executing the parental crossover. This implies that a section of the

chromosome that could give a good fitness value is broken in two or more pieces, and

each piece is given to the offspring produced by the crossover, which could overall

produce a worse fitness for the new individuals. In this respect, Two-Point is better

than One-Point crossover, but still faces the same problem.

To reduce linkage breaks in the chromosome we can take a look at the Uniform

Crossover variant. In this algorithm, all the elements of the chromosome are iterated

and, for each one, a random choice of a number from 0.0 to 1.0 is made. If the

number chosen is less than or equal to a previously defined probability, the parent

elements at that position are swapped. The pseudocode of the Uniform Crossover is

provided below.

Algorithm 13 Uniform Crossover

1: procedure UniformCrossover(Pa, Pb, popsize, probSwap)

2: Ca ← copy(Pa)

3: Cb ← copy(Pb)

4: for i from 0 to popsize− 1 do

5: if probSwap ≥ random number from 0.0 to 1.0 inclusive then

6: Swap values of Cai and Cbi

7: end if

8: end for

9: return Ca and Cb

10: end procedure

Finally, we will explain the operator used in the designed algorithm for the class-

room management problem, the Order Crossover (OX) [Dav85]. The OX operator was

first introduced in 1985 at a key Artificial Intelligence conference in Los Angeles,

California [Jos85]. In this algorithm, two random numbers are picked, similarly to

the Two-Point Crossover. Then, the selected section from the first parent is copied

onto the offspring, keeping order and position (from point p1 to p2− 1). It is now that

OX and Two-Point crossover differ. In Two-Point, all but the replaced section is kept

the same in the offspring. Yet, in OX, the elements of the second parent which are

Theoretical Aspects 37



still not present in the offspring are copied to it in the same order as they appear,

from the end to the start of the section (in a circular way, from point p2 to p1− 1). OX

is very effective when the encoding of the chromosomes are permutations. We will

illustrate this algorithm with some examples and then provide its pseudocode.

We will use the same parents as before. Imagine that the random numbers (from 0

to 6) result in p1 = 2 (included in the section) and p2 = 6 (excluded from the section).

We then have the following.

Pa = {1, 5, 3, 6, 2, 7, 4} (2.23)

Pb = {2, 5, 7, 3, 4, 6, 1} (2.24)

Therefore, the offspring generated by this pair of parents is as described below.

C = {4, 1, 3, 6, 2, 7, 5} (2.25)

To give another example, let’s say the numbers chosen are p1 = 5 and p2 = 2. The

result is as follows.

Pa = {1, 5, 3, 6, 2, 7, 4} (2.26)

Pb = {2, 5, 7, 3, 4, 6, 1} (2.27)

C = {1, 5, 2, 3, 6, 7, 4} (2.28)

Displayed below is the pseudocode for the OX.

Theoretical Aspects 38



Algorithm 14 Order Crossover (OX)

1: procedure OX(F , S, len) ▷ F and S represent first and second parents, len is the

individual length

2: p1 ← random integer from 0 to popsize− 1

3: p2 ← random integer from 0 to popsize− 1

4: C ← copy(F ) ▷ First parent is copied to the offspring.

5: overflow ← 0

6: if p2 ≤ p1 then

7: overflow ← len

8: end if

9: k ← p2 ▷ k = Offspring position pointer.

10: for i from 0 to len− 1 do ▷ i = Second parent position pointer

11: j ← p1 ▷ j = First parent position pointer.

12: while j < p2 + overflow and Si ̸= Fj mod len do

13: j ← j + 1 ▷ Iterate section p1 to p2 − 1

14: end while

15: if j = p2 + overflow then ▷ If Si is not in the section

16: Ck mod len ← Si

17: k ← k + 1

18: end if

19: end for

20: return C

21: end procedure

2.3.3.3 Mutation

We end these sections on operators by discussing the mutation operator in the GA.

Mutation takes an individual and modifies its genome. This can be done in many

ways. We will describe two, Bit-Flip Mutation and swapping elements.

Bit-Flip mutation can only work with genomes represented by boolean values

(0 and 1). This operator works in a somewhat comparable fashion to the Uniform

Crossover operator. We define a flip probability and select a random number from

0.0 to 1.0. If the number is lower or equals to the flip probability, we flip the boolean

value in that position of the chromosome.

Theoretical Aspects 39



Algorithm 15 Bit-Flip Mutation

1: procedure BitFlip(C , popsize, probSwap)

2: for i from 0 to popsize− 1 do

3: if probSwap ≥ random number from 0.0 to 1.0 inclusive then

4: Ci ← invertV alue(Ci)

5: end if

6: end for

7: return C

8: end procedure

Swap mutation consists of taking a pair of values and exchanging their positions.

The advantage of this variant over Bit-Flip is that Swap Mutation can be used with

chromosomes consisting of non-boolean values.

Algorithm 16 Swap Mutation

1: procedure SwapMutation(C , popsize)

2: x← random number from 0 to popsize− 1

3: y ← random number from 0 to popsize− 1

4: while x = y do

5: y ← random number from 0 to popsize− 1

6: end while

7: Swap positions of Cx and Cy

8: return C

9: end procedure

2.4 Mixing it all together

In this chapter we have discussed assignment problems, greedy algorithms, heuris-

tics, metaheuristics and evolutionary computation. We studied the Bootaku problem

and gave a solution with a greedy algorithm. However, although we have mentioned

several times in the document that the actual algorithm developed in this thesis con-

tains a genetic algorithm guided by a greedy algorithm, we have not gone into the

specifics of what this combination involves.

In this section we will solve the Bootaku problem with the completion times ex-

Theoretical Aspects 40



tension explained in 2.2. First of all, we need to define a chromosome representation

for the Bootaku problem. Because the tasks of the problem are the book reviews, the

chromosome is represented by the book codes, in this case each code consists of

two initials to uniquely identify a book review.

Some possible genomes for the problem will have the following structure.

Individual A = {DC,EQ, V N, TM} (2.29)

Individual B = {V N,EQ,DC, TM} (2.30)

Individual C = {TM, V N,EQ,DC} (2.31)

This genomes represent the order in which the book reviews will be assigned.

As each freelancer can only write a number of book reviews that do not exceed a

maximum completion time, the order in which these reviews are assigned is a very

important factor to consider if we want to obtain the optimal solution. The use of

different orders helps to overcome the main problem of greedy algorithms, which is

the difficulty of converting local optimum to global optimum.

Next, we choose the operators which the Genetic Algorithm will use. We decide

to use a Tournament Selection, OX for the crossover operator and Swap Mutation.

The initial generation is created by generating random individuals and verifying ev-

ery time that they are unique, before adding them to the population. The function

for evaluating fitness will execute the Greedy Algorithm with the assignments per-

formed in the order specified by the chromosome. It will then calculate the total sum

of the profits obtained, which will indicate the fitness of the individual. Finally, the

parameters of the genetic algorithm will be calculated by experimenting with differ-

ent problem instances and checking that the assignments made are of the expected

quality.

In conclusion, we can say that the Bootaku problem helps us to understand, on

a smaller scale, a similar (but simpler) problem that we face in this project, that of

assigning classes to groups in the school. In the following sections, we will replace

the Bootaku problem with the real problem, building on what we have discussed

throughout this chapter.

Theoretical Aspects 41



3 Problem definition
The School of Computing Engineering of the University of Oviedo must find a class-

room for each group of a given semester. In most cases of this particular problem,

just like in the Bootaku situation described in Chapter 2, there are more tasks (group-

s/book reviews) than agents (classrooms/freelancers). And, in the same way, a valid

solution implies that all groups have one (and only one) classroom assigned.

The data for the classrooms and groups can be represented by two sets C and G.

C = {c1, c2, ..., cn} (3.1)

G = {g1, g2, ..., gm} (3.2)

Where C is the set of n elements representing all the classrooms of the School,

and G a set of m elements representing the groups for a given semester.

A classroom can be a laboratory or a theory classroom. Groups, on the other hand,

can be taught in English or Spanish, and have three types: laboratory, theory and

seminar groups. In this problem, because we are only interested in the classrooms

that can be assigned to groups, we only consider two types. Laboratory and theory.

That is, we consider that the types of classrooms are identical to the types of groups.

T = {t1, t2, ..., tp} (3.3)

L = {l1, l2, ..., lq} (3.4)

Therefore, each classroom c and group g have a type t. In the case of groups, they

are also taught in language l.

Each group has a set of academic weeks and of group schedules. A group can

attend classes weekly, every two weeks or on a non-trivial pattern, and may be taught

on one or several days.

Problem definition 42



Wi = {wi1, wi2, ..., wir} (3.5)

Hi = {hi1, hi2, ..., his} (3.6)

Therefore, every group i has a set of weeks Wi and a set of schedules Hi. A sched-

ule consists of a triplet in the form (DayOfTheWeek, start(hh : mm), finish(hh :

mm).

Every group belongs to a subject.

S = {s1, s2, ..., st} (3.7)

A subject s is related to a subset of the groups of G.

With these definitions, we have all the data we need in order to solve the problem.

Now we shall address the problem constraints that we have to fulfill. We call hard

constraints those which are imperative for the solution to be valid, and soft constraints

the ones that reflect on the overall quality of the solution but are not mandatory.

Before listing them, two new concepts are presented. Restrictions and preferences.

Ri = {ri1, ri2, ..., riu} (3.8)

Pi = {pi1, pi2, ..., piv} (3.9)

Restrictions and preferences can be positive or negative. A group i must be as-

signed to a classroom in the set of its positive restrictions, and cannot be assigned

to a classroom in the set of its negative restrictions. It is prefered that the group i

is assigned to a classroom in the set of its positive preferences, and preferably not

in the set of its negative preferences. With that in mind, the constraints are defined

next.

Hard constraints:

Problem definition 43



Laboratory groups can only be assigned to laboratories.

Theory and seminar groups can only be assigned to theory classrooms.

A group cannot be assigned to a classroom whose capacity is less than the number

of students in the group.

A group with a set of positive restrictions must be assigned to one of those class-

rooms.

A group with a set of negative restrictions cannot be assigned to one of those class-

rooms.

A group cannot be assigned to a classroom if that classroom was already assigned

to another group and both groups collide (they overlap in week and schedule).

Soft constraints:

Laboratory groups of the same subject should all attend the same laboratory class-

room, and if not possible, at least minimise the number of laboratories assigned

to them.

Theory groups of the same name and course work in the same way, but being as-

signed to theory classrooms 1.

English and Spanish groups should go to different classrooms.

Every hour a number of laboratories should be empty. To cover for emergencies.

A group with a set of positive preferences should be assigned to one of those class-

rooms.

A group with a set of negative preferences should not be assigned to one of those

classrooms.

The goal is to assign a classroom to each group, satisfying all the hard constraints

and fulfilling the soft constraints to the greatest possible extent.

1All the groups in the School have the format subject.type.name. For example the group Com.T.1
refers to theory group 1 of the Computability subject. So all theory groups named 1 would be assigned
to the same theory classroom, if possible.

Problem definition 44



4 Proposed solution
We have already studied the theoretical concepts necessary to solve this type of

problem, and we have formalised the problem to be solved. In this section we explain

which components, techniques and algorithms we have designed and used to solve

the problem of assigning classes to groups. To do so, we will define the search

space, introduce the concepts of collisions and class filters, and comment on the

pseudocode of the proposed algorithms.

4.1 Search space

4.1.1 Assignments

An assignment is a tuple which associates a group with a classroom.

(Gi, Cj) (4.1)

Because a group can only have one classroom assigned, an assignment can be

identified by the code1 of the group. For example, the assignment for group SI.T.1

can be identified by the code SI.T.1 as well.

Assigning just one classroom to each group means that the total number of as-

signments is calculated by the following expression.

TotalNumberOfAssignments = |G| (4.2)

This implies that there are as many assignments as the number of groups for the

semester.

4.1.2 Solutions

A solution for this problem is represented by a set of all the assignments that must

be performed for the semester. For a solution to be valid, all hard constraints must

1The name convention previously mentioned: subject.type.name (e.g. Com.T.1).

Proposed solution 45



be satisfied. As presented in the previous section, the total number of assignments

equals the total number of groups in that semester. So we have the next statement.

Solution = {(G1, Cx), (G2, Cy), ..., (Gm, Cz))} (4.3)

Where m is the total number of groups and x, y and z are the index for the class-

rooms assigned to the groups. Note that the classrooms are not sequential (e.g x

could represent C12 and y represent C3).

