Automated surface defect detection in metals: a
comparative review of object detection and semantic
segmentation using deep learning

Rubén Usamentiaga®, Senior Member, IEEE, Dario G. Lema*, Oscar D. Pedrayes®, Daniel F. Garcia*

*Department of Computer Science and Engineering, University of Oviedo
33204 Gijoén, Asturias, Spain Tel.: +34-985-182626, Email: rusamentiaga@uniovi.es

Abstract—Automated surface defect detection is a challenging
problem that has attracted major attention for decades. Tra-
ditional methods were designed using a pipeline of carefully
designed operations. The resulting methods were complex systems
which were difficult to tune and adapt to different problems
or data. A new approach to solving this problem has emerged
recently: deep learning. This trend is motivated by two main
factors: the increasing digitization of society, which makes it
possible to record large datasets of labeled samples; and the
availability of a large pool of computational resources. This
work evaluates state-of-the-art deep learning methods in object
detection and semantic segmentation in the field of automated
surface inspection in metals. Images acquired in the industry are
affected by the conditions of the environment, including noise,
dust and vibrations, which are an additional challenge. Moreover,
industrial inspection requires accuracy, but also robustness and
speed. The selected methods are applied to different datasets
of images that include the most common defects in metals and
the performance is compared in terms of accuracy and speed.
Results show exceptional accuracy at a fraction of the required
processing time. '

Index Terms—Surface inspection, Deep learning, Quality con-
trol, Image processing, Defect detection

I. INTRODUCTION

In the steel industry, accurate automated quality inspection
is crucial for the final quality of manufactured products. The
need for high-quality products with improved performance
requires accurate detection of defects. This ensures safety
and overall reliability when using the manufactured products
in critical infrastructures, such as buildings or transportation
systems, preventing failures. Moreover, early defect detection
also increases the overall manufacturing productivity, avoiding
the interruption of operations and reducing production costs
[2].

Automated quality control in the steel industry is widely
employed in many different applications, from dimensional
quality inspection [3] to temperature monitoring [4]. One area
of particular importance is surface inspection [5], where the
presence of defects could indicate non-critical issues that make
the commercialization of the product unfeasible [6]. These
surface defects include periodic scratches, or even structural

I'This is an extended version of the paper presented at the IEEE IAS Annual
Meeting 2021 in Vancouver [1]

problems that could lead to safety concerns, such as rolled-in
material.

Defect detection and, in general, surface inspection in the
steel industry is a challenging task. Inspection systems are
based on cameras or other types of image sensors that must
provide very good picture quality in extremely harsh envi-
ronments. Sensors are generally affected by the conditions of
the environment, including dust, high temperature, oil, water,
vapor or vibrations [7], which not only vary with each partic-
ular installation but also with time. These varying conditions
potentially affect the performance of the surface inspection
procedures. Therefore, periodic maintenance procedures are
required to clean the devices.

Images must be analyzed in real-time, providing early
results that can be used to tune the manufacturing parameters
online if required. This minimizes the number of defectively
manufactured products, reducing waste and the overall produc-
tion cost. However, real-time analysis and detection is difficult
to achieve as steel products move very quickly at speeds
ranging from 1m/s for rails, to more than 30m/s for steel
strips during cold rolling, or even to 100m/s for products
such as wire rods [8]. Inspecting such products requires a
combination of efficient algorithms and powerful hardware.
Surface inspection systems must also deal with a wide variety
of steel defects with different features that may change from
installation to installation. Therefore, in general a complex
tuning step is required before deploying an automated solution
for a particular installation.

Two different approaches are used for surface inspection
systems: traditional image processing methods and deep learn-
ing. In both cases, the goal is to analyze images and de-
tect defects. Three main properties are required: accuracy,
considering a metric such as precision or recall; robustness,
considering the inspection methods must be applied under
heavy noise conditions; and speed, as inspection needs to be
performed under real-time constraints at a high frame rate.
Traditional image processing methods are designed based on
a sequence of specific operations on images. Low-level vision
methods first transform digital images to highlight relevant
features, such as edges, corners or specific intensities. Next,
operations calculate regions from objects in the images and
extract features such as brightness, color, size and texture.

Finally, automatic classifiers, such as support vector machines,
use the features to interpret the content of the image. The
sequence of operations, or image processing pipeline, is hand-
crafted by experienced computer vision engineers. It must be
designed and fine-tuned for each particular problem assuming
specific operating conditions. Thus, tuning complex methods
is particularly difficult, with a large number of parameters af-
fecting the performance of the system. Deep learning methods
have emerged in recent years following an alternative approach
known as end-to-end learning [9], in which a large dataset of
sample images with annotations is used to automatically train a
complex model. Deep learning methods offer great advantages
over traditional methods, such as improved accuracy, albeit
with some trade-offs, including the long training times and
the large number of annotated samples required. The advent
of deep learning methods has revolutionized the field of
surface inspection in recent years, quickly replacing traditional
methods with much more accurate and robust solutions.

