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Abstract— This paper proposes a coordinated management of 

electrical energy in a steelworks and a wind farm that are 

connected to the same distribution network. The suggested 

solution seeks to improve the efficiency of the hot rolling mill, to 

reduce greenhouse gas emissions, to minimize the cost of the 

electrical energy utilized in the manufacture of steel coils, to 

increase the power system chargeability and to guarantee power 

quality. The proposal consists in constituting a virtual plant 

(comprising the wind farm and the rolling mill) to be managed by 

a single operator. The approach is mainly focused on the 

management of the virtual plant reactive power. The algorithm 

proposed to optimize this reactive power is based on the so-called 

particle swarm optimization. Three optimization strategies are 

analyzed: minimization of losses in the distribution network, 

minimization of the voltage deviation at two of its nodes, and 

maximization of the displacement factor in both the rolling mill 

and the wind farm. Losses are reduced by up to 15.5% when 

adopting the first strategy in comparison to the least efficient 

case. Voltage variations are kept at less than 1% at both nodes 

when using the second strategy, whereas deviations between 1 

and 5% are obtained when implementing the other two 

strategies. The study is based on actual measurements and 

simulation tests. 

Index Terms— Hot rolling mill, particle swarm optimization, 

reactive power, steel, virtual plant, wind farm.  

I. INTRODUCTION 

mproving the energy efficiency of industrial facilities, 

reducing their emissions of greenhouse gases and promoting 

the generation of electrical energy from primary sources of 

renewable origin are three of the major objectives set by the 

European Union for the coming years. These objectives must 

be met while maintaining the competitiveness of the facilities. 

Steel plants and, more specifically, rolling mills are part of 

the electro-intensive industry. Metallurgical and steel factories 

came together in the 70s in Europe. Their high electric power 

demand forced these factories to be located close to large 

generation centers, where it was possible to obtain good prices 

per kWh and where thermoelectric power plants prevail 

nowadays, particularly those based on the use of coal.  
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The directives of the European Union about environmental 

matters and particularly in relation to greenhouse gas 

emissions will necessarily force the reconversion of both 

sectors in the immediate future. Coal thermal power plants 

will be required to incorporate desulfurization, denitrification 

and CO2 capture systems into their production lines to avoid 

closure. As a matter of fact, various countries have already 

announced the closure of part of their coal-based plants in the 

short-term. Consequently, renewable generation is likely to be 

promoted to restore part of the dismantled power capacity. 

The already existent high-power transport networks, originally 

designed to cover thermoelectric generation, will favor the 

power restitution to a certain extent. However, the price per 

kWh might become more expensive under these 

circumstances, which could lead to the relocation of 

metallurgical and steel plants to countries with less demanding 

environmental directives and cheaper energy prices. 

In order to consolidate the steel industry in the current 

production centers, it is necessary to design strategies aimed at 

reducing the costs of electric energy and at guaranteeing 

power quality while meeting the objectives in terms of energy 

and climate change or the profitability of the plants.  

Exhorted by the EU [1], some steelmakers have started 

taking measures to reduce the emissions of CO2 from their 

manufacturing plants over the coming decades. These 

measures are primarily aimed at curtailing the production of 

steel from coal-fired blast furnaces while simultaneously 

boosting that of direct reduced iron by using renewable energy 

sources such as green hydrogen. Moreover, the integration of 

renewable energy-based electricity generators into the plants 

and the increase in the use of scrap in electric arc furnaces are 

likewise contemplated, the target being to stimulate the 

consumption of electricity involving low or zero greenhouse 

gas emissions, e.g. that from solar or wind power sources. In 

this paper, a steelworks whose electric distribution network 

includes a wind farm is considered. 

The opportunities offered by the coordinated operation of 

consumption and generation centers have been analyzed by 

other authors in the context of smart grids [2-4].  Such grids 

integrate energy consumption, storage and renewable-based 

generation systems. Virtual power plants are one of the clearest 

examples of a joint and coordinated operation of several agents 

with common interests, both technical and economic [5-9]. The 

efficient management of reactive power is one of the 

capabilities of these virtual plants, where different agents 

I 

mailto:gonzalo@uniovi.es
mailto:jmcano@uniovi.es
mailto:jgnorniella@uniovi.es
mailto:pedrayesjoaquin@uniovi.es
mailto:chrojas@uniovi.es
mailto:josue.rodriguezdiez@arcelormittal.com


 

collaborate by means of coordinated actions according to their 

rated powers and their particular operating conditions.  