An empty solution is represented by a set of all the assignments where each

assignment is incomplete. We mean that an assignment is incomplete when the

group has no classroom assigned.

IncompleteAssignment = (Gi,−) (4.4)

So, for the empty solution, we have a set with the following format.

EmptySolution = {(G1,−), (G2,−), ..., (Gm,−))} (4.5)

Finally, a partial solution is one in which not every assignment was performed,

and a complete solution is defined by a set in which all the assignments have been

performed and each group has a classroom associated with it.

4.1.3 States

A state represents a phase in the problem. We distinguish three kinds of states. The

initial state, which stands for the empty solution of non allocated assignments. The

final state, which represents a complete solution with all the assignments performed.

And the intermediate states portraying partial solutions.

A key concept to understand our design is the following. Although by default we

start the execution of the algorithms with an initial state, it is also possible to start

the execution with an intermediate state. This is because we can receive as input a

partial solution of assignments and work from there. Now we will discuss how we can

Proposed solution 46



jump from one state to the next one, which is normally called state expansion.

To expand a state, one of the non performed assignments in the solution is ex-

ecuted. This means that every time a classroom is assigned to a group the state is

being expanded. To perform an assignment, the number of possible candidates is at

most the number of classrooms. So we have the following.

TotalNumberOfCandidates = |C| (4.6)

As there exist constraints that indicate whether or not the solution is valid, there

are filters which reduce the number of available classrooms for a group. This allows

for optimized and easy to retrieve calculations in the execution of the greedy algo-

rithm (this will be explained later in Section 4.3). The important thing to note at this

moment is that, because of these filters, not all states may be generated.

4.1.4 Instances

The complexity of the calculations and completion time depend on many factors.

Some of those factors follow. First, the number of groups for the semester, which

directly translates into the number of assignments to be made. Second, the number

of classrooms. If there are more classrooms, it is easier to avoid collisions. Obviously,

the number of groups is much more volatile between semesters than the number of

classes, which is likely to change very occasionally, if at all. Lastly, the case of starting

the prototype with an intermediate state. This means that the set of assignments

represents a partial solution given as input, and since the number of calculations

decreases in direct proportion to the assignments already made, the completion time

could be expected to be lower.

Because of the constraints of the problem, there are some groups where class

allocations are more straightforward. For example, a group with only one positive

restriction is either going to have that classroom assigned to it or, if it collides with

other group, end up unallocated. This is why all the groups that just have one available

classroom are assigned first. Also, the groups which have less students have more

available classrooms than those with a large number of members.

Proposed solution 47



4.2 Collisions

A collision is an overlap of the timetable of two different groups. For a collision to

occur, the groups must clash at least once in the same week, day and time. Collisions

are an essential part of this problem, as we cannot assign a classroom to a group if

another group was previously associated with that classroom and both groups collide.

4.2.1 Lazy Collision Matrix

Due to the large number of assignments that have to be made throughout the execu-

tion cycle of the genetic algorithm, the chosen data structures were properly analysed.

This is where the Lazy Collision Matrix (LCM) comes in.

Imagine that we have the following group set.

G = {G1, G2, G3} (4.7)

Then, our initial Lazy Collision Matrix would be represented by the expression

below.

LCM =


G1 G2 G3

G1 −1 −1
G2 −1 −1
G3 −1 −1

 (4.8)

First of all, the diagonal is empty because we never compare one group against

itself. Then, we can observe that the rest of values are defaulted to−1. Why? Because

there are not yet evaluated. That is the reason behind the name of the matrix. It is

lazy because the collisions are only calculated when needed.

Continuing with this example, imagine that we assign classroom Cx to group G1.

Then, G2 also tries to have Cx assigned to it, so we check if both groups collide. We

find out that they do, so we update the matrix.

Proposed solution 48



LCM =


G1 G2 G3

G1 1 −1
G2 1 −1
G3 −1 −1

 (4.9)

Therefore, the values are updated with a 1, which indicates that both groups col-

lide. This results in a different classroom Cy being assigned to G2. Now, G3 has that

classroom also available, so we check if it clashes with G2. We learn that they do not

collide, so we update the matrix again.

LCM =


G1 G2 G3

G1 1 −1
G2 1 0

G3 −1 0

 (4.10)

The value for non-collision is 0, as observed. Because G3 does not clash with G2,

they are both allocated in the same classroom.

We can now generalise the LCM as in the next expression.

LCM =


G1 G2 G3

G1 g12 g13

G2 g21 g23

G3 g31 g32

 (4.11)

Where a value gij can be



1, if Gi collides with Gj

0, if Gi does not collide with Gj

−1, if the collision has not yet been evaluated

ϵ, otherwise

The main advantage of this design is that we do not have to calculate all collisions.

Proposed solution 49



For example, a collision between a laboratory group and a theory group would be

pointless to calculate because they would never be allocated in the same classroom.

Therefore we alleviate the number of calculations.

As there is only one Lazy Collision Matrix, all calculations performed by the greedy

algorithm across all populations in all generations are stored in just one place. This

means that all collisions are being calculated only when necessary and only once.

Think of the previous example. In a future iteration the greedy algorithm wants to

check if groups G1 and G2 collide. It accesses the corresponding location in the LCM,

and because it contains a 1, the greedy algorithm concludes that they indeed collide.

These operations are done in amortised constant time, as the matrix is coded as a

dictionary of dictionaries. If instead the greedy algorithm wanted to check if groups

G1 and G3 collide, because the LCM has a −1 in that position, the greedy would have

to perform the collision check and then update the matrix.

4.3 Classroom filters

A classroom filter is a function. It receives as input either the set C of classrooms or

a subset I ⊆ C , and outputs a new subset F ⊂ C with the available classrooms for a

given group. It filters out the classrooms that do not comply with the hard constraints

for that particular group (except collisions, which are calculated later with the LCM,

described in Section 4.2.1). All groups have the same classroom filters.

For example, let us consider a group Gi with type Tj and x students. A type filter

for Gi would remove from the result set all the classrooms with a type different from

Tj . A capacity filter would then take the set resulting from the previous type filter and

use it as input. Then it would eliminate from the set all classrooms with a capacity

lower than x and return the new set F .

This reduces the number of classrooms that the greedy algorithm has to evaluate

and therefore decreases the complexity of the calculations. Furthermore, the filters

are deterministic, that is, the execution of the filters of a group will always give the

same results. This means that, if needed, the filters are only performed once per

group per execution.

This may lead us to this question. If all classroom filters are executed only once

Proposed solution 50



per group every time you run the prototype, why bother using a lazy approach for

storing them? Would it not be better to perform and store them in a dictionary at

the start of the execution? The answer is no. It is true that if we start from an empty

solution the lazy approach does not present a big advantage. Nonetheless, in the

case of partial solutions, it reduces the number of calculations. For example, if we

want to assign a classroom to a new group created in the middle of the semester, the

only thing we need to care about is if the group collides with any other group. The

filters for the rest of the groups are, in that situation, irrelevant. This is due to the

fact that they have already been allocated to their corresponding classrooms.

4.3.1 Lazy Filter Dictionary

The filters work in a similar way to the Lazy Collision Matrix. Again, the election of the

data structures is crucial to optimise the execution times. That is why the classroom

filters are coded using a dictionary of sets. Once more, we will explain this with an

example.

We have a set M of n classroom filters, three groups G1, G2 and G3, and two

classrooms C1 and C2.

M = {M1,M2, ...,Mn} (4.12)

G = {G1, G2, G3} (4.13)

C = {C1, C2} (4.14)

Then, we define the dictionary as a function Dict : Keys→ V alues∪ {ϵ}, where ϵ

is the null character. That is, ϵ /∈ V alues.

The keys are represented by the groups, so Keys ≡ G. The values depict the

different sets of available classrooms for each group. Because the dictionary is as

lazy as the LCM, the calculations are performed as needed, so the initial set of values

are by default ϵ. Then we can say that V alues = {ϵ, ϵ, ϵ}.

Accordingly, we have the following cases.

Proposed solution 51



Dict(x) =



ϵ, if x = G1

ϵ, if x = G2

ϵ, if x = G3

ϵ, otherwise

We are now in the first execution of the greedy algorithm. Because we start from

an empty state and not from an intermediate step, the greedy algorithm will try to

assign a classroom for all groups. As a result of the values in the dictionary being null,

the greedy algorithm knows that it must execute the filters, updating the dictionary.

This is the LFD after the first execution for this case.

Dict(x) =



F1, if x = G1

F2, if x = G2

F3, if x = G3

ϵ, otherwise

With each Fi ⊆ C being the filtered classrooms for each group. Example of values

for the F sets follow.

F1 = {C1} (4.15)

F2 = {C1, C2} (4.16)

F3 = {} (4.17)

We can observe that the for G1, classroom C2 was filtered out. In the case of

G2, both classrooms comply with all constraints. And for G3, there are no classes

available. This is very important, because it implies that with these filters, G3 will

always end up without a classroom. Therefore, a complete solution cannot be found

for this case unless the some hard constraints are changed. Lastly, a final remark.

We can say that from now on, until the prototype terminates, the greedy algorithm

will not have to perform the filtering operations for any of the groups again, as the

results are already stored in the dictionary.

Proposed solution 52



4.4 Greedy algorithm

The greedy algorithm (see Section 2.2 for details) performs the assignments taking

care not to infringe any hard constraint. To meet this objective, the LFD and the LCM

are used. Its pseudocode is as follows.

Algorithm 17 ClassManager Greedy Algorithm

1: procedure GreedyAlgorithm(assignments)

2: solution← copy(assignments)

3: repairs← {}
4: solution← preprocess(solution)

5: for i from 0 to length(solution)− 1 do

6: if !isAssigned(Ai) then

7: c← bestClassroomFor(Ai)

8: if c ̸= ϵ then

9: assignClassroomToGroup(c, Ai, solution)

10: assignClassroomToSameGroups(c, Ai, solution)

11: else

12: addToRepairs(Ai, repairs)

13: end if

14: end if

15: end for

16: solution← repair(repairs, solution)

17: return solution

18: end procedure

As can be noted, the algorithm receives a set of empty or partial assignments as

an input parameter and returns another set with the assignments made. It iterates

over all assignments and calculates those that are not already completed. It does this

by obtaining the best classroom for an assignment, and if found, it assigns it not only

to that group, but to all groups to which that group is related (unless collisions occur,

in which case these groups are left unassigned until the greedy algorithm iterates

over them). So what does it mean if one group is related to another? It’s simple,

if the group is a lab group, the classroom is assigned to that group and to all lab

groups belonging to its subject. If, on the other hand, the group is a theory group,

the classroom found is assigned to that group and to all the theory groups in its

Proposed solution 53



course that share the same name.

If no class is found for a group, the group is added to the repair set. Groups

belonging to that set are attempted to be fixed at the end of the procedure, before

returning the set with the solution.

4.4.1 Preprocessing

The greedy algorithm preprocesses the input set with the assignments, working on

those that are not yet complete. The first thing it looks at is whether the set of

filtered classrooms for a given group contains only one element, i.e. whether only

one classroom can be assigned to that group. If this is the case, an attempt is made

to make the assignment directly, checking that there are no conflicts.

Algorithm 18 ClassManager Greedy Algorithm Preprocessing

1: procedure Preprocess(solution)

2: for i from 0 to length(solution)− 1 do

3: if !isAssigned(Ai) then

4: filtered← filterClassroomsFor(group(Ai))

5: if length(filtered) = 1 then

6: c← bestClassroomFor(Ai)

7: if c ̸= ϵ then

8: assignClassroomToGroup(c, Ai, solution)

9: end if

10: end if

11: end if

12: end for

13: return solution

14: end procedure

We can observe that in this procedure the classroom found is not assigned to the

groups related to the one we are evaluating, as it is done in the greedy algorithm

itself later on. The reason for this is that additional assignments may cause another

group with only one filtered classroom to remain unassigned, so priority is given to

such groups.

Proposed solution 54



4.4.2 Heuristic

The heuristic used by the greedy algorithm is as follows. Classes are filtered by type,

capacity and constraints (positive and negative).

Once filtered, they are sorted according to two criteria. If there are preferences

for that group, they are ordered in such a way that first the classes included in the

positive preferences are iterated, then the classes with no preference, and finally the

classes included in the negative preferences. Each of these three subsets is ordered

according to the number of available seats, from lowest to highest. If there are no

preferences for that group, the classes are simply ordered by number of available

seats, also from lowest to highest.