The advent of deep learning based methods has shifted the
requirements for designing high-performance systems, from
feature engineering and hand-crafting complex processing
pipelines to iterating through deep learning architectures and
creating datasets. This new approach requires knowledge about
current models, requirements, limitations and capabilities. This
work evaluates the performance of different state-of-the-art
deep learning methods in automated surface inspection for
metals. A brief review of the advances in recent deep learn-
ing methods with applicability to surface inspection is also
presented. This work is focused on two particular types of
methods: object detection and semantic segmentation [10].
Both methods aim to solve the same problem: image segmen-
tation. This is a challenging problem that involves dividing
the image into regions with semantic value. In the case of
surface inspection, the goal is to detect regions with anomalies
or defects. One approach for solving this problem using deep
learning is object detection, in which the rectangular bounding
box of objects in the image are detected and classified. Another
option is semantic segmentation, where pixel-level labeling
is performed. This work reviews state-of-the-art methods in
object detection and semantic segmentation and performs a
comparative review when they are applied to surface in-
spection in metals. In object detection, recent architectures,
such as YOLO4 and YOLOVS [11] (You Look Only Once,
YOLO, detectors version 4 and 5), claim to provide improved
performance at very high-speeds. In semantic segmentation,
U-Net [12] has been recently applied to pixel-level labeling
in similar fields with exceptional results. In order to evaluate
the feasibility of these deep learning methods for automated
surface inspection, they are applied to two datasets of real
surface defects that include the most common defects in
metals: inclusions, crazing, patches, pitted surface, scratches
and rolled in scale. The performance of object detection and
semantic segmentation is compared in terms of both accuracy
and speed.

This paper is organized as follows: Section II reviews the
literature and recent advances in deep learning applied to sur-

face inspection, Section III presents the selected architectures
and experimental procedure to compare the performance; Sec-
tion IV discusses the results obtained, and finally, Section V
reports conclusions.

II. DEEP LEARNING

Deep learning is a specific kind of machine learning mainly
based on artificial neural networks. Most deep learning models
extend traditional neural networks with new operations, such
as convolutions, and many more layers. This provides the
opportunity to train more complex models, with improved
generalization capabilities, that are more accurate than pre-
vious approaches. The deep learning concept was introduced
many decades ago, but only in recent years has it become the
predominant machine learning method, particularly due to the
spectacular results in the image classification competition in
2012 [13]. Since then, it has been applied very successfully
in a wide variety of application domains. Two reasons are
generally attributed to the rapid growth of this approach: the
increasing digitization of society and the availability of more
computational resources [14].

Very large datasets are required to train complex machine
learning models. As the size of the dataset increases, the skills
required to obtain an accurate model are reduced. This makes it
possible to train complex models with millions of parameters
using a large dataset of labeled samples. Creating this type
of datasets has only been possible recently, driven by the
increasing digitization of society, in which most aspects of
life generate data that is recorded and labeled, such as photos,
videos, or speech.

Another aspect that has contributed to the success of deep
learning in recent years is the availability of cheap compu-
tational resources. The advent of graphic processing units
(GPUs) that can run general purpose operations, such as
convolutions, at very high speeds has dramatically changed
the landscape of machine learning. Using general purpose
programming on the GPUs, complex deep learning models
can be trained in a fraction of the time required to train them
on CPUs. Therefore, the availability of faster and cheap com-
putational resources is one of the key enabling technologies
behind deep learning.

Training deep neural networks, i.e., with a large number of
layers, was difficult to solve in the past due to mathematical
issues in the optimization procedure, such as the exploding
gradient and the vanishing gradient. However, improvements
in the gradient descent optimization algorithm and techniques
such as gradient clipping, regularization, ReLU activation
functions, skip connections and residual neural networks have
solved or effectively diminished the issues to a great extent.
The combination of these advanced techniques with large
datasets and powerful hardware is behind the deep learning
revolution [15] where super-human performance is achieved
in very complex tasks, such as image or speech recognition.

A. Surface inspection

In [16] deep learning is applied to the detection of surface
defects in rails caused by fatigue or impacts from damaged
wheels. They propose a layered architecture with three main
components: convolutions, activation functions (to perform
mappings between linear and non-linear operations) and max-
pooling to sub-sample the feature maps resulting from con-
volutions. Results indicate rail defects can be successfully
classified with almost 92% accuracy. Moreover, increasing the
number of layers in the architecture produces more accurate
prediction models.

A more recent research work on the topic can be found
in [17]. In this work, different architectures are compared
using the dataset Neu-1800 proposed in [18]. This dataset was
first used to benchmark the performance of traditional image
processing methods using feature extraction, particularly using
local binary pattern (LBP) features. It includes six types of
surface defects commonly found in metals: rolled-in scale
(Rs), patches (P), crazing (Cr), pitted surface (Ps), inclusion
(In) and scratches (Sc). This same dataset is used in [17] to
compare the performance of different architectures of deep
learning: SSD, Faster-RCNN, YOLO-V2, YOLO-V3 and a
modification of SSD. Results indicate the proposed variation
of SSD is robust for metallic defect detection, achieving an
average precision of 0.724.

Semantic segmentation has also been applied to surface in-
spection, although it is still less common than object detection.
A recent work on the topic can be found in [19] where metal
cracks are detected and segmented using deep learning. This
work proposes a customized deep learning architecture based
on U-Net. This approach is used to detect defects in titanium-
coated metal surfaces. The proposed method also includes
custom pre-processing and post-processing. Performance, in
this case, is evaluated using the Dice score, achieving 0.916
with a precision of 0.934.

III. EXPERIMENTAL PROCEDURE

The proposed experimental procedure in this work to com-
pare the performance of state-of-the-art deep learning methods
is based on two datasets: Neu-1800 and Neu-900, both con-
taining examples of defects in the metal industry. Neu-1800 is
used to compare the performance of object detection methods,
as it does not contain the pixel-wise annotations required by
semantic segmentation methods. On the other hand, Neu-900
contains both object and pixel-wise annotations. Thus, the
same dataset can be used to compare the two methods. Two
main deep learning methods are compared based on the perfor-
mance with the datasets: YOLOVS and U-Net. The comparison
is performed using generally accepted performance metrics.
The datasets, the deep learning methods and the performance
metrics are described below.