The algorithms for reactive power management and 

optimization in power systems are based on conventional and 

advanced procedures [10]. The former are based on linear [11] 

and non-linear programming. [12]. The latter can be based, for 

example, on neural networks [13], genetic algorithms [14] or 

heuristic and metaheuristic methods [15]. The particle swarm 

optimization (PSO) belongs to the group of metaheuristic 

methods [16-17]. In this paper, a widely used and suitable 

PSO-based algorithm is considered, as will be discussed. More 

specifically, this paper proposes the joint, coordinated and 

collaborative exploitation of a hot rolling mill (HRM) and a 

wind farm. The solution primarily seeks to improve the 

efficiency of the rolling mill, to reduce greenhouse gas 

emissions, to decrease the cost of electrical energy, to increase 

the power system chargeability and to guarantee power 

quality. The proposal consists in developing a virtual plant 

including the wind farm and the rolling mill. This virtual plant 

will be managed by an operator [18] that must meet the 

production objectives by observing the economic benefits that 

can be provided by the electricity market, the possible energy 

production according to weather forecasts and the services that 

can be offered to the distribution network. In order to promote 

this proposal, the electricity market operator could take such 

services into account in the daily management of the power 

system and, therefore, remunerate them in a regulated manner. 

The virtual plant will be controlled by only one agent to 

buy and sell active power in agreement with the daily market 

in each supply zone, to program the daily rolling campaigns 

according to demand management criteria, to offer services 

related to reactive power injection, and to optimize the internal 

reactive power flows according to multiple-criteria target 

functions that can take into account parameters such as the 

reduction of distribution losses or the control of voltage 

stability and variations.  

The rest of the paper is organized as follows. In Section II, 

the rolling mill plant and its associated distribution network are 

presented. The characteristics of the wind farm are briefly 

reported in Section III. Section IV describes several of the main 

objectives of the virtual plant. The reactive power management 

strategy and the objective functions that can be addressed by the 

optimization algorithm are included in section V. This 

algorithm, based on PSO, is described in Section VI. Several 

case studies are presented in Section VII. In Section VIII the 

proposal is validated, and the advantages are demonstrated. 

Finally, the conclusions of this study are gathered in Section 

VIII. 

II.  STEEL PLANT AND DISTRIBUTION NETWORK 

The original HRM considered in this study is a classic 

plant built in the 80s and whose main electrical load is a 

roughing and finishing train. The roughing mill (RM) has two 

main drives (upper and lower). The finishing mill (FM) 

comprises six rolling stands. The drives are based on 12-pulse 

cycloconverters capable of controlling the synchronous motors 

that drive the rolls through a gear train. This topology also 

includes a passive filtering system to limit the injection of 

harmonics into the distribution network and to compensate for 

reactive power (Fig. 1). 

The average electric energy consumption in the hot-rolling 

operation is between 70 and 80 kWh per ton of produced steel 

coil. Power quality is also of great importance because steel 

plants, as large consumers, can affect the distribution network 

greatly and are particularly sensitive to disturbances. Rolling 

mill campaigns involve 20-30 slabs per hour and 

approximately 470-530 slabs per day. Each slab can weigh up 

to 22-26 tons; therefore, the daily and annual demand in a HRM 

can reach up to 1 GWh and 365 GWh respectively, which is 

why proposals aimed at improving their energy efficiency offer 

a great opportunity for considerable savings [19]. 

In order to improve the reactive power management, a 15-

MVA STATCOM is connected to the point of common coupling 

of the drives and the passive filtering system. The STATCOM is 

compatible with other future enhancements of the plant, including 

a renewal of the rolling stands based on technological advances.  

A new stage of the plant renewal consists in the 

incorporation of a wind farm into the 132-kV distribution 

network that feeds the steel plant, including the rolling mill. 

The analyzed rolling campaigns are based on real records of 

an actual rolling mill. Figures 2 and 3 show the evolution of 

the active and reactive power demand of the hot rolling mill 

when ten slabs are rolled.   

 
Fig. 1. Single-line diagram of the original plant. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

time [s]

P
 [

M
W

]

 
Fig. 2. Active power demand of the hot rolling mill.  
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Fig. 3. Reactive power demand of the hot rolling mill. 