Then, the filtered classes are iterated until one is found that does not cause a

collision between the evaluated group and the rest of the groups previously assigned

to that classroom.

Algorithm 19 ClassManager Greedy Algorithm Assignment Heuristic

1: procedure BestClassroomFor(Ai)

2: selected← ϵ

3: filtered← filterClassroomsFor(group(Ai))

4: for j from 0 to length(filtered)− 1 do

5: selected← Fj ▷ Filtered classroom j

6: if !collisionExistsFor(group(Ai), selected) then

7: break out of the filtered classrooms for loop

8: end if

9: selected← ϵ

10: end for

11: return selected

12: end procedure

4.4.3 Repairs

To conclude with the greedy algorithm components, we must describe the assignment

repair process, which is probably the most complex of all components. As previously

explained, in the case of not finding an appropriate classroom for a group, such a

group is put into the repair set. The repair process iterates each group in this set

Proposed solution 55



and tries to fix its assignment. For this purpose, it obtains the filtered classrooms

of the group and, for each classroom, it obtains the groups that are in conflict with

the evaluated group. If there is only one conflict for a classroom, the assignment of

the conflicting group is removed and the classroom is assigned to the group under

repair. Then, an attempt is made to obtain a new classroom for the conflicting group.

If successful, both end up with an assigned classroom and the repair succeeds. If

unsuccessful, the previous classroom is reassigned to the conflicting group and the

process is repeated for each conflicting group in each classroom. If, after the exe-

cution of this process, the repair is unsuccessful, the group is finally left unassigned.

The pseudocode for the repairing procedure follows.

Proposed solution 56



Algorithm 20 ClassManager Greedy Algorithm Repairing Process

1: procedure Repair(repairs, solution)

2: for i from 0 to length(repairs)− 1 do

3: filtered← filterClassroomsFor(group(Ai))

4: for j from 0 to length(filtered)− 1 do

5: collisions← collisionsFor(group(Ai), Fj)

6: if length(collisions) > 1 then

7: break out of the filtered classrooms for loop ▷ Assignment could

not be repaired.

8: end if

9: group← firstElement(collisions)

10: a← assignmentFor(group)

11: removeClassroomFromGroup(Fj, a, solution)

12: assignClassroomToGroup(Fj, Ai, solution)

13: c← bestClassroomFor(a)

14: if c ̸= ϵ then

15: assignClassroomToGroup(c, a, solution) ▷ Assignment repaired.

16: else

17: removeClassroomFromGroup(Fj, Ai, solution) ▷ Assignment

could not be repaired.

18: assignClassroomToGroup(Fj, a, solution)

19: end if

20: end for

21: end for

22: return solution

23: end procedure

4.5 Genetic Algorithm

The Genetic Algorithm (GA) (see Section 2.3.3 for details) generates sets of assign-

ments, empty or partial, with different orderings. These sets are later piped into the

greedy algorithm, which performs and returns the final assignments to the GA. The

GA then evaluates the solution by calculating its fitness value. This is done until a

predetermined time or number of generations is reached, returning the best order of

assignments, that is, the best individual found.

Proposed solution 57



Algorithm 21 ClassManager Genetic Algorithm (GA)

1: procedure GeneticAlgorithm(popsize, numgen, maxTime, crossProb, mutProb)

2: best← ϵ

3: currentT ime← get current time

4: gen← 0

5: P ← {}
6: for popsize times do

7: P ← P ∪ {new random individual}
8: end for

9: repeat

10: evaluate(P ) ▷ Calculate the fitness of all individuals.

11: for each individual Pi ∈ P do

12: if best = ϵ or Fitness(Pi) > Fitness(best) then

13: best← Pi

14: end if

15: end for

16: Q← nextGeneration(P, popsize, crossProb, mutProb)

17: P ← Q

18: currentT ime← update time

19: gen← gen+ 1

20: until gen ≥ numgen or currentT ime ≥ maxTime

21: return best

22: end procedure

This pseudocode is very similar to the general GA, except for two things. Here,

instead of having a function that checks whether or not the individual represents a

valid solution, our GA simply iterates through a number of generations, stopping when

it reaches that number or when time runs out. The other thing in which they differ

is that the operations carried out for creating the next generation are performed in

a different procedure. This procedure selects the parents, checks whether or not the

offspring should result from a crossover of its parents2 and also if the offspring is

mutated3. A tournament is then performed between the two pairs of parents and

children and the two best, in terms of fitness, are kept into the next generation. The

2This check is performed by calculating a random number that is compared with the crossover
probability. If the selected number is lower than or equal to the probability, the crossover operator is
executed.

3Same check as for the crossover operator but comparing the number with the mutation probability.

Proposed solution 58



pseudocode for this procedure follows.

Algorithm 22 ClassManager GA Next Generation

1: procedure NextGeneration(P , popsize, crossProb, mutProb)

2: Q← {}
3: for popsize/2 times do

4: Parent Pa ← selectAndRemove(P )

5: Parent Pb ← selectAndRemove(P )

6: Child Ca ← copy(Pa)

7: Child Cb ← copy(Pb)

8: if crossProb ≥ random number from 0.0 to 1.0 inclusive then

9: Ca ← crossover(copy(Pa), copy(Pb))

10: Cb ← crossover(copy(Pb), copy(Pa))

11: end if

12: if mutProb ≥ random number from 0.0 to 1.0 inclusive then

13: Ca ← mutation(copy(Ca))

14: Cb ← mutation(copy(Cb))

15: end if

16: Winners Wa,Wb ← tournament(Pa, Pb, Ca, Cb)

17: Q← Q ∪ {Wa,Wb}
18: end for

19: return Q

20: end procedure

4.5.1 Genome representation

The individuals of the GA are represented by a vector chromosome of group codes.

Each code uniquely identifies a group, therefore an assignment, and the genome tells

the greedy algorithm in which order it must perform that assignment. The rationale

behind this random ordering is clear if we think back on what we discussed about

greedy algorithms. Their main flaw relies on not always finding the correct solution

because they focus on local optimum instead of global ones. The GA helps the greedy

algorithm by generating a bunch of different orderings and therefore testing which

order produces the best solutions.

A vector chromosome looks like this. Let’s say that I represents an individual,

represented by a set of group codes in a random order. Codes identify assignments,

Proposed solution 59



so they are indicated by Ai.

I = {A1, A2, ..., Am} (4.18)

Where m is the number of groups for that semester.

To convert the individual representation into an actual list of assignments in the

specified order, we have designed a decoder. The decoder has a dictionary given by

the function Dict : Keys → V alues ∪ {ϵ}. The group codes work as keys, and the

assignments related to each group are the corresponding values. When an individual

is decoded, the decoder simply takes each group code, obtains the value associated

to them by looking in the dictionary, and then returns a list with the order given by

the representation.

4.5.2 Fitness function

The fitness function of the GA has the following responsibilities. First, it passes the

individual representation to the decoder in order to obtain the corresponding set

of assignments. Then, the function gives the assignments to the greedy algorithm

and receives the solution set. Finally, it returns the value resulting from applying its

formula to the solution set.

The formula of the fitness function is given by the sum of all fitness values mul-

tiplied by their corresponding fitness weights. Each fitness value represents a soft

constraint described in the problem definition (see Chapter 3), and has a weight

associated with it.

The formula for the fitness function is therefore given by:

fitness =
n∑

i=1

ViWi (4.19)

Where n is the number of fitness values defined, Vi is fitness value i and Wi the

weight associated with Vi.

Proposed solution 60



4.5.3 Operators

We will briefly describe the selected operators for the ClassManager GA (see Section

2.3.3 for a more in-depth explanation of all the operators discussed here). The order

and use of these operators can be clearly illustrated with the help of the pseudocode

of procedure NextGeneration (see Algorithm 22).

4.5.3.1 Selection

The GA uses Random Selection. This operator selects and removes a random in-

dividual from the population. Since at the end of the offspring creation cycle there

is a tournament between parents and offspring, a random selection of individuals is

perfectly valid in this case. The pseudocode of this operator is displayed in Algorithm

7.

4.5.3.2 Crossover

As we explained when we introduced this operator, the Order Crossover (OX) is the

crossover operator for the ClassManager GA. As in our case it only returns one child

per pair of parents, OX is called twice, with the roles of the parents inverted (see the

NextGeneration pseudocode), that is, parent a acts as the first parent in the first

run and as the second parent in the second run (and vice versa for parent b). See

Algorithm 14 for its pseudocode.

It is also important to note that the offspring are only created from a crossover if

a random number between 0.0 and 1.0 is lower than or equal to the predetermined

crossover probability.

4.5.3.3 Mutation

For the mutation operator the GA uses Swap Mutation. This operator selects two

group codes at random and swaps their positions. As in the crossover operator,

the mutation only occurs if a randomly selected value is lower than or equal to the

mutation probability. The pseudocode for Swap Mutation is indicated in Algorithm

16.

Proposed solution 61



4.5.3.4 Tournament

Finally, we introduce the specific version of Tournament Selection implemented for

the ClassManager GA. It differs from the generic Tournament Selection (see Algo-

rithm 10) in that the candidates for the tournament are not a t number of randomly

selected individuals, but instead the two pairs of parents and children generated af-

ter executing the rest of operators. These four individuals are compared by their

fitness and the best two survive, joining the new generation. Below we indicate the

pseudocode for this version of Tournament Selection.

Algorithm 23 ClassManager GA Tournament Selection

1: procedure TournamentSelection(A, B, C, D)

2: I ← {}
3: I ← I ∪ {A, B, C, D}
4: sort I by fitness, from highest to lowest

5: return I1 and I2

6: end procedure

Proposed solution 62



5 Project planning and budget overview
So far we have discussed the theory that will function as a pillar of the software system

to be developed. With this chapter we begin the sections focused on the software

engineering used to define and build such a system. In this first chapter we present

the planning and WBS of the software project, defining and explaining its phases,

and finally showing an overview of the internal and customer budget.

5.1 Planning

The planning of the class management system, identified as Classmanager, has the

following phases. They are shown with a Gantt diagram and with the WBS of the

project. Due to the size of the Gantt chart, it is shown in its full version and split into

phases. We operate with working hours of 3 hours on average every day of the week.

The following phases were established for the planning: Project Management,

Analysis, Design, Development, Documentation, Experiments and Closure.

Figure 5.1: WBS

Project planning and budget overview 63



Figure 5.2: Gantt chart

5.1.1 Project Management

• Initial planning: Reading the project synopsis, first discussions with supervi-

sors and establishing the project plan.

Project planning and budget overview 64



• Project definition meeting with stakeholders: Requirements gathering meet-

ing with the client, definition of objectives and scope of the project.

• Project monitoring and control: Regular meetings with supervisors and clients

to discuss and review project status.

Figure 5.3: Gantt chart: Project Management

5.1.2 Analysis

• Defining requirements: Write down and review the requirements previously

obtained in the meeting with the clients.

• Reading on metaheuristics: Reading diverse literature on greedy algorithms,

genetic algorithms and metaheuristics.

• Formalisation of the problem: Formal definition of the problem as an assign-

ment problem, explaining its components and constraints.

• Solution to the problem: Theoretically elaborating the solution to the previ-

ously defined problem.

• Functional analysis: Analysis of use cases, functionality and other aspects of

the software prototype.

• Definition of system tests: Tests on input files, configuration files and system

functionality.

• Definition of acceptance tests: Checking the quality of the results obtained

by the system.

• CLI analysis: Study on how to run the utility and the format of its arguments.

Project planning and budget overview 65



Figure 5.4: Gantt chart: Analysis

5.1.3 Design

• System architecture definition: Definition of subsystems, packages and the

relationships between them.

• Elaboration of the technical design: Final class diagrams.

• Migration design and initial loading: Study on the conversion of planning and

enrolment files into files with a format that can be processed by the system.

• Structural definition of files: Elaborating the final format of the input, output

and configuration files.

Figure 5.5: Gantt chart: Design

5.1.4 Development

• Environment setup: Creation of code and documentation repositories, config-

uration of text editors and tools to run and test the system.

Project planning and budget overview 66



• Creation of the greedy algorithm: Define the LCM, LFD, and the Greedy Al-

gorithm components.

• Creation of the genetic algorithm: Define the operators of the Genetic Algo-

rithm and its components.

• Creation of the rest of the business layer: Implement data infrastructure,

log management, error handling and other business layer items.

• Creation of the persistence layer: Develop DataAccess and file management.

• Creation of the CLI: Utilities for all CLI content to be centralised in a single

component.

• Automation of input files: Functionality of automating the files previously

used by the School.