A. Datasets

1) Neu-1800: The Neu-1800 dataset, proposed by the
Northeastern University (NEU) [18], contains six types of
surface defects:

e Crazing (Cr): a network of fine cracks.

¢ Inclusion (In): metallic or non-metallic particles en-
trapped in the product. This material can detach from
the product later, leaving a hole.

o Patches (Pa): defects resulting from oxidation or faulty
pickling process.

« Pitted surface (Ps): sharp depressions in the surface of
the product.

¢ Rolled-in scale (Rs): scale rolled into the surface of the
steel strip.

o Scratches (Sc): sharp indentations in the surface of the
steel strip.

All images are collected from hot-rolled steel strips using
the same setting parameters and environment. The dataset
includes 1800 gray-scale images, with 300 samples for each
defect type. The original resolution of each image is 200 x
200 pixels. Examples of the images can be seen in Figure 1.
As can be seen, the defects are very different in appearance,
size and even aspect ratio. For example, scratches are very
long and narrow while patches are more circular. Moreover,
they include varying gray-scale levels resulting from variable
illumination in industrial environments.

Images in this dataset are acquired using area-scan CCD
cameras. The cameras acquire images from hot steel strips
directly illuminated using LEDs. The size of the acquired
gray-scale images is 1024 x 1024 pixels, but only the down-
sampled images are available in the dataset. The defect detec-
tion system is composed of several cameras to cover the width
of the strip with high resolution. Four cameras are considered
in [18], but more cameras could be installed for increased
resolutions, which could be required to detect smaller defects.
The considered defect detection architecture is suitable for
most systems, thus it is the ideal testing ground to evaluate
the defect detection capability of advanced image processing
architectures.

2) Neu900: Comparison and evaluation of deep learning
models depends on the existence of annotated datasets. For
object detection, a wide variety of datasets is available. How-
ever, for semantic segmentation, for which labels are required
for each pixel in the image, datasets are scarce, particularly
for surface inspection in metals. Recently [20] has released a
dataset based on Neu-1800 that includes the pixel-wise binary
maps required to train and evaluate semantic segmentation for
automated surface inspection. This dataset, composed of 900
images (a subset of Neu-1800), is used in [20] to evaluate the
performance of steel surface defect detection based on saliency
evaluation, in this case using an improved local binary pattern
(LBP) descriptor. This dataset includes annotations for both
the bounding boxes and the pixel regions of the defects. For
the evaluation of semantic segmentation, it provides binary
maps where pixels with value 1 represent the defects, and
pixels with value O represent the background, i.e., the area of
the steel strip with no defect. In this case, the defect type is
ignored, only the information about defect/no-defect is used.

(d

(b)

(e)

Fig. 1. Defect examples in the Neu-1800 dataset. (a) Crazing (cr). (b) Inclusion (In). (c) Patches (Pa). (d) Pitted surface (Ps). (e) Rolled-in scale (Rs). (f)

Scratches (Sc).

B. Deep learning architectures

The popularity of deep learning in recent years has given
rise to different deep learning architectures. The most success-
ful are convolutional neural networks (CNNs), longshort term
memory (LSTM), encoder-decoders, and generative adversar-
ial networks (GANs). Of these, CNNs are the most widely
used for image processing.

Convolution is a mathematical operation that generates one
signal from two others. It is considered the most fundamental
operation in digital signal processing. An input signal is
usually convolved with another signal called the kernel or
filter. The resulting signal highlights or diminishes an aspect
of the input signal based on the selected kernel. This can be
used to highlight edges or to filter noise. A single operation
can be customized for a wide variety of requirements.

A convolutional neural network is mainly composed of
three operations repeated in a number of consecutive layers:
convolution, activation and pooling. The convolution layer
performs the convolution of the input signal or image with
different filters at the same time. The goal is the extraction
of features. Contrary to traditional image processing, the filter
coefficients are not hand-crafted, they are automatically cal-
culated by the training algorithm using the annotated samples.
The convolution is a linear operation. Thus, the result is
transformed using a non-linear function, such as ReLU, to
model more complex procedures. Pooling layers then replace
neighboring data points using statistical information, such
as the mean or the maximum. Modern CNN architectures

combine a variable number of these layers stacked into a
single model. For example, AlexNet, proposed in 2012, uses
8 layers while EfficientNet-B7, proposed in 2019, uses 813
layers. The first layers extract basic features, such as edges
or corners, while the last layers recognize objects, shapes
or positions. Modern architectures also use a combination of
other operations to increase performance and accuracy, such
as normalization.

Object detection networks are a particular type of CNN
that aim to recognize instances of a predefined set of object
types [21]. They also provide the position of the object in the
image using a bounding box. Two paradigms have evolved for
object detection: two-stage and single-stage object detectors.
The detectors are usually composed of two parts: a backbone
network trained on a large dataset such as ImageNet, and a
head that predicts classes. In two-stage object detectors, the
head is divided into two sub-tasks: a region proposal network
that proposes regions of interest, and a classification network.
Examples of this type of network are R-CNN and derivatives.
Other alternative networks adopt a more unified framework to
detect the objects, such as SSD and YOLO. These models are
referred to as single-stage object detectors. In this case, instead
of proposing regions of varying sizes and classifying them, a
regression is directly performed on the bounding boxes. More
recent single-stage object detectors also include additional
layers between the backbone and the head, the so-called neck.
The layers in the neck can be used to detect the same object
with different sizes and scales.