 

The rolling mill, the wind farm and other installations that 

are part of the steel plant are connected to a 132-kV 

distribution network (Fig. 4). The power generation system 

consists of the wind farm and a 115-MVA plant for the 

recovery of the waste gases generated both in the blast 

furnaces during the pig iron production and in the coke 

batteries. This plant is based on synchronous generators driven 

by gas turbines. The consumption of the other installations of 

the steel plant is represented by their active and reactive power 

flows, which have been assumed to be constant (50 MW and 

30 Mvar) in order to focus on the other consumption nodes. 

The 220-kV transmission network is connected to one of the 

nodes of the ring distribution grid by means of a 132/220 kV 

transformer.  

TABLE I 

TRANSFORMER PARAMETERS 

Transformer 1-Wind 2-Steel 3-HRM 4-Wind 5-Slack 

Sn [MVA] 20 x 1.75 75 75 47 200 

U1/U2 [kV] 34.5/0.69 132/34.5 132/34.5 132/34.5 220/132 

ƐRcc; ƐXcc [%] 1; 5 1; 7.66 1; 7.66 0.53; 16 1; 15 

Rm; Xm [pu] 500; inf 500; 500 500; 500 500; 500 500; 500 

 
Fig 4. Single-line diagram: nodes under study. 

III. WIND FARM   

The planned wind farm consists of 20 wind turbines with a 

rated power of 1.5 MW each (i.e., a total installed capacity of 

30 MW) and whose technical data are similar to those of 

commercial systems [20]. The turbines are based on a doubly 

fed induction generator (DFIG) able to control the active and 

reactive power flow. The average wind speed at the selected 

location is assumed to be 7.5 m / s at hub height (HH). Under 

these conditions and considering a cumulative Weibull 

distribution of wind duration, each turbine is assumed to 

generate up to 3.8 GWh / year, which means an annual 

production of the farm of  (i.e., a capacity 

factor of 28.9 %). This amount of energy, coming exclusively 

from renewable sources, would cover 20.8 % of the annual 

demand of the rolling mill. The wind farm provides the plant 

with active energy generated with low greenhouse gas 

emissions (GHG) and conditioned by the daily wind speed 

profile. For a large part of its period of operation, the farm can 

utilize a reserve to supply capacitive or inductive reactive 

power depending on the needs.  

 
Fig. 5. Wind turbine power curve. 

That reserve can be provided partly by the stator of the 

induction generator and partly by the converter connected to 

the network. The grid side converter (GSC), which normally 

manages between 20 and 30 % of the nominal power of the 

wind turbine, can be oversized for the power reserve to be 

greater. This reserve can be used to control the reactive power 

and also the injection of harmonics, the GSC thus playing the 

role of an active filter [21-22]. 

At present, a number of wind farms exist either nearby or 

on the grounds of various steelworks. The coordinated 

operation of the farm and the steelworks enables collaborative 

agreements [23]. 

IV. VIRTUAL PLANT   

The main targets of the virtual plant are as follows: 

• Coordinated management of the energy demand.  

• Significant reduction of GHG emissions. 

• Lessening of energy dependence. 

• Improvement in the voltage profile. 

• Decrease in losses. 

• Control of reactive power. 

• Voltage stability. 

• Control of harmonics. 

• Enhancement of the response under voltage sags. 

• Improvement in the power network reliability. 

A. Coordinated management of electrical demand. 

The electric power production of the wind farm depends 

mainly on the average wind velocity and the power-speed curve 

of its turbines. This production can cover part of the demand of 

the rolling plant, thus reducing the active power distributed by 

the 132-kV network, the voltage drop at the PCC and the losses 

upstream this point. 

The average wind speed determines the active power 

production of the farm and depends, among many other factors, 

on the local time and season. There are various applications that 

enable a reliable forecast of the hourly average wind speed 

between 8 and 10 hours in advance [24]. The power produced 

by a wind farm along with the average daily wind speed is 

exampled in Fig. 6. As can be seen, the farm operates at rated 

power (30 MW) between 13:00 and 14:00, while barely 1 MW 

are supplied from 9:00 to 10:00.  



 

 
Fig. 6. Average wind speed at 80 m height. Data provided by the National 

Renewable Energy Laboratory. Date: 03/02/2021 [25]. 