• Creation of the class finder: Functionality of searching classrooms with free

time slots.

• Preparations of the systems for experiments: Adapt the system to make it

easier to run many instances in parallel.

Figure 5.6: Gantt chart: Development

5.1.5 Documentation

• Preparation of the installation manual: Required dependencies and setup

required to be able to run the application.

• Preparation of the execution manual: Available options for launching the

software.

Project planning and budget overview 67



• Preparation of the user manual: Instructions on how to execute each func-

tionality, explanation of how to interpret the output files and recommended

configurations.

• Preparation of the programmer manual: Instructions on how to maintain the

program, where to find the main parts of the code and how to interpret the log

file.

Figure 5.7: Gantt chart: Documentation

5.1.6 Experiments

• Creation of the instances: Instances are created based on actual data from

past courses by using the automation functionality of the files used by the

School.

• Creation of configuration files: Define the configuration files with the differ-

ent combinations of values and parameters.

• Execution of the experiments: Execution of the experiments using a computer

specialised in parallel runs.

• Analysis of the experiments: Analysis of the results and obtaining the best

values in order to obtain the highest possible quality results.

Project planning and budget overview 68



Figure 5.8: Gantt chart: Experiments

5.1.7 Closure

• Execution of final acceptance tests: Execution of tests to verify the quality

of the results.

• Preparation of the closure documentation: Theoretical and technical project

documentation.

Figure 5.9: Gantt chart: Closure

5.2 Budget summary

This section shows the internal and client buget summary of the project. They can

be found in Figures 5.10 and 5.11. For the budget breakdown the reader is referred

to Section 12.

Project planning and budget overview 69



Figure 5.10: Internal budget summary

Figure 5.11: Client budget summary

Project planning and budget overview 70



6 Analysis
In this second chapter of software engineering, we will present the analysis con-

ducted on the system to be built, with a brief general definition of what is intended

to be done, recapitulating what was previously discussed in the theoretical sections.

The system requirements, both functional and non-functional, are also introduced,

followed by an identification of the internal components of the system, the subsys-

tems. An outline of class design is shown, focusing on the relationships between

classes and data, which continues with an analysis of the identified use cases and

the user interface. The chapter ends with a discussion of the tests to be carried out

on the system.

6.1 System definition

The prototype defined in this document consists of a command line application which

receives a list of text files as input and, by processing them, can perform three opera-

tions. The first and main one is the calculation of all the assignments required for the

semester, starting from scratch or by using a previous list of assignments generated

by the system itself. The second operation consists of finding holes in the schedule,

that is, to find free classrooms which comply with a set of constraints. This is useful

for assigning a class to a specific event even if the exact time or day of such an event

is not known and can only be guessed. The last operation is the automation of the

creation of the input files, which is done by converting some other files previously

used by the School into new files which the system is able to process.

6.2 System requirements

The functional and non-functional requirements of the system. The non-functional

requirements include the technological, system manuals and response time require-

ments.

6.2.1 Functional requirements

RCLI The system must implement a command line interface (CLI).

Analysis 71



RCLI1 The CLI must show information about the current process being exe-

cuted.

RCLI2 The CLI must show information about the GA.

RCLI2.1 About the parameters of the GA.

RCLI2.2 About the generations of the GA.

RCLI2.3 About the execution time of the GA.

RCLI3 The CLI must show information about the result of the execution.

RCLI3.1 If the system terminated successfully.

RCLI3.2 If the system terminated with errors, they will be also notified to

the user.

RInput1 The system must receive the required data as input.

RInput1.1 The system must receive as input the classrooms of the School.

RInput1.2 The system must receive as input the groups of the semester.

RInput1.3 The system must receive as input the schedule of the groups.

RInput1.4 The system must receive as input the weeks in which the groups

have classes.

RInput1.5 The system must receive as input the subjects of the semester.

RInput1.6 The system must receive as input the queries with the constraints

for finding free classrooms in the schedule.

RInput1.7 The system must receive as input the previously used files for the

automation of the system input files.

RInput2 The system might receive optional data as input.

RInput2.1 The system might receive as input a total or partial list of assign-

ments.

RInput2.2 The system might receive as input a list of classroom preferences.

RInput2.3 The system might receive as input a list of classroom restrictions.

RInput3 The system must receive the required configuration files as input.

RInput3.1 The configuration files can be split into any number of files.

RInput3.2 The configuration files must include the information required by

each functionality.

Analysis 72



RConf The system must be configured by plain text files.

RConf1 System configuration must allow the user to control the parameters of

the GA.

RConf2 System configuration must allow the user to specify the paths of the

input files.

RConf3 System configuration must allow the user to specify the folder paths

for the output files.

RAssign The system must perform the assignments by using AI algorithms.

RAssign1 The assignments should prioritise that Spanish and English groups

go to different classes.

RAssign2 The assignments may start from an initial set of assignments which

must remain the same.

RAssign3 The assignments must maximize the number of groups of the same

name and course assigned to the same theory classroom.

RAssign4 The assignments must maximize the number of groups of the same

subject assigned to the same laboratory.

RAssign5 The assignments must leave a number of free laboratories in each

time slot.

RAssign6 The assignments should prioritise that a laboratory does not end

up with a large number of unused computers.

RClassFinder The system must be able to find free classrooms for an event given

some constraints.

RClassFinder1 The constraints must include the date range for the search.

RClassFinder2 The constraints must include the range of hours for the search.

RClassFinder3 The constraints must include the duration of the event (in

hours) for the search.

RClassFinder4 The constraints must include the number of attendants to the

event.

RClassFinder5 The constraints must include the type of classroom to hold the

event in.

Analysis 73



RClassFinder6 The constraints must include the maximum number of results

to obtain.

RAutomation The system must be able to automate the creation of the input files.

RAutomation1 The system must receive the planning for the semester.

RAutomation2 The system must receive the number of enrolled students for

each group.

RLog The system must keep a log of its operations.

RLog1 The log must indicate the date and time of every record.

RLog2 The log must indicate the log level of every record.

RLog3 The log must record the complete information of encountered errors.

RLog4 The log must record basic information of the flow of the application.

6.2.2 Non-Functional requirements

RTech The system requires a specific setup to be executed.

RTech1 The system requires Java 8 to be installed in the computer which

executes it.

RTech2 The system requires that the folders where the input files are located

have sufficient permissions for the system to be able to read these files.

RMan The system manuals must provide the readers with appropriate information

for carrying out their tasks.

RMan1 The installation manual must explain the setup needed before the ex-

ecution of the program.

RMan1.1 It is aimed both at the user and the developers of the applica-

tion.

RMan2 The execution manual must explain the syntax for executing each func-

tionality of the system.

RMan2.1 It is aimed both at the user and the developers of the applica-

tion.

RMan3 The user manual must explain all the functionality of the system.

Analysis 74



RMan3.1 It is aimed at the user of the application.

RMan3.2 It must provide examples of usage with step by step instruc-

tions.

RMan4 The programmer manual must briefly explain the structure of the code

and its components.

RMan4.1 It is aimed at the developers and maintainers of the application.

RMan4.2 It must provide examples of possible changes with some di-

rections to implement them.

RMan4.3 It must provide an explanation on how to interpret the log of

the application.

RResponse The system must perform the assignments of a semester in less than

a day.

RResponse1 The assignments must have the expected quality. An assignment

is said to be of quality if it meets all hard and as many soft constraints as

possible.

6.3 Subsystem mapping

In order to better understand the system, a study has been carried out on the sub-

systems that make up the system. The following subsystems have been identified:

• Algorithm subsystem: Contains the greedy and genetic algorithms, as well as

their operators and procedures.

• Classfinder subsystem: Contains functionality related to the search for free

classes in a time and schedule range.

• Configuration subsystem: Parses configuration files and keeps them in mem-

ory.

• ErrorHandler subsystem: It addresses the errors encountered and differenti-

ates the expected from the unexpected.

• Log subsystem: It is in charge of creating and updating the system log.

Analysis 75



• Problem domain subsystem: Defines the abstractions of the problem in the

form of object types.

• Central subsystem: In charge of connecting the other subsystems to carry out

the different functionalities of the system.

• Persistence subsystem: Responsible for parsing input files and constructing

output files.

• CLI subsystem: Handles all text output to the console.

6.4 Preliminary class diagram

The preliminary class diagram is shown in Figure 6.1.

Figure 6.1: Preliminary class diagram

Some notes on the previously shown class draft. It only contains classes from the

business layer, because it is the most important part of the prototype.

The alg package contains all classes related to the genetic and greedy algorithms.

They are both interconnected by means of the fitness function of the GA, which uses

the Decoder in the greed package to get the assignments in the order specified by

an individual and then calls the greedy algorithm with such a list of assignments. In

Analysis 76



the case of the greedy algorithm, some of its components, like the ClassroomFilter-

Manager (which models the LFD) and the CollisionManager (which models the LCM)

have a dependency with some classes of the problem domain package. That is also

the case for the Assignment class, which represents an assignment of a classroom

to a group.

The classfinder package is a little more isolated than the alg package, but never-

theless has dependencies with some classes of the problem domain.

Finally, the problem package models the problem domain, and contains the in-

formation of the abstracted models of the School and its environment. It is a key

package not only for the different packages of the business layer, but also for the

persistence layer, which depends on it for implementing the DataAccess to each ab-

straction.

6.5 Analysis of use cases

This section presents the analysis of the use cases of the system. Three use cases

have been identified (see Figure 6.2), each one reflecting a main functionality of the

prototype. Therefore we have a use case for the assignment of classes to groups, the

search for free classes, by means of specific queries, and the automatic generation

of the system input files.

Figure 6.2: Use cases

For each use case, a table with information about the use case is presented. These

tables contain the preconditions for the use case, the postconditions reached after

its execution, a description of its steps, and a section with other variants of the use

case. These tables are followed by a sequence and activity diagram, which show the

flow of the use case in a more visual way.

Analysis 77



6.5.1 Perform the assignments

Table 6.1: Use case description: Perform the assignments

PERFORM THE ASSIGNMENTS

PRECONDITIONS The configuration files containing information about the GA and

the input files need to be correctly formatted andmust include the

required data. Moreover, the input files with the classrooms, sub-

jects, groups, group schedules, group academic weeks, restric-

tions, preferences and initial assignments must be correctly for-

matted.

POSTCONDITIONS A text file with a report on the calculated assignments is gener-

ated. Also, a csv file with the assignments in the required format

and a text file per classroom indicating its schedule in a timetable

format are also written.

DESCRIPTION

• The user executes the program with the option flag signal-

ing the calculation of the assignments and the path to the

required configuration files.

• The system parses the configuration files.

• The system parses the required and optional files indicated

in the configuration files, as well as the GA parameters.

• The system executes the algorithms.

• The system outputs the best individual’s information into a

report text file, a csv file with the assignments and a text file

for each classroom with its timetable.

SECONDARY SCE-

NARIOS (VARI-

ANTS)

Variant 1. Errors on parsing. If the system encounters any er-

rors while parsing the input files, it will notify the user and store

the information about such errors in the log file. Variant 2. Not

enough permissions. If the system cannot read from or write

into a folder because of insufficient permissions, it will notify the

user and store the information about the error in the log file.

Analysis 78



Figure 6.3: Sequence diagram: Perform the assignments

Figure 6.4: Activity diagram: Perform the assignments

Analysis 79



6.5.2 Search for free classrooms

Table 6.2: Use case description: Search for free classrooms

SEARCH FOR FREE CLASSROOMS

PRECONDITIONS The configuration files containing information about the input

files needs to be correctly formatted and must include the re-

quired data. Moreover, the input files with the classrooms, sub-

jects, groups, group schedules, group academic weeks, assign-

ments and queries must be correctly formatted.

POSTCONDITIONS A text file with the query results is generated.

DESCRIPTION

• The user executes the programwith the option flag signaling

the execution of the queries for finding free classrooms and

the path to the required configuration files.

• The system parses the configuration files.

• The system parses the required files indicated in the con-

figuration files.

• The system executes the queries.

• The system outputs the result of all queries into a text file.

SECONDARY SCE-

NARIOS (VARI-

ANTS)

Same as in Table 6.6

Analysis 80



Figure 6.5: Sequence diagram: Search for free classrooms

Figure 6.6: Activity diagram: Search for free classrooms

Analysis 81



6.5.3 Automatically create input files

Table 6.3: Use case description: Automatically create input files

AUTOMATICALLY CREATE INPUT FILES

PRECONDITIONS The configuration files containing information about the input

files needs to be correctly formatted and must include the re-

quired data. Moreover, the input files with the planning for the

semester and the number of enrolled students for each group

must be correctly formatted.