YOLOVS is a state-of-the-art single-stage object detector. It
is considered an improved version of the YOLO detector (You
Only Look Once) that has been in development since 2016.
This network has been proven to be very accurate for a wide
variety of datasets with real-time performance [11]. Like most
single-stage object detectors nowadays, it has three main parts:

e Backbone. In this case, the CSPNet network is used for
feature extraction.

o Neck. In this part, the PANet is used to calculate feature
pyramids to deal with objects of different sizes.

o Head. This part deals with the final detection, including
the calculation of the resulting vectors with class proba-
bilities, confidence scores, and bounding boxes.

YOLOVS includes improvements in data augmentation and
auto-tuning of bounding box anchors rather than using fixed
anchors as previous versions did. However, the main contri-
bution is the integration of new ideas already proven in other
different networks.

Semantic segmentation is different from object detection.
In both cases, the problem is the same: image segmentation.
However, semantic segmentation provides pixel-wise labeling
rather than bounding boxes. Therefore, it provides more infor-
mation about the location of the objects. On the other hand,
labeling datasets is much more time-consuming because every
pixel in the dataset of images needs to be assigned to a class.

U-Net is the predominant architecture used for semantic
segmentation [12]. Initially designed for biomedical applica-
tions, it has proven to be very effective in other fields. U-Net
is a fully convolutional network, i.e., it includes only convolu-
tional layers. This makes it possible to take an input image of
arbitrary size and producing a segmented image of the same
size. The resulting image contains the label for each pixel. The
U-Net architecture also follows an encoder-decoder model.
The first part, the encoder, is a contracting path to capture
context using convolutions. The second part, the decoder, is
an expanding path in order to obtain precise localization using
deconvolutions. Features from the encoder are used for the
decoder. U-Net is designed to use training data very efficiently
in order to learn from very few annotated images. Moreover, it
admits a variable number of input channels, for example, only
gray images, R, G and B channels, or even including more
such as infrared. Thus, it has been used with multispectral
images very successfully, for example with satellite images
[22].

C. Performance metrics

In order to evaluate the accuracy of surface inspection
methods, image segmentation metrics are used [23]. Most of
them are based on the following notation:

1) TP: number of True Positive detections; the number of
correctly detected elements, that is, hits.

2) FP: number of False Positive detections; the number of
erroneously detected elements, that is, false alarms.

3) FN: number of False Negative detections; the number
of undetected elements, that is, missed detections.

The number of True Negative detections (TN) is not used,
as there could be a very high number of non-relevant elements
in the image.

The performance in image segmentation is mostly based on
two metrics: Precision (P) and Recall (R), given by (1) and
2).

b TP TP 0
" TP+ FP ~ Number of detections
TP TP
R 2)

- TP + FN - Number of elements

Precision is the percentage of correct detections from the
total number of detections. Recall is the percentage of correct
detections among the number of elements. Precision mea-
sures the over-segmentation success and recall the under-
segmentation success. Some methods have been proposed to
combine these metrics into a single one [24], such as the F-
score (F) (the harmonic mean of precision and recall) defined
as (3). The Jaccard Index is another alternative, defined as (4).

2PR

F, = 3
'“PTR ©)

TP
J*TP+FP+FN “)

In the case of semantic segmentation, the calculation of
precision and recall is straightforward. A pixel is correctly
classified or not, there is no ambiguity. Thus, each pixel is
counted as a TP, FFP or F'N. However, in the case of object
detectors the procedure is not that easy.

The results of object detectors are bounding boxes of de-
tected objects that can partially intersect with the real objects.
Thus, counting them as 7P depends on the intersection
threshold considered. The most common method nowadays is
to calculate the Intersection over the Union metric ([oU) for
each detected object. JoU is defined as the ratio between the
overlapping area between the detected object (D) and the real
object (R), with respect to the area of the union between them,
defined as (5). Only when the IoU is greater than a specific
threshold (for example 0.5) is the detected object considered
a true positive detection. Otherwise, it is considered a false
positive.

|D N R|

o = =21
Y T IDUR|

&)
Another popular metric for object detectors is the Dice
coefficient, defined as (6).

_ 2DNR

Dice = ———
D[+ |R|

(6)

When the Dice coefficient is applied to semantic segmen-
tation with two classes (background and foreground), the
resulting metric is the same as the F-score (F}), as can be
seen in (7).

2TP

D. =
"= (TP + FP)+ (TP + FN)

=5)

The Dice is related to IoU, as can be seen in (8). The
two metrics are positively correlated, if one metric indicates
a model is better than other model then the other metric will
indicate the same. In general, they are considered functional
equivalent, but there are differences when considering the
average score over a set of inferences.

B 20U
 ToU+1

In object detection, the prediction results include a bounding
box of the detected object and a confidence value that indicates
which class the object belongs to in the range [0, 1], with
1 indicating maximum confidence. When only the predic-
tions with maximum confidence are considered, the resulting
precision will be high and the recall will be low. As lower
confidence levels are considered, the resulting precision will
decrease and the recall will increase. For varying levels of
confidence, pairs of precision versus recall are obtained. This
creates the precision versus recall curve, which is an accepted
indicator of the accuracy of the detector. When the area under
the curve is high, it indicates both high precision and recall,
thus, an accurate object detector. The area under the curve,
called average precision (A P), is another common metric used
to assess the performance of object detectors.