Assuming that the wind farm generates 10 MW under a 

capacity factor of 0.333 (0.5 MW per turbine, 20 generators), a 

comparison of the power demanded by the installation in 

presence or absence of the wind farm can be seen in Fig. 7. The 

difference in the energy demanded by the installation under the 

two operating conditions is 1,761 kWh over the 550 s 

considered rolling profile. The positive impact of the joint 

operation of the HRM and the wind farm on the active energy 

consumption is evident. 

The rolling campaigns can be organized seeking for the 

simultaneity of the generation of energy by the wind farm and 

the demand of active power while honoring the production 

criteria of the plant. 

 
Fig. 7. Active power and energy demand in presence or absence of the wind farm. 

B. Emissions of greenhouse gases 

The CO2 emissions per kWh are a function of the primary 

source used by the generation power station. Accordingly, 

0.961 kg of CO2 per kWh are emitted by a coal thermal plant; 

0.651 kg of CO2 per kWh by a fuel-gas plant; 0.372 kg of CO2 per 

kWh by a combined cycle natural gas plant, and 0.006 kg of CO2 

per kWh by a wind farm. The emissions of the Spanish electricity 

mix were estimated at 0.341 kg of CO2 per kWh in 2018 [26]. 

The expected reduction in CO2 emissions in incorporating 

the wind farm is 21,142 ton per year when compared to the 

emissions from the energy mix, and 59,582 ton per year with 

respect to those from a generation system solely based on coal 

thermal power plants. 

C. Control of wind farm reactive power 

The capability of the wind farm to control the reactive 

power is determined by that of its turbines [27-28]. 

Accordingly, the reactive power manageable by the DFIG 

stator depends on both the active power transferred to the grid 

and the rated current of the stator itself. It also depends on the 

rotor rated current and voltage, given that the stator injection 

of active and reactive power is controlled through the d-q 

components of the rotor current. This control depends, in turn, 

on the voltage applied by the converter connected to the rotor. 

Moreover, the injection of reactive power from the GSC is 

limited by both the rated power of the converter itself and the 

active power transferred to the grid by the rotor.  

 
Fig 8. Reactive power injection limits according to active power supply. 

Previous works have concluded that the limiting variable as 

for the injection of reactive power from the DFIG is normally 

the rotor current whereas the stator current is that for the 

reactive power demand. The rotor voltage only has influence at 

high slips. Figure 8 proves these statements correct by showing 

the power injection capability of the analyzed wind turbines. 

The injection of reactive power from the wind farm enables 

the fulfillment of the network operator needs as for the control 

of the PCC voltage and the virtual plant displacement factor, 

as well as for the support against potential voltage sags while 

avoiding the overload of the wind turbines and the shutdown 

of the rolling stands. 

V. REACTIVE POWER MANAGEMENT SYSTEM  

Reactive power management was mainly handled by large 

generators in traditional power systems. Nowadays, the 

increasing proliferation of distributed generation offers the 

opportunity to decentralize both the active and the reactive power 

management. In the specific context of industrial production 

plants, the incorporation of distributed generation systems can 

improve their operating conditions and bring economic benefits. 

As for the former, voltage variations at the PCC are controlled, as 

is the reactive power, which reduces losses and the loading of 

lines, transformers and protections, and gives support to 

overcome voltage sags without leading to interruptions in 

production cycles. As for the latter, the transmission system 

operator offers a reactive power injection/consumption service 

able to bring economic benefits to the plant.   

 
Fig. 9. Diagram of the ring distribution network under study. 



 

One of the main objectives of our approach is to ensure 

that the HRM and the wind farm are managed collaboratively 

and jointly. Once the strategies for managing the active power 

demand are set, attention must be paid to the optimal 

management of reactive power. In this case, the goal is to 

define the most suitable optimization algorithm to set, in real 

time, the reactive power references for the wind farm 

generators and the STATCOM connected at the PCC. These 

references are strongly influenced by the technical constraints 

of the equipment (wind conditions, nominal power of the wind 

turbines and the STATCOM, etc.). Moreover, they also 

depend on the operating conditions of the grid, i.e. the reactive 

power setpoint at the PCC according to the system operator 

directives, the existing regulations, and the technical 

constraints of the distribution grid itself (line current 

limitations, protections response, voltage stability and 

variation, etc.). In general, the presence of numerous 

dispatchable units guarantees that there are sufficient degrees 

of freedom to meet the network optimization objectives once 

the above restrictions are met. This optimization process can 

address individual objectives or several targets by weighing 

them appropriately in multi-objective functions, among which 

the following are assessed:  

1. Minimization of losses in the distribution network. This 

objective involves minimizing the following function: 

             (1) 

where  (and ) and  (and ) represent, respectively, 

the modulus and phase of the voltage at node i (and j), and 

, the conductance of line k (connecting nodes i and j). 