POSTCONDITIONS The files with the data of the groups, group schedules and group

academic weeks are generated.

DESCRIPTION

• The user executes the programwith the option flag signaling

the generation of the input files and the path to the required

configuration files.

• The system parses the configuration files.

• The system parses the required files indicated in the con-

figuration files.

• The system transforms the input files into the required for-

mat.

• The system outputs the result of each transformation in their

own files.

SECONDARY SCE-

NARIOS (VARI-

ANTS)

Same as in Table 6.6

Analysis 82



Figure 6.7: Sequence diagram: Automatically create input files

Figure 6.8: Activity diagram: Automatically create input files

6.6 Analysis of user interfaces

The prototype will have a Command Line Interface (CLI). The only interaction with

the user occurs when they are calling the utility in the shell, indicating the option they

want the prototype to execute and the necessary configuration files. As we explained

before in the document, there are three main options for calling the prototype. One

for performing the assignments, the second for finding free classrooms and the third

Analysis 83



for automating the creation of the input files.

Once the execution starts, the CLI will show relevant information to the user about

the currently running processes (name and status). In the case of the GA execution,

the selected parameters will be listed, as well as data on the results of each genera-

tion. The amount of information shown in the CLI about the GA can be controlled by

the user through the configuration files.

6.7 Test plan specification

Testing will focus on the parsing phase and the quality of the solutions obtained. In

order to verify that both areas operate as expected, a battery of functional tests and

an experimentation with various scenarios and instances will be carried out. Further

details of the conducted experimentation are given in its own section (see Section

10), here we will focus on the test suite.

Analysis 84



Table 6.4: Test suite for UC: Perform the assignments

PERFORM THE ASSIGNMENTS

Test Expected result

No optional files The assignment process will start from

scratch and no restrictions or preferences

are to be considered.

Preferences The assignment process will start from

scratch and no restrictions are to be con-

sidered. Positive and negative preferences

will be evaluated as soft constraints.

Restrictions The assignment process will start from

scratch and no preferences are to be con-

sidered. Positive and negative restrictions

will be evaluated as hard constraints.

Partial assignments The assignment process will start from the

initial assignments and no preferences or

restrictions are to be considered. The initial

assignments will remain as they were once

the allocation process is completed.

All optional files The assignment process will start from the

initial assignments and the restrictions and

preferences will be taken into account.

Incorrect config for-

mat

The system will notify the error to the user.

Incorrect input file

format

The system will notify the error to the user.

Incorrect input data The system will notify the error to the user

Analysis 85



Table 6.5: Test suite for UC: Search for free classrooms

SEARCH FOR FREE CLASSROOMS

Test Expected result

Theory query The system will look for theory classes that

meet the requirements of the query.

Lab query The system will look for laboratories that

meet the requirements of the query.

Theory and lab query The system will look for theory classes for

one request and laboratories for the other.

Each search must meet the requirements of

its associated query.

Incorrect config for-

mat

The system will notify the error to the user.

Incorrect input file

format

The system will notify the error to the user.

Incorrect input data The system will notify the error to the user

Table 6.6: Test suite for UC: Automatically create input files

AUTOMATICALLY CREATE INPUT FILES

Test Expected result

Automation The system will generate the input files nec-

essary for the GA execution.

Incorrect config for-

mat

The system will notify the error to the user.

Incorrect input file

format

The system will notify the error to the user.

Incorrect input data The system will notify the error to the user

Analysis 86



7 System design
Until now we have seen a theoretical view of the algorithms, with some pseudocode,

and an abstracted technical view of the system with the analysis discussed in the

previous chapter. This chapter presents to the reader, with the help of different dia-

grams, a more technical side to the prototype in which the actual code of the utility

will be based. The software architecture, the detailed class diagram and the format

of the files used by the system follow.

7.1 System architecture

The architecture of the system is laid out in two diagrams, the component diagram,

which models the relationship between the subsystems and their interfaces; and the

package diagram, which shows the logical layout of the code.

The component diagram is depicted below (see Figure 7.1).

System design 87



Figure 7.1: Components diagram

It can be seen that the central subsystem is responsible for connecting the major

subsystems with each other, especially those belonging to the different code layers.

Only the central subsystem and the algorithm subsystem have direct access to the

log and the CLI.

The relationship between the persistence layer and the problem domain subsys-

tem is due to the fact that it is the former that creates the data for the latter, and once

the central subsystem receives this data, it is responsible for providing said data to

the different components that require it.

The package diagram follows (see Figure 7.2).

System design 88



Figure 7.2: Packages diagram

What is noteworthy of this diagram is the appearance of new elements that the

initial class diagram did not have. For example, the error handler contains both its

logic and the definition of the prototype’s own exceptions. The log handler contains a

reference to the internal Java log logic, and acts as a wrapper that facilitates commu-

nication with other modules. Finally, the persistence layer has three main packages:

the file manager, in charge of writing and reading files; the automation functionality

of the files from the School to our files; and finally the DataAccess to the files of the

domain.

7.2 Class design

This section presents the different class diagrams that make up the whole system,

without showing trivial details and without repeating elements with similar layouts, in

order to enhance readability.

System design 89



Figure 7.3: Class diagram: Alg package

System design 90



Figure 7.4: Class diagram: Alg package (Greedy algorithm)

System design 91



Figure 7.5: Class diagram: Alg package (Genetic algorithm)

System design 92



Figure 7.6: Class diagram: Problem domain

System design 93



Figure 7.7: Class diagram: Other business classes

Figure 7.8: Class diagram: Persistence

Figure 7.9: Class diagram: Program and CLI

System design 94



7.3 File format design

We can differentiate files into system files and external files. System files are those

that we have originally defined in order for the system to function correctly. External

files are those files whose existence precedes this project.

All files are plain text files, and can have the extensions CSV, TXT or PROPERTIES.

TXT files contain elements of the solution that are understandable by the user but

not processable by the system. CSV and PROPERTIES files are usually input files, in

most cases, or output files, in some other cases.

It should be noted that the utility can process as many PROPERTIES files as the

user wants. Since these configuration files contain keys and values, the user is free

to define them in as many PROPERTIES files as desired, as long as all the required

keys are present.

In the case of CSVs, it is expected that these are always separated by semicolons,

and that they always include a header with the column names, as the utility always

ignores the first line except in special cases. Empty lines will cause errors when

parsing, so they must be removed.

All the files involved in the system are now displayed. For real examples, the

reader is referred to Annex 14.3.4.

Input / Output:

• Classrooms (System CSV file)

• Subjects (System CSV file)

• Groups (System CSV file)

• Group schedules (System CSV file)

• Group academic weeks (System CSV file)

• Preferences (System CSV file)

• Restrictions (System CSV file)

• Assignments (System CSV file)

System design 95



• Assignments Summary (System TXT file)

• Classroom Timetable (System TXT file)

• Classfinder queries (System CSV file)

• Classfinder query results (System TXT file)

• Plan file (External CSV file): It must be manually edited to change the separator

to a semicolon and remove its empty lines.

• Enrolled students (External CSV file): It must be manually created from the Excel

file with the enrolled student tables.

Configuration:

• Algorithm configuration (System PROPERTIES file): for the perform the assign-

ments use case.

• Classfinder configuration (System PROPERTIES file): for the search for free

classrooms use case.

• Automation configuration (System PROPERTIES file): for the automatically cre-

ate input files use case.

It is again stressed that these configuration files are an agglomeration of all the

keys needed for each use case. If the user prefers to split it into other files, as long

as they contain all the keys between them, they can do so.

System design 96



8 System implementation

8.1 License and references

8.1.1 License

The software of this project is licensed under the GNU General Public License v2.0.

8.1.2 References

• Java Code Conventions. Set of guidelines and conventions for programmers to

consider when using the Java programming language.

• Linux kernel coding style. 1 Set of guidelines and conventions for programmers

to consider when programming in the Linux kernel. The stylistic choices in

this guide have, for the most part, been the ones adopted for formatting the

prototype code, as we believe that the readability of the code is preferable to

the Java Code Conventions guidelines.

8.2 Programming languages

The use of C or Java for programming the system was discussed. In the end we opted

for Java for two reasons. The first is simple, I, the developer, have more experience

in Java than in C (although I have used both in this School). Perhaps C would be

a suitable language to implement the algorithms described in this document more

efficiently, but the extra time I would have to spend learning the language in an

advanced way makes it unmanageable for this project. The second reason is also

obvious. If this project is to be continued by our colleagues at the School, it would

be preferable if it were written in the language that has been learnt throughout the

degree courses, i.e, Java.

Apart from Java, the experimentation phase has made use of the Python language

to extract the data from the executions and to present this data in a useful manner

for further analysis.

1Available at https://www.kernel.org/doc/Documentation/process/coding-style.rst

System implementation 97

https://www.kernel.org/doc/Documentation/process/coding-style.rst


8.3 Tools and programs used in development

8.3.1 Git

Git is a distributed version control software created by Linus Torvalds. It is used in this

project to control changes to the code and documentation thanks to two repositories

hosted on Github servers.

8.3.2 Vim

Vim is a text editor created by Bram Moolenaar. In this project Vim is used to write

the documentation, define the system files and any other non-Java code.

8.3.3 LATEX

LATEXis a software system used for creating documents. We made use of this technol-

ogy to create the documentation from scratch, inspired by other templates such as

those mentioned at the beginning of the document. One of the main advantage of

using LATEXto create the documents is the possibility of integrating it into a version

control system such as Git, which we have done in this project.

8.3.4 Eclipse

Eclipse is an integrated development environment (IDE) for Java. The vast majority

of the system was programmed using this tool, employing its debugging tools and a

plugin that emulates the behaviour of Vim in the Eclipse editor.

8.3.5 PlantUML

PlantUML is a UML diagram generator derived from plain text. It has been used for

all diagrams in the documentation, as well as for creating the WBS and Gantt charts.

System implementation 98



9 Test development
As previously stated, the testing phase will focus on checking the correct functioning

of the system, especially in the persistence layer. The overall quality of the solutions

is assessed in the experimentation stage.

In this chapter, a battery of tests is presented for each use case, each test con-

taining the following information: ID, description, expected outcome, real outcome.

9.1 Perform the assignments

• ID: PA-01-NOF

– Description: The utility is executed with a configuration that disables the

optional files.

– Expected outcome: The assignment process will start from scratch and

no restrictions or preferences are to be considered.

– Real outcome: OK

• ID: PA-02-PREFS

– Description: The utility is executed with a configuration that considers

preferences.

– Expected outcome: The assignment process will start from scratch and

no restrictions are to be considered. Positive and negative preferences

will be evaluated as soft constraints.

– Real outcome: OK

• ID: PA-03-RES

– Description: The utility is executed with a configuration that considers

restrictions.

– Expected outcome: The assignment process will start from scratch and

no preferences are to be considered. Positive and negative restrictions

will be evaualted as hard constraints.

– Real outcome: OK

Test development 99



• ID: PA-04-PAR

– Description: The utility is executed with a configuration that considers a

partial list of assignments previously made by the user of the system.

– Expected outcome: The assignment process will start from the initial as-

signments and no preferences or restrictions are to be considered. The

initial assignments will remain as they were once the allocation process is

completed.

– Real outcome: OK

• ID: PA-05-CONF

– Description: The utility is executed with a configuration file with missing

properties.

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

• ID: PA-06-INFOR

– Description: The utility is executed with a configuration that points to

input files with incorrect format.

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

• ID: PA-06-INDATA

– Description: The utility is executed with a configuration that points to

input files with incorrect information (e.g a group schedule with a reference

to a group code that is not present in the system).

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

9.2 Search for free classrooms

• ID: SF-01-THEO

– Description: The utility is executed with a configuration that points to a

query file that contains one request for finding a theory classroom.

Test development 100



– Expected outcome: The system will look for theory classes that meet the

requirements of the query.

– Real outcome: OK

• ID: SF-02-LAB

– Description: The utility is executed with a configuration that points to a

query file that contains one request for finding a laboratory.

– Expected outcome: The system will look for laboratories that meet the

requirements of the query.

– Real outcome: OK

• ID: SF-03-ALL

– Description: The utility is executed with a configuration that points to a

query file that contains two requests. One to consult free classrooms and

another to consult free laboratories.

– Expected outcome: The system will look for theory classrooms for one

request and laboratories for the other. Each search must meet the re-

quirements of its associated query.