When object detectors are applied to a problem with multi-
ple object classes, for example multiple defect classes, the AP
for each class are averaged. The resulting metric is known as
the mean average precision (mAP), which is defined as (9),
where AP; is the average precision in the ith class and N is
the number of classes.

Dice)

1 N
mAP = ¥ Z AP; 9)

=1

The AP is always calculated for a particular threshold
of IoU, which is necessary in order to calculate precision
and recall. Thus, different values of AP can be obtained for
different JoU thresholds. In the literature, the most common
value is 0.5. This is also referred to as APs5y,. However, in
some cases the AP is averaged for different loU thresholds.
For example, the AP@50:5:95 is the average of AP for loU
thresholds from 50% (0.5) to 95% (0.95) with steps of 5%
(0.05).

IV. RESULTS AND DISCUSSION

The architectures YOLOvVS and U-Net are applied to the
datasets Neu-1800 and Neu-900. First, YOLOVS is applied to
the Neu-1800 dataset and the performance is compared with
other deep learning architectures. Then, they are compared
with traditional image processing methods using feature engi-
neering. Both YOLOVS and U-Net are applied to the Neu-900
dataset, as it contains labels for objects and pixels.

All the experiments are performed on a computer with an
Intel Core 17 9700K CPU with 64 GB of RAM. The computer
also has a GeForce RTX 2080 Ti Turbo GPU with 11 GB of
RAM. The GPU is an essential tool to speed up the training
process. Once the network is trained, it can be deployed in
different hardware architectures with no GPU. Training on the
CPU is not feasible due to the required time, but processing
images may be an option depending on the requirements.
The YOLOVS network was implemented using PyTorch, while
the U-Net network was implemented using Matlab. Both
frameworks make efficient use of the GPU during training.

A deep learning architecture includes a large number of
parameters that are learned during training using the labeled
samples. In addition, the network has hyperparameters, a set
of values that configure different options, such as the filter
size or the number of layers. Therefore, before using a deep
learning method it is necessary to tune the hyperparameters for
the considered problem. There are two hyperparameter tuning
methods: manual and automated. In the latter, a costly com-
putational machine learning method is used to automatically
select the hyperparameters. In this work, hyperparameters are
tuned manually. This method works very well when a suitable
starting point is used, which can be determined based on previ-
ous works in similar application fields. Then, variations in the
learning rate, optimization method and other hyperparameters
are tested for determining the best configuration.

The resulting best hyperparameters for the YOLOVS net-
work after the hyperparameter tuning procedure are a learning
rate of 0.001, the solver Adam, 500 epochs and the small
model. The YOLOVS network includes different models that
are expected to increase accuracy due to the increased com-
plexity. In this work, the small model performed better than
other more complex models (medium, large and extra-large)
for the considered configurations. Before training, the Neu-
1800 dataset is split into two groups: 1350 images for training
and 450 for testing. Data augmentation is applied during
training including clipping, rotation, flip, hue, saturation, ex-
posure and changes in aspect ratio. Moreover, mosaic data
enhancement is also applied. These augmentation techniques
are used to artificially increase picture data using image
processing, preventing the model from over-fitting. Training
with this configuration took 49 minutes.

Figure 2 shows the precision versus recall curves for the
Neu-1800 dataset with YOLOVS. These curves indicate the
performance of the object detector for each defect type.
Precision and recall are calculated using an [oU threshold
of 0.5, the most common value in the literature.

The calculated average precision for each defect type is
shown in Table I. The table shows a comparison between
the performance of YOLOvVS and other networks: SSD, F-
RCNN (a variant of RCNN netwok), YOLOv2, YOLOv3
and a modified version of SSD. The average precision for
these architectures is obtained from [17], where the same
dataset is evaluated. As can be seen, the YOLOvVS network
outperforms all the other networks by a large margin. Not
only does it provide the best mAP, it also provides the

’ Cr In Pa Ps Rs Sc ‘
T T T T T T
1 x -
ﬁ g~
0.8 1\ -
N
= 06| -
.S
&
0.4 N
0.2 N
O | .
! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1

Recall

Fig. 2. Precision versus recall curves for each defect type using YOLOVS.
The area under each curve is the average precision of the defect type.

best average precision for every single defect type. YOLOvS
represents a major improvement with respect to the previous
versions, YOLOvV2 and YOLOv3. The difference lies largely
in the definition of anchor boxes, the heights and widths of
the bounding boxes where the objects are detected. Previous
versions of YOLO used a fixed configuration prior to the
training procedure. This approach did not provide good results
when the objects had different scales and sizes. This is the
particular case for defects, where scratches tend to be large and
elongated while others have a completely different aspect ratio.
YOLOVS automatically tunes the bounding box anchors during
training. The difference in performance is very noticeable,
achieving state-of-the-art results on this dataset. To the best
of our knowledge, this is currently the highest accuracy on
the Neu-1800 dataset of any published work. Slight variations
in these results could also be caused by the hyperparameters
optimization of the models. However, all models are used
in the best configuration based on a similar hyperparameter
tuning. Thus, it is reasonable to compare the performance of
these methods.

Figure 3 shows a comparison of the obtained mean average
precision using different object detection methods on the Neu-
1800 dataset. Two traditional methods are considered: LBP,
in which features are extracted using local binary patterns
and classified using support vector machines; and HOG, in
which histograms of oriented gradients are calculated and also
classified using support vector machines. The performance of
these methods is much lower than the performance of deep
learning methods, particularly of a modern detector such as
YOLOVS.