2. Minimization of the penalty for power factors beyond the 

admissible range. Spanish regulations concerning energy 

production from renewable sources set a mandatory power 

factor between 0.98 capacitive and 0.98 inductive at the 

PCC [26]. These guidelines may be temporarily modified 

by the system operator according to the needs of the 

network and may even respond to the tracking of a voltage 

reference at a specific node [29].   

3. Minimization of the voltage deviation at the nodes of the 

internal network of the virtual plant, which is usually 

expressed through factor , where  is 

the voltage assigned to node i. The participation in the 

transmission grid voltage control is remunerated in 

accordance with the existing guidelines in each country. In 

Spain, the system operator gives generators in charge of 

controlling node voltages priority for dispatching 

purposes, which also provides an economic benefit.  

VI. PARTICLE SWARM OPTIMIZATION 

Although reactive power optimization problems are 

nowadays profusely studied in the literature, our approach 

aims at responding to several challenges that arise in the 

application under study. For instance, these optimization 

problems are solved in minutes by using traditional systems in 

public distribution networks; however, the reactive power 

references sent to the various dispatchable elements in the 

virtual plant must be updated in a few seconds to maximize 

the positive impact of this solution. Therefore, heuristic 

methods (which, although quasi-optimal, are extremely 

robust) are utilized.  

The specific method to be used is the so-called PSO [30-

32].  The PSO is a metaheuristic optimization strategy based 

on populations and aimed at finding global minima or 

maxima. More specifically, population-based metaheuristic 

methods consist in calculating the trajectory followed by a 

population of individuals at each iteration to find a quasi-

optimal solution from the evolution of a set of points in space. 

These methods are inspired by the behavior of flocks of birds, 

schools of fish or swarms of insects, in which the movement 

of each individual as for direction, speed, acceleration, etc. is 

the result of combining their particular decisions and the 

conduct of the rest. PSO algorithms aimed at maximizing or 

minimizing a function with one or multiple variables usually 

take the following steps: a) creation of an initial swarm of n 

random particles; b) evaluation of the objective function for 

each particle; c) calculation of the movement of each particle 

and subsequent update of their position and velocity; d) 

verification of stopping conditions and, if not met, return to 

step b). The proposed PSO-based algorithm consists of the 

following specific steps:  

- Step 1: Voltages required at each node are set. 

- Step 2: Restrictions on the reactive power injected/absorbed 

by the wind farm and the STATCOM are fixed according to 

the particular operating conditions. 

- Step 3: The most representative impedances of transformers 

and distribution network lines are identified. 

- Step 4: Elements of the admittance, susceptance and 

conductance matrices are calculated. 

- Step 5: Characteristic power values at the PQ buses and the 

PV bus are identified. Net injected power values are 

calculated.  

- Step 6: The PSO-based optimization algorithm is run. The 

utilized number of particles (Np) is 50 and the expected 

iterations are 150. The optimization is conducted by acting on 

two variables, namely the reactive power managed by the 

wind farm and that handled by the STATCOM. Limits to the 

position of the particles are defined: in the case of the wind 

farm, according to the generated active power; in the case of 

the STATCOM, with regard to its nominal power (15 MVA). 

Inertia weight, w = 0.729, cognitive weight, c1 = 1.49445, and 

social weight, c2 = 1.49445, are defined. 

- Step 7: Several matrices are defined: particle swarm position, 

particle velocity, best positions, best values of each particle, 

Jacobian, and global best values. 

- Step 8: Reactive power values are assigned to nodes 8 and 10 (see 

Fig. 4) according to the position of the corresponding particle. 

- Step 9: The load flow is solved by using the Newton 

Raphson’s method for the modulus and argument of the node 

voltages to be calculated. First, the node voltages are initialized 

at 1 pu and 0 rad. The voltage at the PV node is set to 1.0045 

pu. Secondly, the reactive power at the slack bus and at the PV 

node is obtained to calculate the Jacobian matrix. Thirdly, 

extended submatrices H, L, M and N are calculated. Fourthly, 

power mismatches (dP and dQ) are calculated and compared 

with a power flow convergence threshold of 10-6. When both 



 

power mismatches are lower than this threshold, the Newton-

Raphson’s algorithm is stopped.  