– Real outcome: OK

• ID: SF-04-CONF

– Description: The utility is executed with a configuration file with missing

properties.

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

• ID: SF-05-INFOR

– Description: The utility is executed with a configuration that points to

input files with incorrect format.

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

• ID: SF-06-INDATA

Test development 101



– Description: The utility is executed with a configuration that points to

input files with incorrect information (e.g a group schedule with a reference

to a group code that is not present in the system).

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

9.3 Automatically create input files

• ID: AC-01-AUTO

– Description: The utility is executed with the correct configuration.

– Expected outcome: The system will generate the input files necessary for

the GA execution.

– Real outcome: OK

• ID: AC-02-CONF

– Description: The utility is executed with a configuration file with missing

properties.

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

• ID: AC-03-INFOR

– Description: The utility is executed with a configuration that points to

input files with incorrect format.

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

• ID: AC-04-INDATA

– Description: The utility is executed with a configuration that points to

input files with incorrect information (e.g a record of enrolled students of

a group that does not exist in the planning file).

– Expected outcome: The system will notify the error to the user.

– Real outcome: OK

Test development 102



10 Experimental results
This chapter shows the experimental study carried out to evaluate the quality of the

prototype and its algorithms. We advance the main thesis we have arrived at after

this study: The greedy algorithm is able to solve the problem without the help of

the genetic algorithm. However, it is not powerful enough to find the best solutions

obtained with other configurations. Only when coupled with the best version of the

genetic algorithm does the software perform at its best.

The experiments were run on a Linux cluster (Intel Xeon 2.26 GHz, 128 GB RAM).

10.0.1 Instances

Four scenarios have been identified for this phase. One scenario is a combination

of a group loading level and a constraint loading level. We have groups from the first

and second semester of two different academic years, and we have restrictions and

preferences obtained from client meetings.

A charge level has two states: regular and charged. Regular groups are simply

those found in the academic course planning. Regular constraints are those indi-

cated by the clients. Loaded groups introduce new groups artificially, generating

them automatically by code. The same applies to the constraints.

For the charged load level, one group per subject was created for each instance

with a 10% probability, and one restriction or preference with a 20% probability.

Once created, the results were checked for incorrect data or contradictions.

We therefore have the following scenarios:

• Charged groups - Charged constraints

• Charged groups - Regular constraints

• Regular groups - Charged constraints

• Regular groups - Regular constraints

Each scenario has instances created from the first and second semester of the

academic years 20-21 and 21-22.

Experimental results 103



10.0.2 Fitness function

The fitness function is created based on the client’s expectations of results. The

highest weight is given to all assignments being performed, followed by the fulfilment

of preferences, then the remaining fitness values.

The values for the fitness function follow.

# Fi tness weights

# COL_WEIGHT : Weight f o r the c o l l i s i o n s f i t n e s s va lue

COL_WEIGHT = 1 .0

# FREE_LABS_WEIGHT : Weight f o r the f ree labs f i t n e s s va lue

FREE_LABS_WEIGHT = 0.25

# LANG_WEIGHT : Weight f o r the group language f i t n e s s va lue

LANG_WEIGHT = 0.25

# SHARED_LABS_WEIGHT : Weight f o r the shared labs f i t n e s s va lue

SHARED_LABS_WEIGHT = 0.25

# SHARED_THEORY_WEIGHT : Weight f o r the shared theory c lasses f i t n e s s va lue

SHARED_THEORY_WEIGHT = 0.25

# PREFS_WEIGHT : Weight f o r the preferences f i t n e s s va lue

PREFS_WEIGHT = 0.5

10.0.3 Greedy Algorithm

With this fitness function, we proceed to experiment with the following versions of

the greedy algorithm:

• Base greedy: Algorithm without repairs and biases.

• Base greedy + Repairs: Algorithm with repairs but without biases.

• Base greedy + Repairs + Biases: Algorithm with repairs and biases towards

preferences and shared classrooms.

Experimental results 104



Experiments are launched ten times per run. Each run executes the greedy algo-

rithm another ten times and returns the best result. An overview of the results will

now be given.

Each run stores a number of metrics related to the fitness values. These metrics

are listed and defined below.

• Average CPU time.

• Best fitness.

• Average fitness.

• Assignments without classroom.

• Average number of free labs by hour.

• Preferences met.

• Fitness which evaluates whether the Spanish and English groups go to different

classes.

• Fitness that assesses whether the laboratory groups of a subject go to the same

laboratory.

• Fitness which measures whether theory groups with the same name and course

go to the same classroom.

10.0.3.1 Fitness assesment

Although the greedy does not factor in fitness to execute its operations, it can be an

indicative value of the quality of a version of the algorithm.

The inclusion of the repair process does not seem to influence the results of the

greedy algorithm a lot. However, the biases introduce a substantial improvement, as

can be seen in the following summary table of the best fitness values (see Table 10.1).

Experimental results 105



Table 10.1: Greedy algorithm: Best fitness summary

Version Best fitness summary

Base greedy 149.31

Greedy + Repairs 149.81

Greedy + Rep + Bias 166.69

10.0.3.2 Other metrics

Evaluating the results, we can see a clear difference between the behaviours of these

three versions of the greedy algorithm in terms of assignments and preferences. The

algorithms behave similarly in terms of number of unassigned groups (see Tables

10.2 and 10.3).

Table 10.2: Greedy algorithm: Unassigned groups for instance rr_20_21_s1

RegGroups-RegConstraints Course 20-21 Semester 1

Version Average groups unassigned (out of 340)

Base greedy 11

Greedy + Repairs 9

Greedy + Rep + Bias 8

Table 10.3: Greedy algorithm: Unassigned groups for instance cr_21_22_s2

CharGroups-RegConstraints Course 21-22 Semester 2

Version Average groups unassigned (out of 314)

Base greedy 6

Greedy + Repairs 5

Greedy + Rep + Bias 5

However, when we look at the preferences respected by each version, the picture

changes. There is a clear advantage of the algorithm with bias over the other two

versions. The tables for the previous two instances are now shown except that they

now refer to preferences (see Table 10.4 and 10.5).

Experimental results 106



Table 10.4: Greedy algorithm: Preferences met for instance rr_20_21_s1

RegGroups-RegConstraints Course 20-21 Semester 1

Version Average preferences met (out of 18)

Base greedy 1

Greedy + Repairs 1

Greedy + Rep + Bias 10

Table 10.5: Greedy algorithm: Preferences met for instance cr_21_22_s2

CharGroups-RegConstraints Course 21-22 Semester 2

Version Average preferences met (out of 43)

Base greedy 10

Greedy + Repairs 12

Greedy + Rep + Bias 17

In the shared classroom metrics, an improvement is also observed in the algo-

rithm with bias, since its heuristic contemplates this situation. In the rest of the

metrics the difference is not so pronounced

10.0.4 (Genetic + Greedy) parameter assesment

Considering the results of the previous section, the greedy algorithm with repairs and

bias is chosen for the genetic algorithm experiments. In this section we will describe

the tests performed to tune the GA parameters.

Twenty-seven combinations were considered for the Course 20-21 instances. The

values chosen are as follows.

Population size: {100, 250, 500}

Crossover probability : {0.8, 0.9, 1}

Mutation probability : {0.05, 0.1, 0.2}

The results are summarised in Table 10.6.

Experimental results 107



Table 10.6: (Genetic + Greedy): Parameter combinations results (Best fitness)

Comb rr_20_21_s1 rr_20_21_s2 rc_20_21_s1 rc_20_21_s2 cr_20_21_s1 cr_20_21_s2 cc_20_21_s1 cc_20_21_s2

Comb01 191.58 175.19 179.98 174.46 190.14 174.1 178.63 172.49

Comb02 192.33 176.0 180.64 174.27 189.78 173.92 179.36 172.99

Comb03 192.07 175.24 180.13 174.66 190.53 174.33 179.95 173.12

Comb04 193.07 175.63 180.66 174.67 190.03 174.96 179.23 173.7

Comb05 193.34 176.18 180.81 175.13 190.32 174.33 179.4 173.1

Comb06 192.44 175.46 180.99 175.05 190.96 174.31 179.55 173.39

Comb07 193.05 176.07 181.08 174.27 190.59 174.51 179.89 174.24

Comb08 193.07 176.08 181.14 175.2 190.99 175.18 180.11 174.24

Comb09 192.93 176.07 180.87 174.84 190.73 174.56 179.69 174.12

Comb10 191.69 174.86 179.93 174.2 190.01 173.67 179.14 172.54

Comb11 192.89 174.84 180.47 175.28 190.13 174.37 179.61 173.54

Comb12 192.46 175.05 180.99 174.55 190.19 174.24 179.8 172.72

Comb13 192.81 175.43 181.41 174.51 190.43 173.99 180.16 173.81

Comb14 193.03 176.35 180.57 174.73 190.96 174.44 179.64 173.64

Comb15 192.67 175.43 180.22 174.51 191.17 175.48 179.92 174.95

Comb16 193.31 175.75 180.81 175.65 190.9 174.6 179.28 174.17

Comb17 193.19 176.18 180.47 176.19 191.14 175.08 180.39 173.85

Comb18 192.9 175.88 180.78 174.96 190.83 174.91 179.87 173.99

Comb19 191.79 175.06 180.65 175.07 189.48 175.37 179.44 172.87

Comb20 193.41 175.5 180.65 174.8 190.26 174.62 179.83 172.98

Comb21 192.89 175.35 180.14 174.08 190.55 174.23 179.89 173.02

Comb22 192.47 175.65 180.31 174.98 190.68 175.04 179.91 173.68

Comb23 193.2 175.9 180.87 174.54 190.98 174.39 180.21 173.45

Comb24 191.95 175.54 180.95 174.31 190.18 174.13 179.72 172.93

Comb25 192.38 175.64 180.83 174.85 190.68 175.96 180.05 173.84

Comb26 192.86 176.26 181.85 175.44 190.91 174.69 179.46 173.32

Comb27 192.73 175.55 181.08 173.75 190.22 174.83 179.76 173.16

We decided on combination 17 as it had the best fitness results, although there

is not much of a difference between the different configurations. The content of this

combination are shown below.

POP_SIZE = 250

CROSS_PROB = 0.9

MUTA_PROB = 0.2

10.0.5 Greedy against (Genetic + Greedy)

We will now use the parameters in the combination 17 for the GA with the initial fitness

function, testing the three versions of the greedy algorithm in combination with the

genetic algorithm. For this comparison, we will use the previous tables, adding the

values obtained with the combination of both algorithms.

We begin by showing the values of the best fitness found (see Table 10.7).

Experimental results 108



Table 10.7: Greedy against (Genetic + Greedy): Best fitness summary

Version Best fitness summary

Base greedy 149.31

Genetic + Base greedy 169.50

Greedy + Repairs 149.81

Genetic + (Greedy + Repairs) 168.75

Greedy + Rep + Bias 166.69

Genetic + (Greedy + Rep + Bias) 179.63

Next, the two algorithms will be compared on the other metrics. The four tables in

the greedy algorithm evaluation are summarised in two tables (See Tables 10.8 and

10.9).

Table 10.8: Greedy against (Genetic + Greedy): Metrics for instance rr_20_21_s1

RegGroups-RegConstraints Course 20-21 Semester 1

Version Average groups unassigned (out of 340) Average preferences met (out of 18)

Base greedy 11 1

Genetic + Base greedy 7 7

Greedy + Repairs 9 1

Genetic + (Greedy + Repairs) 6 6

Greedy + Rep + Bias 8 10

Genetic + (Greedy + Rep + Bias) 6 13

Table 10.9: Greedy against (Genetic + Greedy): Metrics for instance cr_21_22_s2

CharGroups-RegConstraints Course 21-22 Semester 2

Version Average groups unassigned (out of 314) Average preferences met (out of 43)

Base greedy 6 10

Genetic + Base greedy 4 18

Greedy + Repairs 5 12

Genetic + (Greedy + Repairs) 5 18

Greedy + Rep + Bias 5 17

Genetic + (Greedy + Rep + Bias) 4 18

From these tables we can conclude that the greedy algorithm still fares very well

when compared to the combination of the greedy and genetic algorithms, but that

ultimately the best option is to combine the two.

Experimental results 109



10.0.6 Further fitness functions

As a final experiment, we decided to perform a comparison between different values

of the fitness weights. For this we considered four scenarios:

• Shared labs and theories: In this scenario we test whether the genetic al-

gorithm achieves better results by ignoring language separation and focusing

on clustering groups in the same classrooms, according to the criteria set out

earlier in this document.