TABLE I
COMPARISON OF AVERAGE PRECISION (AP) ON NEU-1800 DATASET
WITH DIFFERENT ARCHITECTURES.

Defect Average Precision (A P)

type SSD F-RCNN YOLOv2 YOLOv3 SSD-M YOLOv5
Cr 0.411 0.374 0.211 0.221 0.417 0.424
In 0.796 0.794 0.592 0.580 0.763 0.864
Pa 0.839 0.853 0.774 0.772 0.863 0.939
Ps 0.839 0.815 0.454 0.239 0.851 0.862
Rs 0.621 0.545 0.246 0.335 0.581 0.655
Sc 0.836 0.882 0.739 0.570 0.856 0.940
mAP 0.724 0.711 0.503 0.453 0.724 0.781
_o08f]
[a W}
<
)
5 0.7 -
v
s}
1
0.6 [i
Q
oh
=~
o)
z
it 0.5 -
<
[}
=
0.4 ! ! ! ! ! ! ! !
& v o oa 9z 9 o 0
= 2 2 £ & & I &
T e Q e st 2 e
T o o %] o
o > >~ >

Fig. 3. Mean average precision on Neu-1800 dataset with different methods.

Figure 4 shows some examples of defects, the ground truth
and the corresponding prediction using YOLOVS. The results
indicate a very high level of accuracy, with predictions very
close to the ground truth in all cases. The ground truth is
manually annotated by experts, however there is always some
uncertainty and ambiguity in the annotation. Therefore, it
is almost impossible to reach a perfect detection. YOLOvVS
and other recent object detectors are said to have reached
super-human performance, not just because of the high level
of accuracy, but because the results are better than those a
skilled technician would obtain. In this dataset, it would be
extremely difficult for a technician to annotate the defects as
accurately as YOLOvVS; some mistakes attributed to YOLOv5
are even debatable. For example, Figure 4c shows an image
with examples of patches. The ground truth has 3 annotated
defects, but YOLOVS is only predicting 2 because they are
connected. This is an example where the detector is providing
a result that is probably more accurate than the ground truth.
On the other hand, Figure 4f shows some large and narrow
scratches that go undetected, which indicates there is still
margin for improvement in the network.

The next experiment evaluated both YOLOvVS and U-Net
on the Neu-900 dataset. This dataset contains both labels of
defects and binary masks with pixel-wise classification. In
Neu-900 there is only one class: defect. This makes the dataset
easier to detect and classify than Neu-1800 with six types
of defects. When Neu-900 is processed with YOLOVS, the

(n)

KU U.bb

RO 0.44

(V] (@

Fig. 4. Defects and detections using YOLOVS. (a)-(f) Images of defect types: Crazing (Cr), Inclusion (In), Patches (Pa), Pitted surface (Ps), Rolled-in scale
(Rs) and Scratches (Sc); (g)-(1) Ground truth of the corresponding images; (m)-(r) Predictions of the corresponding images.

average precision (which in this case is the same as mAP
as there is only one class) increases up to 0.893. Figure 5
shows the precision versus recall curve. This indicates that,
as expected, the performance improves when the number of
defect types is reduced.

Similar to YOLOVS, the hyperparameters for U-Net when
using Neu-900 need to be tuned. The best configuration
obtained after a variation of the most relevant parameters are:
a learning rate of 0.0005, the solver Adam, 60 epochs, 3
depth levels and 32 filters (doubled in each layer). Because the
number of pixels in the defect class (around 1 million) is much
lower than the number of pixels in the background (almost 8
million) the classes are balanced using the median frequency
weighting. Training U-Net with Neu-900 took 8 minutes. In
this case, the training set is composed of 675 images; the rest
is used for testing. The training progress and the evolution of
the loss function during training suggest a reduced number of
epochs could also be used, reducing the training time by half
with similar accuracy. Training YOLOvVS with same dataset
took 26 minutes as it required 600 epochs, many more than
U-Net.

The average precision is a metric that cannot be used in
semantic segmentation, as it requires a confidence level for
each classification. On the other hand, when using semantic
segmentation the results can be analyzed using a confusion
matrix. Table II shows the confusion matrix for the U-Net
method when applied to the Neu-900 dataset. In the field of
classification, the confusion matrix is a tool commonly used to

Precision

\ \ \ \ \
0.2 0.4 0.6 0.8 1

Recall

ol

Fig. 5. Precision versus recall curve in the Neu-900 using YOLOVS5. The
area under the curve is the average precision (0.893).

visualize the performance of the method. The confusion matrix
is a table that shows the performance of the classification
method including information about 7P, FP and F'N. The
table shows the real class of the objects and the predicted

TABLE 11
CONFUSION MATRIX FOR THE NEU-900 DATASET USING U-NET.

Real
Background Defect Precision
Predicti Background 7624527 131117 0.983
FEAICton pefect 279718 964638 0.775
Recall 0.964 0.880 0.954

class. Thus, it is easy to determine whether the classifier is
confusing two classes, hence the name.

Table II shows that 77.5% of the detected defects are
real defects (precision). On the other hand, only 88.0% of
the real defects are detected (recall). The global accuracy
considering both defect pixels and background is 95.4%. Thus,
the segmentation can be considered extremely accurate.

Figure 6 shows images that include defects from the Neu-
900 dataset, the ground truth (considering individual defects
and binary masks) and the corresponding predictions using
YOLOVS and U-Net. The results show that both YOLOvS and
U-Net provide excellent performance. In all cases, the defects
are detected, with bounding boxes in the case of YOLOv5 and
with binary regions in the case of U-Net.