- Step 10: Different cost functions are evaluated depending on 

the selected objective. Therefore, cost functions associated 

with 1) losses in the distribution network, 2) the displacement 

factor at the PCC of the wind farm and the HRM or 3) voltage 

variations at nodes 3 and 8 are assessed. In all cases, the 

discrepancy between the reactive power injected into the slack 

bus and that set as a reference is calculated. Penalties are 

included in such functions if the particle is beyond the maximum 

and minimum limits. The best particle swarm solution is recorded 

at each iteration. An analysis of the results of the Np particles at 

the current iteration is conducted. The best results for each 

particle and for the whole swarm are stored. 

- Step 11:  The particle position and speed are updated.  

- Step 12: The best reactive power references for the wind 

farm generators and the STATCOM are obtained after 

iterating for the Np particles. 

The virtual plant is simulated by using general-purpose 

software for analyzing electrical power systems [33]. The 

simulations enable the verification of the fulfillment of the 

objectives pursued with the incorporation of the PSO strategy. 

The algorithm input data (active and reactive power of the 

HRM and active power of the wind farm) and the STATCOM 

and farm reactive power references are updated every 10 ms. 

A sample time of 5 µs is used. 

VII. CASE STUDIES 

Three case studies corresponding to the objectives 

described in Section V are analyzed, namely the minimization 

of distribution losses (case A), the maximization of the 

displacement factor at the 132-kV PCC of the HRM 

(PCC_B1; node 2) and the wind farm (PCC_B2; node 1) (case 

B), and the minimization of the voltage deviation at both the 

690-V PCC (PCC_C1; node 8) of the turbines and the 34.5-kV 

PCC (PCC_C2; node 3) of the HRM (case C). The input 

variables of the algorithm are the active and reactive power 

demanded by the HRM, as well as the active power produced by 

the wind farm, for each case study and optimization interval.  The 

active power generated by the waste gas recovery plant is 100 

MW and its associated node voltage is 1.0045 pu. Plant 2 behaves 

as a PQ load (P = 50 MW and Q = 30 Mvar).  

 
Fig. 10. Wind speed evolution over time. 

The expected wind speed distribution during the analysis is 

shown in Fig. 10. This distribution comprises four fundamental 

components: base wind, which corresponds to the average wind 

speed (7.5 m / s); gust, which represents sudden wind changes; 

gradual wind changes, and wind of random nature. The reactive 

power reference of the slack bus in cases A and C is assumed to 

keep constant (1.5 Mvar) according to that set by the 

transmission grid manager, whereas such a reference cannot be 

set in case B. The algorithm provides the references for the 

reactive power injected by the STATCOM and the wind farm. 

The evolution of the main variables of interest when the slab is 

rolled in the FM is shown in Figs. 11 (case A), 12 (case B), 

and 13 (case C). Figure 14 shows the evolution of the 

distribution losses for each case study (LS: minimization of 

losses; DF: maximization of displacement factor; AU: 

minimization of voltage deviation). As can be seen, the 

maximum difference (roughly 400 kW) occurs between cases 

A (2 MW) and B (2.4 MW) when the FM is loaded.  

 
Fig. 11. Case A when a slab is rolled in the FM. From left to right and from top to bottom: 1) Active (blue) and reactive (red) power injected by the wind farm. 2) 

Reference (yellow) and measured (blue) voltage at the PV node of the gas-based power plant. 3) Power losses in the ring distribution network under study. 4) 

Active (blue) and reactive (red) power demanded from the HRM downstream the STATCOM PCC. 5) Voltage at PCC_C1 (blue) and PCC_C2 (red). 6) Active 

(blue) and reactive (red) power injected by the gas-based power plant. 7) Reactive power absorbed by the STATCOM. 8) Active (blue) and reactive (red) power 

demanded by the HRM at PCC_B1(node 2). 9) Active (blue) and reactive power (red) demanded by the 220 kV network at the slack bus, and reactive power 

reference (yellow) for the optimization algorithm. 