• Group separation by language: The reverse of the first scenario. Here we

focus on separating the groups by language, ignoring whether or not they are

grouped in the same classrooms.

• Equal weights: All fitness value have a weight of one.

• Weights for fitness values of collisions and preferences: Only the unas-

signed classrooms (collisions) and the preferences get a weight value of 1.0

and 0, respectively. The rest are set to zero.

Analysing the results, we can see that the worst configuration is the one where

the weights are equal. Granted, it has higher fitness, but in the other metrics it is far

inferior to the rest of the configurations.

Naturally, scenario 2 (group separation by language) ends up with results whose

language fitness is higher than scenario 1 (shared labs and theories), but lower fitness

in shared classes compared to the latter. In terms of assignments without classrooms

and fulfilled preferences, both configurations work in a similar way.

If we compare scenarios 1 and 2 with scenario 4, we see that the difference is

not so overwhelming as to justify not assigning weights to language or shared class

values.

10.0.7 Experimental findings

Reflecting on the previous experiments, one can come to a conclusion that was al-

ready anticipated at the beginning of the chapter. This problem is not so complex,

therefore, a greedy algorithm with a good heuristic can achieve an acceptable solu-

tion in short times.

Experimental results 110



But, in order to really obtain the best possible solution with these algorithms, it

is necessary to use the genetic algorithm with the right combination of parameters

and weights.

Experimental results 111



11 System manuals

11.1 Installation manual

SETUP

In order to be able to execute the classmanager utility, two things are required. The

first is Java 8 or higher, the second is the creation of the runtime environment. This

environment simply consists of having the utility at the same level (in terms of folders)

as a folder that the user must create, called classmanager_log.

FOLDER TREE

When we run the jar file, we will do it from this folder. If the configuration files have

relative paths, they must be relative to the jar file. An example of this is shown below.

Classmanager/ (FOLDER)

classmanager.jar (Executable JAR)

classmanager_log/ (Required FOLDER)

Some logs...

inputfiles/ (User FOLDER)

classrooms.csv

...

output/ (User FOLDER)

config/ (User FOLDER)

myConfig.properties

We have the previously described folder in our computer. Let’s say we are cre-

ating the configuration file myConfig.properties, and we want to give a path to the

CLASSROOMS_FILE_PATH property. Should we specify the relative path from the

configuration file or from the jar? As said before, the path is relative to the jar file,

so in our case, CLASSROOMS_FILE_PATH = ./inputfiles/classrooms.csv.

System manuals 112



11.2 Execution manual

NAME

classmanager - manages the classrooms and groups of the School of Computing

Engineering of Oviedo.

SYNOPSIS

classmanager OPTION [FILE...]

DESCRIPTION

The classmanager utility assigns classes to groups in the School for a given semester.

In addition, it allows queries to be made on the classrooms to obtain those available

in a range of dates and schedules. Finally, the utility has a built-in tool that allows for

automatic conversion of the files currently used by the school into files compatible

with the system.

A FILE represents a configuration file. Each option requires a set of properties

with values of different types. As long as these properties are given to the utility, the

user is free to split them in as many configuration files as they want. If a file is not

provided, or if the file cannot be parsed due to lack of permissions, the utility will

notify the user of the error. The same goes for the required data not submitted in the

configuration files.

OPTIONS

Generic Program Information

-h, --help

Output a usage message and exit.

-v, --version

Output the version of classmanager and exit.

System manuals 113



Functionalities

-a, --algorithm

Perform the assignments, output the result into the expected files and exit.

-q, --query

Search for available classrooms, output the results into the expected files and

exit.

-t, --transform

Transform the School files into compatible files, output the generated files and

exit.

REGULAR EXPRESSIONS

Three types of regular expressions designed for this project can be used in the PREF-

ERENCES and RESTRICTIONS files. The three types are taken into account when

using them in the name section of a group’s code (subject.type.name).

The first type involves using the asterisk (*) to indicate that the preference or

restriction applies to both English and Spanish groups of a particular type of class

(e.g. CVVS.L.*).

The second type uses the addition (+) to indicate that the preference or restriction

should apply only to the Spanish groups (e.g. CVVS.L.+).

The last type employs the question mark (?) in the same way as the second type

except that the groups concerned are English groups (e.g. CVVS.L.?).

EXIT STATUS

The program can terminate in two states: OK and ERROR. The OK status indicates

that the execution was completed without problems, while the ERROR status implies

that the operation could not be carried out as expected due to an error. The detailed

error is recorded in the LOG file generated by the utility.

System manuals 114



NOTES

Make sure that all CSV files have a header with the column names, because the

program expects such a header to exist. Otherwise it will skip the first row of the

CSV. Also, the CSV files cannot have empty rows or the utility will complain. Finally,

the utility expects the separator of all CSVs to always be the semicolon.

COPYRIGHT

classmanager - manages the classrooms and groups of the School of Computing

Engineering of Oviedo. Copyright (C) 2022 Hugo Fonseca Díaz

This program is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Founda-

tion; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,

Fifth Floor, Boston, MA 02110-1301 USA.

BUGS

Occasionally an error message will be displayed after the message indicating that

the program has terminated with error status. It should appear before this message.

However, repeating the execution may make it appear where expected.

If you find a bug, you can create an Issue in this repository or send an email to

UO258318 AT uniovi DOT es.

EXAMPLES

Show help:

java -jar classmanager.jar -h

System manuals 115

https://github.com/fonsecadh/classroom-manager-code


java -jar classmanager.jar --help

Show version:

java -jar classmanager.jar -v

java -jar classmanager.jar --version

Performing the assignments:

java -jar classmanager.jar -a algFolder/algorithm.properties

ioFolder/io.properties

Note that the user has decided to split the properties in two files, but they could

have used only one if they wanted.

Another way of performing the assignments:

java -jar classmanager.jar --algorithm all.properties

Searching for classrooms:

java -jar classmanager.jar -q classfinder.properties

java -jar classmanager.jar --query one.properties

two.properties three.properties

Transforming the files of the School into the files used by the utility:

java -jar classmanager.jar -t automation.properties

java -jar classmanager.jar --transform automation.properties

SEE ALSO

You can view the updated documentation at this repository. If you wish to view the

code, you can do so by visiting this other repository.

System manuals 116

https://github.com/fonsecadh/classroom-manager-doc
https://github.com/fonsecadh/classroom-manager-code


11.3 User manual

This manual explains the different files involved in the three possible use cases. See

Annex 14.3.4 for examples of each use case.

PERFORM THE ASSIGNMENTS

CONFIG

A default configuration is provided for the greedy algorithm and for the genetic algo-

rithm. The only notable thing about this property file is that you can specify the path

to the optional files but disable their use with boolean keys.

INPUT

Files submitted for classes and subjects can be reused. It is important to keep the

headers of each CSV file and not to have empty rows, as discussed in the execution

manual.

If a group or subject code is referenced in another csv file, a check will be made

to see if that code exists. However, the codes will not be checked to see if they are

well-formed in the original files, so special care must be taken.

The format of dates and times should also be taken into account, so it is recom-

mended to study the files already submitted for reference. The utility will check if they

are incorrectly formatted and will warn the user of any problems.

If you start from an existing mapping file, note that there can be no classless

mappings or the utility will interpret this as an error when parsing the file.

OUTPUT

Several types of files are generated. It can be categorised into three types, the csv

file of assignments, the txt file with the summary of assignments and the files with

the timetable in tabular form.

The summary file indicates the assignments sorted by course and subject. The

timetables show in table format the timetable of each class. If there is more than

one group in a cell, it means that both groups attend classes at the same time, but

System manuals 117



it is understood that they never overlap in their academic weeks.

SEARCH FOR FREE CLASSROOMS

INPUT

As the queries are entered via CSV, as many queries as the user wants can be in-

troduced. Care should be taken not to enter a start date that is later than the end

date.

OUTPUT

A txt file is generated. This file contains, for each query, its parameters and results.

The results include a class, a week, a day and a series of ranges of free slots for that

classroom.

AUTOMATICALLY CREATE INPUT FILES

INPUT

Input files must be correctly adapted to the system. This involves using the semicolon

separator and deleting all empty lines. A header must also be created for both files

(see example files provided in the Annex).

OUTPUT

The group, group schedules and group academic weeks are generated. Since the

system does not contain the subjects in memory for this use case, the entries are

sorted by the code of the groups.

11.4 Programmer manual

LOG

DETALLADO : START Pers is tence l o g i c

j u l 05 , 2022 1 2 : 2 3 : 1 5 AM main . Program main

GRAVE : Wrong in tege r in GROUPS csv f i l e ( cero or negat ive : 0 ) , l i n e 42

business . e r r o rhand le r . except ions . Inpu tVa l ida t ionExcep t ion : Wrong in tege r in GROUPS csv f i l e ( cero or negat ive : 0 ) , l i n e 42

at pers is tence . problem . csv . u t i l s . V a l i d a t i o n U t i l s . v a l i d a t e P o s i t i v e I n t ( V a l i d a t i o n U t i l s . j a va : 5 6 )

at pers is tence . problem . csv . GroupsDataAccessCsv . v a l i d a t e ( GroupsDataAccessCsv . j a va : 1 0 6 )

at pers is tence . problem . csv . GroupsDataAccessCsv . l ineToGroup ( GroupsDataAccessCsv . j a va : 5 1 )

a t pers is tence . problem . csv . GroupsDataAccessCsv . loadGroups ( GroupsDataAccessCsv . j a va : 2 9 )

at main . Program . executeExperiments ( Program . j ava :855)

System manuals 118



at main . Program . main ( Program . j ava :94 )

j u l 05 , 2022 12 :24 :50 AM main . Program main

DETALLADO : START Pers is tence l o g i c

j u l 05 , 2022 12 :24 :50 AM main . Program main

GRAVE : Non e x i s t i n g code f o r group in PREFERENCES csv f i l e (CPM. L . + ) , l i n e 6

business . e r r o rhand le r . except ions . Inpu tVa l ida t ionExcep t ion : Non e x i s t i n g code f o r group in PREFERENCES csv f i l e (CPM. L . + ) , l i n e 6

at pers is tence . problem . csv . PreferencesDataAccessCsv . l ineToPre fe rences ( PreferencesDataAccessCsv . j a va : 9 7 )

at pers is tence . problem . csv . PreferencesDataAccessCsv . loadPreferences ( PreferencesDataAccessCsv . j a va : 3 4 )

at main . Program . executeExperiments ( Program . j ava :883)

at main . Program . main ( Program . j ava :94 )

j u l 05 , 2022 1 2 : 2 5 : 2 1 AM main . Program main

DETALLADO : START Pers is tence l o g i c

j u l 05 , 2022 1 2 : 2 5 : 2 1 AM main . Program main

DETALLADO : END Pers is tence l o g i c

j u l 05 , 2022 1 2 : 2 5 : 2 1 AM main . Program main

DETALLADO : START Business l o g i c

j u l 05 , 2022 1 2 : 2 5 : 2 1 AM business . a lg . gen . l o g i c . Genet icAlgor i thm genet icA lgor i thm

DETALLADO : START Genetic Algor i thm

j u l 05 , 2022 1 2 : 2 5 : 2 1 AM business . a lg . gen . l o g i c . Genet icAlgor i thm genet icA lgor i thm

MUY DETALLADO : Parameters :

−> Max number of generat ions : 10

−> Max time (ms ) : 360000

−> Mutation p r o b a b i l i t y : 0.5

−> Crossover p r o b a b i l i t y : 0.9

−> Populat ion s i ze : 200

−> F i tness func t ion : business . a lg . gen . l o g i c . f i t n e s s . De fau l tF i tnessFunc t ion

−> I n d i v i d u a l length : 311

j u l 05 , 2022 12 :25 :29 AM business . a lg . gen . l o g i c . Genet icAlgor i thm genet icA lgor i thm

DETALLADO : END Genetic Algor i thm

j u l 05 , 2022 12 :25 :29 AM main . Program main

DETALLADO : END Business l o g i c

The above is an extract from the log file. We can see a trace of the flow of the

application in three different executions. The first two fail, each with a different error,

in the groups and preferences files. The last one occurs after the errors have been

fixed and the parameters of the genetic algorithm used for the execution can be

observed. Once the execution of the genetic is finished, an entry indicating this fact

and another one reporting the completion of the business logic are created.