As YOLOVS5 and U-Net provide different kinds of results,
it is very difficult to qualitatively compare them, as both tech-
niques provide different but exceptionally good results. Fig-
ure 7 shows some common metrics. In the case of YOLOVS,
they are calculated based on objects while in U-Net they
are based on pixels. This figure shows the precision (P),
the recall (R) and the F-score (Fi). All of these metrics
are calculated from the TP, FP and FN. In the case of
YOLOVS, a true positive detection (7'P) is only considered
when the intersection of the predicted bounding box and the
corresponding labeled bounding box in the ground truth with
respect to the union (JoU) is greater than 0.5. In the case of
U-Net, a true positive detection (7'P) occurs when a pixel is
predicted as a defect and the same pixel is labeled as a defect
in the ground truth. In both cases, the performance metrics
are very high, close to one, indicating very good performance.
Thus, it cannot be stated that one method is better than the
other in terms of performance. U-Net has one advantage: it
provides more detailed information about the location of the
defects. On the other hand, annotating the dataset is much
more complex and time-consuming, as each pixel needs to be
assigned to a class rather than just drawing a bounding box
around the defect.

YOLOVS and U-Net can also be compared in terms of
speed, by considering the required image processing time for
prediction once the network is trained. Training is the time
required to find the best possible parameters for the network.
However, the most important aspect is the prediction time, the
time required for image processing using the trained network.
Figure 8 shows a comparison of the required image processing
time with different deep learning architectures. YOLOVS is
faster than the other object detectors. However, the image

processing time in U-Net is even lower, requiring less than
5 ms. This time is calculated for images in the Neu-900 dataset,
i.e., low-resolution images (200x200). However, these results
indicate that these methods could be used with real-time
performance in a wide variety of applications.

Figure 9 shows a comparison of the required image process-
ing time of YOLOVS5, U-Net and traditional image processing
methods. There is a huge difference. YOLOv5 and U-Net can
process images more than 50 times faster. This difference is
also increased because deep learning methods can run on the
GPU, while traditional methods are only designed to run on
the CPU.

Figure 10 shows a comparison between the time required
to process the image on the CPU and on the GPU. As can
be seen, the GPU is 4 times faster for prediction in the
case of YOLOVS. However, 28 ms per image could ideally
provide a throughput of 35 frames per second, a reasonable
processing speed for some applications. In the case of U-Net,
the difference is much higher. The GPU is 14 times faster. U-
Net is a purely convolutional neural network that can be run
very efficiently on the GPU. Image processing using neural
networks is largely an embarrassingly parallel problem. Thus,
the current trend to increase the parallel performance of both
CPUs and GPUs will clearly decrease the image processing
time in the future even further.

Test are performed using the 200 x 200 low-resolution
images available in the dataset. However, modern vision
sensors can acquire images at much higher resolution. For
example, The most common GigE cameras used in industrial
environments provide 1000 x 1000 images at 100 fps. Tests
performed using this type of images indicates that YOLOVS
could provide the required throughput to process these high-
resolution images at 100 fps when using the GPU. Part of the
network does not depend on image size but on the configured
grid. Thus, keeping the same grid does not increase the
processing times for that part of the network. On the other
hand, the processing time with U-Net quickly increases with
high-resolution images. In the case of 1000 x 1000 images it
requires 24.17 ms to provide the prediction, limiting the frame
rate at 40 images per second. This assumes a batch size of
1, i.e., a single image is processed at each time, emulating a
real-time systems.

V. CONCLUSIONS

Automated surface inspection is of utmost importance in
the metal industry. Advances in this field directly increase
productivity and product quality while reducing production
costs. This work evaluates a new line of image processing
methods based on deep learning that can be applied to this
problem. The goal is to evaluate the feasibility of these
methods for defect inspection in terms of accuracy and speed.

The results obtained with YOLOVS and U-Net, two state-of-
the-art methods in object detection and semantic segmentation,
are exceptional. YOLOVS is applied to a large dataset of
images that include the most common defects in metals. The
results indicate that, not only is YOLOVS the most accurate

) ()

(ab) (ac) (ad)

Fig. 6. Examples of detections using YOLOVS and U-Net. (a)-(f) Images of defects; (g)-(1) Ground truth for object detection for the corresponding images;
(m)-(r) Ground truth for semantic segmentation for the corresponding images. (s)-(x) Detections using YOLOVS for the corresponding images; (y)-(ad)

Semantic segmentation using U-Net for the corresponding images.

object detector compared with previous methods, it is also
the fastest. When both YOLOvS and U-Net are applied to a
compatible dataset, they both demonstrate an extremely good
ability to distinguish defects. U-Net can even generate binary
masks with the precise location of the defects.

Deep learning methods are a revolution in the field of sur-
face inspection. The accuracy of these methods is far superior
to that of the traditional methods at a significantly reduced
computational cost, providing the foundations for better and
faster surface inspection systems. Real-time surface inspection
systems can easily take advantage of these methods without
major architectural changes. In a basic configuration, an array

of cameras can be used to acquire images at high frame rates
from the products are they are moved forward. Deep learning
methods can be used to provide real-time feedback about
possible defects or manufacturing anomalies.

ACKNOWLEDGEMENTS
This work has been partially funded by the project RTI2018-
094849-B-100 of the Spanish National Plan for Research,
Development and Innovation.
REFERENCES

[1] R. Usamentiaga, D. Lema, O. Pedrayes, and D. Garcia, “Automated
surface defect detection in metals: a comparative review of object

0.860-88 .86 0 [l YoLOvS
- |l U-Net
(5}
2 —
«
>
Q
=
] —
=
P R i)
Fig. 7. Performance metrics with Neu-900 when using YOLOvVS5 and U-Net.
40

Fig.