 

 

Fig. 12. Case B when a slab is rolled in the FM. From left to right and from top to bottom: 1) Active (blue) and reactive (red) power injected by the wind farm, 

and reactive power (green) at PCC_B2 (node 1). 2) Reference (yellow) and measured (blue) voltage at the PV node of the gas-based power plant. 3) Power losses 

in the ring distribution network under study. 4) Active (blue) and reactive (red) power demanded from the HRM downstream the STATCOM PCC. 5) Voltage at 

PCC_C1 (blue) and PCC_C2 (red). 6) Active (blue) and reactive (red) power injected by the gas-based power plant. 7) Reactive power absorbed by the 

STATCOM. 8) Active (blue) and reactive (red) power demanded by the HRM at PCC_B1(node 2). 9) Active (blue) and reactive power (red) demanded by the 

220 kV network at the slack bus, and reactive power reference (yellow) for the optimization algorithm. 

 
Fig. 13. Case C when a slab is rolled in the FM. From left to right and from top to bottom: 1) Active (blue) and reactive (red) power injected by the wind. 2) 

Reference (yellow) and measured (blue) voltage at the PV node of the gas-based power plant. 3) Power losses in the ring distribution network under study. 4) 

Active (blue) and reactive (red) power demanded from the HRM downstream the STATCOM PCC. 5) Voltage at PCC_C1 (blue) and PCC_C2 (red). 6) Active 

(blue) and reactive (red) power injected by the gas-based power plant. 7) Reactive power absorbed by the STATCOM. 8) Active (blue) and reactive (red) power 

demanded by the HRM at PCC_B1(node 2). 9) Active (blue) and reactive power (red) demanded by the 220 kV network at the slack bus, and reactive power 

reference (yellow) for the optimization algorithm. 

On another note, the iron losses of the network 

transformers are expected to be 864 kW. These losses can be 

considered practically constant given the small variation 

observed in the voltage of the transformers PCC. Therefore, 

400 kW in case A represent 26% of the total losses that can be 

controlled (2.4 MW – 864 kW = 1.536 MW), which is a 

significant benefit.  

With regard to the voltage at PCC_C1 and PCC_C2, their 

optimum references are set to 1 and 1.05 pu respectively (note 

that these references do not have necessarily to be 1 pu). 

Voltage variations with respect to the optimum value are always 

of the order of 1 % (when the algorithm optimizes voltage 

variations) or up to 5 % (when distribution losses are 

minimized). 

The evolution of the main variables of interest when one 

slab is rolled in the RM is shown in Fig. 15 (cases A, B, and 

C). On the other hand, the evolution of the same variables 

when two slabs are rolled simultaneously, one in the RM and 

the other in the FM, is plotted in Fig. 16 (cases A, B, and C). 

The analysis of the results obtained for these two rolling 

circumstances and under the three optimization algorithms is 

performed by comparing the distribution network losses (Fig. 



 

17) and the voltage variations (Fig. 18) at the monitored 

nodes, PCC_C1 (corresponding to the wind farm, WF and 

PCC_C2 (associated with the HRM). Figure 19 summarizes 

the losses and voltage deviations for each of the three 

algorithms, three rolling circumstances and two monitored 

nodes. More specifically, the maximum voltage deviation that 

occurs is indicated for each case.

 

.  

Fig. 14. Evolution of losses (left) and of the voltage at PCC_C1 and PCC_C2 (right) for the three optimization algorithms.

 

Fig. 15. Cases A, B and C when a slab is rolled in the RM. From left to right: 1) Active (blue) and reactive (red, green, dark blue) power injected by the wind 

farm. 2) Active (blue) and reactive (red, green, dark blue) power demanded by the HRM at PCC_B1(node 2). 3) Reactive power injected by the STATCOM. 

 

Fig. 16. Cases A, B and C when two slabs are rolled simultaneously in the RM and the FM. From left to right: 1) Active (blue) and reactive (red, green, dark 

blue) power injected by the wind farm. 2) Active (blue) and reactive (red, green, dark blue) power demanded by the HRM at PCC_B1(node 2). 3) Reactive 

power injected by the STATCOM. 

 

Fig. 17. Evolution of losses when a slab is rolled in the RM (left) and when two slabs are rolled simultaneously in the RM and the FM (right) for each 

optimization algorithm. 



 

 

Fig. 18. Evolution of voltage deviation when a slab is rolled in the RM (left) and when two slabs are rolled simultaneously in the RM and the FM (right) for each 

optimization algorithm. 

      

Fig. 19. Comparative analysis of energy losses (left) and voltage deviation at PCC_C1 and PCC_C2 (right) for the three optimization strategies (LS, DF and AU) 

when a slab is rolled in the FM or in the RM, and when two slabs are rolled simultaneously in the RM and in the FM. 