UTILITIES

CSV and problem domain validation utilities can be used to lighten and de-code new

implementations.

If a new exception type is to be introduced, it must be defined in the business

layer error handler package and specified as an expected exception by instructing

the ErrorType.

NOTES

Some notes follow.

System manuals 119



• New use cases should be executed in the Program class as a unique function

with a series of steps (see the other use cases).

• All printing to the terminal must be via the CommandLineInterface class.

• Changes to the problem domain classes and to the utility classes should be

reviewed carefully, as much of the system depends on such classes.

• If more GA operators are to be developed, a Strategy Design Pattern approach,

similar to the FitnessFunction, is recommended.

• New fitness values for the GA should follow the current procedure of returning

a value between 0 and 100.

• If data collections are shared between objects, copies of the collections must

be shared. If the objects in these collections are to be modified, the shared

collection must contain cloned objects (this can be seen in the Decoder class).

System manuals 120



12 Budget
This chapter presents the budget for the work. First the internal budget will be cal-

culated taking into account the environment in which we work, and then the budget

of the client will be prepared with the necessary items and the benefits applied.

The working time concept is reiterated. Each week has seven working days of

three hours each. It is important to bear in mind this concept of working day in order

to understand some sections of the budget.

12.1 Internal budget

To calculate the internal budget we must first define our situation. We are two free-

lancers, a junior and a senior software engineer (see Figure 12.1).

Figure 12.1: Freelancers description

We have the following rental and amortisation expenses related to the project (see

Figure 12.2).

Figure 12.2: Amortisation costs

Indirect costs are shown below (see Figure 12.3).

Budget 121



Figure 12.3: Indirect costs

Finally, we calculate the costs of carrying out the tasks defined in the WBS.

Figure 12.4: WBS Budget costs: Project Management and Analysis

Figure 12.5: WBS Budget costs: Design and Development

Budget 122



Figure 12.6: WBS Budget costs: Documentation, Experiments and Closure

So we are left with the following cost of the WBS phases (see Figure 12.7).

Figure 12.7: WBS Budget costs: Summary

With the addition of all the costs calculated so far, we obtain the internal budget

for the project.

Figure 12.8: Internal budget

12.2 Client budget

This project is expected to yield a profit of 25%. With this information we will proceed

to calculate the client’s budget. It is important to note that the client will not be

Budget 123



shown a budget with all the items, only the generic ones that describe the work to be

done. Therefore, we must calculate the amount of the items not shown added to the

benefits, and thus obtain a weighting value with which to calculate the client’s final

budget.

Figure 12.9 shows the calculation of this weighting value.

Figure 12.9: Weighting value calculation

Each item is added to its own value multiplied by the weighting value and entered

into the client’s final budget (See Figure 12.10). This means that a cost ci shown in the

internal budget will be transformed into a new cost if the item appears in the client

budget. This transformation is given by xi = ci + ciw, where w is the weighting value.

Figure 12.10: Client budget

Budget 124



13 Conclusions and future work

13.1 Final conclusions

All the objectives set for the project have been met. A study and formalisation of the

problem has been carried out and the problem was solved, both theoretically and

experimentally, thanks to a software tool that was developed in this project.

The files necessary for the software to work have been designed and created.

They are provided in the annexes, many of which can be reused by the user of the

application. In addition, an experimental study has been conducted on the developed

solution in order to provide the customer with the default configuration of the system

to ensure quality results in various possible scenarios.

The developed system is licensed under a free software licence and may be mod-

ified and distributed by users who wish to do so.

With all this in mind, the project comes to a close with satisfaction on my part,

although the work does not end here. In the next section, some possible lines for the

continuation of the work developed in this project are explained.

13.2 Future work

Although the objectives of the project have been met, nothing changes the fact that

the software designed in this document is a prototype. Of course, a fully usable

prototype with interesting functionalities, but there is room for improvement. Listed

below are some lines of research and development to be pursued on the basis of this

project.

• Expansion of the class search functionality to return results that support

multiple events. Currently the user can browse the results looking for free

classes at the same time, but perhaps it would be useful to have a feature that

allows the users to choose the number of classes they are seeking for an event

that are available at the same time.

• Increased validation of input files. The current validation is perfectly valid,

Conclusions and future work 125



and can help the user to find most of the problems. However, more specific

checks such as the formatting of a group/class/subject code, that the end dates

of queries are not less than the start dates, etc, would provide a better user

experience.

• Possibility of assigning different classes to each group depending on the

day. This is very complicated, as it affects the main pillar of the whole theory

that a group can only have one classroom associated with it. However, if one

wanted to rethink the problem from scratch, this approach could be taken into

account. Hopefully, such an approach would serve to further reduce the number

of unassigned groups.

• Rewrite the code in a language such as C or Go, more focused on algo-

rithms. It should be noted that the code described here, as mentioned above,

is only a prototype. It can and does work correctly, but if new functionalities ap-

pear that greatly affect the original design, one should not be afraid to rewrite

the code, and in that case, another language could be used. Shorter compu-

tation times could be expected if the system is implemented in this kind of

languages.

Conclusions and future work 126



14 Annexes

14.1 Definitions and abbreviations

Listed below is a glossary of definitions and abbreviations used in the document

whose meaning may not be obvious.

Glossary of definitions:

• Evolutionary Computation: method of designing a metaheuristic algorithm.

It is a subtype of Population-based methods. The definitions for the common

components of evolutionary computation follow [Luk13].

– Breeding: the act of creating one or more children from a population of

parents by combining the crossover and mutation operators.

– Chromosome: a specific type of genome consisting of a fixed-length ar-

ray.

– Child and parent: both are individuals. A child being a possible modifi-

cation of its parent.

– Crossover: operator that creates childs from parents by means of com-

bining sections of the genomes of the parents.

– Evaluation: calculating the fitness of an individual.

– Fitness: quality of an individual.

– Generation: the population of a given iteration of the algorithm. The next

generation is created by means of the different operations defined by said

algorithm.

– Genome: the data structure that defines an individual.

– Individual: candidate solution for the problem.

– Mutation: operator that modifies the genome of an individual.

– Population: set of individuals.

– Selection: operator that elects individuals from the population based on

some criteria.

• Genetic algorithm: metaheuristic search and optimization algorithm.

Annexes 127



• Greedy algorithm: algorithm that builds the solution in successive steps, al-

ways trying to take the optimal solution for each step

• Heuristic: function that gives value to each path from a intermediate state to

the goal state. Applied in search algorithms, heuristics are based on knowledge

outside the problem definition.

• Java: general-purpose, high-level, object-oriented programming language.

• Metaheuristic: algorithm that uses randomness to find a possible optimal so-

lution to a hard problem. They are part of the stochastic optimization field.

Glossary of abbreviations:

• CSV: Comma-Separated Values. Refers to a text file format.

• CLI: Command Line Interface.

• EA: Evolutionary Algorithm.

• EC: Evolutionary Computation.

• ES: Evolution Strategies.

• GA: Genetic Algorithm.

• LCM: Lazy Collision Matrix (see 4.2.1).

• LFD: Lazy Filter Dictionary (see 4.3.1).

• UC: Use case.

• TXT: Text. Refers to the text file format.

• WBS: Work Breakdown Structure.

Annexes 128



14.2 Work Breakdown Structure (WBS)

Figure 14.1: WBS (Bigger scale)

Annexes 129



14.3 Submission contents

14.3.1 Code

This Annex includes a compressed ZIP file with the source code of the prototype.

14.3.2 Runnable utility

This Annex includes the executable JAR file of the utility.

14.3.3 Experiment instances

This Annex includes the experimental files used for tuning the genetic algorithm con-

figuration. It serves as an example to see the instances that we worked with.

14.3.4 System and external files

This Annex includes compressed ZIP file with examples of all files involved with the

system. Also included is the JAR tool with instructions on how to run the various use

cases (the configuration files are already prepared). Its structure is as follows.

annexfileformat/

ucassignments/

config/

input/

output/

ucfreeclassrooms/

config/

input/

output/

ucautomation/

config/

input/

output/

classmanager_log/ (LOG examples)

Annexes 130



classmanager.jar (Runnable JAR utility)

Annexes 131



Bibliography
[Dav85] Lawrence Davis. Applying adaptative algorithms to epistatic domains. In

Joshi [Jos85], pages 162–164.

[dlC18] Gonzalo de la Cruz. Metaheuristics for the assignment of students to class

groups. End-of-degree thesis, School of Computing Engineering of Oviedo,

2018.

[GV98] Rosa Guerequeta and Antonio Vallecillo. Técnicas de Diseño de Algoritmos.

Servicio de publicaciones de la Universidad de Málaga, 1998.

[Jos85] Aravind K. Joshi, editor. Proceedings of the 9th International Joint Confer-

ence on Artificial Intelligence. Los Angeles, CA, USA, August 1985. Morgan

Kaufmann, 1985.

[Luk13] Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Avail-

able for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[Red] Jose Manuel Redondo. Documentos-modelo para Trabajos de Fin de

Grado/Master de la Escuela de Informática de Oviedo. Escuela Universi-

taria de Ingeniería Técnica en Informática de Oviedo, 1.4th edition.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson Education, third edition, 2010.

Bibliography 132




	0 Overview
	1 Introduction
	1.1 Situation overview
	1.2 Purpose
	1.3 Scope
	1.4 Project goals

	2 Theoretical aspects
	2.1 Assignment problem
	2.2 Greedy algorithms
	2.3 Heuristics and metaheuristics
	2.3.1 Evolutionary Computation
	2.3.2 Evolution Strategies
	2.3.3 Genetic algorithms
	2.3.3.1 Selection
	2.3.3.2 Crossover
	2.3.3.3 Mutation


	2.4 Mixing it all together

	3 Problem definition
	4 Proposed solution
	4.1 Search space
	4.1.1 Assignments
	4.1.2 Solutions
	4.1.3 States
	4.1.4 Instances

	4.2 Collisions
	4.2.1 Lazy Collision Matrix

	4.3 Classroom filters
	4.3.1 Lazy Filter Dictionary

	4.4 Greedy algorithm
	4.4.1 Preprocessing
	4.4.2 Heuristic
	4.4.3 Repairs

	4.5 Genetic Algorithm
	4.5.1 Genome representation
	4.5.2 Fitness function
	4.5.3 Operators
	4.5.3.1 Selection
	4.5.3.2 Crossover
	4.5.3.3 Mutation
	4.5.3.4 Tournament



	5 Project planning and budget overview
	5.1 Planning
	5.1.1 Project Management
	5.1.2 Analysis
	5.1.3 Design
	5.1.4 Development
	5.1.5 Documentation
	5.1.6 Experiments
	5.1.7 Closure

	5.2 Budget summary

	6 Analysis
	6.1 System definition
	6.2 System requirements
	6.2.1 Functional requirements
	6.2.2 Non-Functional requirements

	6.3 Subsystem mapping
	6.4 Preliminary class diagram
	6.5 Analysis of use cases
	6.5.1 Perform the assignments
	6.5.2 Search for free classrooms
	6.5.3 Automatically create input files

	6.6 Analysis of user interfaces
	6.7 Test plan specification

	7 System design
	7.1 System architecture
	7.2 Class design
	7.3 File format design

	8 System implementation
	8.1 License and references
	8.1.1 License
	8.1.2 References

	8.2 Programming languages
	8.3 Tools and programs used in development
	8.3.1 Git
	8.3.2 Vim
	8.3.3 LaTeX
	8.3.4 Eclipse
	8.3.5 PlantUML


	9 Test development
	9.1 Perform the assignments
	9.2 Search for free classrooms
	9.3 Automatically create input files

	10 Experimental results
	10.0.1 Instances
	10.0.2 Fitness function
	10.0.3 Greedy Algorithm
	10.0.3.1 Fitness assesment
	10.0.3.2 Other metrics

	10.0.4 (Genetic + Greedy) parameter assesment
	10.0.5 Greedy against (Genetic + Greedy)
	10.0.6 Further fitness functions
	10.0.7 Experimental findings


	11 System manuals
	11.1 Installation manual
	11.2 Execution manual
	11.3 User manual
	11.4 Programmer manual

	12 Budget
	12.1 Internal budget
	12.2 Client budget

	13 Conclusions and future work
	13.1 Final conclusions
	13.2 Future work

	14 Annexes
	14.1 Definitions and abbreviations
	14.2 Work Breakdown Structure (WBS)
	14.3 Submission contents
	14.3.1 Code
	14.3.2 Runnable utility
	14.3.3 Experiment instances
	14.3.4 System and external files