[2]
[3]

[4]

Image processing time (ms)

Image processing time (ms)

w
O

[\
O

ul
~
ot

—_
O
=~

W~
o)
w

SSD

‘ 6.84 |
z
Z
)
&

s 9

U-Net F

ssD-M - [

YoLov2 I :
YoLov3 [

YoLovs -]

8. Image processing time with different deep learning architectures.

detection and semantic segmentation using deep learning,” in 2021 IEEE
Industry Applications Society Conference, 2021, pp. 1-8.

S. L. Robinson and R. K. Miller, Automated inspection and quality
assurance. CRC Press, 1989, vol. 16.

R. Usamentiaga, D. F. Garcia, and F. J. delaCalle Herrero, “Geometric
reconstruction and measurement of long steel products using 3-d sensors
in real time,” IEEE Transactions on Industry Applications, vol. 55, no. 5,
pp. 5476-5486, 2019.

R. Usamentiaga, D. F. Garcia, and J. M. Pérez, “High-speed temperature
monitoring for steel strips using infrared line scanners,” IEEE Transac-
tions on Industry Applications, vol. 56, no. 3, pp. 3261-3271, 2020.

A!)()
400 - 378 B
200 -
() 54 4.83
0
LBP HOG YOLOVS U- Net

Fig. 9. Image processing time when using feature-engineering methods and

deep

learning methods.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

Image processing time (ms)

B YOLOv5
60 - B U-Net ||
40 - N
20 |- N
68 43
0
CPU GPU
Fig. 10. Image processing on the CPU and on the GPU.

N. Neogi, D. K. Mohanta, and P. K. Dutta, “Review of vision-based
steel surface inspection systems,” EURASIP Journal on Image and Video
Processing, vol. 2014, no. 1, pp. 1-19, 2014.

F. G. Bulnes, R. Usamentiaga, D. F. Garcia, and J. Molleda, “An efficient
method for defect detection during the manufacturing of web materials,”
Journal of Intelligent Manufacturing, vol. 27, no. 2, pp. 431-445, 2016.
R. Usamentiaga, J. Molleda, and D. F. Garcia, “Structured-light sensor
using two laser stripes for 3d reconstruction without vibrations,” Sensors,
vol. 14, no. 11, pp. 20041-20063, 2014.

H. Jia, Y. L. Murphey, J. Shi, and T.-S. Chang, “An intelligent real-time
vision system for surface defect detection,” in Proceedings of the 17th
International Conference on Pattern Recognition, 2004. ICPR 2004.,
vol. 3. IEEE, 2004, pp. 239-242.

N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V.
Hernandez, L. Krpalkova, D. Riordan, and J. Walsh, “Deep learning vs.
traditional computer vision,” in Science and Information Conference.
Springer, 2019, pp. 128-144.

S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
arXiv preprint arXiv:2001.05566, 2020.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,
timal speed and accuracy of object detection,”
arXiv:2004.10934, 2020.

0. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234-241.

M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The
history began from alexnet: A comprehensive survey on deep learning
approaches,” arXiv preprint arXiv:1803.01164, 2018.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

T. J. Sejnowski, The deep learning revolution. Mit Press, 2018.

S. Faghih-Roohi, S. Hajizadeh, A. Niiiez, R. Babuska, and B. De Schut-
ter, “Deep convolutional neural networks for detection of rail surface
defects,” in 2016 International joint conference on neural networks
(IJCNN). IEEE, 2016, pp. 2584-2589.

X. Lv, F. Duan, J.-j. Jiang, X. Fu, and L. Gan, “Deep metallic surface
defect detection: The new benchmark and detection network,” Sensors,
vol. 20, no. 6, p. 1562, 2020.

K. Song and Y. Yan, “A noise robust method based on completed local
binary patterns for hot-rolled steel strip surface defects,” Applied Surface
Science, vol. 285, pp. 858-864, 2013.

Y. Aslam, N. Santhi, N. Ramasamy, and K. Ramar, “Localization and
segmentation of metal cracks using deep learning,” Journal of Ambient
Intelligence and Humanized Computing, pp. 1-9, 2020.

G. Song, K. Song, and Y. Yan, “Saliency detection for strip steel surface
defects using multiple constraints and improved texture features,” Optics
and Lasers in Engineering, vol. 128, p. 106000, 2020.

Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE transactions on neural networks and learning
systems, vol. 30, no. 11, pp. 3212-3232, 2019.

“Yolov4: Op-
arXiv preprint

[22]

[23]

[24]

M. Freudenberg, N. Nolke, A. Agostini, K. Urban, F. Worgotter, and
C. Kleinn, “Large scale palm tree detection in high resolution satellite
images using u-net,” Remote Sensing, vol. 11, no. 3, p. 312, 2019.

R. Padilla, S. L. Netto, and E. A. da Silva, “A survey on performance
metrics for object-detection algorithms,” in 2020 International Confer-
ence on Systems, Signals and Image Processing (IWSSIP). 1EEE, 2020,
pp. 237-242.

R. Usamentiaga, D. F. Garcia, C. Lépez, and D. Gonzilez, “A method
for assessment of segmentation success considering uncertainty in the
edge positions,” EURASIP Journal on Advances in Signal Processing,
vol. 2006, pp. 1-12, 2006.