 

Losses are reduced by 11-15.5% when adopting the losses 

minimization strategy in comparison to the least efficient case, 

as seen in Fig. 19 (left). An average saving of 130 kWh is 

achieved when rolling 10 slabs if such a strategy is employed, 

which yields savings of 6.5 MWh per day and 2.3 GWh per 

year assuming a daily rolling rate of 500 slabs. Voltage 

variations are maintained at less than 1% at both nodes when 

employing the strategy for minimizing voltage deviations, 

whereas fluctuations between 1.5 and 5% are reached when 

implementing the other two strategies, as seen in Fig. 19 

(right). 

The displacement factor is kept close to unity at nodes 1 

and 2 if the strategy for maximizing the displacement factor is 

selected. On the contrary, the displacement factor at these 

nodes can reach notably poor values when the other strategies 

are adopted, especially at node 2 and under low load 

conditions. 

VIII. VALIDATION OF RESULTS 

The utilized PSO algorithm is able to give a response 

within an optimal range in a reasonably short time (10 ms), 

which perfectly suits the demanding dynamics of the steel 

plant. Moreover, the computational cost associated with this 

algorithm is low.  Furthermore, its flexibility is greater than 

that of more reliable and robust linear programming-based 

methods, thus making it able to work with both linear systems 

and non-linearities such as those associated with the responses 

produced by the wind farm and the STATCOM themselves. 

Although optimization strategies based on genetic algorithms 

also deliver good performance under non-linear constraints, 

their computational cost is higher [34]. The main disadvantage 

of the PSO technique is the impossibility of analyzing the a 

priori quality of the obtained quasi-optimal solution; however, 

it is possible to determine whether the solution pertains to an 

optimal range or not in the considered case studies. The 

quality of the solution is particularly simple to assess when 

optimizing the displacement factor or minimizing the voltage 

variations. In these cases, a small margin for improvement can 

be observed. If the target is the minimization of losses, the 

upper and lower limits make it possible to verify that the 

solution is within the optimal range, the former limit being 

obtained when other objectives are pursued, and the latter 

being set by the no-load transformer losses.  

The results obtained by applying the PSO algorithm have 

been compared with those yielded by the Matlab function 

called fmincon [34-35]. This function is an interior-point 

optimization algorithm and a nonlinear programming solver. 

In particular, the comparison is made when the LS algorithm 

is selected, as is the case for which the validity of the results 

can be more uncertain. Figure 20 shows the evolution of the 

main input variables, which are the same for both the PSO 

algorithm and the fmincon function, as is the slack bus reactive 

power reference (1.5 Mvar). Figure 21 shows the evolution of 

the primary output control variables, i.e. the reactive power 

references for the wind farm and the STATCOM. The 

accordance between the results yielded by both methods can be 

noticed. Meanwhile, Fig. 22 shows the evolution of the 

distribution network losses when calculated with each of the 

optimization methods. The total agreement of the results can be 

observed. The question then arises as to why use the PSO-

based algorithm instead of the fmincon function.  

 
Fig 20. Evolution of the main input variables during the comparative 

analysis. 



 

 
Fig 21. Evolution of the main output control variables during the 

comparative analysis 

 
Fig 22. Evolution of the distribution losses during the comparative 

analysis.  

The main advantages of the PSO algorithm when 

compared to the fmincon function are as follows: 1) separate 

cores of the same computer can be used to run different 

particles of the PSO technique simultaneously, which renders 

this technique much faster; 2) the PSO algorithm is more 

flexible than the Matlab function, and 3) the PSO technique 

supports different minimization targets that can be weighted 

and processed in parallel, whereas the initial value defined for 

fmincon can lead to a difficult convergence for the Newton-

Raphson algorithm, the obtained solution thus possibly being a 

local minimum. 

IX. CONCLUSION 

The opportunities offered by a collaborative operation of 

steel plants and power generation centers have been analyzed 

in this paper. The specific proposal consists in integrating a 

wind farm and a steelmaking factory into a virtual plant 

managed by a single operator. Special attention has been paid 

to the optimal management of reactive power, which has been 

solved by using the so-called particle swarm optimization. 

This method can address different objective functions. 

Accordingly, optimization of losses, of two node voltages and 

of the displacement factor have been assessed. The obtained 

results demonstrate the advantages of the coordinated 

management of energy and the effectiveness of the utilized 

optimization algorithm. 
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